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ABSTRACT

Finding genes biologically directly or indirectly related to lung cancer has been drawing much attention, and many genes
directly related to lung cancer have been reported. However, it has not been confirmed whether those published 'key' genes are
truly critical to lung cancer formation, i.e., they may be with very limited useful information. As a result, finding essential genes
remains a challenging lung cancer research problem. Using a recently developed competing linear factor analysis method in
differentially expressed gene detection, we advance the study of lung cancer critical genes detection to a uniformly informative
level. A set of common four genes and their functional effects are detected to be differentially expressed in tumor and non-
tumor samples with 100% sensitivity and 100% specificity in one study of lung adenocarcinoma (LUAD) and one study of
squamous cell lung cancers (LUSC) (two North American cohorts with 20429 genes, 576 and 552 samples respectively). Two
additional analyses also gain accuracy of 97.8% sensitivity and 100% specificity in one study of non-small cell lung carcinomas
(NSCLC, a European cohort with 20356 genes and 156 samples), and an accuracy of 100% sensitivity and 95% specificity (1
out of 20 non-tumor samples) in one study of ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas (LUAD,
a Japanese cohort with 20356 genes and 224 samples). There are some common genes, but different functional effects, within
each set of four genes among two North American cohorts and a European cohort and among North American cohorts and
the Japanese cohort. These results show the four-gene-based classifiers are robust with different types of lung cancers and
different race cohorts and accurate. The functional effects of four genes disclose significantly other mechanisms (mysteries)
between LUAD and LUSC. These sets of four genes and their functional effects are considered to be essential for lung cancer
studies and practice. These genes' functional effects naturally classify patients into different groups (more than seven subtypes).
Subtype information is useful for personalized therapies. The new findings can motivate new lung cancer research in more
focused and targeted directions to save lives, protect people, and reduce enormous economic costs in research and lung cancer

treatments.
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INTRODUCTION

WHO reported that the most common causes of cancer death in
2020 were: lung (1.80 million deaths); colon and rectum (935,000
deaths); liver (830,000 deaths); stomach (769,000 deaths); and
breast (685,000 deaths). Lung cancer is the third most common
cancer in the United States. More people in the United States die
from lung cancer than any other type of cancer (CDC statistics).
Lung cancer accounted for the most significant loss of wages at $21.3
billion among all cancers [1]. However, the exact environmental
and genetic cause of a person’s lung cancer is still unknown, and
its formation may be described as when mutated cells in the lungs

escape the immune system and grow out of control, a tumor is
formed in the lung. Although many lung cancer research results
have been published, the actual scientific research progress in lung
cancer studies is still limited. Many unknown factors exist. The
Lancet Editorial [2] stated: Lung cancer: some progress, but still a
lot more to do. Finding critical unknown factors can be essential to
conquer the lung cancer plague. From a genetic level perspective,
there is an urgent need for identifying critical differentially
expressed genes (DEGs) with the highest possible sensitivity and
specificity for lung cancer detection.

Differential expression analysis between tumor and non-tumor
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cells helps lung cancer diagnostic classifications and prognosis
prediction at different stages. Efforts have been made in identifying
genes associated with lung cancer symptoms. For lung cancer
diagnostic classifications [3] used support vector machine learning
algorithms to perform lung cancer morphology classification
[4] developed a deep gene selection method to select genes from
microarray datasets for cancer classification. Their experimental
results showed that an average sensitivity of 95.22% and an
average specificity of 77.39% [5] used several machine learning
algorithms to study lung adenocarcinoma and lung squamous cell
cancer and identified 13 top genes [6] used least absolute shrinkage
and selection operator (LASSO) as feature selection method to
learn cancer type classification based on TCGA data. Chen and
Dhahbi [7] applied overlapping feature selection methods for
cancer classification and biomarker identification [8] created an
open access web resource the Lung Cancer Explorer (LCE), which
enables researchers and clinicians to explore data and perform
analyses. The LCE supports comparative analysis, survival analysis,
meta-analysis, correlation analysis, among others. The data used
in our study are downloaded from the LCE website and double
verified with the original data sources. In comprehensive molecular
profiling of lung adenocarcinoma (LUAD) [9], eighteen genes were
found statistically significantly mutated, which suggests a driver
role of LUAD. Earlier, Cancer Genome Atlas Research Network
[10] reported eighteen genes with statistically recurrent mutations,
and TP53 was found being mutated in almost all samples, in a
comprehensive genomic characterization of squamous cell lung
cancers (SqQCC or LUSC). In addition, the authors also identified a
potential therapeutic target and offered new avenues of investigation
for lung SqCC treatment. In their study of triple-negative lung
adenocarcinomas [11] stated that many tumors lack activation of
any pathway, posing difficulties for prognosis and treatment. For
ALK-Positive and EGFR/KRAS/ALK-Negative LUAD, the authors
were able to identify upregulated genes, which can possibly benefit
patients from adjuvant chemotherapy after surgical resection.
Using expression signatures of 139 gefitinib-sensitive genes in lung
cancer, a risk-scoring model was constructed to classify high or low-
risk patients [12,13] found that the clinical therapy of non-small cell
lung cancer (NSCLC) depends on histopathological classification
(HPC). On the one hand, the HPC approach poorly predicts
clinical outcomes for individual patients. On the other hand, gene
expression profiling holds promise to improve clinical stratification
and paves the way for individualized therapy [14] used a nomogram
model to identify six key genes which were combined with various
clinical features. The nomogram model led to high consistency for
the prediction of 3 and 5-year survival rate (concordance=0.751)
and high accuracy as tested by ROC (AUC=0.71; AUC=0.708).
Using bioinformatics analysis [15] identified four genes (CCNAZ,
AURKA, AURKB, and FEN1) linked to LUSC development, and
five genes were all detrimental to the prognosis. The AUCs of their
established prognostic model for predicting patients’ survival at
1, 3, and 5 years were 0.692, 0.722, and 0.651 in the test data,
respectively [16] reported fifty genes that may be associated with
CD44, CCND3, NCALD, and MACFI1 and suggested that miR-
296-5p, RAMP2-AS1, CD44, CCND3, NCALD, and MACF1 may
serve as potential reliable biomarkers for the detection of LUAD.

The published genes from various research trials do not share
common features, and they vary from trial to trial in lung cancer
researches and treatments, e.g., survival analysis. Those genes can be
thought to have direct relations to lung cancer and point out some
promising directions. But it is still unclear whether or not truly the
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keys to deciding the characteristics which the trials were designed
to find. In science, an inferior or wrong methodology/model may
lead to wrong or suboptimal conclusions. Given that the number
of human genes is ultra-large and many genes are highly correlated
with each other, statistical significance in many existing models can
be false. On the other hand, published results seldom presented
the highest possible sensitivity and specificity, i.e., close to 100%.
In addition, many gene-related classifiers and models are not
interpretable as gene-gene inter-relationships are hardly expressed.
Most importantly, many existing analysis methods (biological
and/or statistical) cannot differentiate gene-disease subtype inter-
relationships. As a result, conclusive statements cannot be reached.

Like many other cancer studies, the scientific research progress
in solving the puzzle of lung cancer formations is still limited.
Much literature attention has been focused on individual genes
and their expression levels, i.e., not genegene interactions,
genes-subtypes (of lung cancers) interactions, and functional
effects. As a result, the fundamental genetic causes of lung cancer
formations can be masked by those suboptimal focuses, and the
researches can still be in a primitive state. Many unknown gene-
gene interaction factors exist. The gene-gene interactions can be
essential to conquer the lung cancer formations with the highest
possible sensitivity and specificity. This work intends to unfold the
mysteries and directions of lung cancers by identifying four critical
genes and their functional effects that lead to the full detecting
power of lung cancer tumor samples and non-tumor samples in
four gene expression RNA-seq datasets. Based on our analysis, a set
of four genes and their functional effects can describe the overall
features of lung cancers at the genomic level, with the highest
possible sensitivity of 100% and specificity of 100%. They show
clear patterns in all four cohorts. There are common genes with
different functional effects that interact with other genes within
each main type of lung cancer (LUAD, LUSC, NSCLC, etc.) and
play a decisive role among different main types of lung cancers.
Such properties have never been reported in the literature. It is
clear that they offer the findings’ trustfulness and provide keys to
tackle the puzzle of lung cancers and lead to precision medicine.

METHODOLOGY
The algorithm

The classifiers, based on logistic regression models, random forests,
support vector machines, group lasso-based models, deep learning
methods, etc., have been widely used in lung cancer studies and
many other studies in almost all application areas. However,
these methods do not directly deal with competing risks. The
final established classifiers do not give clear patterns of how genes
interact with each other and interact with subtypes. This research
is motivated by recent work on COVID-19 data science discovery
of five critical genes that 100% accurately classify all COVID-19
samples and COVID-19 free samples [17]. Those five critical genes
include an mRNA type gene and an uncharacterized gene, which
can be informative. This research also hopes to find critical genes
which can be drivers and messengers of lung cancer formation.

The most recently developed machine learning methods: max-
linear competing factor models [18], maxlinear regression models
[19], and maxlinear logistic models [20,17], have proven to be a
widely applicable class of new models in statistical analysis and
max-linear machine learning. The difference between the max-
linear competing models and the classical statistical models is
that the original linear combination of predictors is replaced by
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the maximum of several linear combinations of predictors, called
competing factors or competing-risk factors. The competing factor
classifier has an advantage over existing models in many research
problems, e.g., nonlinear predictions and classifications. The max-
linear competing factor models are different from the popular
models mentioned earlier. The maxlinear competing factor
models are interpretable and outperform existing methods (e.g.,
random forest and graphical group lasso) in estimation accuracy
and prediction power under broad data structures [19]. For the
theoretical foundation of these new models, we refer the readers
to papers [18-23].

Zhang first introduces a competing classifier for detecting
COVID-19 critical genes and subtypes [17]. The paper argues
conceptually the classifier can find the best subset of genes which
can perfectly classify COVID-19 diseases and disease free. This new
paper introduces a modified objective function, i.e., new classifier,
and then theoretically justify the classifier will select the smallest
number genes which can perfectly classify lung cancer tumors and
tumor free with the highest accuracy possible and for some cohort
studies to be the perfect classification (100% sensitivity and 100%
specificity). For self-contained and completeness, we will follow the
notations in [17] and expand them to the new classifier next.

Suppose (Y, X), i=1, . .., n, are the characteristics of n persons
with Y, corresponding to the i* individual” infected status (Y =0
or 2 for not infected, Y =1 for infected) and X=(X, X, ..., Xip)
being the gene expression values with p=20429 or 20356 genes in
this study. Using a logit link (or probit link, Gumbel link), we can
model the risk probability pi of the ith person’s infection status as:

IOg[lfJip‘]:ﬁU*'Xiﬂ (1)

or alternatively, we write

_ exp(fB,+ X, )
" l+exp(B,+ X.B)

Where B, is an intercept, X, is a 1 x p observed vector, and B is a p
x 1 coefficient vector which characterizes the contribution of each
predictor (gene in this study) to the risk.

There are at least three major problems applying the classical
logistic classifier (1) to disease classifications [17]. The first is that
the number of genes selected is still not small. As a result, gene-
gene interactions and functional effects can hardly be interpretable,
and hence the selected genes cannot be directly used in drug
development and treatment design. The second is that the classical
logistic classifier cannot provide additional information about
how genes interact with different disease subtypes. Considering
COVID-19 as an example, there have been four more variants
(B.1.1.7, B.1351, P.1 and B.147/429) having been discovered
and are spreading in many countries. These variants correspond
to different RNA segments and positions in COVID-19 RNA
sequences. As a result, each variant's related genes can be in
different formation (combination) types. The third is that even
with a relative non-small number of genes in the classical logistic
classifier, the accuracy is not high enough, often just 80%.

There is one crucial factor, competing (risk) factors, that has
not been considered in many existing statistical models, i.e., the
existing classifiers do not distinguish the causes and the subtypes
of the disease. In scientific studies, competing factors exist in many
scenarios [21]. The cause/regulation of each subtype of the disease
can be different, i.e., each subtype of the disease can result from
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one factor or multiple factors. For example, in a system, e.g., a
human body, all parts compete for resources to succeed. In terms
of diseases (rare or non-rare), all subtype diseases also compete for
resources. The dominant one wins all and will be diagnosed first.
This study considers competing factors to be linear combinations
of a set of predictors [17].

Suppose a disease (e.g., a type of lung cancer) may be related to G
groups of genes

X ., X,

i,j1°

®, = X, j=1..G.g >0 @)

i,j22° N g

where i is the i individual in the sample, g; is the number of genes
in j" group. The competing (risk) factor classifier is defined as

ogf ﬁw = max (B + @B By ¥ O frg + D,y (3)

i . . .
where By s are intercepts, @ isalx g observed vector, Bisagx1
coefficient vector which characterizes the contribution of each
predictor in the jth group to the risk.

Remark 1. Taking B0j=—°°, i=2,..., G, (3)is reduced to the classical
logistic regression, i.e., the classical logistic regression is a special
case of the new classifier. Compared with black box machine
learning methods (e.g., random forest, deep learning (convolution)
neural network (DNN, CNN)) and regression tree methods, (3)
shows clear patterns. Each competing risk factor forms a signature
with the selected genes. The number of factors corresponds to the
number of signatures, i.e., G. This model can be regarded as a bridge
between linear models and more advanced (black box) machine
learning methods. However, (3) remains the desired properties of
interpretability, computability, predictability, and stability.

In practice, we have to choose a threshold probability value to
decide a patient’s class label. Following the general trend in the
literature, we set the threshold to be 0.5. As such, if pi < 0.5, the
it individual is classified as disease free, otherwise the individual is
classified to have the disease.

With the above established notations, we introduce a new
machine learning classifier, smallest subset and smallest number

of signatures (S4), as: )
(l+ﬂ., +‘SuDZH(I(p,so.s)1(x:1)+1(y,>0.s)1()(:0))

S |+G-1 J

(4)

argmin

(ﬁ,ﬁ,é):ﬂ’sj cS,j=1,2,.,G +/12[

S,

(IS,]+1)xG -1

where 1(.) is an indicative function, pi is defined in Equation (3),

S={1, 2, ..., 20429} is the index set of all genes, Sj={jj1, NP -4 },
i=1, ..., G are index sets corresponding to (2), Su is the union of
{Sj,j=1,..., G}, |Su] is the number of elements in Su, A, > 0 and
A, > 0 are penalty parameters, and §={jj1, NN -0 i R Gl

and G are the final gene set selected in the final classifiers and the
number of final signatures.

Remark 2. The case of A,=0 corresponds to the classifier introduced

[17].

Remark 3. A perfect classifier (100% sensitivity and 100%
specificity) will have

2 (1(p<0.5) (Y, =1)+1(p,>0.5)1(Y,=0))=0 i, Equation
(4), which is the case in our study.

The goal is to find clear lung cancer formation patterns, i.e.,
functional effect patterns, by selecting a sparse (single digit) number
of genes with the highest performance.
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We note that the optimization procedure in Equation (4) is
different from existing approaches, e.g., likelihood method and
composite likelihood. =7, (7(p, <0.5)1(Y,=1)+1(p,>0.5)1(¥,=0))
Takes integer values 0,1,2,. . . ,;n with O being the best and n being
the worst. We have the following proposition which theoretically
justifies the new S4 classifier leads to the best gene subset selection
(with the smallest number of genes) and the smallest number G of
competing factors.

Proposition  2.1.  Suppose the smallest number that
20, (1(p,<0.5)1(Y,=1)+1(p,>0.5)1(¥,=0)) can reach is m. Then for
suitable choices of A, with A, +[Su[>0 and &, > 0, the new classifier
S4 will lead to the smallest |Su| and the smallest number of G
such that 3, (1(p, <0.5)1(Y, =1)+1(p,>0.5)I1(Y,=0)).

) (x=D+(y-1)

Proof. Denote [f(x» =ﬁ, x>2Ly>2Lx+y>1.
be shown that f (x, y) is monotone decreasing in both x and vy,

and O<f (x, y) < 1. For its usage and applications [24]. Denote A=
(1 + }ﬁ + )2;’:1(1(p,sos)1(1¢:1)+1(p,>o45)1(Y,A:0)) :

For m=0 and any choice of A, we have A=1, and then the leading
term of (4) is |Sul, which will force |Su| to reach its smallest
possible number for any A,>0. Once the [Su| is determined, f
(ISu| + 1, G) will force G to be its smallest number.

It can

S,

For m>0 and A +[Su|>0, A is the leading term of (4) for suitable
choices of A,. As a result, A will force |Su| to reach its smallest
possible number, and so does G. The proof is then completed.

The optimization problem (4) is a combination of combinatorial
optimization and continuous variable optimization. As a result,
its algorithm complexity is extremely high. To completely solve
the problem will need to bring efforts from computer science,
mathematical programming, and computational mathematics.

We leave this task as a future project. In this study, we directly work
on minimizing = (I(p, <05)I1(Y;,=1)+1(p, >05)1(% =0)) by taking |Su|
from 2 to 5 and G from 1 to 4, and identify the best solution which
satisfies Proposition 2.1. The following algorithm is implemented.

¢ Randomly draw G sets of genes with each set having |Su]
genes;

e Use any optimization procedures (e.g., Nelder-Mead method,
genetic algorithm, simulated annealing) to solve minimizing
= (1(p <05)1(Y,=1)+1(p,>05)1(Y,=0));

e Repeat the above two steps until an acceptable solution is
reached.

Remark 4. We have done an extensive Monte Carlo search to
find our final competing classifier. A MATLAB® demo code for
solving minimizing 2/, (Z(p,<05)I(¥,=1)+1(p,>0.5)1(¥,=0)) is
available online and submitted as a supplementary file together
with the paper. However, we have experienced quite a few times
man-machine interactions to reduce the dimensions from 20429
to S,. As such, we don’t have a well-documented algorithm for
solving minimizing s ([(pi <0.5)I(Y,=1)+I(p,>05)I(Y, :0)). It
will be a future project as it is an algorithm problem, i.e., not a
methodological problem. As the number of genes is big, the first
step may not be efficient. Dimension reduction can be helpful.
In our man-machine interactions, to train our program, we first
allowed the loss function to take a value around 10% of error
rate. We recorded some sets of genes that performed better than
other sets of genes, and to form a new set of genes, then repeated
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the above procedure to get the final classifier. We were able to
find an optimal solution to have a loss function taking the value
zero. The dimension reduction procedure we used is ad hoc.
Other dimension reduction procedures may be useful and worthy
of further investigation. Note this remark is similar to Remark
6 [17]. Please note the method [17] does not supply theoretical
justification and does not involve penalizations.

Remark 5. Given that we used Monte Carlo method in this study,
we have set a seed number (just the day we started the project)
in our MATLAB programs. The seed number can help, but not
sure for final results as we had quite a few steps man-machine
interactions, i.e., the seed number might not have an effect. Note
this remark is similar to Remark 7 [17].

Remark 6. Given the objective function in Equation (4) is heavily
flat (taking integer values), non-smooth, and non-convex, there
may be multiple optimal solutions that exist. Our final solution is a
global optimal. We have obtained some different sets of estimated
coefficients, but the conclusions remain the same. Note this remark
is similar to Remark 8 [17].

DATA  DESCRIPTIONS,
INTERPRETATIONS

There are four datasets used in this study.

RESULTS AND

The first dataset cohort is comprehensive molecular profiling of
lung adenocarcinoma (LUAD) by Nature publication [9]. The
dataset contains 576 samples (517 tumor samples, 59 normal
samples). The data are author-processed-renormalized.

The second dataset cohort is a comprehensive genomic
characterization of squamous cell lung cancers (LUSC) by Nature
publication [10]. The dataset contains 552 samples (501 tumor
samples, 51 normal samples). The data are author-processed-

renormalized.

The third dataset is a European cohort on a gene expression-based
classification of non-small cell lung carcinomas (NSCLC) and
survival prediction [13]. The dataset contains 156 samples (91
tumor samples, 65 normal samples). The Platforms are GPL570
[HG-U133 Plus 2] Affymetrix Human Genome U133 Plus 2.0
Array. The data is RMA normalized.

The fourth dataset is a Japanese cohort studying the identification
of genes upregulated in ALK-positive and EGFR/KRAS/ALK-
negative lung adenocarcinomas (LUAD) [11].

The study’s overall design is expression profiles in 226 lung
adenocarcinomas (127 with EGFR mutation, 20 with KRAS
mutation, 11 with EML4-ALK fusion, and 68 triple-negative cases).
The actual dataset contains 224 samples (204 tumor samples and
20 normal samples). Platforms are GPL570 [HG-U133 plus 2]
Affymetrix Human Genome U133 plus 2.0 Array. The expression
values are MAS5-normalized signal intensity.

Using a probability higher than 50% as the threshold, we identify
four critical DEGs: NLRC4 (NLR Family CARD Domain
Containing 4), PLEKHNI (Pleckstrin Homology Domain
Containing N1), RASIP1(Ras Interacting Protein 1), and SPPI
(Secreted Phosphoprotein 1), which lead to 100% sensitivity and
100% specificity of classifying all 576 samples in their respective
groups in the first dataset, 100% sensitivity and 100% specificity
of classifying all 552 samples in their respective groups in the
second dataset; four critical DEGs: SPP1, GPT2 (Glutamic-Pyruvic
Transaminase 2), FAM220A (Family With Sequence Similarity 220
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Member A), and SGPL1 (Sphingosine-1-Phosphate Lyase 1), which
lead to a sensitivity of 97.8% and a specificity of 100% of classifying
all 156 samples in their respective groups in the third dataset; and
four critical DEGs: NLRC4, PLEKHN1, PCOLCE2 (Procollagen
C-Endopeptidase Enhancer 2), and GABPBI-ITI (RNA Gene,
GABPBI Intronic Transcript), which result in a 100% sensitivity
and a 95% specificity of classifying 224 samples in their respective
groups in the fourth dataset. As these genes have not been reported
in the lung cancer literature of their direct relationship to lung
cancer, we consider them indirectly related to lung cancer. Our
final S4 classifiers are combined classifiers of three competing
factor (CFi, i=1,2,3) classifiers expressed as in Table 1.

The risk probabilities (Pmax, the last column in Tables 2-5) are
calculated using the logistic function of exp(Data-i-CFmax)/(1+
exp(Data-i-CFmax)) for the combined classifiers in each dataset, or
exp(Data-i-CFj)/(1+ exp(Data-i-CFj)) for each individual classifier
i=1,2,3, j=1,2,3. Tables 2-5 list partial expression values of the
selected genes for patients, the classifier values (Columns CFl,
CF2, CF3, CFmax), and the final risk probabilities (Column Pmax).
Note that the risk probabilities are truncated to two decimal digits.
As such, 1.00 does not mean an exact value of 1. All original gene
expression value data used in the final models and computed results
are available online in a Finaldata.xlsx file as a supplementary file
(submitted together with the paper). In this excel file, there are
five sub-tables (sheets): LUAD sheet for the first dataset, LUSC

Table 1: The final S4 classifiers.
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sheet for the second dataset, NSCLS-European sheet for the third
dataset, LUAD-Japan sheet for the fourth dataset, and Summary
sheet corresponding to Tables 2-5 in the main text.

Figure 1 plots the risks of patients with lung cancers in four cohorts,
respectively. The four plots clear show that the new classifiers have
superior performance and clear patterns.

Figure 2 uses Venn diagrams to plot classified subtypes for all four
cohorts based on the individual classifiers. This study is the first
time LUAD, LUSC, NSCLC can be further classified into subtypes
based on critical genes’ functions. This new classification opens a
new research direction, new drug developments, and new refined
personalized therapies. Notice that in Figure 2, Subtypes II (1
tumor sample), III (1 tumor sample), and VI (3 samples) shouldn’t
be thought as outliers simply because the numbers of samples in
these subtypes are so small. Using Subtype II as an example, this
sample means it is detected by CF2 only. Note that Subtypes 1V,
VI and VII are detected by CF2, and they together with Subtype
Il can form a larger subtype of CF2. From a RNA sequence
point view, compared with Subtype II, Subtype IV not only has
the characteristics of Subtype II but also has the characteristics of
Subtype 1, i.e., double mutations, and similarly Subtype VII has
all characteristics of Subtypes I, II, III, i.e., triple mutations. In
medical practice, Subtypes I, 11, III are relatively more curable than
other subtypes due to much clearer and simpler signatures, and the
most difficult one is Subtype VII (275 samples).

For the first dataset (LUAD, North American Cohort)

Data-1-CF2: 1.8889 -4.3417 x NLRC4 +6.7713 x PLEKHN1 +4.8279 x SPP1
Data-1-CFmax: = Data-1-CF2
For the second dataset (LUSC, North American Cohort)
Data-2-CF1: 1.0848 -3.2488 x NLRC4 +2.4380 x PLEKHN1 +0.8220 x SPP1
Data-2-CF2: 0.9999 -4.7832 x NLRC4 -3.4888 x PLEKHN1 -1.9377 x RASIP1 +1.9672 x SPP1
Data-2-CF3: 0.5651 +0.4889 x PLEKHN1 -4.8959 x RASIP1 +1.9672 *x SPP1

Data-2-CFmax: max(Data-2-CF1, Data-2-CF2, Data-2-CF3)

For the third dataset (NSCLC, European Cohort)

Data-3-CF1: -3.0126 +4.8720 x GPT2

+6.7189 x SGPL1 +0.6686 x SPP1

Data-3-CF2: -8.3253 +6.8062 x GPT2

-3.7611 x SGPL1 +6.7842 x FAM220A

Data-3-CFmax: max(Data-3-CF1, Data-3-CF2)

For the fourth dataset (LUAD, Japanese Cohort)

Data-4-CF1: 0.6973

-1.2969 x PLEKHN1 +0.1731 x PCOLCE2 ~ -2.9965 x GABPBI-IT1

Data-4-CF2: 2.2201 -1.7037 x NLRC4

+3.7928 x PLEKHNI1 -5.9701 x PCOLCE2

Note: Data-4-CFmax: max(Data-4-CF1, Data-4-CF2)

Table 2: Three Critical Genes (NLRC4, PLEKHNI1, SPP1), Competing Classifier Factors, Predicted Probabilities for the first dataset (LUAD, North

American Cohort).

TCGA 1D LC/NLC NLRC4 PLEKHNI1 SPP1 CF1 CF2 CF3 CFmax Pmax
05.4244.01A 1 0.06 -0.04 2.12 11.59 11.59 1
05.4249.01A 1 0.02 0.21 1.94 9.76 9.76 1
S2.AATA.01A 1 0.26 -0.28 1.11 6.46 6.46
38.4625.11A 2 0.68 -1 0.61 4.9 4.9 0.01
91.6847.11A 2 0.43 -0.53 0.42 5.6 5.6
91.6849.11A 2 0.25 -1.05 -0.39 -8.23 -8.23
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Table 3: Four critical genes (NLRC4, PLEKHN 1, RASIP1, SPP1), competing classifier factors, predicted probabilities for the second dataset (LUSC, North
American Cohort).

TCGA ID LC/NLC NLRC4 PLEKHNI1 RASIPI SPP1 CF1 CF2 CF3 CFmax Pmax
18.3406.01A 1 -0.18 -0.06 0.21 1.99 3.15 0.49 5.47 5.47 1
18.3407.01A 1 -0.46 0.18 0.12 1.91 4.59 0.32 3.81 4.59 0.99

XC.AA0X.01A 1 0.25 0.44 0.3 1.89 4.53 -1.9 3.02 4.53 0.99
22.4593.11A 2 0.55 -0.43 0.78 1.45 -0.57 -3.63 0.6 0.57 0.36
90.7767.11A 2 0.55 0.75 0.84 0.88 -1.82 -2.67 217 -1.82 0.14
92.7340.11A 2 0.45 -1.09 0.84 0.68 2.5 -0.99 -2.75 -0.99 0.27

Table 4: Four Critical Genes (SPP1, GPT2, FAM220A, SGPL1), Competing Classifier Factors, Predicted Probabilities for the third dataset (NSCLC,
European Cohort).

ID LC/NLC SPP1 GPT2 FAMZ220A SGPL1 CF1 CF2 CF3 CFmax Pmax
GSM475656 1 2.6 0.33 1.4 0.67 4.82 0.9 4.82 0.99
GSM475661 1 2.84 1.17 2.12 0.81 10.04 11.09 11.09 1
GSM415706 1 0.13 -0.88 1.49 0.18 6.2 -4.93 -4.93 0.01
GSM475780 1 -0.54 -0.66 1.59 0.05 -6.27 -2.27 -2.27 0.09
GSM475810 1 3.29 1.19 1.68 0.38 7.58 9.81 9.81 1
GSM475657 2 0.21 0.71 1.48 0.26 4.57 412 412 0.02
GSM475809 2 0.98 0.72 1.67 0.36 -3.45 -3.28 -3.28 0.04
GSM475811 2 1.23 -0.49 1.78 0.56 -0.84 -1.75 0.84 0.3

Table 5: Four Critical Genes (NLRC4, PLEKHN1, PCOLCE2, GABPBI-IT1), competing classifier factors, predicted probabilities for the fourth dataset
(LUAD, Japanese Cohort).

ID LC/NLC NLRC4 PLEKHN1  PCOLCE2 GABPBI-ITI CF1 CF2 CF3 CFmax  Pmax
GSM7173541 1 -0.46 0.2 1.63 -0.33 1.72 3.2 1.72 0.85
GSM773542 1 0.56 0.26 1.56 0.25 1.38 -1.83 1.38 0.8
GSM773765 1 0.71 0.29 0.06 0.32 0.63 9.2 9.2 1
GSMT773766 2 -0.56 0.16 1.47 0.48 0.7 -1.63 0.7 0.33
GSMT773783 2 0.5 0.16 1.94 0.46 -0.54 -4.88 -0.54 0.37
GSM7173784 2 -0.78 0.12 0.58 0.44 0.67 5.24 5.24 0.99
GSM7173785 2 -0.44 0.11 1.83 0.38 0.26 -4.88 -0.26 0.44
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Figure 1: Risk probabilities of four cohorts. The circles are for patients with lung cancers. The asters are for
tissues without lung cancers.
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more than three subtypes.

Figure 2: Venn diagrams of lung cancer subtypes. The first cohort is with only one main type. The second
cohort has more than seven subtypes. The third cohort has more than three subtypes. The fourth cohort has
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The above classifiers for four cohorts (datasets) clearly point out the
puzzle and future therapies of lung cancers. In every cohort, three
or four genes tell all possibilities of all subtypes of lung cancers.
They surely provide essential information on lung cancers.

Remark 7. Different from all other existing analysis methods which
interpret the function of each predictor (gene) to the disease mainly
based on its coefficient value and sign, i.e., an individual effect,
not any functional effects, the interpretation of each predictor
(gene) in the S4 model and classifier is based on its interaction to
other genes in the same component classifier and its interaction to
subtypes of lung cancers, i.e., the interpretations of S4 classifiers
are based on functional effects, not the individual effects, which
distinguishes our new method from existing methods.

Notice that the PLEKHNI gene appears in all competing factors
in all LUAD and LUSC analyses. In the literature, PLEKHN1 has
been recognized to play pro-apoptotic roles during reactive oxygen
species (ROS)-induced apoptosis in human colon cancer [25].
It will be of great importance to explore PLEKHN1’s biological
function in lung cancer, also other genes found in this study.

Mathematically, Proposition 2.1 proves that the optimization
objective function (4) will lead to the smallest set of genes, i.e.,
the models won’t cause overfitting, which is due to the objective
function in (4) as the loss and penalty functions function in a
hierarchical way. Such a combination of the loss function and
penalty functions is new in the literature. Therefore, it can be
expected that many existing high-dimension variable selection
methods can be revised to adopt this new combination, and many
new theories and computational algorithms can be developed.

To avoid model overfitting, splitting data has been advocated in
many applications. This procedure works when the data in each
group is homogeneous, i.e., the process is sufficient but not
necessary. However, when data in each group is not homogeneous,
this procedure can be inefficient, and the selected variables cannot
be guaranteed as relevant. Note that the lung cancer patients in each
dataset came from heterogeneous populations. Therefore, unless
the subgroups are pre-determined, dividing data as training and
testing datasets to perform crossvalidation will lead to inefficient
and misleading conclusions, which motivated the penalization
scheme in this paper.

J Clin Trials, Vol.11 Iss. S14 No: 1000001

On the other hand, when a model is fitted to the whole dataset and
leads to 100% accuracy, it will uniformly work for partitioned data
as long as the partition is balanced to all heterogeneous subgroups.
This is the case in all four analyses. Furthermore, it is not found
that published papers used the “standard” procedure to lead to
accurate prediction.

Note that the proposed model is fitted to four different datasets and
reached the highest accuracy. Each dataset has its heterogeneous
patterns (subgroups). Datasets are measured at different scales.
Using four such datasets naturally serves as cross-validation and
robust checking in the paper. It turns out the new approach is
robust. First, the classical logistic regression classifier is a particular
case of the proposed and fitted model, i.e., it is one of CFi. In
the first dataset, we can see that the fitted model looks like a
logistic regression fitted model as only one competing factor has
been selected. This is a perfect example that the proposed method
(4) does not overfit the data. In addition, if one directly fits the
classical logistic regression, the fitted model may be different from
the one reported in this paper due to different objective functions
being used. In addition, the logistic regression fitted model may
not lead to 100% accuracy. Second, from the second dataset
(LUSC), we can see that the first competing factor (CF1) contains
the same three genes as in the first dataset (LUAD), which gives a
clear indication that the models are not overfitted.

For the first cohort (LUAD, North American Cohort), three genes
lead to 100% sensitivity and 100% specificity. The formula tells this
cohort contains only one lung cancer main type. Medical therapies
can further partition this main type into subtypes according to the
expression levels of NLRC4, PLEKHN1, and SPPI. Notice that
the coefficient sign of NLRC4 is negative (-4.3417), which means
an increase of NLRC4 expression level will benefit the patients;
decreasing PLEKHNI and SPP1 expression levels will benefit
the patients. These observations lead to better therapies and
personalized medicine.

The relationship among three genes and between the genes and the
risk probability is illustrated in Figure 3. Looking at both Figures
1 and 3, we can see that three critical genes and their combined
classifier showed clear relationships and patterns (clustered high
probabilities and low probabilities) of all patients.
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Figure 3: LUAD-North American Cohort: Visualization of gene-
gene relationship and gene-risk probabilities.

For the second cohort (LUSC, North American Cohort), four
genes lead to 100% sensitivity and 100% specificity. We can
immediately notice that LUSC is more complicated than LUAD.
In this LUSC cohort, we need three individual classifiers to form
a final max competing classifier to reach 100% accuracy. We
observe the following features: 1) An increase of NLRC4 level will
benefit the patients in all subtypes except subtype III in Figure 2;
2) A decrease of SPP1 level will benefit the patients in all subtypes
except subtype II; 3) An increase of RASIP1 level will benefit the
patients in all subtypes except subtype I; 4) PLEKHN1 has different
functions in different subtypes and the changes of its expression
level can increase or decrease the risks of the patients depending on
their subtypes. These observations reveal the puzzle of lung cancer.
Existing research methods have been focusing on the significance
of those genes close to cancers, i.e., those published genes may be
regarded as surface genes. The published genes do not disclose
deep-level gene-gene interactions. They can hardly be thought of
as the drivers of lung cancers. The information obtained from
those genes can be limited and suboptimal. The genes discovered
from this study have 100% accuracy. These four critical genes
are the most informative genes, which lead to a new discovery/
definition of seven newly identified subtypes, which can point to
new therapies of LUSC type cancers. As a result, these four genes
can be regarded as truly critical genes.

Among the three classifiers, the linear correlation coefficients
between CF, and CF,, CF, and CF,, and CF, and CF, are 0.1959,
0.6167, and 0.4704, respectively. These coefficients show that
the three hyperplanes formed from four critical genes are neither
parallel nor orthogonal. Subgroup VII is the intersection of three
classifiers. It is the largest subgroup that contains 275 patients. In
a Venn diagram, the more number the intersections, the more
complex the disease. As such, the cure and the therapies of these
275 patients are more demanding. Other groups can be interpreted
similarly. The relationship among four genes and between the
genes and the risk probability is illustrated in Figure 4. Looking at
both Figures 1 and 4, we can see that four critical genes and their
combined classifier showed transparent relationships and patterns
(clustered high probabilities and low probabilities) of all patients.

The new S4 classifiers for the first two cohorts show that the new
method is robust for different cohort studies by identifying the
same set of genes, which is a desired property in practice.

For the third cohort datasets (NSCLC, European Cohort), we
can immediately see that there are three genes in the individual
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classifiers different from those four critical genes in the first
cohort (LUAD) and the second cohort (LUSC). This observation
clearly reveals that lung cancer treatments have to pay attention
to subtypes and their linked critical genes. It can be seen that a
decrease of SPPI level will benefit the patients like its function
in the first two cohorts LUAD and LUSC. Decreases in GPT2
and FAM220A levels will benefit the patients. The coefficients
associated with SGPLI1 reveal that treatments of different NSCLC
subtypes in Figure 2 classified by these four critical genes should
be different.

The linear correlation coefficient between CF1 and CF2 is 0.8792,
which tells that either classifier can identify the majority of the
patients. However, it also suggests that the cure and therapies of
most NSCLC patients can be complicated as their lung cancer
causes can be either way, i.e., without certainty. Using the new
diagnostic tools presented in this paper, the causes of cancer can
be more transparent, and better therapies may be implemented.
Looking at both Figures 1 and 5, we can see that four critical genes
and their combined classifier showed transparent relationships and
patterns (clustered high probabilities and low probabilities) of all
patients.

In this third cohort, two patients are being misclassified from
NSCLC to normal. The first patient record is GSM475706, and
the status was Public on May 07, 2010. The patient was a deceased
male with overall survival of 21.3 months. The second patient
record is GSM475780, and the status was Public on May 07, 2010.
The patient was a deceased female with overall survival of 20.53
months. We can see from Figure 1 these two patients’ tissues had
very low probabilities of being NSCLC tumors. Commented on the
samples that one presented with an uncertain histological diagnosis,
and two were from patients who had developed multiple primary
tumors [13]. However, we don’t have additional information to
confirm whether or not these two patients are misclassified.

For the fourth cohort (LUAD, Japanese Cohort), there are two
common genes, NLRC4 and PLEKHN, which are also presented
in the first cohort (LUAD, North American Cohort), but the other
two genes are different. This observation tells that the causes,
formations, treatments of lung cancer (LUAD) can be associated
with patients’ races, lifestyles, tobacco use, and air pollutions 2.
The function of NLRC4 is the same as its functions in LUAD and
LUSC, i.e., the smaller the level of NLRC4, the lower the risk.
The function of PLEKHNI is the same as its function in LUSC,
i.e., it can increase and decrease the risks depending on the cancer
subtypes in Figure 2. The expression levels of PCOLCE2 can
increase and decrease the risks depending on the cancer subtypes,
i.e., the same as PLEKHNI. GABPBI-IT1 will benefit patients with

higher expression levels.

The linear correlation coefficient between CF; and CF, is 0.5881.
We see that from Figure 2, there are 69 patients from Subgroup
II with whom CF; is not able to identify their lung cancer status.
Lookingat Figure 6, we see no transparent relationships and patterns
of all patients and their gene expressions. This phenomenon can
be explained by two classifiers. The coefficient signs of PLEKHN 1
and PCOLCE?2 are reversed from the two classifiers. As such, the
complexity levels of the patients from the Japanese cohort are
higher than those from North American cohorts and the cure and
therapies should be different too.
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In the fourth cohort, one patient was classified from normal status
to lung cancer. The patient record is GSM773784. The Status was
Public on Nov 01, 2011. The patient was an ever-smoker 70 years
old male.

From Figure 1, this patient’s risk of lung cancer was up to 99%.
We conjecture there might be a lab error or testing inefficacy of
this patient’s status.

Comparing the first, second, and fourth datasets, we see some
commonalities of genes NLRC4 and PLEKHNI and some
dissimilarities of genes PCOLCE2 and GABPBI-IT1 in the fourth
dataset. Recall that the Japanese cohort is a study of ALK-positive
and EGFR/KRAS/ALK-negative lung adenocarcinomas. Gene-
gene relations in our final classifiers fully represent lung cancer
types (LUAD, LUSC, triple-negative LUAD.) Though NSCLC is a
type of lung cancer, it is very different from the other three types.
The classifiers derived from the third dataset again show their
uniqueness compared with those classifiers derived from the other
three datasets, and these particular classifiers fully capture the lung

cancer type NSCLC.

From the above analyses, it is evident that gene-gene interactions
and their functional effects play decisive roles, i.e., they can be more
important than those genes which are biologically directly related
to lung cancers with high expression values. The interactions and
the signs of coefficients clearly tell the puzzle of the disease and
point out potential better treatment therapies, i.e., personalized
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medicine. The critical genes can also lead to finding other sets of
critical genes if they exist and are more important.

Clinic data analysis

In this section, we study the clinic variables, e.g., sex, age, smoking
status, packs per year, tnm.t, tnm.n, tnm.m, and stage, and their
associations with the subgroups defined by the competing classifiers
derived in Section 3. Due to the fact the first dataset (LUAD) has
only one main type of lung cancer, the clinic variables in the third
dataset (NSCLC) are just the sex and incomplete, and in the fourth
dataset (the Japanese cohort), stage only has two levels I and 11, we
use the second dataset (LUSC) to illustrate our analysis. Tables 6-8
summarize the computed results.

In Table 6, we see the much larger number of male LUSC patients
(371) than female patients (130). In the first dataset (LUAD), the
male patients and the female patients are counted to be 240 and
277 respectively, and in the fourth dataset, they are 95 and 109
respectively. Relatively, more patients were diagnosed lung cancer
at their ages between 60 and 80.

In Table 7, there were more patients at smoking status 3. However
the numbers of smoking packs per year look no difference.

In Table 8, there were more patients at stages TNM.t2, TNM.
n0, TNM.m0, and Stage.l. For TNM.t4, TNM.n3, TNM.m1, and
Stage.IV patients, they belong to Groups V CF«(1,3) and VII CF-
(1,2,3), i.e., those combined competing classifiers reflect the lung
cancer complexity and severity.

Table 6: The Second Dataset (LUSC) clinic external data (Age, Sex) analysis and their associations with the classifications.

Sex Age
LUSC Male Female <50 (50,60] (60,70] (70,80] >80

CF-1 21 12 1 5 11 14

CE-2 1 0 1 0 0

CE3 0 0
CF«(1,2) 9 5 0 2 6 6 0
CF(1,3) 125 49 9 27 70 54 10
CF-(2,3) 1 2 0 2 0 1

CF«(1,2,3) 213 62 10 51 108 93 8

Table 7: The Second Dataset (LUSC) clinic external data (smoking status) analysis and their associations with the classifications.

Status Packs per year
LUSC 2 3 4 <20 (20,40] (40,60] >60
CF-1 3 28 1 8 6 7 8
CE-2 0 0 0 0 0
CFE-3 1 0 0 0 0 1 0
CF«(1,2) 1 13 0 1 4 7 2
CE«(1,3) 47 112 9 31 48 34 40
CF«(2,3) 2 1 0 0 1 1 1
CF«(1,2,3) 79 183 8 24 75 80 62

Table 8: The Second Dataset (LUSC) clinic external data (TNM.t TNM.n, TNM.m, Stage) analysis and their associations with the classifications.

TNM.t TNM.n TNM.m Stage
LUSC tl t2 3 t4 n0 nl n?2 n3 m0 m1l I 11 111 I\%
CFE-1 9 17 7 0 25 2 0 25 0 20 8 5 0
CE2 0 0 1 0 1 0 0 1 0 0 1 0 0
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CE-3 0 1 0 1 0 0 0 0 0 1 0 0
CF(1,2) 5 7 0 11 2 1 0 12 0 10 0
CF«(1,3) 39 101 27 6 105 47 14 2 138 2 86 59 27 2
CF«2,3) 1 2 0 0 1 2 0 0 3 0 1 2 0 0
CF«(1,2,3) 59 165 34 17 174 4 23 3 231 5 127 92 50 5
DISCUSSION that the S4 classifier is uniformly efficient and robust over patients’

This study is the first time in the medical literature that lung cancer
diseases can be classified almost 100% correctly using only a few
(three or four) genes. There have been dozens of genes published
for various research purposes in the literature, e.g., survival analysis.
Those published genes were mainly selected based on the large
changes in their expressed values. They were not selected by gene-
gene interactions and functional effects. The relationships among
those published genes and their relationships to the diseases were
hardly interpretable. In addition, the number of published genes is
not small. As a result, it is difficult to verify which of those genes are
truly critical. Even with dozens of genes, lung cancer classifications’
accuracy is not up to the highest level as possible, not to say the
difficulty of how they can be applied to medical practice.

The discovery of the three or four critical genes and their functional
effects: (NLRC4, PLEKHN1, SPP1) for the first cohort, (NLRC4,
PLEKHNI, SPP1, RASIPI) for the second cohort, (SPP1, GPT2,
FAM220A, SGPLI1) for the third cohort, (NLRC4, PLEKHNI,
PCOLCE2, GABPBI-ITI) for the fourth cohort, can motivate
many new research directions and laboratory experiments. These
genes can be a starting point for conducting gene network analysis,
testing other reported genes, and finding the causal directions of
gene expression in various projects. As a result, many other existing
pieces of research, e.g., prognostic predictions, can be enriched.
It can also be hoped that new types of diseases can be discovered.
Eventually, new testing procedures and therapies for lung cancer
can be designed.

These critical genes enrich the biological literature of their new
functions related to lung cancer from indirect relationship to direct
relationship, i.e., to become new biomarkers. In many scenarios,
indirect effects are more significant than direct effects as direct
effects can be seen and controlled while indirect effects are hard to
see and even not to say how to control.

The risk probability of a patient developing a specific type of lung
cancer in her/his life is low. Among all discovered lung cancer
types, growing more than one type of lung cancer is rare. These
lung cancer types compete, and one type will first be diagnosed. As
a result, the competing risk factor models can be very efficient for
modeling multiple lung cancer types.

The inference/analysis approach used in this study can shed new
light on all generelated research, i.e., not just the lung cancers
study. Researchers can apply our new machine learning method in
their studies. Ultimately, our new findings may make researchers’
cancer research efforts more effective and meaningful, reduce
substantial research costs, and save lives and protect people.

Any arbitrary numbers for A, and A, in (4) satisfying the specified
condition will work in our real data analyses. For future studies,
tuning A, and A, may be needed. We leave this tuning study as a
future project.

We note that the new S4 classifier in (4) does not involve patients’
attributes, e.g., sex, age etc. With a 100% accuracy, it is safe to say
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attributes, which is a desired property in model building. With a
100% accuracy, the discovered genes and their derived signature
patterns certainly deliver meaningful and useful information to
lung cancer study and overcome any data batch effects that may
exist.

In the medical literature, the genes reported in this paper have
been reported to be associated with other diseases. In particular,
from Malacards and PubMed Central, we can find that i) NLRC4
- 281 hits in Malacards showing its involvement in 280 other
types of diseases or disorders; ii) PLEKHN1 - 10 hits in Malacards
without any hit for lung cancer; iii) SPP1 - 494 hits are found in
Malacards with lung cancer having a very high score; iv) RASIP1 -
26 hits in Malacards with similar types of other cancer subtypes as
for SPP1; v) GPT2 - Only 1 hit in Malacards and no mention of
lung or other cancer types; vi) FAM220A-5 hits in Malacards with
mentions of pancreatic, ovarian, and gastric types and without any
mention of the lung types; vii) SGPL1-With 97 hits in Malacards,
lung cancer ranks 50%; viii) PCOLCE2-With 30 hits in Malacards,
connections to lung carcinoma appear several times; ix) GABPBI-
IT1-With a total of 4 hits in Malacards, all being for cancer types,
lung cancer types appear twice at the top. We note that these
results are mainly based on their fold-changes in their expression
values, i.e., not on their interaction effects or functional effects on
the disease. For example, the effect of PLEKHNI in our study can
be positive and negative depending on its interaction with other
genes and lung cancer subtypes. As a result, individual genes may
not be appropriate to be considered biomarkers, given they can
be associated with various types of diseases. On the other hand, a
functional form of several genes can be used as new biomarkers, as
suggested in this paper. Of course, these results should be further
tested using blood test data. Furthermore, the functional effects
and their forms of the genes found in this paper can be used to test
other research findings on the cause of lung cancers or the effect
of the disease as the component classifiers can be used as responses
in the new analysis given they are now continuous scaled data with
100% sensitivity and 100% specificity. In addition, in our separate
research projects on colorectal cancer, breast cancer, liver cancer,
stomach cancer, and pancreatic cancer, etc., the genes found in this
paper are not shown in those projects, which may be an indication
the genes and their functional found in this study is lung cancer
specific.

In terms of using other methods to identify critical genes, there
do not exist any other methods that can find such a small number
of genes and with high accuracy. In our opinion, comparisons
should follow the following five ordered ways: 1) the accuracy; 2)
interpretability; 3) if the accuracy is similar, the computational time;
4) if the accuracy is similar, the applicability of the model; 5) if the
accuracy is similar, the advanced level of mathematical/statistical
theory. The new method has 100% accuracy, which certainly has
an advantage over other competing models with lower accuracy.

Doing data analysis and inference, data quality and their collection
methods, e.g., relative quantification or absolute quantification,
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are always an issue. Many models failed when data were collected
from heterogenous populations. Given our methods have 100%
accuracy, the risk of the inference issue has been reduced to the
minimum. The chance of making inference error is close to zero
given the total sample size is 1508.

Finally, we address an important medical practice issue. In this
paper, all classifier formulas are explicitly expressed. The results in
Tables 2-5 are reproducible. Figure 1 shows the risks of all patients.
Figures 3-6 are particularly meaningful visualization tools for
clinician to understand the status of lung cancer patients.

CONCLUSION

Using this paper’s results, medical doctors have a powerful tool
(testing kit) in their daily work, i.e., diagnosing and analyzing
patients’ lung cancer risks based on the four critical genes’
expression values and the computed risks. Clinical trials can be
conducted to study the efficiency of existing drugs and therapies
for lung cancer patients. Medical research can be done to explore
these genes biological connections to cancerous tissues.
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