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ABSTRACT 
We investigated the feasibility of using automatic speech 
recognition (ASR) and natural language processing (NLP) to 
classify collaborative problem solving (CPS) skills from recorded 
speech in noisy environments. We analyzed data from 44 dyads 
of middle and high school students who used videoconferencing 
to collaboratively solve physics and math problems (35 and 9 
dyads in classroom and school environments, respectively). 
Trained coders identified seven cognitive and social CPS skills 
(e.g., sharing information) in 8,660 utterances. We used a state-
of-the-art deep transfer learning approach for NLP, Bidirectional 
Encoder Representations from Transformers (BERT), with a 
special input representation enabling the model to analyze 
adjacent utterances for contextual cues. We achieved a micro-
average AUROC score (across seven CPS skills) of .80 using 
ASR transcripts, compared to .91 for human transcripts, 
indicating a decrease in performance attributable to ASR error. 
We found that the noisy school setting introduced additional ASR 
error, which reduced model performance (micro-average AUROC 
of .78) compared to the lab (AUROC = .83). We discuss 
implications for real-time CPS assessment and support in 
schools. 
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1. INTRODUCTION 
The modern world will increasingly require teams of 
heterogeneous individuals to coordinate their efforts, share skills 
and knowledge, and communicate effectively in order to solve 
complex and pressing problems like the global pandemic and 
climate change. Accordingly, collaborative problem solving 
(CPS) – defined as two or more people engaging in a coordinated 
attempt  to construct and maintain a joint solution to a problem 
[57] – has been identified as a critical skill for the 21st century 
workforce [23, 27]. Despite its increasing importance, the most 
recent 2015 Programme for International Student Assessment 
(PISA) assessment revealed troubling deficiencies in CPS 
competency worldwide [49]. As a result, improving CPS 
proficiency has become a priority in educational research and 
policy [7, 8, 16, 37, 49]. 

Technology has fundamentally transformed both the modern 
workplace and classroom. Co-located teams in shared spaces are 
becoming less common, while distributed teams that work and 
collaborate remotely through virtual interfaces are on the rise 
[22, 36]. In 2020, the COVID-19 pandemic thrust this issue to 
the forefront of our attention, as workers and students across the 
globe were forced to adapt to a remote environment for extended 
periods of time. Accordingly, educational practitioners have 
emphasized the importance of providing students with the skills 
necessary to effectively collaborate in virtual settings [60]. 

The rise of videoconferencing in both workplace and learning 
environments brings with it the exciting opportunity to develop 
next-generation collaborative interfaces that can aid in teaching, 
assessing, and supporting CPS. Here we focus on the task of 
assessing CPS skills from spoken language with an eye for 
downstream applications including reflective feedback and 
dynamic interventions to improve CPS skills.  

Like any latent construct (e.g., intelligence, knowledge), 
assessment of CPS skills entails identifying objective evidence 
for those constructs. Because collaboration inherently involves 
communication, one promising approach is to analyze 
communication between team members [58]. Indeed, the content 
of communication during CPS provides information about a 
team’s cognitive and affective states, knowledge, information 
sharing, and coordination [27], and can serve as evidence of 
relevant CPS skills [3, 4]. 

However, analyzing the large amounts of data generated during 
open-ended collaboration is time consuming and costly, requiring 
trained human coders to review large corpus and hand code 
individual items for indicators of CPS. Previous work [24, 29, 
58, 65] has attempted to automate this coding process using 
natural language processing (NLP) techniques. However, with 
the exception of [65], this has been limited to restricted forms of 
communication such as text chat, rather than open-ended verbal 
communication, which is characteristic of most real world CPS. 
As we elaborate below, the one study [65] that successfully 
analyzed spoken communications for evidence of CPS skills used 
data collected in a highly controlled lab environment, leaving 
open the question as to whether this approach will succeed in the 
wild, such as in noisy classroom environments. 

In this work, we address the challenge of using speech 
recognition and NLP to automatically analyze open-ended 
student speech during videoconferencing-enabled collaborative 
problem solving in both real-world schools and in lab 
environments. Pursuing technologies capable of automatically 
capturing and analyzing spoken language during open-ended 
verbal CPS in authentic environments, whether face-to-face or 
via videoconferencing, is an important avenue of research. These 
technologies hold the potential for significantly improving real-

 



time assessment and support of CPS [58], whether by providing 
teachers with feedback on CPS in student groups or enabling 
just-in-time interventions to steer groups of problem solvers in 
the right direction. 

1.1 Background and Related Work 
We first present a brief discussion on theoretical frameworks of 
CPS to situate the CPS skills modeled in this study within the 
CPS literature. Then, we discuss prior work on computational 
models of CPS, specifically focusing on language-based models. 

1.1.1 Frameworks of CPS 
CPS has been defined as problem solving activities that involve 
interactions among a group of individuals [47]. One early attempt 
to conceptualize CPS was by Roschelle and Teasley [57] who 
proposed a joint problem space model that emphasized shared 
understanding of the task as a central aspect of CPS. More 
recently, the Assessment and Teaching of Twenty-First Century 
Skills (ATC21S) framework [28, 30] described CPS through a 
measurable and teachable set of social and cognitive skills based 
on interaction, self-evaluation and goal setting. Relatedly, the 
PISA 2015 [49] framework conceptualized CPS as a complex 
process involving three collaborative dimensions that overlap 
with four problem-solving processes resulting in 12 CPS skills.  
Building on these frameworks, Sun et al. [68] proposed a 
generalized competency framework for CPS skills based on 
interactions among triads, which defines a hierarchical CPS 
model involving three high-level facets of CPS, each composed 
of sub-facets and associated behavioral indicators. Another 
approach, and the framework adopted in this work, is the in-task 
assessment framework [34]. Informed by principles of evidence-
centered design [41], this framework characterizes CPS through a 
hierarchical ontology [3], which lays out theoretically-grounded, 
generalizable CPS  skills along with behavioral indicators of 
these skills. 

1.1.2 Computational Models of CPS 
The stream of interactions generated during problem solving is 
considered the richest source of information about a team’s 
knowledge, skills, and abilities [27, 38]. Accordingly, prior 
research has used non-verbal behavioral signals like facial 
expressions to detect rapport loss in small groups during open-
ended discussions [43]. Multimodal combinations of facial 
expressions, acoustics and prosody, eye gaze, and task context 
have been explored to predict CPS outcomes like task 
performance [42, 67]. Additionally, learning gains [32, 50], 
subjective performance [72] and CPS competence [13, 14] have 
been modelled using multimodal signals.  

Focusing our review on studies that explored the use of language 
and speech based data, researchers have successfully used 
language to model CPS processes like idea sharing [24, 29], 
negotiation [65], and argumentation [58], as well as CPS 
outcomes such as task performance [10, 44, 51] and learning 
gains [55]. A common NLP approach involves quantifying the 
frequency of words and word phrases (n-grams) [24, 29, 44, 54, 
58]. Further, some research has experimented with the use of 
additional lexical features like punctuation [24, 29, 58], part-of-
speech tags [21, 44, 58], or emoticons [29]. In addition to using 
lexical features from language itself, researchers have derived 
features from conversational data which index team and 

conversational dynamics (e.g., turn taking). This approach has 
been used to provide feedback on collaboration [59], identify 
sociocognitive roles [20], and model intra- and interpersonal 
dynamics [19] during CPS.  

Closely related to our work, Hao et al. [29] used pre-selected n-
grams and emoticons to model four CPS facets of sharing ideas, 
negotiating, regulating problem-solving activities, and 
maintaining communication. Their study involved data collected 
from 1000 participants with at least one year of college 
experience randomly grouped into dyads. They used a linear 
chain conditional random field and extracted lexical features 
from sequential text chats between dyads. They found that 
sequential modeling achieved an average accuracy of 73.2%, 
which outperformed a majority-class baseline accuracy of 29%, 
and slightly outperformed standard classifiers (accuracies of 
66.9% to 71.9%).  

Whereas the Hao study analyzed text-chats among dyads, Stewart 
et al. [65] modeled the three CPS facets of construction of shared 
knowledge, negotiation and coordination, and maintaining team 
function from spoken trialogues (conversations among triads). 
The study involved 32 triads of undergraduate students from a 
medium-sized private university, engaged in a 20-minute 
computer programming task using video conferencing software in 
a lab setting. They used ASR to generate transcripts of the 
team’s speech during problem solving, from which they derived 
n-gram features for modeling. They obtained area under the 
receiver operating characteristic curve (AUROC) scores of .85, 
.77 and .77 for the three CPS facets using random forest 
classifiers, exceeding chance baselines of 0.5. In a follow-up 
study [66], they investigated whether including additional 
modalities (facial expression, acoustic-prosodic features, task 
context) in addition to language improved classification accuracy. 
They found that a combination of language and task context 
yielded slight improvement over unimodal language models. 

1.2 Current Study and Novelty 
There are several novel aspects of this work. First, although 
recent work [65, 66] has successfully used ASR and NLP to 
automatically analyze speech during CPS in the lab, it is 
currently unknown whether this approach can be effective in the 
wild, for example in noisy real-world classrooms where CPS 
interactions would occur. Lab environments have the advantage 
of being free from ambient noises, distractions from other 
students, and various other complicating factors present in school 
environments.  

Further, previous work has been limited to adults, namely 
undergraduate students. However, given the importance of CPS, 
it is imperative that technologies be developed that can help 
instruct and support CPS in middle and high school-aged 
students. Therefore, a second important question is whether this 
approach can be applied to children, who may have differing CPS 
abilities and communication styles. An accompanying question is 
whether ASR can provide sufficiently accurate transcripts of 
children’s speech, as research has documented the degradation of 
ASR performance on children’s speech due to ASR systems 
primarily trained on adult speech, and age-dependent spectral 
and temporal variability in speech signals [26, 45, 53].  

We address these questions by recording audio of remote CPS 
among middle and high school students in both the lab and 



computer-enabled classrooms with multiple teams interacting. 
We show for the first time that in noisy school environments, 
ASR can provide transcripts of sufficient accuracy to model CPS 
skills. Additionally, we quantify the decrease in predictive 
accuracy that can be attributed to ASR error (vs. NLP error) by 
comparing with models trained on human transcripts, and 
comparing lab- vs. classroom- environments. 

Finally, an open question in this domain is which NLP 
algorithms should be used to automatically analyze CPS 
language. We explore the use of deep transfer learning for this 
NLP problem. Recent advances in state-of-the-art NLP have been 
attained by adapting attention-based language models [71], pre-
trained on large amounts of unlabeled data, to specific NLP tasks 
(e.g., text classification) [31]. We demonstrate the efficacy of this 
approach, using the popular Bidirectional Encoder 
Representations from Transformers (BERT) model [18] for our 
NLP task, and compare results with a more traditional n-gram 
approach using random forest classifiers. We also investigate 
whether a sequential classifier, which considers adjacent (i.e. 
previous, subsequent) utterances for contextual cues, yields 
improved performance over single utterance classifiers. We 
present a method, similar to the approaches used in [12, 69], to 
capture adjacent utterances for context by constructing a special 
input representation for the BERT model, which improves 
classification accuracy. 

2. METHOD 
2.1 Data Collection 
2.1.1 Contexts 
Our primary data collection occurred in one United States east 
coast public middle school and one public high school from the 
same district. The study was run over two data collection 
periods. The first period included 61 students in the high school 
and 44 students in the middle school. Here, students participated 
in two 43 minute class periods. The second collection included 
18 students from the same middle school. Because we did not 
have control over the acoustic environment in the school context, 
we also collected supplementary data from 18 students in the lab. 
In the second collection, students completed one 90 minute 
session. In both collections, students in the school environment 
completed the study from a computer lab in the school in which 
other students were also participating in the study. Data 
collection occurred prior to the COVID-19 pandemic, and as such 
classrooms were at normal capacity. Students in both 
environments were equipped with a personal headset and 
microphone (MPOW 071 USB Headset). 

2.1.2 Participants 
In all, 141 middle and high school students (age range: 12-15) 
completed some or all of the study. However, only a subset of 74 
sessions (a session entails one dyad completing one of the tasks) 
were included in this analysis. Participants were excluded for the 
following reasons: we experienced technical challenges on the 
first day of data collection, either team member did not complete 
a consent form, one team member did not show up, or there were 
quality issues with the recorded audio stream. Our analyzed 
dataset consisted of 88 students (65% female; mean age = 13.6, 
SD = 0.90). The lab subset contained 18 students (50% female; 
mean age = 13.6, SD = 1.01) and the school subset contained 70 

students (69% female; mean age = 13.6, SD = 0.87). The sample 
of 88 students was quite diverse with 26.1% self-reporting as 
Black/African American, 19.3% Hispanic/Latino, 15.9% 
Multiracial, 13.6% Asian/Asian American, 12.5% White, 2.3% 
American Indian/Alaska Native, 6.8% reported “Other”, and 
3.4% did not report ethnicity.  

2.1.3 CPS Tasks 
The study involved two separate CPS tasks. In one task on linear 
functions and argumentation (T-Shirt Math Task [1]), students 
worked together through a series of task items in which they 
sought to determine which of three t-shirt companies was the 
best choice for a student council to purchase t-shirts for 
classmates. They compared three companies with differing 
variable costs (price per shirt) and fixed costs (upfront fee) to 
determine which company should be chosen given the number of 
t-shirts to be purchased. Individual questions included populating 
the cost equation y = mx + b according to the costs of each 
company (see Figure 1B), identifying the correct graph for a 
given company’s cost equation, and providing a recommendation 
as to which company was the best deal. During this task, only 
one student controlled the screen at a time (i.e. to enter responses 
to the questions), and the two students could alternate control as 
they chose. 

 
 
Figure 1. Screenshot examples of the videoconferencing setup 
and two CPS tasks. (A) Shows a level in Physics Playground, 

(B) shows a question from the T-Shirt Math Task 
(reproduced with permission from ETS).  

 
The second task (Physics Playground [62]) was an educational 
physics game designed to help students learn concepts in 
Newtonian physics. In this task, students completed a series of 
six game levels in which they were tasked with drawing objects 
(e.g., lever, ramp, springboard) to guide a ball to hit a balloon 
target (see Figure 1A in which students are drawing a weight 
attached to the springboard to launch the ball towards the 
balloon). During this task, only one student controlled the game 
at a time. One student was selected to control first, and after 



three levels had been completed (or half of the allotted time had 
elapsed), control was switched to the other student for the 
following three levels. Whereas the math task resembles more 
traditional school work and is more constrained by prior 
knowledge, the physics game provides more opportunities for 
creative exploration [35]. 

2.1.4 Procedure 
Students were randomly assigned to pairs (27 mixed-gender, 17 
same-gender pairs) and each student first individually completed 
a series of pre-surveys; details are not relevant here. Once both 
students in the pair completed the pre-surveys, a researcher 
enabled audio and video recording on each student’s computer 
using Zoom video conferencing software (https://zoom.us) to 
record students’ computer screens, faces, and voices. The student 
teams then worked together to complete the two CPS tasks, 
either on a different day or the same day (see above). The order 
of the tasks was counterbalanced so that half of the teams 
completed Physics Playground first and the other half completed 
the T-Shirt Math Task first. After completing each task students 
individually completed additional questionnaires not analyzed 
here. 

2.2 CPS Ontology and CPS Skills 
2.2.1 CPS Ontology (Framework) 
We used a competency model represented as an ontology [3, 4] 
(similar to a concept map), which lays out the components of 
CPS and their relationships, along with indicators of CPS skills. 
The development of the ontology was based on discussions with 
subject matter experts as well as a literature review in relevant 
areas such as computer-supported collaborative learning, 
individual problem solving, communication, and linguistics [30, 
39, 46, 48, 49, 64]. 

Our CPS ontology [3] includes nine high-level CPS skills across 
social and cognitive dimensions and sub-skills that correspond to 
each high-level skill. The social dimension includes four CPS 
skills: (1) Maintaining communication corresponds to content 
irrelevant social communications among teammates (e.g., 
greeting teammates or engaging in off-topic conversations); (2) 
Sharing information corresponds to task-relevant communication 
that is useful for solving the problem (e.g., sharing one’s own 
knowledge, sharing the state of one’s understanding); (3) 
Establishing shared understanding includes communication used 
to learn the perspectives of others and ensure that what has been 
said is understood by teammates (e.g., requesting information 
from teammates, providing responses that indicate 
comprehension); and (4) Negotiating corresponds to 
communication used to express agreement, express 
disagreement, or resolve conflicts that arise. 

The cognitive dimension includes five CPS skills: (1) Exploring 
and understanding corresponds to communication and actions 
used to explore the environments in which teammates are 
working or understand the problem at hand (e.g., rereading 
problem prompts); (2) Representing and formulating includes 
communication used to build a mental representation of the 
problem and formulate hypotheses; (3) Planning corresponds to 
communication used to develop a plan for solving the problem 
(e.g., determining goals or establishing steps for carrying out a 
plan); (4) Executing corresponds to actions and communication 
used to carry out a plan (e.g., taking steps to carry out a plan, 
reporting to teammates what steps you are taking, or making 
suggestions to teammates about what steps they should take to 
carry out the plan); and (5) Monitoring includes communication 
used to monitor progress towards the goal or monitor teammates 
(e.g., checking the progress or status of teammates). 

Table 1. The 7 CPS skills modeled, ordered from highest to lowest prevalence 
 

CPS Skill Base 
Rate 

Dimension Example Human Transcript Corresponding ASR Transcript 

 
Sharing Information 

 
.26 

 
Social 

 
(Math) “Okay so first I think we 
should create like three equations to 
for each company” 

 
“Okay Sir thank first we should 
create like three D creations for 
each arm company” 

Establishing Shared 
Understanding .25 Social (Math) “Which one do you think is 

the best one” “Twenty it’s the best” 

Negotiating .16 Social 
(Physics) “Umm no let’s just do 
another idea I don’t think it’s gonna 
work anymore” 

“Let's just do it another day I don't 
think it's going to work anymore” 

Executing .14 Cognitive (Physics) “Okay and now put a 
weight down on that” 

“Okay and now put a weight down 
on the” 

Maintaining 
Communication .07 Social 

(Physics) “(laughs) Oh no this game 
is funny bro yeah I don't know what 
to do” 

“This came funny I would like to 
do” 

Monitoring .06 Cognitive (Physics) “That didn't work oh no” “That didn't recall about” 

Planning .05 Cognitive (Math) “Alright now we have to 
find a graph for this one now” 

“Now we have to find a crusher this 
one now” 

 



2.2.2 CPS Coding 
Video recordings of student task sessions were segmented at the 
turn (or utterance) level and then coded by three trained raters 
using Dedoose qualitative analysis software [17]. For the coding, 
raters viewed each turn for each individual in a team and then 
labeled the turn as one of the CPS skills from the CPS ontology. 
To establish reliability, the three trained raters triple coded 20% 
of the videos. Intraclass correlations (ICCs) were used to 
estimate interrater reliability across rater judgments, as it can 
provide information about the consistency of the judgments 
among raters. The median ICC across the CPS skill ratings was 
.93, corresponding to excellent agreement [11].  

Once reliability was established, the remaining videos were split 
among the three raters and coded independently. A total of 
10,239 turns were coded across 80 CPS sessions with an average 
of 128 turns per session (SD = 70.5). Two CPS skills (exploring 
and understanding, and representing and formulating) occurred 
very infrequently (base rate < 1%) and were excluded from our 
analysis. The remaining seven CPS skills, with their base rate, 
cognitive/social dimension, and a sample utterance from the 
dataset, are shown in Table 1. 

2.3 ASR and Human Transcript Generation 
After segmenting and coding each utterance, we used the IBM 
Watson speech-to-text service [33] to generate ASR transcripts 
for each video. The service outputs transcripts with word-level 
start and stop times, as well as word-level confidence (between 0 
and 1) for each word recognized. We constructed the transcript 
for each coded utterance by concatenating transcribed words 
within the utterance’s human segmented time window. The 
confidence for each utterance was computed by taking the mean 
word confidence over all words in the utterance transcript. 
Utterances in which no words were recognized were assigned a 
confidence of 0. Because a single audio stream of each session 
was recorded (rather than individual audio streams from each 
student), the ASR transcripts can contain words from both 
speakers if there was overlap (elaborated below). 

We also manually transcribed each utterance from the CPS 
videos. Human transcribers viewed the video segment (with 
audio) of each coded utterance and transcribed the words spoken 
by the indicated speaker (each utterance was coded for an 
individual student). Speech from the other student, if present in 
the segment, was not transcribed. Prior to transcription, 
guidelines were established among the human transcribers to 
ensure consistency in transcribing informal words or phrases 
(e.g., gonna, c’mon).  

Because the segmented utterances sometimes contained speech 
from both speakers, we had alignment inconsistencies, as the 
ASR transcribed all words in a segment while the human 
transcripts only contained words spoken by the indicated student. 
To better assess ASR accuracy, we randomly sampled 10 
utterances from each CPS session (8.5% of the data) and re-
transcribed the utterances to include all words spoken in the 
segment, regardless of speaker. We refer to this as the Human 
Transcript Subset. We then computed a word error rate (WER) 
[9] for each utterance in this subset defined as (substitutions + 
insertions + deletions) / (words in human transcript), using the 
python package Jiwer [70]. 

2.4 Analyzed Dataset  
Our dataset contains 74 CPS task sessions from 44 teams. This 
includes 30 teams with both the math and physics tasks in the 
dataset, nine teams with only the math task and five teams with 
only the physics task. 18 of the 74 sessions occurred in the lab, 
and the remaining 56 sessions occurred in school environments. 
The dataset consists of 8,660 utterances coded with CPS skills, 
and corresponding transcripts. Of these utterances, 2,751 (32%) 
were from lab sessions and the other 5,909 (68%) were from 
school sessions. 

2.5 Machine Learning 
We adopted a supervised classification approach to predict the 
ground truth CPS skill for each utterance. We first implemented 
a bag-of-n-grams approach using a Random Forest Classifier, as 
recent literature [65] has shown this method to be effective for 
the classification of CPS utterances. Next, we explored deep 
transfer learning as a means to improve upon this method. In 
particular, we leveraged pre-trained language models and 
employed the popular Bidirectional Encoder Representations 
from Transformers (BERT) model [18]. Additionally, we tested a 
method (BERT-seq) which takes a sequence of utterances as 
input (the utterance to classify plus the previous and subsequent 
utterances) to capture contextual information, in order to 
determine if including adjacent utterances improves 
classification accuracy. We trained separate models (RF, BERT, 
and BERT-seq) using the ASR transcripts and human transcripts 
as input. 

2.5.1 Random Forest N-Grams 
We first followed the approach outlined in [65] and trained 
Random Forest Classifiers to predict the CPS skill for each 
utterance using n-gram features. We used unigrams (words) and 
bigrams (two-word phrases) as the features for our Random 
Forest classifiers. Trigrams and beyond were not used since very 
few unique trigrams (only 6) occurred in >1% of utterances. We 
explored excluding n-grams that occurred at less than a minimum 
frequency in the training dataset, testing values of 0% (no 
filtering), 1% and 2% as hyperparameters. We used the scikit-
learn [52] library’s implementation of the Random Forest 
Classifier with 200 estimators. 

2.5.2 BERT 
We used a transfer learning approach and fine-tuned pre-trained 
BERT models to predict the CPS skill for each utterance. This 
entailed starting with a BERT model pre-trained on a large 
amount of unlabeled data, then fine-tuning it on our dataset of 
transcribed utterances and corresponding labels (CPS skills). We 
first processed the transcribed utterances using WordPiece 
tokenization [61]. This process entailed splitting an utterance 
into a sequence of words, or parts of words. Each unique word or 
word piece was then converted to an integer (called a token) 
according to BERT’s pre-specified vocabulary. Finally, special 
tokens ([CLS] and [SEP]) were appended to the beginning and 
end of this sequence of integers and the sequence was provided 
as input to BERT (see Figure 2A). BERT mapped each input 
token to a 768-dimensional embedding, which serves as a 
semantic representation of the input token (the embedding of the 
special [CLS] and [SEP] tokens capture a semantic 
representation of the entire sequence of input tokens).  



 
 

Figure 2.  (A) The traditional BERT model used for text classification. (B) Our BERT-seq model which captures contextual 
information from the previous and subsequent utterances during classification. 

For classification, the embedding of the [CLS] token was used as 
input to a fully connected layer (classifier), which output 
predicted probabilities for the seven CPS skills. We used 
multiclass learning, meaning that all seven CPS skills were 
predicted by one model. 

2.5.3 BERT-seq 
We propose a method to incorporate contextual utterances during 
classification by creating a special input representation, without 
augmenting the BERT architecture. This method takes a 
sequence of three utterances as input (the utterance to classify 
plus the previous and subsequent utterances), which are used to 
train two separate BERT models, each including either the 
previous or subsequent utterance in the BERT input (see Figure 
2B). To add a pair of adjacent utterances to the input, we first 
processed each utterance individually using WordPiece 
tokenization as described above. The special [CLS] token was 
then added to the beginning of this sequence, and a [SEP] token 
was added to the end of both the first and second utterances. To 
classify the utterance, the embedding of the corresponding [SEP] 
token was used as input to a fully connected layer, which output 
predictions for the 7 CPS skills. Finally, the predicted 
probabilities of the previous and subsequent utterance models 
were averaged. This method of representing a sequence of 
utterances enables the self-attention layers of BERT to leverage 
contextual information from the previous and subsequent 
utterances, while still utilizing the pre-trained BERT weights. 

For both BERT and BERT-seq we started with the transformers 
[73] library’s implementation of the BertModel with the “bert-
base-uncased” pre-trained weights, and used the BertTokenizer 
to process our utterances. We then fine-tuned the models for 
three epochs using a batch size of 16. We found that fine-tuning 
beyond three epochs did not substantially improve model 
performance. 

2.5.4 Cross Validation 
We used team-level 10-fold cross-validation to assess the 
accuracy of our classifiers. With our dataset of 44 teams, this 
entailed training a model with utterances from 90% of teams (39 

or 40 teams), then evaluating the model’s predictive accuracy on 
a test set containing utterances from the 10% of teams withheld 
during training (4 or 5 teams). This process was repeated ten 
times, such that every team appeared in the test set once. To 
compute accuracy metrics, predictions from all ten folds were 
aggregated and a single metric was computed on the full dataset. 
Team-level cross validation yields a better assessment of the 
method’s generalizability to new teams because it ensures each 
model is never trained and evaluated on utterances from the 
same speaker. We used identical cross-validation folds for the 
RF, BERT and BERT-seq models as well as the human and ASR 
transcripts to ensure that differences in performance were not an 
artifact of the folds used. This experiment was repeated for 5 
iterations, and different randomized cross-validation folds were 
used for each iteration. 

3. RESULTS 
3.1 ASR Accuracy 
We compared WER in the lab and school subsets in order to 
quantify the speech recognition error that could be attributed to 
noisy school environments, as opposed to other factors such as 
difficulty recognizing children’s speech, whispering or 
mumbling, audio quality, or inevitable ASR mistakes. We used 
the Human Transcript Subset as described in Section 2.3 for this 
comparison. The distributions of WER in the lab and school 
environments are shown in Figure 3. We found that WER was 
much lower in the lab environment than in schools (mean WER 
of .54 and .76, median WER of .50 and .91, respectively), 
indicating that significant ASR error is due to noisy school 
environments. We performed a non-parametric Kruskal-Wallis 
test [40] to statistically compare WER in the lab and school 
samples, and found that they differed significantly (χ2(1) = 62.13, 
p < .001).  

As evident in Figure 3, a large proportion (47%) of the school 
utterances had a WER of 1 (compared to 19% for lab data), 
meaning no words were correctly recognized. However, WER 
was also high in the controlled lab environment, suggesting that 
speech recognition error may in part be attributable to factors 
beyond the complications of noisy school environments. 



 
Figure 3. Gaussian kernel density estimates of the 

distribution of word error rates in the lab and school 
environments.  

We also investigated the correlation between WER and ASR 
confidence to determine whether the confidence values produced 
by the ASR provided a good estimate of transcript accuracy. We 
found that WER and ASR confidence were significantly 
correlated (Spearman rho = -.74, p < .001). 

3.2 Model Comparison 
Next we compared the performance of our three NLP models 
(RF, BERT, BERT-seq). The models output a probability from 0 
to 1 that an utterance is coded with each CPS skill. Accordingly, 
we report the area under the receiver operating characteristic 
curve (AUROC) for each skill, a common accuracy metric for 
model performance [6] which takes into account the true positive 

and false positive tradeoff across classification thresholds. Mean 
AUROC scores (over the five iterations) for the RF, BERT and 
BERT-seq models, using both human and ASR transcripts are 
reported in Table 2. We also report a chance baseline, created by 
randomly shuffling the labels within each CPS session and 
computing accuracy accordingly. Because shuffling is within 
sessions, the AUROCs for the shuffled models will slightly 
deviate from the 0.5 chance baseline. To determine if the three 
model’s AUROC scores were significantly different for each CPS 
skill, we used a bootstrap method to statistically compare the 
AUROC values. Since five iterations of this experiment were 
conducted, we selected the model corresponding to the median 
AUROC value across the five iterations (for both human and 
ASR transcripts) on each CPS skill for statistical analysis. We 
performed this analysis in R using the pROC package [56] with 
2,000 bootstrap permutations. Finally, we adjusted the resulting 
p-values using a false discovery rate (FDR) correction [5] to 
account for multiple testing across the seven CPS skills. 

Without exception BERT-seq quantitatively yielded the highest 
AUROC scores for all seven CPS skills using both human and 
ASR transcripts, indicating that our method of incorporating 
adjacent utterances improves performance over single utterance 
classifiers. On average, BERT outperformed the RF model on 
both human and ASR transcripts, although there were some 
skills for which the RF AUROC scores were higher. From the 
statistical analysis described above, we found that with ASR 
transcripts BERT-seq had a significant advantage over the other 
two models for most skills (four of seven for BERT, five of seven 
for RF). We also found that there was no significant difference 
between BERT and RF for six of seven skills. 

Table 2. Mean AUROC values (across 5 iterations) of the RF N-gram, BERT, and BERT-seq models on ASR and 
Human transcripts for all CPS skills. 

CPS Skill ASR Transcripts  Human Transcripts   

 RF BERT BERT-seq  RF BERT BERT-seq  Shuffled 
Sharing Information 0.711 0.745 R 0.756 R  0.837 0.866 R 0.877 R  0.540 

Establishing Shared Understanding 0.713 0.724 0.740 RB  0.872 0.894 R 0.907 RB  0.509 

Negotiating 0.721 0.719 0.741 B  0.896 0.901 0.916 RB  0.510 

Executing 0.745 0.767 0.784 R  0.897 0.914 R 0.926 R  0.574 

Maintaining Communication 0.673 0.667 0.750 RB  0.849 0.853 0.901 RB  0.557 

Monitoring 0.632 0.594 0.677 RB  0.812 0.792 0.843 RB  0.513 

Planning 0.700 0.692 0.718  0.861 B 0.818 0.872 B  0.502 

Micro Avg. 0.773 0.782 0.799  0.887 0.895 0.914  0.607 

R and B indicate the AUROC score was significantly higher than the RF and/or BERT models, respectively. Neither RF nor BERT ever 
outperformed BERT-seq. 



We observed a similar pattern on the human transcripts, where 
BERT-seq significantly outperformed BERT on five of seven 
skills and RF on six of seven skills. Interestingly, on human 
transcripts the advantage of BERT over RF increased, with 
BERT having significantly higher scores on three skills, while 
RF was significantly better on only one. This finding suggests 
that with high quality transcripts which accurately capture the 
content of an utterance, BERT was the better model, whereas 
with noisy ASR transcripts there was no clear difference. 

These results indicate that BERT-seq quantitatively 
outperformed both the traditional BERT and the RF n-gram 
approach for all seven CPS skills, using both the human and 
ASR transcripts. However, the statistical analysis revealed that 
for some CPS skills, this advantage was not statistically 
significant. As BERT-seq was the best model across CPS skills, 
we refer to these results in our comparison of human and ASR 
transcripts, and throughout the rest of this paper.  

3.3 ASR vs. Human Transcripts 
We found that using the ASR transcripts as input, our best model 
(BERT-seq) was able to accurately classify the seven CPS skills, 
yielding a micro-average AUROC score of .799. However, when 
the human transcripts were used, this average increased to .914 
(see Table 2). We compared the human and ASR transcript 
results using the bootstrap method described above, and found 
that the human transcript AUROC scores were significantly 
(FDR corrected p < .05) higher than the ASR transcript scores 
for all seven CPS skills, an unsurprising result given the high 
word error rates in the ASR transcripts. However, we note that 
despite significant loss in performance due to speech recognition 
error, our model easily outperformed a shuffled baseline (micro-
average AUROC of .607), supporting the hypothesis that CPS 
skills can be automatically predicted from ASR transcripts.  

3.4 Classification Accuracy in Lab and School 
Environments 
Next we compared classification accuracy in the lab and school 
environments in order to investigate the extent to which higher 
rates of ASR error in the school subset affected model 
performance. We report AUROC scores for the lab and school 
environments in Table 3. We found that on average, 
classification accuracy was substantially lower in the school 
subset compared to the lab subset (micro-average AUROC of 
.783 and .830, respectively). Further, for every individual skill, 
AUROC scores were quantitatively higher in the lab subset than 
in the school subset, with differences in AUROC values for 
individual skills ranging from .031 (Executing) to .102 
(Negotiating). We again used the bootstrap method to 
statistically compare AUROC scores in the lab and school for 
each skill and found that scores were significantly higher in the 
lab subset for five out of seven CPS skills (see Table 3). 

3.5 Classification Accuracy as a Function of 
ASR Confidence 
Lastly, we examined the relationship between ASR confidence 
and classification accuracy. As discussed in section 3.1, the ASR 
confidence is a good proxy for word error rate, as the two values 
are significantly correlated. Therefore, we separated our 8,660 
utterances into ten ASR confidence bins (0.0 – 0.1, etc.) and 

computed the micro-average AUROC score for each bin. The 
distribution of utterances and corresponding AUROC scores for 
each bin are shown in Figure 4A and 4B, respectively. Figure 4B 
also shows the human transcript AUROC score as a benchmark 
of the accuracy that would be expected under conditions of near-
perfect speech recognition. The shuffled baseline is also shown 
to visualize improvement over chance. 

Table 3. Mean AUROC scores (across 5 iterations) 
for each CPS skill in Lab and School environments. Results 

are from the BERT-seq model using ASR transcripts. Values 
marked with * were significantly higher in the Lab vs. 

School. 

CPS Skill Lab School 

 AUC Base 
Rate 

AUC Base 
Rate 

Sharing Information 0.782* .25 0.743 .27 

Establishing Shared 
Understanding 

0.786* .26 0.716 .25 

Negotiating 0.807* .18 0.705 .15 

Executing 0.804 .15 0.773 .13 

Maintaining 
Communication 

0.803* .03 0.717 .08 

Monitoring 0.701 .05 0.663 .07 

Planning 0.760* .06 0.688 .04 

Micro Avg. 0.830  0.783  

We found that a large proportion of utterances (20%) fall in the 
[0.0 - 0.1) bin, indicating that the ASR had little to no confidence 
in their content. In fact, nearly all (97%) of the utterances in this 
bin have an empty ASR transcript, meaning no words were 
recognized during the utterance’s segmented time window. In 
many cases, this occurred due to the students whispering or 
mumbling, which the ASR was unable to recognize. Excepting 
the significant zero inflation, the utterances appeared to be 
normally distributed around the [0.6 - 0.7) bin. 

We observed a strong correlation between ASR confidence bin 
and classification accuracy (Spearman rho = .94, p < .001). 
Unsurprisingly, we found that for low confidence transcripts (< 
0.3) a substantial gap exists between the ASR transcript AUROC 
score and the benchmark human transcript score (see Figure 4B). 
On these low confidence transcripts, model performance is near 
the shuffled chance baseline. Interestingly, despite many (77%) 
of these low confidence transcripts containing no words, the 
model was still able to outperform the chance baseline by 
learning the distribution of skills among empty transcripts in the 
training data. We found that accuracy increases steadily among 
the medium confidence transcripts (0.3 - 0.7). For high 
confidence transcripts (≥0.7), AUROC scores are near (though 
still lower than) the benchmark human transcript values. The 



relationship between ASR confidence and classification accuracy 
indicates that it might be viable to filter out utterances with low 
confidence to improve reliability for downstream applications.  

 
Figure 4. (A) Distribution of ASR confidence on all 8,660 
utterances. (B) Model accuracy as a function of ASR 

confidence. Micro-average AUROC scores across the 7 CPS 
skills (with 95% CI across 5 iterations) are plotted for 

Human and ASR transcripts. 

4. DISCUSSION 
We investigated the feasibility of using automatic speech 
recognition and natural language processing to automatically 
classify student speech with CPS skills using data collected in 
both lab and real-world school environments. We compared 
performance using imperfect ASR transcripts with human 
transcripts, investigated differences between the lab and school 
environments, and explored three NLP approaches including bag-
of-n-grams and deep transfer learning.  In the rest of this section 
we discuss our main findings, applications of our models, as well 
as limitations and future directions of research.  

4.1 Main Findings 
We found that it is feasible to use ASR to transcribe middle and 
high school student’s speech during CPS in both lab and school 
environments. However, we found that significant speech 
recognition error is introduced when speech is recorded in 
schools (mean WER of .76), likely as a result of noisy 
environments and distractions from other students. That said, 
speech recognition error was also high in the lab environment 
(mean WER of .54), suggesting that there may still be 
fundamental limitations associated with using ASR on children’s 
speech in the context of remote CPS.  

Despite imperfect speech recognition, we demonstrated that it is 
possible to automatically predict CPS skills from student speech 

in a real-world school environment. We built team-independent 
models that were able to predict CPS skills with reasonable 
accuracy (micro-average AUROC of .80) using ASR transcripts. 
Importantly, this result outperformed a shuffled baseline (micro-
average AUROC of .61) by a significant margin. This finding is 
encouraging because it was previously unknown whether ASR 
could yield transcripts of sufficient quality to model CPS skills in 
noisy environments. Further, we demonstrated that by using 
high-fidelity human transcripts, this accuracy could be 
significantly improved (micro-average AUROC of .91). We 
demonstrated that in the absence of ASR error our NLP models 
were highly accurate, suggesting a useful upper bound of what 
can be achieved from spoken content alone. 

We also improved upon NLP approaches previously used in CPS 
literature, demonstrating the advantage of deep transfer learning 
over standard classifiers for modeling CPS language. We found 
that on average, using both ASR and human transcripts, the deep 
transfer learning model (BERT) achieved slightly better accuracy 
than the Random Forest n-gram model (though the two were 
statistically tied for 3/7 CPS skills with human transcripts and 
6/7 skills with ASR transcripts). This finding was unsurprising 
given that pre-trained language models have achieved state-of-
the-art performance on many NLP benchmark tasks, including 
text classification.  

Importantly, we found that we were able to further improve 
classification accuracy by constructing an input representation 
that enables BERT to capture information from adjacent 
utterances. This method showed significant improvement over 
the single utterance BERT and RF models, providing preliminary 
evidence of its viability. This finding suggests that in CPS, the 
context of an utterance (what was said before and after) may be 
important for accurate identification of particular CPS skills.  

Finally, we examined the relationship between ASR confidence – 
a proxy for transcription quality – and classification accuracy. 
We found that the two were highly correlated, suggesting that 
downstream applications may be able to improve reliability of 
predictions by filtering out low confidence transcripts.  

4.2 Applications 
A key application of this work is the automatic assessment of 
CPS skills from open-ended speech in classrooms and beyond. 
As previously discussed, analyzing verbal communication for 
evidence of CPS skills is a costly and time-intensive process 
when trained human coders are used. Our findings suggest that 
automated methods using ASR and NLP may provide a viable 
alternative to the human-coding process. These automated 
methods hold great potential in improving the assessment and 
training of CPS skills, a priority of modern education [49]. 
However, given the imperfect accuracy of our models, and 
unanswered questions regarding how this approach may 
generalize to students with differing communication styles or 
cultural and linguistic backgrounds, this approach should be 
limited to formative assessment [63] focused on learning and 
improvement, rather than evaluation.  

Our approach could advance this goal in several ways. For 
example, automatically generated reports could be sent to a 
teacher monitoring many groups of students engaged in CPS, 
informing the teacher of the extent to which each group is 
demonstrating CPS skills. Such a system could help the teacher 



identify which groups need support and allocate their limited 
presence toward assisting those groups. Similarly, these reports 
could be used to identify individual student’s strengths and 
weaknesses, and set appropriate goals for improvement. For 
instance, a student who frequently shares information yet seldom 
engages in negotiation or establishing shared understanding 
could be encouraged to listen to the ideas of their teammates and 
work to build on those ideas together. 

In addition to passive assessment and off-line feedback, this 
approach could be leveraged by next-generation intelligent 
systems that actively monitor ongoing CPS and dynamically 
intervene in real time to yield improved CPS outcomes [15], or 
provide personalized on-line feedback to students. For example, 
a group frequently engaging in off-topic conversation could be 
prompted by the system to focus back on the problem-solving 
task, or a particular student within a group who hasn’t shared 
information could be encouraged to share their ideas with the 
team. The specific intervention strategies, including when to 
intervene, how to present the intervention, and who the 
intervention should be targeted at (whole group vs. individual 
student) await design, testing, and refinement.  

Importantly, a technology devised to assist in the training and 
assessment of CPS does little good if it is confined to the lab. 
Thus, the present results take a step towards the development of 
a system that can support CPS in real-world classrooms by 
monitoring open-ended verbal communication for CPS skills. 

4.3 Limitations 
There were some limitations of this work. First, although we 
used an automated approach for utterance transcription and CPS 
skill prediction, the sessions were segmented into utterances 
beforehand by human coders. This is a limitation because a fully 
automated pipeline would require the ASR to automatically 
detect and segment recorded speech into individual utterances, 
an already difficult task that may be further complicated by noisy 
school environments or the peculiarities of children’s speech. 
Another related limitation is that due to the utterance 
segmentation and ASR transcription process we used, our ASR 
transcripts contain all speech that was recognized during an 
utterance’s segmented time window. This means that some ASR 
transcripts contain words from both speakers, which introduces 
alignment inconsistencies between the ASR transcript and the 
coded CPS skill because utterances were coded at the individual 
student level. In particular, this introduces noise into the ASR 
transcripts when student’s utterances overlap. 

Another limitation of this work is that we considered only 
linguistic features to predict the coded CPS skills. We expect 
that model performance can be improved by modeling not only 
what students say (language), but considering how they say it 
(acoustic-prosodic information) and in the context of what 
they’re doing (task-specific information). We hypothesize that 
the inclusion of these additional modalities may particularly 
improve performance for low confidence ASR transcripts, where 
the language transcribed by the speech recognizer is either 
missing altogether, or is a poor representation of what was 
actually said. Finally, although we demonstrated that our method 
for capturing contextual information from adjacent utterances 
improved accuracy, we did not compare this with other methods 

for incorporating contextual utterances such as conditional 
random fields or recurrent neural networks. 

4.4 Future Work 
The findings and limitations discussed in this section present 
several possibilities for improvement in future research. First, in 
order to develop a fully automated approach for modeling CPS 
skills, we plan to incorporate automatic utterance segmentation 
and speaker diarization into our ASR pipeline. Further, we plan 
to explore methods for incorporating information from other 
modalities in addition to language. For instance, including 
features such as acoustic-prosodic information, task context, 
facial expression, or body movement may enable more accurate 
prediction of CPS skills in cases where ASR fails to capture the 
content of an utterance. 

Another direction of future research involves further exploration 
of how contextual utterances can be used to improve 
classification accuracy. We demonstrated a method for 
incorporating adjacent utterances in our model input, which 
improved performance over single utterance classifiers. In future 
work, we will explore methods for capturing contextual 
information beyond the previous and subsequent utterances (e.g., 
the five previous utterances). We also plan to investigate how the 
approach demonstrated in this paper, which leverages the 
model’s attention mechanism to capture context, compares with 
other approaches (e.g., recurrent neural networks).  

In addition to exploring methods for improving the accuracy of 
our models, we plan to investigate the utility of our CPS models. 
An open question is how accurate model predictions need to be 
to provide useful and actionable estimates for assessment, 
feedback, or intervention. Specifically, recent work [2, 25] has 
clustered students using the frequency of CPS skills to derive 
theoretically grounded profiles of collaborative problem solvers 
(e.g., active collaborators, social loafers). We plan to investigate 
whether model-derived estimates of CPS skill frequencies will 
yield high agreement to the clustering produced using human 
codes. 

5. CONCLUSION 
We combined automatic speech recognition and natural language 
processing to automatically predict CPS skills from student 
speech during problem solving in both lab and real-world school 
environments. Our findings suggest that despite significant 
speech recognition error in school environments, it is possible to 
predict expert-coded CPS skills using automatically generated 
transcripts. These findings open many possibilities for next-
generation technologies that can further the goal of improved 
CPS training, assessment, and support in schools.  
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