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Abstract—The minimum mean-squared error (MMSE) estima-
tor is recognized as the best estimator for measuring transmission
channel distortion in orthogonal frequency division multiplexing
(OFDM) using pilot-symbol assisted modulation (PSAM) in the
presence of noise. In practice, however, the estimator suffers from
high complexity and relies on the estimation of second-order
statistics which may change rapidly within small-scale fading
environments in a high-mobility wireless transmission system.
We propose using machine learning (ML) with Gaussian Process
Regression (GPR) to adaptively learn the hyperparameters of a
channel model, which then can be used to calculate the MMSE
estimates. Moreover, GPR can be used to more accurately inter-
polate the channel estimates in between pilot symbols compared
to linear interpolation techniques. After describing the learning
process and its equivalency to MMSE, we derive the BER for a
receiver using GPR for time-domain interpolation, then use BER
to find a practical bound on the number of training points needed
to achieve best performance. We show that the performance of
GPR-based ML is comparable to that of more complex neural
network-based ML.

Index Terms—Machine learning, channel estimation, Gaussian
process, OFDM

I. INTRODUCTION

The next-generation high-mobility communications systems
beyond-5G (B5G) are targeting high-speed railway (HSR) use
cases requiring reliable data rates of at least 100 Mbps at
peak speeds of 500 kph [1] with low power consumption.
Comparatively, earlier 4G LTE (Long-Term Evolution) sys-
tems guaranteed only functional (low bit rate) services above
120 kph [2]. To achieve B5G goals of high performance,
high-mobility, and low power, accurate channel estimation
is needed for mobile terminals requiring minimum signaling
overhead, adaptation to fast-changing channel statistics due
to terminal mobility, and computational compactness for low
power consumption.

Channel state information (CSI) is needed to undo the
effects of channel distortion and decode error-free received
symbols; this can be achieved via pilot-symbol assisted mod-
ulation (PSAM), where measured observations of known
pilot (training) signals periodically-transmitted in between
information symbols of synchronized transmission systems
are used to estimate the CSI [3]. New channel estimation
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algorithms are needed to be able to adapt quickly when
channel statistics change due to mobile velocity changes in
multi-path environments, and must be robust enough to learn
the channel accurately when pilots are spaced far apart relative
to the channel coherence time.

Deep learning for wireless communications systems has
recently received plenty of research interest due to the general-
ized ability to learn unknown or complex channel models and
nonlinearities, and the realizations made possible by modern
computing architectures [4]. However, limited research has
been done to date on the effects of mobility on learned
systems.

A. Prior Work and Motivation

Deep learning for digital receivers has been investigated
in [5] using deep neural networks (DNNs) to combine channel
estimation with symbol detection and achieve near-minimum
mean-squared error (MMSE) performance, but did not con-
sider time variation in the channel. In [6] a signal preamble is
used for supervised learning of a slow time-varying channel,
with channel estimates between pilots linearly interpolated.
In [7] the piecewise linear properties of fully-connected ReLU
(rectified linear unit) DNNs are used to show the ability to
approximate MMSE estimators.

DNNs are trained offline using large amounts of labeled
channel measurement data to ensure adequate convergence.
In many practical application scenarios, however, we may not
have or it is too expensive to obtain a large amount of reliably
labeled data. For channel estimation, this typically constrains
the DNN solution to static channels, with limited support for
mobility. DNNs also lack interpretability of the trained model;
after training, the weights of the neurons cannot be readily
analyzed to interpret the characteristics of the channel. This
contributes to an open problem of being unable to analytically
characterize performance to bound the number of layers and
neurons needed to accurately estimate CSI. Generally it cannot
be explained why performance is better or worse due to
the inability to interpret how the models compensate for
distortions that traditional models cannot correct [8].

Rather than burden the DNN with having to learn the
channel with no prior statistical knowledge, model-based
machine learning takes a parameterized approach, distilling
the amount of learning to a handful of hyperparameters. This
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allows for faster training, which lends itself to fast time-
varying channels where channel states change quickly. It also
allows for interpretability, since observation of the model
hyperparameters can give insight to the underlying channel
characteristics.

B. Overview of Methodology and Contributions

We propose a model-based ML approach to channel es-
timation in order to quickly train to fast-changing channel
conditions more efficiently than DNN-based machine learning
approaches. Gaussian Process Regression (GPR) is a non-
parametric Bayesian approach towards regression problems
that uses a kernel to characterize the proposed model. It is
especially useful when the phenomena to be estimated can be
closely characterized by a Gaussian process [9]. Jakes [10]
characterized small-scale channel fading in terms of a Gaus-
sian process; as such, we use this as motivation to use GPR
as an ideal technique for supervised model-based machine
learning of channel estimates using PSAM pilots.

In addition to being interpretable due to the model-based
approach, GPR is robust to low signaling overhead, which can
happen if pilots are spaced far apart in time relative to the
channel coherence time. The smaller number of hyperparam-
eters to train lends itself to lower computational complexity,
as opposed to the large amounts of neurons to train per pilot
symbol. Finally, as will be presented, GPR fully establishes
a mean and variance for each channel estimate, which means
performance is predictable; computational complexity can be
further reduced to analytically to meet a defined performance
criteria.

Our key contributions are summarized as follows:
• We introduce GPR and show that the optimal kernel for

multipath fading to achieve near-MMSE performance on
pilot channel estimates is based on the Bessel function.
We also identify the ability to obtain channel estimates
of information symbols using the trained GPR1.

• We analyze bit error rate (BER) performance of a digital
receiver using GPR to find a reasonable bound on the
number of training points needed to achieve the asymp-
totic performance bound.

• We present simulation results comparing GPR to a
trained deep neural network and show that performance
of GPR is comparable to the more-complex DNN.

Notation: A bold lower case a is a column vector, a is a
scalar, a bold upper case A is a matrix, a[i] is the ith entry of
a, A(i) is the ith column, and A(i, j) or Aij is the ith row and
jth column entry of A. IM ∈ RM×M is the identity matrix.
tr(A), AT , and AH are, respectively, the trace, transpose,
and conjugate transpose of A. The estimate of a is â, and
the absolute value of a is |a|. E[·] denotes the expectation
operator.

1While this paper focuses on time-domain interpolation of channel esti-
mates, extension of GPR with the Bessel kernel to doubly-selective channels
(time- and frequency-domain selectivity) in OFDM is straightforward so long
as the kernel design introduced later in this paper is selected judiciously to
suit the frequency-domain correlation statistics.

Fig. 1. PSAM slot structure with pilot and information symbols.

II. SYSTEM MODEL

A. Pilot Symbol Aided Modulation (PSAM)

In the presence of system noise, channel distortion can be
estimated with pilot symbols known a priori, and the effects
of that distortion is undone in the receiver for optimal infor-
mation symbol detection. Periodic pilot transmission allows
for the receiver to adjust for time-variations in the channel.

We adopt the LTE convention of a “slot” and define data
transmission as a series of slots of length L symbols with
symbol duration T , each slot containing a pilot symbol at
slot position l = 0 and data symbols at slot positions l =
1, . . . L−1 [11]. We show this in Fig. 1, where ps is the pilot
at current slot s, and the last D pilot symbols are shown.

The pilot symbols must replace data symbols, which con-
sequently decreases the system data throughput by a factor of
L−1. It is advantageous to transmit pilots as infrequently as
possible, whilst balancing the need for fresh channel estimates
as the channel characteristics change. Channel estimates for
the information symbols are obtained via interpolation be-
tween pilots. Simple interpolation techniques may not hold if
the channel changes faster than the pilots are transmitted when
mobile speeds increase. Accurate interpolation is therefore
needed for optimal decoding, and we show later that GPR
satisfies this need.

B. Signal Model

Referring back to Fig. 1, let z = sL+ l be the z-th symbol
index. Fig. 2 shows the baseband narrowband communications
model for analysis, with az ∈ C being the z-th transmitted
symbol sourced from either information symbols dz ∈ C
for l = 1..L − 1 or pilot symbols ps ∈ C for slot s
when l = 0 (E[az] = 0), hz ∈ C the z-th symbol’s
channel gain (distortion), qz ∈ C the corresponding receiver
input signal, and nz ∼ CN (0, σ2

n) is the observation noise
consisting of additive independent and identically distributed
(i.i.d.) Gaussian noise with zero mean and variance σ2

n. For
ease of exposition, we assume the channel is narrowband and
frequency-independent, in which this narrowband assumption
can be easily extended to a subcarrier of orthogonal frequency
division multiplexing (OFDM) used in 4G LTE systems and
beyond. We also assume that frequency offset from Doppler
is removed by the receiver’s automatic frequency correction
(AFC), such that only residual small-scale fading effects
remain. For notational simplicity, we omit the symbol index
z unless needed for clarity.

In Fig. 2, the channel estimate ĥ ∈ C is applied to the
received input signal (equalization) via zero-forcing detection
to recover the information signal a. The complex-valued
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Fig. 2. Signal and System Model

received signal y is then

y =
ah+ n

ĥ
= â, (1)

where the channel estimate is decomposed into ĥ = h + δh,
and δh denotes the channel estimation (mismatch) error. The
equalized signal can also be decomposed into the original
signal a and its distortion δa, so y = (a + δa) + (n/ĥ).
Solving for δa,

δa = −aδh/(h+ δh). (2)

This results in an expression that links the channel estimation
error with the received error.

C. Mobile Channel Characteristics
A moving mobile terminal has a maximum Doppler fre-

quency fm = vfc/c, where fc is the carrier frequency of
the transmission, v is the mobile velocity with respect to the
transmitter, and c is the speed of light (c = 3 × 108 m/s).
To incorporate symbol transmission rate into mobile BER
analysis, we introduce the normalized Doppler spread fmT .
The consequence of a high Doppler frequency manifests itself
in the rapidity of the channel fading. We can quantitatively
measure this effect by calculating the time that the channel
is relatively stationary, known as the coherence time (TC).
Using the definition of 50% coherence time [12], TC is given
by TC = 0.75/(fm

√
π).

In the case of small-scale fading in a mobile multi-path
environment, the channel gain h is a random variable with
statistics governed by the particular fading environment (tra-
ditionally represented by a Rayleigh or Ricean distribution).
The Rayleigh fading model is shown to be a Gaussian process
as described by Jakes [10]. Assuming wide-sense stationarity,
the time autocorrelation of the channel gain h with respect to
the time lag τ is given as

rhh(τ) = E[hzh∗z+τ ] = PJ0(2πfmτ), (3)

where P is the large-scale path loss and J0(·) is the zeroth
order Bessel function of the first kind.

III. LS AND MMSE ESTIMATION

Least-squares (LS) estimation attempts to minimize the cost
function

ĥLS = argmin
ĥ

|q − ĥa|2 =
q

a
. (4)

LS is by far the least complex to implement, requiring only
a simple division per channel estimate.

Unlike the LS estimate that merely zero-forces the obser-
vation to recover the channel, the linear MMSE (LMMSE)
estimate exploits ensemble statistics existing in the observed
samples. By collecting the samples in a block with length D,
the LMMSE estimate can be given by [13]

ĥLMMSE = rHhh(Rhh + σ2
nID)

−1ĥLS , (5)

where the vector ĥLS = [ĥLSsL , ĥ
LS
(s−1)L, . . . , ĥ

LS
(s−D+1)L]

T ∈
CD×1 is obtained by collecting the D LS channel estimates in
(4), Rhh = E[hhH ] ∈ CD×D is the auto-correlation matrix of
the channel coefficients h = [hz, hz−L, . . . , hz−(D−1)L]

T ∈
CD×1, and rhh ∈ CD×1 is the first column of Rhh. The
LMMSE estimator in (5) can be viewed as applying a linear
filtering matrix to the LS estimate. The dilemma here is that
Rhh cannot be known with certainty without knowledge of h.

IV. USING MACHINE LEARNING WITH GAUSSIAN
PROCESS REGRESSION

A. Gaussian Process Regression

GPR is a Bayesian learning technique that estimates a
latent regression function g(·) from a set of noisy training
measurements

vi = g(ui) + ni (6)

to perform the prediction when new data (observations) are
available [9]. For instance, the vi in (6) can be viewed as
the i-th channel estimate (e.g., either (4) or (5)) given the
pilot input (training data) and the additive observation noise
ni following the model in Fig. 2. The g(·) in (6) denotes
the GPR model following a joint Gaussian distribution (a
Gaussian process), and produces estimates with a Gaussian-
distributed mean and variance (uncertainty) for each estimate.
A kernel function describes a “best guess” on the underlying
model that characterizes the phenomena to be estimated.
The kernel comprises hyperparameters that are trained with
training points to allow for multiple degrees-of-freedom in the
model for maximizing the probability that the model matches
the latent function as best as possible. Once hyperparameters
are trained, the kernel is then used in the GPR process to
formulate an estimate at any test point.
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We define a training data set of D training samples to
be S = {(ui, vi), i = 1, ..., D}, ui ∈ R and vi ∈ C. We
define a GP kernel function, k(·), as a covariance k(u, u′) =
cov(g(u), g(u′)), and compactly define a covariance vector
{k∗ ∈ CD×1|k∗[i] = k(u∗, ui)} where each element is the
covariance between the test point at u∗ (the point to be
estimated) and the D training points. The observations of
each training point are contained in v = [v1, v2, ..., vD]

T . The
training set covariance matrix {K ∈ CD×D|Kij = k(ui, uj)}
is constructed such that the test point estimate v∗ and estimate
variance σ2

v∗ are given as

v∗ = kH∗ K
−1
v v (7)

σ2
v∗ = k(u∗, u∗)− kH∗ K

−1
v k∗, (8)

where Kv = K + σ2
nID and σ2

n is the channel noise as
described in II-B. The uncertainty given in (8) gives the pre-
dictability needed later for model complexity determination.

The choice of the GPR kernel in relation to the statistics
of sample data has a profound impact on the effectiveness
of GPR learning. A previous study [14] used a radial ba-
sis function (RBF) for the GPR kernel, which is given by
k(u, u′) = θ1 exp(−(u − u′)2/θ2) where θ1 and θ2 are
hyperparameters for the RBF kernel. θ2 is commonly referred
to as the “length-scale” of the RBF, and controls the sharpness
of the Gaussian-like distribution. Instead of using the same
RBF kernel of GPR to cope with the fast time-varying mobile
channels, we propose a new kernel, called a Bessel kernel,
based on the application of Jakes’ Gaussian process model
[10], to capture a Bayesian prior for the GPR latent function
(channel) that is aligned to a practical mobile medium.

B. Bessel Kernel for Mobile Channels
We now observe the duality of the MMSE estimate in (5)

and the GPR test point estimate in (7). Both take observations
of Gaussian-distributed source and noise vectors, apply a
filtering vector that comprises of correlation/covariance ma-
trices, and produce a posteriori Gaussian density functions.
If we form the training set covariance matrix K to take the
form of the correlation matrix of channel estimates Rhh,
then (7) is in the form of (5) when kH∗ is the first row
of K, and v consists of the least-squares channel estimates
ĥLS ; the solution to (7) results in the MMSE estimate for
that pilot symbol corresponding to the first training point
in v. As autocorrelation is simply a normalized covariance
for zero-mean data, we therefore propose, based on the time
autocorrelation function in (3), a Bessel kernel for GPR
channel estimation in Rayleigh fading channels as follows:

k(u, u′) = θ1J0(2πθ2τ), (9)

where θ1 and θ2 are hyperparameters for the Bessel kernel,
and τ = (u− u′)T .2 The θ2 in (9) is essentially the Doppler
frequency fm, while θ1 effectively accounts for variations in
received power P defined in (3).

2While we focus on Rayleigh fading models in this work, it is worthwhile
to point out that our approach can be easily extended to other parameterized
channel models such as Ricean and Nakagami fading models.

C. Hyperparameter Training

Hyperparameters are trained to best fit the model g(·) to
the observed training points v. We accomplish this supervised
learning by minimizing the negative log marginal likelihood
of the observations, i.e., minθ − log p(v|u, θ), where θ =
[θ1, θ2]

T is the hyperparameter vector for the kernel k(·). The
criterion can be equivalently rewritten as

min
θ

1

2

(
vTK−1v v + log(detKv) +D log(2π)

)
. (10)

Since optimization of (10) is a standard procedure in GPR
training, we omit the details here. Any iterative gradient-
based algorithm can be used to find the hyperparameters θ.
These algorithms require computing the partial derivative of
the objective in (10), which is given by [9]

−∂ log p(v|u, θ)
∂θj

= −1

2
tr
[
(ααT −K−1v )

∂Kv

∂θj

]
, ∀j, (11)

where α = K−1v v and the partial derivative ∂Kv/∂θj is
readily computed entry-wise. The gradients of the Bessel
kernel in (9) are given by ∂k/∂θ1 = J0(2πθ2τ) and
∂k/∂θ2 = −2πτθ1J1(2πθ2τ) where J1(·) is the first order
Bessel function of the first kind.3

D. GPR for Interpolation of Channel Estimates

After the hyperparameters are learned, we can now use
GPR to non-linearly interpolate information symbol channel
estimates in between pilots without additional training. The
trained kernel is reused to find the estimates, in conjunction
with (7) and (8). To the best of our knowledge, DNNs have
not yet been shown to do this using a single trained DNN
for both pilot channel estimates and interpolated information
symbol channel estimates.

To perform time-domain interpolation using GPR, we com-
pute each pilot symbol’s LS channel estimate in the jth slot as
ĥLSjL . Using current and previous values of ĥLS as the training
points for GPR, we can then regress the L-1 channel estimates
across time in between the pilot symbols of slot s-1 and s
using the kernel function k(·) in (9), where slot s is the current
received slot. This concept is shown in Fig. 3.

We form the time-domain GPR training data set S =
{(Li, ĥLSs−i), i = 0, ..., D − 1} to create symbol index and
pilot estimate pairs. We define pilot channel estimate vector
{w ∈ CD×1|w = [ĥLSs , ĥLSs−1, . . . , ĥ

LS
s−D+1]

T } as the last D
pilot symbol LS estimates to find the channel estimate ĥgp(l)
corresponding to the l-th symbol of the previous slot, i.e.,
interpolation, where from (7) and (8),

ĥgp(l) = kH∗ [L− l](K+ σ2
nID)

−1w, (12)

σ2
gp(l) = k(0, 0)− kH∗ [L− l](K+ σ2

nID)
−1k∗[L− l], (13)

where k∗[l] = [k(0, l), k(L, l), . . . , k(L(D − 1), l)]T and
K(i, j) = k(Li, Lj), ∀i, j with k(·) as defined in (9). (13)

3Because the kernel described here is a covariance matrix comprised
of linearly-spaced observations, K is Toeplitz, and inversion of K can
be computed efficiently in O(4D2) time per optimization iteration, but
calculation of the derivatives is then at O(D2) time.
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Fig. 3. Using pilot symbol channel estimates from ĥLS to learn the channel and obtain information symbol channel estimates ĥgp

asymptotically approaches zero as D increases; therefore D
is chosen to balance performance with the computational
complexity inherent in the inversion of K.

We now have channel estimates for information symbols,
and can analytically predict BER performance given the
channel estimate variance for each symbol position in the slot.

V. PERFORMANCE ANALYSIS

In this section, we analyze and approximate BER and use
it to find a practical bound on the number of training points
needed to achieve near-optimal performance. We focus on
quadrature phase shift keying (QPSK) for simplicity.

Beginning with the signal model introduced in (1) and
the subsequent decomposition of the received signal into the
original signal and amplitude/phase estimation error in (2), we
arrive at the representation

y=(a+δa)+
n

ĥ
=a+

(
−a δh

h+ δh
+

n

h+ δh

)
= a+e. (14)

Regarding the first equality in (14), the received signal y
consists of the original signal a and the decoder error δa,
plus the AWGN term scaled by the channel estimate ĥ. For
the second equality in (14), we express the received signal
in terms of the original signal a and a composite error term
e comprised of two Gaussian-distributed random variables
δh ∼ CN (0, σ2

gp) and n ∼ CN (0, σ2
n)

Now, we attempt to linearize the error term e in (14). For
QPSK, let Es be the signal energy and Eb = Es/2 be the per-
bit signal energy. For high SNR (σ2

n � Es) and small GP
variance (|δh| � |h|),

δh

h+ δh
≈ δh

h
and

n

h+ δh
≈ n

h
. (15)

Then (14) can be rewritten as

y ≈ a+ 1

h
(n− aδh) = a(h− δh)

h
+
n

h
. (16)

Note that (16), when h is a fading term, is in the form of
signal plus noise in fading. The BER for QPSK in Rayleigh
fading (assuming the channel coherence time is sufficiently
greater than the symbol time) is given by [15]

PQPSK
e ≈ 1

2

(
1−

√
Eb/Ñ0

1 + (Eb/Ñ0)

)
, (17)

where Ñ0 = σ2
n+Esσ2

gp is the sum of the noise power from the
random variables n and aδh in (16). Since Ñ0 is a function
of l as shown in (13) we average (17) across all symbol
positions in the slot to arrive at the approximation for the
QPSK bit error rate using GPR,

PQPSK
e (L) ≈

1

2(L− 1)

L−1∑
l=1

(
1−

√
Eb/(σ2

n + Esσ2
gp(l))

1 + (Eb/(σ2
n + Esσ2

gp(l)))

)
.

(18)

A. Determination of training data set size

Armed with the BER using GPR, we now seek to provide
a practical bound on D, and can illustrate a complexity bound
for GPR in receivers by recognizing that the noise term Ñ0

can be dominated by either σ2
n or Esσ2

gp. Recall in (13) that
the GP variance is inversely proportional to D. If the GP
variance is less than the observation noise, the observation
noise will dominate the BER term in (18) and it can be
surmised the number of training points D can be reduced
without appreciable loss of performance. There is then a value
Dopt as the lowest number of training points needed to have
the GPR variance equal to or less than the noise power, such
that neither noise term in (18) dominates Ñ0.

We can see this effect in Fig. 4 for different mobile
velocities using LTE parameters of L=6, fc=2.0 GHz, and
T=71.4µs, where the BER is high with few training points
D and σ2

gp � σ2
n, but then decreases as D increases until

σ2
gp ≈ σ2

n, at which point any further increase in D results
in negligible decreases in BER since σ2

n now dominates the
noise term. This occurs at approximately 4-6 training points.
For reference, the irreducible QPSK BER for perfect channel
estimates across all pilot and information symbols is shown.

Notably, as velocity increases, more of the off-diagonal
elements of K tend to zero, increasing detK and causing
a higher variance in (13). At some point, the GPR variance
across all information symbols exceeds the noise floor for any
value of D. This can be seen for the curve at 600 kph.

VI. SIMULATION RESULTS

Fig. 5 shows the normalized MSE from a PSAM simu-
lation using QPSK. LS channel estimates are plotted with
GPR estimates using Bessel kernel, D=6, and training using
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Fig. 4. BER vs. Number of training points for different mobile velocities

Fig. 5. Normalized MSE vs. SNR for GPR and DNN

stochastic gradient descent. Curves assume a pilot spacing of
L=10, T=71.4µs, and Rayleigh fading with fmT=0.016.

Channel estimates from the DNN as described in [6] are
also overlaid on the plot. In the paper, the DNN is a fully-
connected three-layer DNN with 512, 256, and 128 neurons
using rectified linear unit (ReLU) activation functions trained
with the Adam algorithm. The actual (noise-free) channel
estimates are used to train the DNN, then the DNN is updated
in real-time using LS (noisy) estimates.

It can be seen that the trained GPR performs as well as the
DNN, and both are close to the theoretical LMMSE lower
bound. For the simulated parameters, all machine learned-
estimates improve LS estimates by approximately 4-6 dB.

It can thus be surmised that the hyperparameters of the
GPR Bessel kernel can converge such that the kernel returns
the channel autocorrelation, while the fully-connected DNN
converges to act as a filter on the LS inputs similar to how

the terms in (5) act to filter ĥLS .

VII. CONCLUSION

We introduced the concept of machine learning using GPR
and applied it to PSAM for use in forming a proxy for Rhh

to get the LMMSE channel estimates for pilot symbols, thus
showing the interpretability of GPR. GPR also enables inter-
polating channel estimates between pilots when in a small-
scale fading environment. We formulated the generalized ex-
pression for QPSK BER when using GPR on PSAM pilots in
Rayleigh fading. The predictability of channel estimate MSE
lets us predict the necessary model complexity to approach the
BER floor for a given noise floor and pilot spacing L. Finally,
the theoretical MSE for GPR was compared with simulation
results for GPR-derived and DNN-derived channel estimates,
and showed that performance between GPR and DNN are
comparable, with both shown to be close to the MMSE bound.
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