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ABSTRACT

We investigated the feasibility of using automatic speech
recognition (ASR) and natural language processing (NLP) to
classify collaborative problem solving (CPS) skills from recorded
speech in noisy environments. We analyzed data from 44 dyads
of middle and high school students who used videoconferencing
to collaboratively solve physics and math problems (35 and 9
dyads in classroom and school environments, respectively).
Trained coders identified seven cognitive and social CPS skills
(e.g., sharing information) in 8,660 utterances. We used a state-
of-the-art deep transfer learning approach for NLP, Bidirectional
Encoder Representations from Transformers (BERT), with a
special input representation enabling the model to analyze
adjacent utterances for contextual cues. We achieved a micro-
average AUROC score (across seven CPS skills) of .80 using
ASR transcripts, compared to .91 for human transcripts,
indicating a decrease in performance attributable to ASR error.
We found that the noisy school setting introduced additional ASR
error, which reduced model performance (micro-average AUROC
of .78) compared to the lab (AUROC = .83). We discuss
implications for real-time CPS assessment and support in
schools.
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1. INTRODUCTION

The modern world will increasingly require teams of
heterogeneous individuals to coordinate their efforts, share skills
and knowledge, and communicate effectively in order to solve
complex and pressing problems like the global pandemic and
climate change. Accordingly, collaborative problem solving
(CPS) — defined as two or more people engaging in a coordinated
attempt to construct and maintain a joint solution to a problem
[57] — has been identified as a critical skill for the 21st century
workforce [23, 27]. Despite its increasing importance, the most
recent 2015 Programme for International Student Assessment
(PISA) assessment revealed troubling deficiencies in CPS
competency worldwide [49]. As a result, improving CPS
proficiency has become a priority in educational research and
policy [7, 8, 16, 37, 49].

Technology has fundamentally transformed both the modern
workplace and classroom. Co-located teams in shared spaces are
becoming less common, while distributed teams that work and
collaborate remotely through virtual interfaces are on the rise
[22, 36]. In 2020, the COVID-19 pandemic thrust this issue to
the forefront of our attention, as workers and students across the
globe were forced to adapt to a remote environment for extended
periods of time. Accordingly, educational practitioners have
emphasized the importance of providing students with the skills
necessary to effectively collaborate in virtual settings [60].

The rise of videoconferencing in both workplace and learning
environments brings with it the exciting opportunity to develop
next-generation collaborative interfaces that can aid in teaching,
assessing, and supporting CPS. Here we focus on the task of
assessing CPS skills from spoken language with an eye for
downstream applications including reflective feedback and
dynamic interventions to improve CPS skills.

Like any latent construct (e.g., intelligence, knowledge),
assessment of CPS skills entails identifying objective evidence
for those constructs. Because collaboration inherently involves
communication, one promising approach is to analyze
communication between team members [58]. Indeed, the content
of communication during CPS provides information about a
team’s cognitive and affective states, knowledge, information
sharing, and coordination [27], and can serve as evidence of
relevant CPS skills [3, 4].

However, analyzing the large amounts of data generated during
open-ended collaboration is time consuming and costly, requiring
trained human coders to review large corpus and hand code
individual items for indicators of CPS. Previous work [24, 29,
58, 65] has attempted to automate this coding process using
natural language processing (NLP) techniques. However, with
the exception of [65], this has been limited to restricted forms of
communication such as text chat, rather than open-ended verbal
communication, which is characteristic of most real world CPS.
As we elaborate below, the one study [65] that successfully
analyzed spoken communications for evidence of CPS skills used
data collected in a highly controlled lab environment, leaving
open the question as to whether this approach will succeed in the
wild, such as in noisy classroom environments.

In this work, we address the challenge of using speech
recognition and NLP to automatically analyze open-ended
student speech during videoconferencing-enabled collaborative
problem solving in both real-world schools and in lab
environments. Pursuing technologies capable of automatically
capturing and analyzing spoken language during open-ended
verbal CPS in authentic environments, whether face-to-face or
via videoconferencing, is an important avenue of research. These
technologies hold the potential for significantly improving real-



time assessment and support of CPS [58], whether by providing
teachers with feedback on CPS in student groups or enabling
just-in-time interventions to steer groups of problem solvers in
the right direction.

1.1 Background and Related Work

We first present a brief discussion on theoretical frameworks of
CPS to situate the CPS skills modeled in this study within the
CPS literature. Then, we discuss prior work on computational
models of CPS, specifically focusing on language-based models.

1.1.1 Frameworks of CPS

CPS has been defined as problem solving activities that involve
interactions among a group of individuals [47]. One early attempt
to conceptualize CPS was by Roschelle and Teasley [57] who
proposed a joint problem space model that emphasized shared
understanding of the task as a central aspect of CPS. More
recently, the Assessment and Teaching of Twenty-First Century
Skills (ATC21S) framework [28, 30] described CPS through a
measurable and teachable set of social and cognitive skills based
on interaction, self-evaluation and goal setting. Relatedly, the
PISA 2015 [49] framework conceptualized CPS as a complex
process involving three collaborative dimensions that overlap
with four problem-solving processes resulting in 12 CPS skills.
Building on these frameworks, Sun et al. [68] proposed a
generalized competency framework for CPS skills based on
interactions among triads, which defines a hierarchical CPS
model involving three high-level facets of CPS, each composed
of sub-facets and associated behavioral indicators. Another
approach, and the framework adopted in this work, is the in-task
assessment framework [34]. Informed by principles of evidence-
centered design [41], this framework characterizes CPS through a
hierarchical ontology [3], which lays out theoretically-grounded,
generalizable CPS skills along with behavioral indicators of
these skills.

1.1.2 Computational Models of CPS

The stream of interactions generated during problem solving is
considered the richest source of information about a team’s
knowledge, skills, and abilities [27, 38]. Accordingly, prior
research has used non-verbal behavioral signals like facial
expressions to detect rapport loss in small groups during open-
ended discussions [43]. Multimodal combinations of facial
expressions, acoustics and prosody, eye gaze, and task context
have been explored to predict CPS outcomes like task
performance [42, 67]. Additionally, learning gains [32, 50],
subjective performance [72] and CPS competence [13, 14] have
been modelled using multimodal signals.

Focusing our review on studies that explored the use of language
and speech based data, researchers have successfully used
language to model CPS processes like idea sharing [24, 29],
negotiation [65], and argumentation [58], as well as CPS
outcomes such as task performance [10, 44, 51] and learning
gains [55]. A common NLP approach involves quantifying the
frequency of words and word phrases (n-grams) [24, 29, 44, 54,
58]. Further, some research has experimented with the use of
additional lexical features like punctuation [24, 29, 58], part-of-
speech tags [21, 44, 58], or emoticons [29]. In addition to using
lexical features from language itself, researchers have derived
features from conversational data which index team and

conversational dynamics (e.g., turn taking). This approach has
been used to provide feedback on collaboration [59], identify
sociocognitive roles [20], and model intra- and interpersonal
dynamics [19] during CPS.

Closely related to our work, Hao et al. [29] used pre-selected n-
grams and emoticons to model four CPS facets of sharing ideas,
negotiating, regulating problem-solving activities, and
maintaining communication. Their study involved data collected
from 1000 participants with at least one year of college
experience randomly grouped into dyads. They used a linear
chain conditional random field and extracted lexical features
from sequential text chats between dyads. They found that
sequential modeling achieved an average accuracy of 73.2%,
which outperformed a majority-class baseline accuracy of 29%,
and slightly outperformed standard classifiers (accuracies of
66.9% to 71.9%).

Whereas the Hao study analyzed text-chats among dyads, Stewart
et al. [65] modeled the three CPS facets of construction of shared
knowledge, negotiation and coordination, and maintaining team
function from spoken trialogues (conversations among triads).
The study involved 32 triads of undergraduate students from a
medium-sized private university, engaged in a 20-minute
computer programming task using video conferencing software in
a lab setting. They used ASR to generate transcripts of the
team’s speech during problem solving, from which they derived
n-gram features for modeling. They obtained area under the
receiver operating characteristic curve (AUROC) scores of .85,
77 and .77 for the three CPS facets using random forest
classifiers, exceeding chance baselines of 0.5. In a follow-up
study [66], they investigated whether including additional
modalities (facial expression, acoustic-prosodic features, task
context) in addition to language improved classification accuracy.
They found that a combination of language and task context
yielded slight improvement over unimodal language models.

1.2 Current Study and Novelty

There are several novel aspects of this work. First, although
recent work [65, 66] has successfully used ASR and NLP to
automatically analyze speech during CPS in the lab, it is
currently unknown whether this approach can be effective in the
wild, for example in noisy real-world classrooms where CPS
interactions would occur. Lab environments have the advantage
of being free from ambient noises, distractions from other
students, and various other complicating factors present in school
environments.

Further, previous work has been limited to adults, namely
undergraduate students. However, given the importance of CPS,
it is imperative that technologies be developed that can help
instruct and support CPS in middle and high school-aged
students. Therefore, a second important question is whether this
approach can be applied to children, who may have differing CPS
abilities and communication styles. An accompanying question is
whether ASR can provide sufficiently accurate transcripts of
children’s speech, as research has documented the degradation of
ASR performance on children’s speech due to ASR systems
primarily trained on adult speech, and age-dependent spectral
and temporal variability in speech signals [26, 45, 53].

We address these questions by recording audio of remote CPS
among middle and high school students in both the lab and



computer-enabled classrooms with multiple teams interacting.
We show for the first time that in noisy school environments,
ASR can provide transcripts of sufficient accuracy to model CPS
skills. Additionally, we quantify the decrease in predictive
accuracy that can be attributed to ASR error (vs. NLP error) by
comparing with models trained on human transcripts, and
comparing lab- vs. classroom- environments.

Finally, an open question in this domain is which NLP
algorithms should be used to automatically analyze CPS
language. We explore the use of deep transfer learning for this
NLP problem. Recent advances in state-of-the-art NLP have been
attained by adapting attention-based language models [71], pre-
trained on large amounts of unlabeled data, to specific NLP tasks
(e.g., text classification) [31]. We demonstrate the efficacy of this
approach, using the popular Bidirectional Encoder
Representations from Transformers (BERT) model [18] for our
NLP task, and compare results with a more traditional n-gram
approach using random forest classifiers. We also investigate
whether a sequential classifier, which considers adjacent (i.e.
previous, subsequent) utterances for contextual cues, yields
improved performance over single utterance classifiers. We
present a method, similar to the approaches used in [12, 69], to
capture adjacent utterances for context by constructing a special
input representation for the BERT model, which improves
classification accuracy.

2. METHOD
2.1 Data Collection

2.1.1 Contexts

Our primary data collection occurred in one United States east
coast public middle school and one public high school from the
same district. The study was run over two data collection
periods. The first period included 61 students in the high school
and 44 students in the middle school. Here, students participated
in two 43 minute class periods. The second collection included
18 students from the same middle school. Because we did not
have control over the acoustic environment in the school context,
we also collected supplementary data from 18 students in the lab.
In the second collection, students completed one 90 minute
session. In both collections, students in the school environment
completed the study from a computer lab in the school in which
other students were also participating in the study. Data
collection occurred prior to the COVID-19 pandemic, and as such
classrooms were at normal capacity. Students in both
environments were equipped with a personal headset and
microphone (MPOW 071 USB Headset).

2.1.2 Participants

In all, 141 middle and high school students (age range: 12-15)
completed some or all of the study. However, only a subset of 74
sessions (a session entails one dyad completing one of the tasks)
were included in this analysis. Participants were excluded for the
following reasons: we experienced technical challenges on the
first day of data collection, either team member did not complete
a consent form, one team member did not show up, or there were
quality issues with the recorded audio stream. Our analyzed
dataset consisted of 88 students (65% female; mean age = 13.6,
SD = 0.90). The lab subset contained 18 students (50% female;
mean age = 13.6, SD = 1.01) and the school subset contained 70

students (69% female; mean age = 13.6, SD = 0.87). The sample
of 88 students was quite diverse with 26.1% self-reporting as
Black/African  American, 19.3% Hispanic/Latino, 15.9%
Multiracial, 13.6% Asian/Asian American, 12.5% White, 2.3%
American Indian/Alaska Native, 6.8% reported “Other”, and
3.4% did not report ethnicity.

2.1.3 CPS Tasks

The study involved two separate CPS tasks. In one task on linear
functions and argumentation (T-Shirt Math Task [1]), students
worked together through a series of task items in which they
sought to determine which of three t-shirt companies was the
best choice for a student council to purchase t-shirts for
classmates. They compared three companies with differing
variable costs (price per shirt) and fixed costs (upfront fee) to
determine which company should be chosen given the number of
t-shirts to be purchased. Individual questions included populating
the cost equation y = mx + b according to the costs of each
company (see Figure 1B), identifying the correct graph for a
given company’s cost equation, and providing a recommendation
as to which company was the best deal. During this task, only
one student controlled the screen at a time (i.e. to enter responses
to the questions), and the two students could alternate control as
they chose.
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1. EZ Tees charges $8 per shirt, and has a one-time upfront fee of $200
2. Perfect Printing charges $4 per shirt, has a one-time upfront fee of $500
3. Shirts For Less charges a fee of $1,500 for up to 350 shirts,

3. Please discuss with your partner and use the options below to enter the cost equation values for EZ Tees
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Figure 1. Screenshot examples of the videoconferencing setup
and two CPS tasks. (A) Shows a level in Physics Playground,
(B) shows a question from the T-Shirt Math Task
(reproduced with permission from ETS).

The second task (Physics Playground [62]) was an educational
physics game designed to help students learn concepts in
Newtonian physics. In this task, students completed a series of
six game levels in which they were tasked with drawing objects
(e.g., lever, ramp, springboard) to guide a ball to hit a balloon
target (see Figure 1A in which students are drawing a weight
attached to the springboard to launch the ball towards the
balloon). During this task, only one student controlled the game
at a time. One student was selected to control first, and after



three levels had been completed (or half of the allotted time had
elapsed), control was switched to the other student for the
following three levels. Whereas the math task resembles more
traditional school work and is more constrained by prior
knowledge, the physics game provides more opportunities for
creative exploration [35].

2.1.4 Procedure

Students were randomly assigned to pairs (27 mixed-gender, 17
same-gender pairs) and each student first individually completed
a series of pre-surveys; details are not relevant here. Once both
students in the pair completed the pre-surveys, a researcher
enabled audio and video recording on each student’s computer
using Zoom video conferencing software (https://zoom.us) to
record students’ computer screens, faces, and voices. The student
teams then worked together to complete the two CPS tasks,
either on a different day or the same day (see above). The order
of the tasks was counterbalanced so that half of the teams
completed Physics Playground first and the other half completed
the T-Shirt Math Task first. After completing each task students
individually completed additional questionnaires not analyzed
here.

2.2 CPS Ontology and CPS Skills
2.2.1 CPS Ontology (Framework)

We used a competency model represented as an ontology [3, 4]
(similar to a concept map), which lays out the components of
CPS and their relationships, along with indicators of CPS skills.
The development of the ontology was based on discussions with
subject matter experts as well as a literature review in relevant
areas such as computer-supported collaborative learning,
individual problem solving, communication, and linguistics [30,
39, 46, 48, 49, 64].

Our CPS ontology [3] includes nine high-level CPS skills across
social and cognitive dimensions and sub-skills that correspond to
each high-level skill. The social dimension includes four CPS
skills: (1) Maintaining communication corresponds to content
irrelevant social communications among teammates (e.g.,
greeting teammates or engaging in off-topic conversations); (2)
Sharing information corresponds to task-relevant communication
that is useful for solving the problem (e.g., sharing one’s own
knowledge, sharing the state of one’s understanding); (3)
Establishing shared understanding includes communication used
to learn the perspectives of others and ensure that what has been
said is understood by teammates (e.g., requesting information

from teammates, providing responses that indicate
comprehension); and (4) Negotiating  corresponds to
communication used to express agreement, express

disagreement, or resolve conflicts that arise.

The cognitive dimension includes five CPS skills: (1) Exploring
and understanding corresponds to communication and actions
used to explore the environments in which teammates are
working or understand the problem at hand (e.g., rereading
problem prompts); (2) Representing and formulating includes
communication used to build a mental representation of the
problem and formulate hypotheses; (3) Planning corresponds to
communication used to develop a plan for solving the problem
(e.g., determining goals or establishing steps for carrying out a
plan); (4) Executing corresponds to actions and communication
used to carry out a plan (e.g., taking steps to carry out a plan,
reporting to teammates what steps you are taking, or making
suggestions to teammates about what steps they should take to
carry out the plan); and (5) Monitoring includes communication
used to monitor progress towards the goal or monitor teammates
(e.g., checking the progress or status of teammates).

Table 1. The 7 CPS skills modeled, ordered from highest to lowest prevalence

CPS Skill Base Dimension Example Human Transcript Corresponding ASR Transcript
Rate
(Math) “Okay so first I think we “Okay Sir thank first we should
Sharing Information .26 Social should create like three equations to  create like three D creations for
for each company” each arm company”
Establishing Shared . (Math) “Which one do you think is » . .
Understanding 25 Social the best one” Twenty it’s the best
- . (Physws) Umm n’o let. s ]gs’t do “Let's just do it another day I don't
Negotiating .16 Social another idea I don’t think it’s gonna N »s
» think it's going to work anymore
work anymore
Executing 14 Cognitive (Physws) Okay and”now puta Okay, ’and now put a weight down
weight down on that on the
o (Physics) “(laughs) Oh no this game ., . .
Mamtaln%ng . .07 Social is funny bro yeah I don't know what T,l,l is came funny [ would like to
Communication . do
to do
Monitoring .06 Cognitive (Physics) “That didn't work oh no” “That didn't recall about”
. . (Math) “Alright now we have to “Now we have to find a crusher this
Planning .05 Cognitive . " .
find a graph for this one now one now




2.2.2 CPS Coding

Video recordings of student task sessions were segmented at the
turn (or utterance) level and then coded by three trained raters
using Dedoose qualitative analysis software [17]. For the coding,
raters viewed each turn for each individual in a team and then
labeled the turn as one of the CPS skills from the CPS ontology.
To establish reliability, the three trained raters triple coded 20%
of the videos. Intraclass correlations (ICCs) were used to
estimate interrater reliability across rater judgments, as it can
provide information about the consistency of the judgments
among raters. The median ICC across the CPS skill ratings was
.93, corresponding to excellent agreement [11].

Once reliability was established, the remaining videos were split
among the three raters and coded independently. A total of
10,239 turns were coded across 80 CPS sessions with an average
of 128 turns per session (SD = 70.5). Two CPS skills (exploring
and understanding, and representing and formulating) occurred
very infrequently (base rate < 1%) and were excluded from our
analysis. The remaining seven CPS skills, with their base rate,
cognitive/social dimension, and a sample utterance from the
dataset, are shown in Table 1.

2.3 ASR and Human Transcript Generation
After segmenting and coding each utterance, we used the IBM
Watson speech-to-text service [33] to generate ASR transcripts
for each video. The service outputs transcripts with word-level
start and stop times, as well as word-level confidence (between 0
and 1) for each word recognized. We constructed the transcript
for each coded utterance by concatenating transcribed words
within the utterance’s human segmented time window. The
confidence for each utterance was computed by taking the mean
word confidence over all words in the utterance transcript.
Utterances in which no words were recognized were assigned a
confidence of 0. Because a single audio stream of each session
was recorded (rather than individual audio streams from each
student), the ASR transcripts can contain words from both
speakers if there was overlap (elaborated below).

We also manually transcribed each utterance from the CPS
videos. Human transcribers viewed the video segment (with
audio) of each coded utterance and transcribed the words spoken
by the indicated speaker (each utterance was coded for an
individual student). Speech from the other student, if present in
the segment, was not transcribed. Prior to transcription,
guidelines were established among the human transcribers to
ensure consistency in transcribing informal words or phrases
(e.g., gonna, c’mon).

Because the segmented utterances sometimes contained speech
from both speakers, we had alignment inconsistencies, as the
ASR transcribed all words in a segment while the human
transcripts only contained words spoken by the indicated student.
To better assess ASR accuracy, we randomly sampled 10
utterances from each CPS session (8.5% of the data) and re-
transcribed the utterances to include all words spoken in the
segment, regardless of speaker. We refer to this as the Human
Transcript Subset. We then computed a word error rate (WER)
[9] for each utterance in this subset defined as (substitutions +
insertions + deletions) / (words in human transcript), using the
python package Jiwer [70].

2.4 Analyzed Dataset

Our dataset contains 74 CPS task sessions from 44 teams. This
includes 30 teams with both the math and physics tasks in the
dataset, nine teams with only the math task and five teams with
only the physics task. 18 of the 74 sessions occurred in the lab,
and the remaining 56 sessions occurred in school environments.
The dataset consists of 8,660 utterances coded with CPS skills,
and corresponding transcripts. Of these utterances, 2,751 (32%)
were from lab sessions and the other 5,909 (68%) were from
school sessions.

2.5 Machine Learning

We adopted a supervised classification approach to predict the
ground truth CPS skill for each utterance. We first implemented
a bag-of-n-grams approach using a Random Forest Classifier, as
recent literature [65] has shown this method to be effective for
the classification of CPS utterances. Next, we explored deep
transfer learning as a means to improve upon this method. In
particular, we leveraged pre-trained language models and
employed the popular Bidirectional Encoder Representations
from Transformers (BERT) model [18]. Additionally, we tested a
method (BERT-seq) which takes a sequence of utterances as
input (the utterance to classify plus the previous and subsequent
utterances) to capture contextual information, in order to
determine  if including adjacent utterances improves
classification accuracy. We trained separate models (RF, BERT,
and BERT-seq) using the ASR transcripts and human transcripts
as input.

2.5.1 Random Forest N-Grams

We first followed the approach outlined in [65] and trained
Random Forest Classifiers to predict the CPS skill for each
utterance using n-gram features. We used unigrams (words) and
bigrams (two-word phrases) as the features for our Random
Forest classifiers. Trigrams and beyond were not used since very
few unique trigrams (only 6) occurred in >1% of utterances. We
explored excluding n-grams that occurred at less than a minimum
frequency in the training dataset, testing values of 0% (no
filtering), 1% and 2% as hyperparameters. We used the scikit-
learn [52] library’s implementation of the Random Forest
Classifier with 200 estimators.

2.5.2 BERT

We used a transfer learning approach and fine-tuned pre-trained
BERT models to predict the CPS skill for each utterance. This
entailed starting with a BERT model pre-trained on a large
amount of unlabeled data, then fine-tuning it on our dataset of
transcribed utterances and corresponding labels (CPS skills). We
first processed the transcribed utterances using WordPiece
tokenization [61]. This process entailed splitting an utterance
into a sequence of words, or parts of words. Each unique word or
word piece was then converted to an integer (called a token)
according to BERT’s pre-specified vocabulary. Finally, special
tokens ([CLS] and [SEP]) were appended to the beginning and
end of this sequence of integers and the sequence was provided
as input to BERT (see Figure 2A). BERT mapped each input
token to a 768-dimensional embedding, which serves as a
semantic representation of the input token (the embedding of the
special [CLS] and [SEP] tokens capture a semantic
representation of the entire sequence of input tokens).
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Figure 2. (A) The traditional BERT model used for text classification. (B) Our BERT-seq model which captures contextual
information from the previous and subsequent utterances during classification.

For classification, the embedding of the [CLS] token was used as
input to a fully connected layer (classifier), which output
predicted probabilities for the seven CPS skills. We used
multiclass learning, meaning that all seven CPS skills were
predicted by one model.

2.5.3 BERT-seq

We propose a method to incorporate contextual utterances during
classification by creating a special input representation, without
augmenting the BERT architecture. This method takes a
sequence of three utterances as input (the utterance to classify
plus the previous and subsequent utterances), which are used to
train two separate BERT models, each including either the
previous or subsequent utterance in the BERT input (see Figure
2B). To add a pair of adjacent utterances to the input, we first
processed each utterance individually using WordPiece
tokenization as described above. The special [CLS] token was
then added to the beginning of this sequence, and a [SEP] token
was added to the end of both the first and second utterances. To
classify the utterance, the embedding of the corresponding [SEP]
token was used as input to a fully connected layer, which output
predictions for the 7 CPS skills. Finally, the predicted
probabilities of the previous and subsequent utterance models
were averaged. This method of representing a sequence of
utterances enables the self-attention layers of BERT to leverage
contextual information from the previous and subsequent
utterances, while still utilizing the pre-trained BERT weights.

For both BERT and BERT-seq we started with the transformers
[73] library’s implementation of the BertModel with the “bert-
base-uncased” pre-trained weights, and used the BertTokenizer
to process our utterances. We then fine-tuned the models for
three epochs using a batch size of 16. We found that fine-tuning
beyond three epochs did not substantially improve model
performance.

2.5.4 Cross Validation

We used team-level 10-fold cross-validation to assess the
accuracy of our classifiers. With our dataset of 44 teams, this
entailed training a model with utterances from 90% of teams (39

or 40 teams), then evaluating the model’s predictive accuracy on
a test set containing utterances from the 10% of teams withheld
during training (4 or 5 teams). This process was repeated ten
times, such that every team appeared in the test set once. To
compute accuracy metrics, predictions from all ten folds were
aggregated and a single metric was computed on the full dataset.
Team-level cross validation yields a better assessment of the
method’s generalizability to new teams because it ensures each
model is never trained and evaluated on utterances from the
same speaker. We used identical cross-validation folds for the
RF, BERT and BERT-seq models as well as the human and ASR
transcripts to ensure that differences in performance were not an
artifact of the folds used. This experiment was repeated for 5
iterations, and different randomized cross-validation folds were
used for each iteration.

3. RESULTS

3.1 ASR Accuracy

We compared WER in the lab and school subsets in order to
quantify the speech recognition error that could be attributed to
noisy school environments, as opposed to other factors such as
difficulty recognizing children’s speech, whispering or
mumbling, audio quality, or inevitable ASR mistakes. We used
the Human Transcript Subset as described in Section 2.3 for this
comparison. The distributions of WER in the lab and school
environments are shown in Figure 3. We found that WER was
much lower in the lab environment than in schools (mean WER
of .54 and .76, median WER of .50 and .91, respectively),
indicating that significant ASR error is due to noisy school
environments. We performed a non-parametric Kruskal-Wallis
test [40] to statistically compare WER in the lab and school
samples, and found that they differed significantly (¥*(1) = 62.13,
p <.001).

As evident in Figure 3, a large proportion (47%) of the school
utterances had a WER of 1 (compared to 19% for lab data),
meaning no words were correctly recognized. However, WER
was also high in the controlled lab environment, suggesting that
speech recognition error may in part be attributable to factors
beyond the complications of noisy school environments.
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Figure 3. Gaussian kernel density estimates of the
distribution of word error rates in the lab and school
environments.

We also investigated the correlation between WER and ASR
confidence to determine whether the confidence values produced
by the ASR provided a good estimate of transcript accuracy. We
found that WER and ASR confidence were significantly
correlated (Spearman rho = -.74, p < .001).

3.2 Model Comparison

Next we compared the performance of our three NLP models
(RF, BERT, BERT-seq). The models output a probability from 0
to 1 that an utterance is coded with each CPS skill. Accordingly,
we report the area under the receiver operating characteristic
curve (AUROC) for each skill, a common accuracy metric for
model performance [6] which takes into account the true positive

and false positive tradeoff across classification thresholds. Mean
AUROC scores (over the five iterations) for the RF, BERT and
BERT-seq models, using both human and ASR transcripts are
reported in Table 2. We also report a chance baseline, created by
randomly shuffling the labels within each CPS session and
computing accuracy accordingly. Because shuffling is within
sessions, the AUROCs for the shuffled models will slightly
deviate from the 0.5 chance baseline. To determine if the three
model’s AUROC scores were significantly different for each CPS
skill, we used a bootstrap method to statistically compare the
AUROC values. Since five iterations of this experiment were
conducted, we selected the model corresponding to the median
AUROC value across the five iterations (for both human and
ASR transcripts) on each CPS skill for statistical analysis. We
performed this analysis in R using the pROC package [56] with
2,000 bootstrap permutations. Finally, we adjusted the resulting
p-values using a false discovery rate (FDR) correction [5] to
account for multiple testing across the seven CPS skills.

Without exception BERT-seq quantitatively yielded the highest
AUROC scores for all seven CPS skills using both human and
ASR transcripts, indicating that our method of incorporating
adjacent utterances improves performance over single utterance
classifiers. On average, BERT outperformed the RF model on
both human and ASR transcripts, although there were some
skills for which the RF AUROC scores were higher. From the
statistical analysis described above, we found that with ASR
transcripts BERT-seq had a significant advantage over the other
two models for most skills (four of seven for BERT, five of seven
for RF). We also found that there was no significant difference
between BERT and RF for six of seven skills.

Table 2. Mean AUROC values (across 5 iterations) of the RF N-gram, BERT, and BERT-seq models on ASR and

Human transcripts for all CPS skills.

CPS Skill ASR Transcripts Human Transcripts
RF  BERT BERT-seq RF  BERT BERT-seq  Shuffled

Sharing Information 0.711 0.745% 0756} 0.837  0.866% 0.877F 0.540
Establishing Shared Understanding | 713 704 740 %® 0872 0.894% 0,907 0.509
Negotiating 0721 0719  0.741® 0.896 0901  0.916R8 0.510
Executing 0.745 0767  0.784R 0.897  0.914%  0.926R 0.574
Maintaining Communication 0.673 0.667 0750 0.849 0853  0.901% 0.557
Monitoring 0.632 0.594  0.677R8 0.812  0.792  0.843RB 0.513
Planning 0.700 0.692  0.718 0.861® 0818  0.8725 0.502
Micro Avg. 0.773 0782 0.799 0.887  0.895  0.914 0.607

R and B indicate the AUROC score was significantly higher than the RF and/or BERT models, respectively. Neither RF nor BERT ever
outperformed BERT-seq.




We observed a similar pattern on the human transcripts, where
BERT-seq significantly outperformed BERT on five of seven
skills and RF on six of seven skills. Interestingly, on human
transcripts the advantage of BERT over RF increased, with
BERT having significantly higher scores on three skills, while
RF was significantly better on only one. This finding suggests
that with high quality transcripts which accurately capture the
content of an utterance, BERT was the better model, whereas
with noisy ASR transcripts there was no clear difference.

These results indicate that BERT-seq quantitatively
outperformed both the traditional BERT and the RF n-gram
approach for all seven CPS skills, using both the human and
ASR transcripts. However, the statistical analysis revealed that
for some CPS skills, this advantage was not statistically
significant. As BERT-seq was the best model across CPS skills,
we refer to these results in our comparison of human and ASR
transcripts, and throughout the rest of this paper.

3.3 ASR vs. Human Transcripts

We found that using the ASR transcripts as input, our best model
(BERT-seq) was able to accurately classify the seven CPS skills,
yielding a micro-average AUROC score of .799. However, when
the human transcripts were used, this average increased to .914
(see Table 2). We compared the human and ASR transcript
results using the bootstrap method described above, and found
that the human transcript AUROC scores were significantly
(FDR corrected p < .05) higher than the ASR transcript scores
for all seven CPS skills, an unsurprising result given the high
word error rates in the ASR transcripts. However, we note that
despite significant loss in performance due to speech recognition
error, our model easily outperformed a shuffled baseline (micro-
average AUROC of .607), supporting the hypothesis that CPS
skills can be automatically predicted from ASR transcripts.

3.4 Classification Accuracy in Lab and School

Environments

Next we compared classification accuracy in the lab and school
environments in order to investigate the extent to which higher
rates of ASR error in the school subset affected model
performance. We report AUROC scores for the lab and school
environments in Table 3. We found that on average,
classification accuracy was substantially lower in the school
subset compared to the lab subset (micro-average AUROC of
783 and .830, respectively). Further, for every individual skill,
AUROC scores were quantitatively higher in the lab subset than
in the school subset, with differences in AUROC values for
individual skills ranging from .031 (Executing) to .102
(Negotiating). We again used the bootstrap method to
statistically compare AUROC scores in the lab and school for
each skill and found that scores were significantly higher in the
lab subset for five out of seven CPS skills (see Table 3).

3.5 Classification Accuracy as a Function of
ASR Confidence

Lastly, we examined the relationship between ASR confidence
and classification accuracy. As discussed in section 3.1, the ASR
confidence is a good proxy for word error rate, as the two values
are significantly correlated. Therefore, we separated our 8,660
utterances into ten ASR confidence bins (0.0 — 0.1, etc.) and

computed the micro-average AUROC score for each bin. The
distribution of utterances and corresponding AUROC scores for
each bin are shown in Figure 4A and 4B, respectively. Figure 4B
also shows the human transcript AUROC score as a benchmark
of the accuracy that would be expected under conditions of near-
perfect speech recognition. The shuffled baseline is also shown
to visualize improvement over chance.

Table 3. Mean AUROC scores (across 5 iterations)
for each CPS skill in Lab and School environments. Results
are from the BERT-seq model using ASR transcripts. Values
marked with * were significantly higher in the Lab vs.

School.

CPS Skill Lab School

AUC Base AUC Base

Rate Rate

Sharing Information | 0.782* .25 0.743 .27
Establishing Shared | 0.786* .26 0.716 .25
Understanding
Negotiating 0.807* .18 0.705 .15
Executing 0.804 .15 0.773 .13
Maintaining 0.803* .03 0.717 .08
Communication
Monitoring 0.701 .05 0.663 .07
Planning 0.760* .06 0.688 .04
Micro Avg. 0.830 0.783

We found that a large proportion of utterances (20%) fall in the
[0.0 - 0.1) bin, indicating that the ASR had little to no confidence
in their content. In fact, nearly all (97%) of the utterances in this
bin have an empty ASR transcript, meaning no words were
recognized during the utterance’s segmented time window. In
many cases, this occurred due to the students whispering or
mumbling, which the ASR was unable to recognize. Excepting
the significant zero inflation, the utterances appeared to be
normally distributed around the [0.6 - 0.7) bin.

We observed a strong correlation between ASR confidence bin
and classification accuracy (Spearman rho = .94, p < .001).
Unsurprisingly, we found that for low confidence transcripts (<
0.3) a substantial gap exists between the ASR transcript AUROC
score and the benchmark human transcript score (see Figure 4B).
On these low confidence transcripts, model performance is near
the shuffled chance baseline. Interestingly, despite many (77%)
of these low confidence transcripts containing no words, the
model was still able to outperform the chance baseline by
learning the distribution of skills among empty transcripts in the
training data. We found that accuracy increases steadily among
the medium confidence transcripts (0.3 - 0.7). For high
confidence transcripts (>0.7), AUROC scores are near (though
still lower than) the benchmark human transcript values. The



relationship between ASR confidence and classification accuracy
indicates that it might be viable to filter out utterances with low
confidence to improve reliability for downstream applications.

A 0100
oars
0150
-
I+
E o
-]
£
5
5 0o
c
2
g
g aers
g
&
0850
- . I
oo -
[TINITI 192-031 [03.04) [04-05) [05:86) [06.07) [07-08) [98-03] (09:18]
ASR Confidence
1
[T}
5] -
g —~
2 -
1]
& _—
g —
§ -
H /_—
g
For) —
&
S
T
. e ———
Chance Bazeline
Transcript
KSR
Haman
08

[90-03) [03.83) [02-03) |63.04) b Ol0&-87) [8T-08) [08-09) [08-18)

ASR Confidence
Figure 4. (A) Distribution of ASR confidence on all 8,660
utterances. (B) Model accuracy as a function of ASR

confidence. Micro-average AUROC scores across the 7 CPS
skills (with 95% CI across 5 iterations) are plotted for
Human and ASR transcripts.

4. DISCUSSION

We investigated the feasibility of using automatic speech
recognition and natural language processing to automatically
classify student speech with CPS skills using data collected in
both lab and real-world school environments. We compared
performance using imperfect ASR transcripts with human
transcripts, investigated differences between the lab and school
environments, and explored three NLP approaches including bag-
of-n-grams and deep transfer learning. In the rest of this section
we discuss our main findings, applications of our models, as well
as limitations and future directions of research.

4.1 Main Findings

We found that it is feasible to use ASR to transcribe middle and
high school student’s speech during CPS in both lab and school
environments. However, we found that significant speech
recognition error is introduced when speech is recorded in
schools (mean WER of .76), likely as a result of noisy
environments and distractions from other students. That said,
speech recognition error was also high in the lab environment
(mean WER of .54), suggesting that there may still be
fundamental limitations associated with using ASR on children’s
speech in the context of remote CPS.

Despite imperfect speech recognition, we demonstrated that it is
possible to automatically predict CPS skills from student speech

in a real-world school environment. We built team-independent
models that were able to predict CPS skills with reasonable
accuracy (micro-average AUROC of .80) using ASR transcripts.
Importantly, this result outperformed a shuffled baseline (micro-
average AUROC of .61) by a significant margin. This finding is
encouraging because it was previously unknown whether ASR
could yield transcripts of sufficient quality to model CPS skills in
noisy environments. Further, we demonstrated that by using
high-fidelity human transcripts, this accuracy could be
significantly improved (micro-average AUROC of .91). We
demonstrated that in the absence of ASR error our NLP models
were highly accurate, suggesting a useful upper bound of what
can be achieved from spoken content alone.

We also improved upon NLP approaches previously used in CPS
literature, demonstrating the advantage of deep transfer learning
over standard classifiers for modeling CPS language. We found
that on average, using both ASR and human transcripts, the deep
transfer learning model (BERT) achieved slightly better accuracy
than the Random Forest n-gram model (though the two were
statistically tied for 3/7 CPS skills with human transcripts and
6/7 skills with ASR transcripts). This finding was unsurprising
given that pre-trained language models have achieved state-of-
the-art performance on many NLP benchmark tasks, including
text classification.

Importantly, we found that we were able to further improve
classification accuracy by constructing an input representation
that enables BERT to capture information from adjacent
utterances. This method showed significant improvement over
the single utterance BERT and RF models, providing preliminary
evidence of its viability. This finding suggests that in CPS, the
context of an utterance (what was said before and after) may be
important for accurate identification of particular CPS skills.

Finally, we examined the relationship between ASR confidence —
a proxy for transcription quality — and classification accuracy.
We found that the two were highly correlated, suggesting that
downstream applications may be able to improve reliability of
predictions by filtering out low confidence transcripts.

4.2 Applications

A key application of this work is the automatic assessment of
CPS skills from open-ended speech in classrooms and beyond.
As previously discussed, analyzing verbal communication for
evidence of CPS skills is a costly and time-intensive process
when trained human coders are used. Our findings suggest that
automated methods using ASR and NLP may provide a viable
alternative to the human-coding process. These automated
methods hold great potential in improving the assessment and
training of CPS skills, a priority of modern education [49].
However, given the imperfect accuracy of our models, and
unanswered questions regarding how this approach may
generalize to students with differing communication styles or
cultural and linguistic backgrounds, this approach should be
limited to formative assessment [63] focused on learning and
improvement, rather than evaluation.

Our approach could advance this goal in several ways. For
example, automatically generated reports could be sent to a
teacher monitoring many groups of students engaged in CPS,
informing the teacher of the extent to which each group is
demonstrating CPS skills. Such a system could help the teacher



identify which groups need support and allocate their limited
presence toward assisting those groups. Similarly, these reports
could be used to identify individual student’s strengths and
weaknesses, and set appropriate goals for improvement. For
instance, a student who frequently shares information yet seldom
engages in negotiation or establishing shared understanding
could be encouraged to listen to the ideas of their teammates and
work to build on those ideas together.

In addition to passive assessment and off-line feedback, this
approach could be leveraged by next-generation intelligent
systems that actively monitor ongoing CPS and dynamically
intervene in real time to yield improved CPS outcomes [15], or
provide personalized on-line feedback to students. For example,
a group frequently engaging in off-topic conversation could be
prompted by the system to focus back on the problem-solving
task, or a particular student within a group who hasn’t shared
information could be encouraged to share their ideas with the
team. The specific intervention strategies, including when to
intervene, how to present the intervention, and who the
intervention should be targeted at (whole group vs. individual
student) await design, testing, and refinement.

Importantly, a technology devised to assist in the training and
assessment of CPS does little good if it is confined to the lab.
Thus, the present results take a step towards the development of
a system that can support CPS in real-world classrooms by
monitoring open-ended verbal communication for CPS skills.

4.3 Limitations

There were some limitations of this work. First, although we
used an automated approach for utterance transcription and CPS
skill prediction, the sessions were segmented into utterances
beforehand by human coders. This is a limitation because a fully
automated pipeline would require the ASR to automatically
detect and segment recorded speech into individual utterances,
an already difficult task that may be further complicated by noisy
school environments or the peculiarities of children’s speech.
Another related limitation is that due to the utterance
segmentation and ASR transcription process we used, our ASR
transcripts contain all speech that was recognized during an
utterance’s segmented time window. This means that some ASR
transcripts contain words from both speakers, which introduces
alignment inconsistencies between the ASR transcript and the
coded CPS skill because utterances were coded at the individual
student level. In particular, this introduces noise into the ASR
transcripts when student’s utterances overlap.

Another limitation of this work is that we considered only
linguistic features to predict the coded CPS skills. We expect
that model performance can be improved by modeling not only
what students say (language), but considering how they say it
(acoustic-prosodic information) and in the context of what
they’re doing (task-specific information). We hypothesize that
the inclusion of these additional modalities may particularly
improve performance for low confidence ASR transcripts, where
the language transcribed by the speech recognizer is either
missing altogether, or is a poor representation of what was
actually said. Finally, although we demonstrated that our method
for capturing contextual information from adjacent utterances
improved accuracy, we did not compare this with other methods

for incorporating contextual utterances such as conditional
random fields or recurrent neural networks.

4.4 Future Work

The findings and limitations discussed in this section present
several possibilities for improvement in future research. First, in
order to develop a fully automated approach for modeling CPS
skills, we plan to incorporate automatic utterance segmentation
and speaker diarization into our ASR pipeline. Further, we plan
to explore methods for incorporating information from other
modalities in addition to language. For instance, including
features such as acoustic-prosodic information, task context,
facial expression, or body movement may enable more accurate
prediction of CPS skills in cases where ASR fails to capture the
content of an utterance.

Another direction of future research involves further exploration
of how contextual utterances can be used to improve
classification accuracy. We demonstrated a method for
incorporating adjacent utterances in our model input, which
improved performance over single utterance classifiers. In future
work, we will explore methods for capturing contextual
information beyond the previous and subsequent utterances (e.g.,
the five previous utterances). We also plan to investigate how the
approach demonstrated in this paper, which leverages the
model’s attention mechanism to capture context, compares with
other approaches (e.g., recurrent neural networks).

In addition to exploring methods for improving the accuracy of
our models, we plan to investigate the utility of our CPS models.
An open question is how accurate model predictions need to be
to provide useful and actionable estimates for assessment,
feedback, or intervention. Specifically, recent work [2, 25] has
clustered students using the frequency of CPS skills to derive
theoretically grounded profiles of collaborative problem solvers
(e.g., active collaborators, social loafers). We plan to investigate
whether model-derived estimates of CPS skill frequencies will
yield high agreement to the clustering produced using human
codes.

5. CONCLUSION

We combined automatic speech recognition and natural language
processing to automatically predict CPS skills from student
speech during problem solving in both lab and real-world school
environments. Our findings suggest that despite significant
speech recognition error in school environments, it is possible to
predict expert-coded CPS skills using automatically generated
transcripts. These findings open many possibilities for next-
generation technologies that can further the goal of improved
CPS training, assessment, and support in schools.
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