
This paper is included in the Proceedings of the

19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4–6, 2022 • Renton, WA, USA

978-1-939133-27-4

Open access to the Proceedings of the

19th USENIX Symposium on Networked

Systems Design and Implementation

is sponsored by

NetVRM: Virtual Register Memory
for Programmable Networks

Hang Zhu, Johns Hopkins University; Tao Wang, New York University;

Yi Hong, Johns Hopkins University; Dan R. K. Ports, Microsoft Research;

Anirudh Sivaraman, New York University; Xin Jin, Peking University

https://www.usenix.org/conference/nsdi22/presentation/zhu

NetVRM: Virtual Register Memory for Programmable Networks

Hang Zhu

Johns Hopkins University

Tao Wang

New York University

Yi Hong

Johns Hopkins University

Dan R. K. Ports

Microsoft Research

Anirudh Sivaraman

New York University

Xin Jin

Peking University

Abstract

Programmable networks are enabling a new class of appli-

cations that leverage the line-rate processing capability and

on-chip register memory of the switch data plane. Yet the

status quo is focused on developing approaches that share the

register memory statically. We present NetVRM, a network

management system that supports dynamic register memory

sharing between multiple concurrent applications on a pro-

grammable network and is readily deployable on commodity

programmable switches. NetVRM provides a virtual register

memory abstraction that enables applications to share the

register memory in the data plane, and abstracts away the

underlying details. In principle, NetVRM supports any mem-

ory allocation algorithm given the virtual register memory

abstraction. It also provides a default memory allocation

algorithm that exploits the observation that applications have

diminishing returns on additional memory. NetVRM provides

an extension of P4, P4VRM, for developing applications with

virtual register memory, and a compiler to generate data plane

programs and control plane APIs. Testbed experiments show

that NetVRM generalizes to a diverse variety of applications,

and that its utility-based dynamic allocation policy outper-

forms static resource allocation. Specifically, it improves the

mean satisfaction ratio (i.e., the fraction of a network appli-

cation’s lifetime that it meets its utility target) by 1.6–2.2×
under a range of workloads.

1 Introduction

Programmable networks are a new paradigm that changes

how we design, build and manage computer networks. Com-

pared to traditional fixed-function switches, programmable

switches allow developers to flexibly change how packets are

processed in the switch data plane. The programming model

of programmable switches are based on a multi-stage packet

processing pipeline [8, 9].

Programmable switches provide different types of stateful

objects that preserve states between packets, such as tables,

counters, meters and registers. Among them, registers allow

packets to read and write various states at line rate, which

then affects how the following packets are processed. Such

data-plane-accessible register memory is one of the defining

features of programmable switches, and enables a new class

of reg-stateful applications which utilize the on-chip register

memory to realize various functionalities. These reg-stateful

applications include not only the innovations in traditional

network functions like congestion control [45], load balanc-

ing [25, 35] and network telemetry [1, 18], but also novel use

cases beyond traditional networking, such as caching [23, 32],

consensus [13, 14, 22] and machine learning [42, 43].

Given the rise of reg-stateful applications, an important

open problem is how to support multiple concurent reg-

stateful applications running efficiently on a programmable

network [51]. The utility of reg-stateful applications is usu-

ally decided by the amount of allocated register memory and

the real-time network traffic [18, 23, 34, 47, 54, 58]. Thus, it

is essential to dynamically allocate the limited register mem-

ory between multiple applictions to optimize the multiplexing

benefits. Yet existing approaches of running multiple concur-

rent applications on programmable networks allocate register

memory statically [19, 44, 49, 56, 57]. Changing the amount

of register memory for one application would require recom-

piling and reloading the switch program, which would disrupt

the operation of the switch.

In this paper, we propose NetVRM, a network manage-

ment system that supports dynamic register memory sharing

between multiple concurrent applications on a programmable

network. NetVRM advances the status quo with three major

features: The first one is a novel virtual register memory ab-

straction, which allows the register memory in the switch data

plane to be dynamically allocated between multiple concur-

rent applications at runtime, without recompiling and reload-

ing the data plane program. The second one is a dynamic

memory allocation algorithm, which efficiently arbitrates the

memory usage between concurrent applications based on the

real-time utility measurements. The third one is a language

extension and a compiler to generate data plane programs

with the virtual register memory abstraction and efficient C++

control plane APIs for high-speed virtual register memory

configuration.

The virtualization of register memory allows its dynamic

allocation. Our approach is inspired by traditional virtual

memory designs in operating systems, but programmable

switches introduce two new challenges. First, register mem-

ory is distributed over multiple pipeline stages, and each

register can be accessed only from one stage. Second, switch

applications can access register memory from both the data

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 155

plane and control plane. NetVRM’s memory system design

is tailored to these characteristics. It places a page table at

the front of the virtual register memory’s processing pipeline,

using it for memory translation in the data plane. The page

table indexes the register memory regions allocated to each

application in every stage. The switch control plane manages

memory allocation. NetVRM also mediates application ac-

cesses to register memory from the control plane to ensure

addresses are correctly translated.

NetVRM’s dynamic memory allocation policy exploits

the fundamental tradeoff between memory consumption and

application utility. In particular, it leverages diminishing re-

turns: the observation that, for most reg-stateful applications,

the benefit of additional memory decreases with the amount

of allocated memory [18, 23, 34, 47, 58]. For example, af-

ter a certain point, NetCache [23] cannot further improve

the throughput significantly. More importantly, the memory-

utility relationship changes both in the temporal and spatial

dimensions based on application characteristics and traffic

conditions. For example, the amount of register memory

needed by NetCache depends on the request pattern, which

can change over time and even vary across different switches.

We design an online algorithm that does global memory al-

location between applications in the network to maximize

multiplexing benefits.

To make it easy to develop applications with NetVRM, we

propose P4VRM, an extension to P4 [8]. P4VRM allows

developers to virtualize register memory with a few simple

modifications to existing P4 code: they mark register arrays to

be virtualized and add online utility measurement primitives

provided by P4VRM. The compiler takes multiple P4VRM

programs as input and outputs a single P4 program with the

virtual register memory abstraction and all the applications’

functionalities, and generates the control plane APIs for high-

speed virtual memory configuration.

In summary, we make the following contributions.

• We propose NetVRM, a network management system that

exposes a virtual register memory abstraction to enable

dynamic register memory sharing between multiple concur-

rent applications on a programmable network at runtime

without recompiling and reloading.

• We design a dynamic memory allocation algorithm to ef-

ficiently allocate register memory between applications to

maximize multiplexing benefits.

• We propose P4VRM, a data plane program extension, and

provide a compiler to easily equip the data plane programs

with virtual register memory and generate control plane

APIs for efficient virtual memory configurations.

• We implement a NetVRM prototype. Testbed experiments

on a variety of applications show that compared to static

memory allocation, NetVRM improves the mean satisfac-

tion ratio (i.e., the fraction of a network application’s life-

time that it meets its utility target) by 1.6–2.2× under a

range of workloads.

2 Motivation and Related Work

2.1 The Case of Dynamic Register Memory Allocation

Concurrent reg-stateful network applications. There

are two broad types of objects provided by commodity

programmable switches on the data plane—stateless ob-

jects, such as metadata, packet headers, and stateful ob-

jects, such as match-action tables, counters, meters, registers.

Among them, registers, as one of the defining features of

new-generation programmable switches, provide data-plane-

accessible register memory for packets to read and write vari-

ous states at line rate and enable much of the latest exciting

research [14, 22, 25, 35, 42, 43, 45]. Register memory is

implemented with standard SRAM blocks and can be read

and written by both the control plane and data plane. Stateful

Arithmetic and Logic Unit (ALU) performs register memory

access and modification by executing a short program that

involves register data, metadata and constant. The register

memory is usually organized as register arrays. Each register

array consists of several register slots with the same width

and can be addressed by index (direct mapping) and hash

(hash mapping). We refer to the network applications that use

the register memory as reg-stateful applications.

Besides the rise and evolution of reg-stateful applications,

modern cloud service providers usually serve multiple ten-

ants concurrently [6, 30]. They allow tenants to run differ-

ent network applications dynamically. For example, Azure

and AWS provide a variety of network applications [5, 7]

to their tenants, such as network address translation (NAT),

load balancer, and network monitoring. We anticipate that the

reg-stateful applications will be provided to tenants as pro-

grammable switches are being integrated in cloud networks,

including both the datacenter networks and the wide area

networks that connect the datacenter networks.

Necessity and potential benefits of network-wide dynamic

allocation. The register memory on programmable switches

is fundamentally limited by the hardware. For example, the

maximal size of register memory on each stage is only a

few Mb on the Intel Tofino switch [50]. Besides the limited

register memory, there is a fundamental trade-off between

memory consumption and application utility (e.g., its per-

formance or accuracy) in many reg-stateful network appli-

cations [18, 23, 34, 47, 58]. Although some applications

have a fixed memory requirement, most can operate with

different amounts of available memory. Notably, our key

observation is that applications generally exhibit diminish-

ing returns [18, 23, 34, 47, 58]. The utility improvement

decreases with more memory, and for many applications, ad-

ditional memory has no utility after a point. We demonstrate

the diminishing returns for four applications in Appendix A,

including heavy hitter detection (HH) [54], newly opened

TCP connection detection (NO) [55], superspreader detection

(SS) [54] and NetCache [23]. The utility is measured using

memory hit ratio (§5.1).

156 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

In all cases, the amount of memory affects the applica-

tion utility, and such effects depend heavily on the work-

load. For example, NetCache [23] needs different amount of

register memory with different skewed workload to deliver

the same utility (Appendix A). Without dynamic allocation,

this presents a formidable deployment challenge because the

workload can vary in both temporal and spatial dimensions:

different storage clusters see radically different workloads,

and even a single cluster’s request pattern changes over time

(e.g., on a diurnal cycle) [4].

The diminishing returns and the temporally and spatially

dynamic workload together also provide the opportunity to

maximize resource multiplexing benefits by efficiently arbi-

trating the memory usage between concurrent applications.

2.2 Target and Scope of NetVRM

Target applications. The reg-stateful applications that can

benefit from NetVRM must have the following properties.

• They are elastic (§5). An inelastic application (e.g.,

NetChain [22]) that has fixed virtual memory requirement

can be supported by NetVRM, but cannot benefit from

dynamic memory allocation.

• The data plane programs have to meet the constraints in

P4VRM (§6), such as stateful ALUs since each operation

of one register array must be associated with a specific

stateful ALU.

• The application utility should be obtained instanta-

neously (§5.1). It can be computed on the switch (e.g.,

hit ratio as the default utility) or reported by applications.

We remark that there are a wide range of applications with

the above properties, such as measurement applications [18,

39, 47], applications with approximate data structures [20, 34,

54], and caching applications [23, 33].

Register memory as the scope. There are a variety of re-

source types on a programmable switch, such as register

memory, SRAM used for tables, TCAM and action units [51].

NetVRM focuses on dynamic allocation for register memory

for three reasons. First, we observe that many reg-stateful

applications are bottlenecked by register memory. Second, dy-

namic allocation of other resource types (e.g., match-action ta-

bles, TCAM) has been well-studied in the context of Software-

Defined Networking (SDN) with traditional fixed-function

switches [17, 21, 36, 46]. Third, current switch hardware

cannot dynamically reallocate other resource types without

rebooting the entire switch [51]. NetVRM is readily deploy-

able on existing programmable switches.

Switch memory available that can be used as virtual reg-

ister memory could be limited because a certain amount of

memory has to be set aside for basic networking functionality,

such as L3 routing, and inelastic applications (see §5). The

evaluation in §8 shows that NetVRM outperforms the alterna-

tives, regardless of how much physical memory is available

for virtualization and dynamic allocation. Thus, NetVRM

continues to be effective even as the memory for basic net-

working functionality and inelastic applications grows in size,

leaving behind less memory for dynamic allocation.

2.3 Existing Solutions and Limitations

Recently, several existing works have explored how to support

multiple applications on a programmable switch [19, 44, 48,

49, 56, 57]. At a high level, these solutions fail to meet the

requirement of dynamic register memory allocation because

of at least one of three limitations as follows.

• Static binding of register memory. Some of the exist-

ing work combine or merge multiple applications into one

monolithic data plane program [19, 48, 56, 57] in com-

pilation time. And the binding between register memory

allocation and applications is static. Changing the alloca-

tion requires the data plane program to be recompiled and

reloaded, during which the switch has to be stopped and

restarted. This interrupts the operation of all applications

on the switch, even the basic ones such as L3 routing.

• Lack of a real switch environment. Most of the exist-

ing solutions ignore the practical hardware constraints and

are not applicable on a real ASIC-based switch (e.g., Intel

Tofino [50]). For example, P4VBox [44] provides par-

allel execution of virtual switch instances on NetFPGA.

MTPSA [49] realizes a multi-tenant portable switch archi-

tecture on NetFPGA and BMv2, a reference P4 software

switch [3]. HyPer4 [19] and HyperV [56] realize the virtu-

alization on software switches (e.g., BMv2, DPDK).

• Not doing network-wide dynamic allocation. Network

resource allocation has been well studied for SDN with

traditional fixed-function switches [16, 17, 21, 36, 37, 46].

For example, DREAM [36] does dynamic allocation for

TCAM between measurement applications. However, none

of the existing work has disclosed the potential benefit of a

network-wide dynamic allocation for the register memory

on programmable networks.

There are other related works that have explored how to man-

age and improve network applications on programmable net-

works. TEA [27] provides external DRAM for storing table

entries, not register memory. Dejavu [52] utilizes the multiple

pipelines and resubmission to fit a service chaining in one

single switch. RedPlane [28] enables fault-tolerant stateful

applications by designing a practical, provably correct replica-

tion protocol. NetVRM targets register memory and provides

a new system for sharing it between multiple concurrent reg-

stateful applications dynamically.

3 NetVRM Overview

NetVRM is a network management system that supports dy-

namic register memory sharing between multiple concurrent

applications on a programmable network. Figure 1 shows an

overview of NetVRM. NetVRM includes three critical com-

ponents: virtual register memory, dynamic memory allocation

and the P4VRM compiler. It abstracts away the complexities

of allocating physical memory in each application, increases

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 157

The counter record maintains two counters for each appli-

cation, which only takes a small amount of memory. One is

total_cnt, which tracks the total number of packets for

an application. The other is hit_cnt, which tracks the num-

ber of packets that hit the switch register memory for each

application. These counters are polled and reset periodically

by the control plane to compute real-time memory hit ratios.

Memory layout. The memory layout partitions the physical

register arrays horizontally across the stages. A virtual reg-

ister array for an application is mapped to multiple blocks

with the same start index (offset in the page table) and

size (size in the page table) in each physical array. For

example, in Figure 2 application 1 has a virtual array with

64K slots, which is mapped to [0,16K) in each physical array,

and application 3 has a virtual array with 128K slots, which

is mapped to [32K,64K) in each physical array.

This horizontal memory layout has three principal bene-

fits. First, it decouples memory allocation from application

code, and eliminates their static binding. The size of a vir-

tual register array and its mapping to the physical arrays

are represented by offset and size in action parameters,

which can be dynamically changed at runtime, without re-

compiling and reloading the code in the data plane. Second,

it enables fine-grained memory allocation. Because there

are only a few stages (e.g., 10-20 stages) on commodity pro-

grammable switches [11, 50], our design can allocate the

memory at row granularity (e.g., 8-slot granularity), which is

fine-grained enough, compared with the total available slots

on the switch (e.g., 512K). Third, it represents the memory

layout using a small fixed-sized representation: only two

variables (offset and size) per application. Although a

more sophisticated memory layout might be able to achieve

better space efficiency, more complex representations such as

variable-length block lists would be challenging to implement

efficiently in the data plane.

Address translation. Let the size of a virtual register array

for an application be N. A virtual address VA ∈ [0,N) is the

index of the register slot in the virtual array. The physical

address PA is computed by PA= (VA/size, VA%size+offset)
after the page table, where VA/size denotes the physical array

index and VA%size+offset denotes the physical slot index in

the corresponding stage. Division and modulo on arbitrary

integers may not be supported in all switches. In such cases,

we allocate virtual arrays with size to be a power of two, and

implement these two operations with bit operations.

The above translation is sufficient for applications that di-

rectly access memory by VA. Besides these direct accesses,

reg-stateful applications on programmable switches often

use a lookup table or a hash function to access a register

slot. Lookup tables use match-action tables to identify the

address corresponding to a key (e.g., to find the memory

location of an object in NetCache). We adapt the match-

action table to hold a virtual address, then apply the VA to

PA translation described above. Other applications use a

hash function to map a subset of header fields to a register

slot (e.g., hashing the source IP in heavy hitter detection).

While in principle the same translation approach can be used,

hardware constraints on the Tofino platform mean that hash

functions need to be associated with a particular address

range, and adding a variable offset to the output requires

an additional stage. NetVRM uses a hash function h size,

selected during the page table lookup stage, which has out-

put in [0,size). Hash lookups first compute h size(pkt.hdr),
then, in a subsequent stage, translate that to the physical slot

location: PA = (h(pkt.hdr)%k, h size(pkt.hdr)+ o f f set),
where k is the number of physical arrays.

Some applications may need large virtual slots, each of

which may be larger than a physical slot. In such cases, we

combine multiple physical slots to implement a virtual slot.

5 Dynamic Memory Allocation

We classify reg-stateful applications on a programmable net-

work into elastic and inelastic applications based on whether

an application can work with a variable amount of reg-

ister memory. An inelastic application requires a fixed

amount of register memory; it cannot work with less (e.g.,

NetChain [22]). An elastic application does not have a fixed

register memory requirement. Our key observation is that

most elastic applications overcome insufficient register mem-

ory with a fallback mechanism to the network control plane

or the servers [23, 47]. The amount of memory typically af-

fects application-level performance metrics (e.g., the system

throughout in NetCache [23]). Although it may be possible to

transform inelastic applications to elastic ones [29], we leave

that to application developers. NetVRM supports both types,

while only elastic applications can benefit from NetVRM’s

dynamic memory allocation.

Each application is specified with four parameters: the ap-

plication type (e.g., HH); the subnet in which the application

will run (e.g., 10.0.0.0/8); the utility metric, which is either

the default metric (i.e., memory hit ratio) or an application-

specific one; and the utility target (e.g., 0.98 for memory hit

ratio). For an inelastic application, the amount of required

memory is specified instead of the utility metric and target.

NetVRM allocates the memory to it if the requirement can be

satisfied, and rejects the application otherwise.

Dynamic memory allocation is only performed for elastic

applications. NetVRM periodically polls the counters from

the data plane, obtains the utility of each application, and

dynamically allocates the register memory between the ap-

plications based on their utilities. There is a long line of

work related to network utility maximization [26, 38, 40].

NetVRM presents three particular challenges for network

utility maximization, including how to define the application

utility properly, how to approximate the utility functions, and

how to allocate the register memory in the network, which

will be demonstrated in detail as follows.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 159

Algorithm 1 Network-wide memory allocation

1: new plan← cur plan.copy()
2: for application i in applications do

3: if i.util ≥ i.target then

4: satis f ied list.append(i)
5: i.over mem← i.mem− (i.target/i.util)c f ∗ i.mem

6: distributed i.over mem to i.paths proportionally

7: else

8: unsatis f ied list.append(i)
9: i.under mem← (i.target/i.util)c f ∗ i.mem− i.mem

10: distributed i.under mem to i.paths inverse proportionally

11: sort satis f ied list by over mem in decreasing order

12: sort unsatis f ied list by i.under mem in increasing order

13: for application i in unsatis f ied list do

14: for path p in i.paths do

15: sort p.switches based on i’s existence and s.over mem

16: for switch s in p.switches do

17: allocate memory from satis f ied list to p.under mem

18: if all paths are satisfied then

19: update new plan

20: else

21: move memory back to satis f ied list

22: return new plan

the objective. The allocation are performed periodically to

handle real-time traffic dynamics and application changes.

Main challenge: multiple and overlapped paths of an ap-

plication. Besides the unknown and dynamic utility functions,

the network-wide allocation problem is further complicated

by the following two challenges. First, an application may

need to handle traffic between multiple origin-destination

(OD) pairs, and the traffic between each OD pair may use

multiple paths. For example, in a wide area network, the

operator may want to detect heavy hitters for flows between

multiple OD pairs, e.g., O0-D0 and O1-D1 in Figure 4(a).

In a datacenter network, the operator may want to provide

in-network caching for traffic from multiple client racks to

a key-value store rack, e.g., S0-S2 and S1-S2 in Figure 4(b).

Datacenter networks typically use multi-path routing, e.g.,

path S0-S3-S2 and path S0-S4-S2 for traffic between S0 and

S2. Second, different paths of an application may overlap,

and thus can share their allocated memory. For example, in

Figure 4(b), NetCache can be placed in S2 to save memory

instead of in both S3 and S4.

Solution: network-wide memory allocation. At a high level,

NetVRM performs network-wide memory allocation in two

steps. First, NetVRM uses the utility estimation mechanism

in §5.2 to estimate the required memory for each application,

and decomposes over mem or under mem of each applica-

tion to multiple paths. Second, it moves the memory from

over-provisioned applications to under-provisioned applica-

tions. The pseudocode is shown in Algorithm 1.

The first step is to compute and decompose over mem or

under mem of each application to multiple paths (line 2-10).

NetVRM measures the utility (i.e., the memory hit ratio by

default) and the traffic on each path. With the memory hit

ratio as the utility, the utility (memory) of application i is

the weighted average of its utilities (memories) by the traffic

p4vrm

compiler

.p4 with VRM

.cpp for

updates

developers

…

heavy_hitter

.p4vrm

netcache

.p4vrm

…

heavy_hitter

.p4

netcache

.p4

Figure 5: P4VRM compiler compiles P4VRM programs.

volume on its paths. We use the utility estimation mechanism

in §5.2 to estimate i.over mem and i.under mem. Then

i.over mem is distributed to each path in proportional to their

traffic (line 6) and i.under mem is distributed to each path in

inverse proportional to their traffic (line 10). We remark that

NetVRM also allows disproportional memory allocation.

The second step is to move memory from over-provisioned

applications to under-provisioned applications (line 11-21).

We use a heuristic that reduces the memory for applications

that are more over-provisioned first, and allocates the mem-

ory to the applications that are more likely to be satisfied first

(line 11-12). For each unsatisfied application, it tries to satisfy

the estimated memory requirement on each path (line 13-21).

Because each path contains several switches, the algorithm

needs to decide which switch to allocate memory from to sat-

isfy the application (line 15-17). Two factors are considered

in the decision, which are whether the application already has

memory allocated on a switch (i.e., i’s existence) and how

much extra memory a switch has (i.e., s.over mem). These

factors aim to avoid small amounts of memory scattering in

many switches. If the application’s requirement can be satis-

fied, the plan is updated (line 18-19). Otherwise, the memory

is moved back to the satisfied applications (line 20-21).

To accommodate path overlapping, two extensions are re-

quired to the algorithm. First, in the utility estimation, the

memory on overlapping switches is counted once for each

overlapping path. Second, in memory allocation, the memory

allocated to an application on overlapping switches is also

counted once for each overlapping path.

Admission control, drop and priority. Admission control

is critical when the total memory requirement exceeds the

register memory size in the network. NetVRM admits one

application into the network only if there is more available

memory on each path than a predefined fraction of the total

memory. NetVRM drops one application if it cannot meet

the utility target in multiple consecutive allocation epochs.

NetVRM targets elastic applications which can work even

with no register memory. Thus, if one application is rejected

or dropped, it can turn to the fallback mechanism. A mali-

cious application with a tough utility target to satisfy would

likely be dropped after a few allocation epochs. The operator

can also assign custom priorities for the applications. For

example, an application can be configured to not be dropped,

or be assigned with a minimal amount of memory to avoid

starvation when it is under-provisioned.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 161

〈p4 declaration〉 ::= 〈vrm reg declaration〉 | 〈vrm blb declaration〉 | ...

〈vrm reg declaration〉 ::= ‘vrmReg’ 〈virt stage〉 〈register declaration〉

〈vrm blb declaration〉 ::= ‘vrmMergeable’ 〈blackbox declaration〉
| ‘vrmNonMergeable’ 〈blackbox declaration〉

〈table declaration〉 ::= ...

| ‘vrmMergeable’ 〈virt stage〉 〈table declaration〉
| ‘vrmNonMergeable’ 〈table declaration〉

〈action function declaration〉 ::= ...

| ‘vrmMergeable’ 〈action function declaration〉
| ‘vrmNonMergeable’ 〈action function declaration〉

〈control statement〉 ::= ...

| ‘HIT COUNTER;’

| ‘PKT COUNTER;’

〈virt stage〉 ::= 〈decimal value〉

Figure 6: The P4VRM extensions to the P4-14. Gray non-

terminal nodes refer to legacy rules in P4-14.

Memory reallocation process. At the end of each alloca-

tion epoch, NetVRM fetches the counters from the control

plane, and computes the online utilities and the new memory

allocation plan. Updating the memory allocation plan results

in remapping from virtual addresses to physical addresses

and moving existing entries because of the remapping. There

are general solutions that can be applied to ensure the consis-

tency of memory allocation updates [24, 53]. We apply two

optimizations for particular cases in NetVRM. First, network

measurement applications periodically reset the state such as

counters maintained by the register memory. We align the

memory allocation updates with the resetting operations, so

that the memory allocation can be updated without moving

existing entries and does not scarifice application correctness.

Second, network applications that use lookup-table-based

address translation can simply use a delta update when the

memory size decreases, and allow more entries when the

memory size increases. This ensures consistency because a

lookup table is used for maintaining each address mapping.

6 Language Extension and Autogeneration

NetVRM provides P4VRM, an extension to the basic syntax

and semantics of the P4 programming language [8] that sup-

ports virtual register memory abstraction and online utility

measurement. Our implementation is based on P4-14, as more

existing implementations are implemented in this version, but

the same extensions could be applied to P4-16 as well. As

shown in Figure 5, to port existing .p4 programs, developers

extend them to .p4vrm programs by marking which register

arrays are to be virtualized and adding the online utility mea-

surement primitives (HIT_COUNTER and PKT_COUNTER)

correctly according to the applications. The P4VRM com-

piler takes multiple .p4vrm programs as input and outputs one

merged P4 program (for the data plane) with virtual mem-

ory abstraction and online utility measurement, together with

the C++ APIs (for the control plane) to configure the virtual

register memory efficiently.

✞ ☎
+ #include "params.p4"

- vrmReg 1 register stg1 {

+ register virtual_stg1 {

width:32;

- instance_count:8192;

+ instance_count:65536;

}

- vrmNonMergeable blackbox stateful_alu salu_stg1 {

+ blackbox stateful_alu salu_stg1 {

- .reg: stg1;

+ .reg: virtual_stg1;

...

}

- vrmNonMergeable action act_stg1() {

+ action act_stg1() {

- salu_stg1.execute_stateful_alu_from_hash(hash_1);

+ salu_stg1.execute_stateful_alu(params_md.slot_idx);

}

- vrmNonMergeable table tbl_stg1 {

+ table tbl_stg1 {

+ actions {act_stg1;};

+ default_action:act_stg1();

+ }

control ingress {

if (valid(tcp) or valid(udp)) {

+ apply(set_app_id);

+ apply(set_offset_hf);

+ apply(add_offset);

+ if (params_md.app_type==0) {

apply(tbl_stg1);

...

- HIT_COUNTER;

+ apply(hit_counter);

...

- PKT_COUNTER;

+ apply(pkt_counter);

+ }

}

}
✝ ✆
Figure 7: An example of P4VRM code transformation by

P4VRM compiler. ‘-’ and ‘+’ annotate the change before and

after the transformation, respectively.

Grammar. As shown in Figure 6, P4VRM extends the P4-

14 language specification [2] by introducing new keywords

(vrmReg, vrmMergeable and vrmNonMergeable) to

tag declarations related to a register array (register,

blackbox, action, and table). It marks the regis-

ter array as virtualized, and marks the related blackboxes,

actions and tables that have the same logic as mergeable.

It also specifies the stages at which the mergeable tables

should be placed (virt_stage). The two primitive state-

ments (i.e., HIT_COUNTER and PKT_COUNTER) are used

for online utility measurement. HIT_COUNTER tracks the

number of packets processed by the register memory, and

PKT_COUNTER tracks the total number of packets of the

application.

Generating merged P4 programs and C++ APIs. To merge

parsers, P4VRM compiler abstracts the packet parser of each

application as a Finite State Machine (FSM) and merges

the identical states into a single FSM. Then, the P4VRM

compiler transforms P4VRM-introduced declarations (i.e.,

vrmReg, vrmMergeable and vrmNonMergeable) to

P4-14 declarations (i.e., register, blackbox, action

and table), and adds the additional logic for address trans-

162 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

resulting in up to 64K virtual slots per switch. The NetCache

instances are set to not be dropped.

Results. Figure 15(a) shows the satisfaction ratios of the three

approaches, and Figure 15(b) shows the drop ratios and reject

ratios of NetVRM. Similarly, NetVRM outperforms Equal-

All and Equal-Active consistently under different amounts of

register memory. It indicates that NetVRM can multiplex

the register memory between different switches in a compli-

cated scenario where applications have multiple paths and

measurement applications run along with datacenter-specific

applications such as NetCache.

9 Conclusion

We present NetVRM, a network management system to sup-

port dynamic register memory sharing between multiple con-

current applications on a programmable network. NetVRM

provides a virtual register memory abstraction that enables

register memory sharing in the switch data plane, and dy-

namically allocates memory for better resource efficiency and

application utility. NetVRM also provides P4VRM as an ex-

tension of P4 for developing applications with virtual register

memory, and a compiler to generate data plane programs and

control plane APIs.

Acknowledgments. We thank our shepherd Laurent Van-

bever and the anonymous reviewers for their valuable feed-

back on this paper. Xin Jin (xinjinpku@pku.edu.cn) is the

corresponding author. Xin Jin is with the Key Laboratory of

High Confidence Software Technologies (Peking University),

Ministry of Education. This work is supported in part by NSF

grants CNS-1813487, CCF-1918757 and CNS-2008048, and

the National Natural Science Foundation of China under the

grant number 62172008.

References

[1] In-band Network Telemetry (INT) Dataplane Spec-

ification. https://github.com/p4lang/

p4-applications/blob/master/docs/INT.

pdf.

[2] P4-14 Language Specification. https://p4.org/

p4-spec/p4-14/v1.0.5/tex/p4.pdf.

[3] P4 Behavioral Model Repository. https://github.

com/p4lang/behavioral-model.

[4] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and

M. Paleczny. Workload analysis of a large-scale key-

value store. In ACM SIGMETRICS, June 2012.

[5] Networking and Content Delivery on AWS. https://

aws.amazon.com/products/networking/.

[6] Multitenant SaaS on Azure. https:

//docs.microsoft.com/en-us/azure/

architecture/example-scenario/

multi-saas/multitenant-saas.

[7] Azure networking services overview.

https://docs.microsoft.com/en-us/

azure/networking/fundamentals/

networking-overview.

[8] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-

own, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,

G. Varghese, and D. Walker. P4: Programming protocol-

independent packet processors. SIGCOMM CCR, July

2014.

[9] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McK-

eown, M. Izzard, F. Mujica, and M. Horowitz. Forward-

ing metamorphosis: Fast programmable match-action

processing in hardware for SDN. In ACM SIGCOMM,

August 2013.

[10] The CAIDA Anonymized Internet Traces 2019 Dataset.

https://data.caida.org/datasets/

passive-2019/.

[11] Cavium XPliant. https://www.cavium.com/.

[12] G. Cormode and S. Muthukrishnan. An improved data

stream summary: the count-min sketch and its applica-

tions. Journal of Algorithms, 2005.

[13] H. T. Dang, M. Canini, F. Pedone, and R. Soulé. Paxos

made switch-y. SIGCOMM CCR, April 2016.

[14] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and

R. Soulé. NetPaxos: Consensus at network speed. In

ACM SOSR, June 2015.

[15] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart,

and G. Carle. Moongen: A scriptable high-speed packet

generator. In ACM SIGCOMM Conference on Internet

Measurement Conference, 2015.

[16] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. Bo-

hatei: Flexible and elastic ddos defense. In {USENIX}
Security, 2015.

[17] A. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Kr-

ishnamurthi. Participatory networking: An API for ap-

plication control of SDNs. In ACM SIGCOMM, August

2013.

[18] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rex-

ford, and W. Willinger. Sonata: Query-driven streaming

network telemetry. In ACM SIGCOMM, 2018.

[19] D. Hancock and J. Van der Merwe. Hyper4: Using p4 to

virtualize the programmable data plane. In Proceedings

of the 12th International on Conference on emerging

Networking EXperiments and Technologies, 2016.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 167

[20] Q. Huang, P. P. Lee, and Y. Bao. Sketchlearn: Relieving

user burdens in approximate measurement with auto-

mated statistical inference. In ACM SIGCOMM, 2018.

[21] X. Jin, J. Gossels, J. Rexford, and D. Walker. CoVi-

sor: A compositional hypervisor for software-defined

networks. In USENIX NSDI, May 2015.

[22] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé,

C. Kim, and I. Stoica. NetChain: Scale-free sub-RTT

coordination. In USENIX NSDI, April 2018.

[23] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,

C. Kim, and I. Stoica. NetCache: Balancing key-value

stores with fast in-network caching. In ACM SOSP,

October 2017.

[24] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan,

M. Zhang, J. Rexford, and R. Wattenhofer. Dynamic

scheduling of network updates. In ACM SIGCOMM,

August 2014.

[25] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford.

Hula: Scalable load balancing using programmable data

planes. In ACM SOSR, March 2016.

[26] F. Kelly and T. Voice. Stability of end-to-end algorithms

for joint routing and rate control. SIGCOMM CCR,

2005.

[27] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and

S. Seshan. Tea: Enabling state-intensive network func-

tions on programmable switches. In ACM SIGCOMM,

2020.

[28] D. Kim, J. Nelson, D. R. Ports, V. Sekar, and S. Seshan.

Redplane: enabling fault-tolerant stateful in-switch ap-

plications. In ACM SIGCOMM, 2021.

[29] D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan. Generic

external memory for switch data planes. In ACM Hot-

Nets Workshop, 2018.

[30] T. Koponen, K. Amidon, P. Balland, M. Casado,

A. Chanda, B. Fulton, I. Ganichev, J. Gross, N. Gude,

P. Ingram, et al. Network virtualization in multi-tenant

datacenters. In USENIX NSDI, April 2014.

[31] J. Levine. Flex & Bison: Text Processing Tools. ”

O’Reilly Media, Inc.”, 2009.

[32] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy,

and K. Atreya. IncBricks: Toward in-network computa-

tion with an in-network cache. In ACM ASPLOS, April

2017.

[33] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman,

X. Jin, and I. Stoica. Distcache: Provable load balancing

for large-scale storage systems with distributed caching.

In USENIX FAST, 2019.

[34] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and

V. Braverman. One sketch to rule them all: Rethink-

ing network flow monitoring with univmon. In ACM

SIGCOMM, 2016.

[35] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. Silkroad:

Making stateful layer-4 load balancing fast and cheap

using switching asics. In ACM SIGCOMM, 2017.

[36] M. Moshref, M. Yu, R. Govindan, and A. Vahdat.

DREAM: Dynamic resource allocation for software-

defined measurement. In ACM SIGCOMM, August

2014.

[37] M. Moshref, M. Yu, R. Govindan, and A. Vahdat.

Scream: Sketch resource allocation for software-defined

measurement. In ACM CoNEXT, 2015.

[38] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Al-

izadeh, and S. Katti. Numfabric: Fast and flexible band-

width allocation in datacenters. In ACM SIGCOMM,

2016.

[39] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal,

V. Arun, M. Alizadeh, V. Jeyakumar, and C. Kim.

Language-directed hardware design for network per-

formance monitoring. In ACM SIGCOMM, August

2017.

[40] V. Nathan, V. Sivaraman, R. Addanki, M. Khani,

P. Goyal, and M. Alizadeh. End-to-end transport for

video qoe fairness. In ACM SIGCOMM, 2019.

[41] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren.

Inside the social network’s (datacenter) network. In

ACM SIGCOMM, 2015.

[42] A. Sapio, I. Abdelaziz, M. Canini, and P. Kalnis. Daiet:

a system for data aggregation inside the network. In

ACM Symposium on Cloud Computing, 2017.

[43] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis,

C. Kim, A. Krishnamurthy, M. Moshref, D. R. K. Ports,

and P. Richtárik. Scaling distributed machine learning

with in-network aggregation, 2019.

[44] M. Saquetti, G. Bueno, W. Cordeiro, and J. R. Azambuja.

P4vbox: Enabling p4-based switch virtualization. IEEE

Communications Letters, 2019.

[45] N. K. Sharma, A. Kaufmann, T. E. Anderson, A. Krish-

namurthy, J. Nelson, and S. Peter. Evaluating the power

of flexible packet processing for network resource allo-

cation. In USENIX NSDI, March 2017.

[46] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller,

M. Casado, N. McKeown, and G. Parulkar. Can the

production network be the testbed? In USENIX OSDI,

October 2010.

168 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[47] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith.

Turboflow: Information rich flow record generation on

commodity switches. In EuroSys, 2018.

[48] H. Soni, T. Turletti, and W. Dabbous. P4Bricks: En-

abling multiprocessing using linker-based network data

plane architecture. 2018.

[49] R. Stoyanov and N. Zilberman. Mtpsa: Multi-tenant

programmable switches. In Proceedings of the 3rd P4

Workshop in Europe, 2020.

[50] Intel Tofino. https://www.

intel.com/content/www/us/

en/products/network-io/

programmable-ethernet-switch/

tofino-series.html.

[51] T. Wang, H. Zhu, F. Ruffy, X. Jin, A. Sivaraman, D. R. K.

Ports, and A. Panda. Multitenancy for fast and pro-

grammable networks in the cloud. In USENIX HotCloud

Workshop, 2020.

[52] D. Wu, A. Chen, T. E. Ng, G. Wang, and H. Wang.

Accelerated service chaining on a single switch asic. In

ACM HotNets Workshop, 2019.

[53] L. Yu, J. Sonchack, and V. Liu. Mantis: Reactive pro-

grammable switches. In ACM SIGCOMM, August 2020.

[54] M. Yu, L. Jose, and R. Miao. Software defined traffic

measurement with opensketch. In USENIX NSDI, 2013.

[55] Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and

B. T. Loo. Quantitative network monitoring with netqre.

In ACM SIGCOMM, 2017.

[56] C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, and J. Wu. Hy-

perv: A high performance hypervisor for virtualization

of the programmable data plane. In 2017 26th Inter-

national Conference on Computer Communication and

Networks (ICCCN), 2017.

[57] P. Zheng, T. Benson, and C. Hu. P4visor: Lightweight

virtualization and composition primitives for building

and testing modular programs. In ACM CoNEXT, 2018.

[58] H. Zhu, Z. Bai, J. Li, E. Michael, D. Ports, I. Stoica, and

X. Jin. Harmonia: Near-linear scalability for replicated

storage with in-network conflict detection. In Proceed-

ings of the VLDB Endowment, November 2019.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 169

	Introduction
	Motivation and Related Work
	The Case of Dynamic Register Memory Allocation
	Target and Scope of NetVRM
	Existing Solutions and Limitations

	NetVRM Overview
	Virtual Register Memory
	Dynamic Memory Allocation
	Definition of Application Utility
	Problem Formulation
	Network-Wide Register Memory Allocation

	Language Extension and Autogeneration
	Implementation
	Evaluation
	Microbenchmark
	Macrobenchmark
	Generality
	Analysis of NetVRM
	NetVRM in Datacenter Network

	Conclusion
	Diminishing Return Examples
	Additional Evaluation Results
	Network Topology in Datacenter Scenario

