? I_-":;‘- ': — -. _-. .I.'.. . E +

6} usenix
8 THE ADVANCED

’ COMPUTING SYSTEMS

ASSOCIATION

NetVRM: Virtual Register Memory
for Programmable Networks

Hang Zhu, Johns Hopkins University; Tao Wang, New York University;
Yi Hong, Johns Hopkins University; Dan R. K. Ports, Microsoft Research;
Anirudh Sivaraman, New York University; Xin Jin, Peking University

https://www.usenix.org/conference/nsdi22/presentation/zhu

This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4-6, 2022 » Renton, WA, USA
978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by

alllasc Ellall deala

.% King Abdullah University of

Science and Technology

NetVRM: Virtual Register Memory for Programmable Networks

Hang Zhu
Johns Hopkins University

Dan R. K. Ports
Microsoft Research

Abstract

Programmable networks are enabling a new class of appli-
cations that leverage the line-rate processing capability and
on-chip register memory of the switch data plane. Yet the
status quo is focused on developing approaches that share the
register memory statically. We present NetVRM, a network
management system that supports dynamic register memory
sharing between multiple concurrent applications on a pro-
grammable network and is readily deployable on commodity
programmable switches. NetVRM provides a virtual register
memory abstraction that enables applications to share the
register memory in the data plane, and abstracts away the
underlying details. In principle, NetVRM supports any mem-
ory allocation algorithm given the virtual register memory
abstraction. It also provides a default memory allocation
algorithm that exploits the observation that applications have
diminishing returns on additional memory. NetVRM provides
an extension of P4, PAVRM, for developing applications with
virtual register memory, and a compiler to generate data plane
programs and control plane APIs. Testbed experiments show
that NetVRM generalizes to a diverse variety of applications,
and that its utility-based dynamic allocation policy outper-
forms static resource allocation. Specifically, it improves the
mean satisfaction ratio (i.e., the fraction of a network appli-
cation’s lifetime that it meets its utility target) by 1.6-2.2x
under a range of workloads.

1 Introduction

Programmable networks are a new paradigm that changes
how we design, build and manage computer networks. Com-
pared to traditional fixed-function switches, programmable
switches allow developers to flexibly change how packets are
processed in the switch data plane. The programming model
of programmable switches are based on a multi-stage packet
processing pipeline [8, 9].

Programmable switches provide different types of stateful
objects that preserve states between packets, such as tables,
counters, meters and registers. Among them, registers allow
packets to read and write various states at line rate, which
then affects how the following packets are processed. Such
data-plane-accessible register memory is one of the defining
features of programmable switches, and enables a new class
of reg-stateful applications which utilize the on-chip register

Tao Wang
New York University

Anirudh Sivaraman
New York University

Yi Hong
Johns Hopkins University

Xin Jin
Peking University

memory to realize various functionalities. These reg-stateful
applications include not only the innovations in traditional
network functions like congestion control [45], load balanc-
ing [25, 35] and network telemetry [1, 18], but also novel use
cases beyond traditional networking, such as caching [23, 32],
consensus [13, 14, 22] and machine learning [42, 43].

Given the rise of reg-stateful applications, an important
open problem is how to support multiple concurent reg-
stateful applications running efficiently on a programmable
network [51]. The utility of reg-stateful applications is usu-
ally decided by the amount of allocated register memory and
the real-time network traffic [18, 23, 34, 47, 54, 58]. Thus, it
is essential to dynamically allocate the limited register mem-
ory between multiple applictions to optimize the multiplexing
benefits. Yet existing approaches of running multiple concur-
rent applications on programmable networks allocate register
memory statically [19, 44, 49, 56, 57]. Changing the amount
of register memory for one application would require recom-
piling and reloading the switch program, which would disrupt
the operation of the switch.

In this paper, we propose NetVRM, a network manage-
ment system that supports dynamic register memory sharing
between multiple concurrent applications on a programmable
network. NetVRM advances the status quo with three major
features: The first one is a novel virtual register memory ab-
straction, which allows the register memory in the switch data
plane to be dynamically allocated between multiple concur-
rent applications at runtime, without recompiling and reload-
ing the data plane program. The second one is a dynamic
memory allocation algorithm, which efficiently arbitrates the
memory usage between concurrent applications based on the
real-time utility measurements. The third one is a language
extension and a compiler to generate data plane programs
with the virtual register memory abstraction and efficient C++
control plane APIs for high-speed virtual register memory
configuration.

The virtualization of register memory allows its dynamic
allocation. Our approach is inspired by traditional virtual
memory designs in operating systems, but programmable
switches introduce two new challenges. First, register mem-
ory is distributed over multiple pipeline stages, and each
register can be accessed only from one stage. Second, switch
applications can access register memory from both the data

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 155

plane and control plane. NetVRM’s memory system design
is tailored to these characteristics. It places a page table at
the front of the virtual register memory’s processing pipeline,
using it for memory translation in the data plane. The page
table indexes the register memory regions allocated to each
application in every stage. The switch control plane manages
memory allocation. NetVRM also mediates application ac-
cesses to register memory from the control plane to ensure
addresses are correctly translated.

NetVRM’s dynamic memory allocation policy exploits
the fundamental tradeoff between memory consumption and
application utility. In particular, it leverages diminishing re-
turns: the observation that, for most reg-stateful applications,
the benefit of additional memory decreases with the amount
of allocated memory [18, 23, 34, 47, 58]. For example, af-
ter a certain point, NetCache [23] cannot further improve
the throughput significantly. More importantly, the memory-
utility relationship changes both in the femporal and spatial
dimensions based on application characteristics and traffic
conditions. For example, the amount of register memory
needed by NetCache depends on the request pattern, which
can change over time and even vary across different switches.
We design an online algorithm that does global memory al-
location between applications in the network to maximize
multiplexing benefits.

To make it easy to develop applications with NetVRM, we
propose P4VRM, an extension to P4 [8]. PAVRM allows
developers to virtualize register memory with a few simple
modifications to existing P4 code: they mark register arrays to
be virtualized and add online utility measurement primitives
provided by PAVRM. The compiler takes multiple PAVRM
programs as input and outputs a single P4 program with the
virtual register memory abstraction and all the applications’
functionalities, and generates the control plane APIs for high-
speed virtual memory configuration.

In summary, we make the following contributions.

* We propose NetVRM, a network management system that
exposes a virtual register memory abstraction to enable
dynamic register memory sharing between multiple concur-
rent applications on a programmable network at runtime
without recompiling and reloading.

* We design a dynamic memory allocation algorithm to ef-
ficiently allocate register memory between applications to
maximize multiplexing benefits.

* We propose PAVRM, a data plane program extension, and
provide a compiler to easily equip the data plane programs
with virtual register memory and generate control plane
APIs for efficient virtual memory configurations.

* We implement a NetVRM prototype. Testbed experiments
on a variety of applications show that compared to static
memory allocation, NetVRM improves the mean satisfac-
tion ratio (i.e., the fraction of a network application’s life-
time that it meets its utility target) by 1.6-2.2x under a
range of workloads.

2 Motivation and Related Work
2.1 The Case of Dynamic Register Memory Allocation

Concurrent reg-stateful network applications. There
are two broad types of objects provided by commodity
programmable switches on the data plane—stateless ob-
jects, such as metadata, packet headers, and stateful ob-
jects, such as match-action tables, counters, meters, registers.
Among them, registers, as one of the defining features of
new-generation programmable switches, provide data-plane-
accessible register memory for packets to read and write vari-
ous states at line rate and enable much of the latest exciting
research [14, 22, 25, 35, 42, 43, 45]. Register memory is
implemented with standard SRAM blocks and can be read
and written by both the control plane and data plane. Stateful
Arithmetic and Logic Unit (ALU) performs register memory
access and modification by executing a short program that
involves register data, metadata and constant. The register
memory is usually organized as register arrays. Each register
array consists of several register slots with the same width
and can be addressed by index (direct mapping) and hash
(hash mapping). We refer to the network applications that use
the register memory as reg-stateful applications.

Besides the rise and evolution of reg-stateful applications,
modern cloud service providers usually serve multiple ten-
ants concurrently [6, 30]. They allow tenants to run differ-
ent network applications dynamically. For example, Azure
and AWS provide a variety of network applications [5, 7]
to their tenants, such as network address translation (NAT),
load balancer, and network monitoring. We anticipate that the
reg-stateful applications will be provided to tenants as pro-
grammable switches are being integrated in cloud networks,
including both the datacenter networks and the wide area
networks that connect the datacenter networks.

Necessity and potential benefits of network-wide dynamic
allocation. The register memory on programmable switches
is fundamentally limited by the hardware. For example, the
maximal size of register memory on each stage is only a
few Mb on the Intel Tofino switch [50]. Besides the limited
register memory, there is a fundamental trade-off between
memory consumption and application utility (e.g., its per-
formance or accuracy) in many reg-stateful network appli-
cations [18, 23, 34, 47, 58]. Although some applications
have a fixed memory requirement, most can operate with
different amounts of available memory. Notably, our key
observation is that applications generally exhibit diminish-
ing returns [18, 23, 34, 47, 58]. The utility improvement
decreases with more memory, and for many applications, ad-
ditional memory has no utility after a point. We demonstrate
the diminishing returns for four applications in Appendix A,
including heavy hitter detection (HH) [54], newly opened
TCP connection detection (NO) [S55], superspreader detection
(SS) [54] and NetCache [23]. The utility is measured using
memory hit ratio (§5.1).

156 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

In all cases, the amount of memory affects the applica-
tion utility, and such effects depend heavily on the work-
load. For example, NetCache [23] needs different amount of
register memory with different skewed workload to deliver
the same utility (Appendix A). Without dynamic allocation,
this presents a formidable deployment challenge because the
workload can vary in both temporal and spatial dimensions:
different storage clusters see radically different workloads,
and even a single cluster’s request pattern changes over time
(e.g., on a diurnal cycle) [4].

The diminishing returns and the temporally and spatially
dynamic workload together also provide the opportunity to
maximize resource multiplexing benefits by efficiently arbi-
trating the memory usage between concurrent applications.

2.2 Target and Scope of NetVRM

Target applications. The reg-stateful applications that can

benefit from NetVRM must have the following properties.

* They are elastic (§5). An inelastic application (e.g.,
NetChain [22]) that has fixed virtual memory requirement
can be supported by NetVRM, but cannot benefit from
dynamic memory allocation.

* The data plane programs have to meet the constraints in
P4VRM (§6), such as stateful ALUs since each operation
of one register array must be associated with a specific
stateful ALU.

* The application utility should be obtained instanta-
neously (§5.1). It can be computed on the switch (e.g.,
hit ratio as the default utility) or reported by applications.

We remark that there are a wide range of applications with

the above properties, such as measurement applications [18,

39, 47], applications with approximate data structures [20, 34,

54], and caching applications [23, 33].

Register memory as the scope. There are a variety of re-
source types on a programmable switch, such as register
memory, SRAM used for tables, TCAM and action units [51].
NetVRM focuses on dynamic allocation for register memory
for three reasons. First, we observe that many reg-stateful
applications are bottlenecked by register memory. Second, dy-
namic allocation of other resource types (e.g., match-action ta-
bles, TCAM) has been well-studied in the context of Software-
Defined Networking (SDN) with traditional fixed-function
switches [17, 21, 36, 46]. Third, current switch hardware
cannot dynamically reallocate other resource types without
rebooting the entire switch [51]. NetVRM is readily deploy-
able on existing programmable switches.

Switch memory available that can be used as virtual reg-
ister memory could be limited because a certain amount of
memory has to be set aside for basic networking functionality,
such as L3 routing, and inelastic applications (see §5). The
evaluation in §8 shows that NetVRM outperforms the alterna-
tives, regardless of how much physical memory is available
for virtualization and dynamic allocation. Thus, NetVRM
continues to be effective even as the memory for basic net-

working functionality and inelastic applications grows in size,
leaving behind less memory for dynamic allocation.

2.3 Existing Solutions and Limitations

Recently, several existing works have explored how to support

multiple applications on a programmable switch [19, 44, 48,

49, 56, 57]. At a high level, these solutions fail to meet the

requirement of dynamic register memory allocation because

of at least one of three limitations as follows.

« Static binding of register memory. Some of the exist-
ing work combine or merge multiple applications into one
monolithic data plane program [19, 48, 56, 57] in com-
pilation time. And the binding between register memory
allocation and applications is static. Changing the alloca-
tion requires the data plane program to be recompiled and
reloaded, during which the switch has to be stopped and
restarted. This interrupts the operation of all applications
on the switch, even the basic ones such as L3 routing.

* Lack of a real switch environment. Most of the exist-
ing solutions ignore the practical hardware constraints and
are not applicable on a real ASIC-based switch (e.g., Intel
Tofino [50]). For example, P4VBox [44] provides par-
allel execution of virtual switch instances on NetFPGA.
MTPSA [49] realizes a multi-tenant portable switch archi-
tecture on NetFPGA and BMv2, a reference P4 software
switch [3]. HyPer4 [19] and HyperV [56] realize the virtu-
alization on software switches (e.g., BMv2, DPDK).

¢ Not doing network-wide dynamic allocation. Network
resource allocation has been well studied for SDN with
traditional fixed-function switches [16, 17, 21, 36, 37, 46].
For example, DREAM [36] does dynamic allocation for
TCAM between measurement applications. However, none
of the existing work has disclosed the potential benefit of a
network-wide dynamic allocation for the register memory
on programmable networks.

There are other related works that have explored how to man-

age and improve network applications on programmable net-

works. TEA [27] provides external DRAM for storing table
entries, not register memory. Dejavu [52] utilizes the multiple
pipelines and resubmission to fit a service chaining in one
single switch. RedPlane [28] enables fault-tolerant stateful
applications by designing a practical, provably correct replica-
tion protocol. NetVRM targets register memory and provides

a new system for sharing it between multiple concurrent reg-

stateful applications dynamically.

3 NetVRM Overview

NetVRM is a network management system that supports dy-
namic register memory sharing between multiple concurrent
applications on a programmable network. Figure 1 shows an
overview of NetVRM. NetVRM includes three critical com-
ponents: virtual register memory, dynamic memory allocation
and the PAVRM compiler. It abstracts away the complexities
of allocating physical memory in each application, increases

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 157

Dynamic Memory

A1 APP2 App3

Control Allocation

Plane Virtual Register Memory NetVRM
LAY Run-time API Pid ':\ Se
Compiler -’ ~

Data

pane | =L 2 —

zoom in

Figure 1: NetVRM overview.

memory utilization via statistical multiplexing, and provides
P4VRM as an extension of P4 for developing applications
with such virtual register memory.

Virtual register memory (§4). NetVRM exposes a virtual
register memory abstraction to applications. The virtual regis-
ter memory component in every switch hides the underlying
details of the physical register memory that may span multiple
stages and be shared with multiple applications. We design
a custom data plane layout and an address translation mech-
anism to realize the virtual memory. The data plane layout
composes the register arrays in multiple stages to one large
register array, and allocates the large array to applications.
Memory translation contains two page tables. One page table
is in the data plane that translates the memory addresses com-
puted from packet headers for memory access during packet
processing, and the other is in the control plane for NetVRM
to query and update the virtual memory of applications. The
two tables are synchronized and managed by NetVRM.

Dynamic memory allocation (§5). In principle, NetVRM
can support any memory allocation algorithm built on top
of the virtual register memory. NetVRM also provides a
default network-wide memory allocation algorithm for appli-
cations without knowing the utility functions. The algorithm
exploits the diminishing returns between memory usage and
application utility to maximize resource multiplexing benefits.
We leverage the observation that many applications use the
switch as a performance accelerator and deal with insufficient
switch memory by having some kind of fallback path, either
through the switch control plane or the servers [23, 29, 47].
As such, we cast the resource allocation problem as satis-
fying as many application’s requirements as possible with
respect to available memory size. This allows operators to
specify application-specific utility metric and target for each
application, avoiding the need to compare different utility
functions across applications. NetVRM also provides a de-
fault, application-agnostic metric—the memory hit ratio—for
applications that do not define their own.

Language extension and autogeneration (§6). NetVRM
provides PAVRM, an extension to P4 [8] for developers
to develop P4 programs with virtual register memory, and
a PAVRM compiler to compose and compile individual
P4VRM programs of different applications to one single P4
program with virtual register memory abstraction. The com-
piler also generates C++ APIs for efficient virtual register
memory configuration in the control plane.

App 1 App 2 App 3 App
Control Virtual
pane LLITTT] LETTTTVETTTTT] anay
VirtuaIHegisterMemory NetVRM
hit_cnt
app=1 | offset=0, fotal_ont
PDlata size=16k —
ane =
app=2 | offset=16k, ftotal_cnt
size=16k hit_ont
app=3 | offset=32k,
size=32k
Page Table Multi-stage Physical ~ Counter
Register Arrays Record

Figure 2: Virtual register memory design.

4 Virtual Register Memory

The register memory in the switch data plane is abstracted as
register arrays for developers. The main problem of dynami-
cally allocating memory is the coordination between multiple
reg-stateful applications. Because register array definitions
are hardwired in P4 programs, the code of an application has
to be modified when other applications on the switch change,
even if the application itself stays the same. NetVRM exposes
a virtual register memory space to each application, which
eliminates the coordination between applications. Each ap-
plication is implemented with a virtual register array, without
explicitly binding the register array to specific stages. As
such, the application code does not need to be modified when
the memory allocation changes. NetVRM is designed to man-
age the register memory and does not scarifice the support of
recirculation.

Page table and counter record. A key challenge for memory
virtualization on a switch, as opposed to a traditional CPU, is
that the register memory can be accessed from both the data
plane and the control plane (Figure 2). It is straightforward
to implement the page table in the control plane. NetVRM
simply does the translation in software. Specifically, it in-
tercepts application memory accesses, uses the page table to
perform the address translation, and then calls the memory ac-
cess APIs of the switch driver to update the register memory
configuration.

The page table in the data plane is more complicated, be-
cause it needs to be implemented using the programmable
processing elements in the data plane. Figure 2 shows the
design. The page table is implemented with a match-action
table, and is placed at the stage before the physical register
arrays to be virtualized. The match-action table matches on
the application ID and identifies the location and size of the
application’s memory region (offset and size). These
parameters are configured by the control plane at runtime as
memory is allocated. We remark that the page table does not
introduce register memory overhead in common cases (§7).

158 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

The counter record maintains two counters for each appli-
cation, which only takes a small amount of memory. One is
total_cnt, which tracks the total number of packets for
an application. The other is hit_cnt, which tracks the num-
ber of packets that hit the switch register memory for each
application. These counters are polled and reset periodically
by the control plane to compute real-time memory hit ratios.

Memory layout. The memory layout partitions the physical
register arrays horizontally across the stages. A virtual reg-
ister array for an application is mapped to multiple blocks
with the same start index (offset in the page table) and
size (size in the page table) in each physical array. For
example, in Figure 2 application 1 has a virtual array with
64K slots, which is mapped to [0, 16K) in each physical array,
and application 3 has a virtual array with 128K slots, which
is mapped to [32K,64K) in each physical array.

This horizontal memory layout has three principal bene-
fits. First, it decouples memory allocation from application
code, and eliminates their static binding. The size of a vir-
tual register array and its mapping to the physical arrays
are represented by of fset and size in action parameters,
which can be dynamically changed at runtime, without re-
compiling and reloading the code in the data plane. Second,
it enables fine-grained memory allocation. Because there
are only a few stages (e.g., 10-20 stages) on commodity pro-
grammable switches [11, 50], our design can allocate the
memory at row granularity (e.g., 8-slot granularity), which is
fine-grained enough, compared with the total available slots
on the switch (e.g., 512K). Third, it represents the memory
layout using a small fixed-sized representation: only two
variables (offset and size) per application. Although a
more sophisticated memory layout might be able to achieve
better space efficiency, more complex representations such as
variable-length block lists would be challenging to implement
efficiently in the data plane.

Address translation. Let the size of a virtual register array
for an application be N. A virtual address VA € [0,N) is the
index of the register slot in the virtual array. The physical
address PA is computed by PA = (VA/size, VA%size + offset)
after the page table, where VA /size denotes the physical array
index and VA %size + offset denotes the physical slot index in
the corresponding stage. Division and modulo on arbitrary
integers may not be supported in all switches. In such cases,
we allocate virtual arrays with size to be a power of two, and
implement these two operations with bit operations.

The above translation is sufficient for applications that di-
rectly access memory by VA. Besides these direct accesses,
reg-stateful applications on programmable switches often
use a lookup table or a hash function to access a register
slot. Lookup tables use match-action tables to identify the
address corresponding to a key (e.g., to find the memory
location of an object in NetCache). We adapt the match-
action table to hold a virtual address, then apply the VA to
PA translation described above. Other applications use a

hash function to map a subset of header fields to a register
slot (e.g., hashing the source IP in heavy hitter detection).
While in principle the same translation approach can be used,
hardware constraints on the Tofino platform mean that hash
functions need to be associated with a particular address
range, and adding a variable offset to the output requires
an additional stage. NetVRM uses a hash function & size,
selected during the page table lookup stage, which has out-
put in [0, size). Hash lookups first compute h_ size(pkt.hdr),
then, in a subsequent stage, translate that to the physical slot
location: PA = (h(pkt.hdr)%k, h_size(pkt.hdr)+ of fset),
where k is the number of physical arrays.

Some applications may need large virtual slots, each of
which may be larger than a physical slot. In such cases, we
combine multiple physical slots to implement a virtual slot.

S Dynamic Memory Allocation

We classify reg-stateful applications on a programmable net-
work into elastic and inelastic applications based on whether
an application can work with a variable amount of reg-
ister memory. An inelastic application requires a fixed
amount of register memory; it cannot work with less (e.g.,
NetChain [22]). An elastic application does not have a fixed
register memory requirement. Our key observation is that
most elastic applications overcome insufficient register mem-
ory with a fallback mechanism to the network control plane
or the servers [23, 47]. The amount of memory typically af-
fects application-level performance metrics (e.g., the system
throughout in NetCache [23]). Although it may be possible to
transform inelastic applications to elastic ones [29], we leave
that to application developers. NetVRM supports both types,
while only elastic applications can benefit from NetVRM’s
dynamic memory allocation.

Each application is specified with four parameters: the ap-
plication type (e.g., HH); the subnet in which the application
will run (e.g., 10.0.0.0/8); the utility metric, which is either
the default metric (i.e., memory hit ratio) or an application-
specific one; and the utility target (e.g., 0.98 for memory hit
ratio). For an inelastic application, the amount of required
memory is specified instead of the utility metric and target.
NetVRM allocates the memory to it if the requirement can be
satisfied, and rejects the application otherwise.

Dynamic memory allocation is only performed for elastic
applications. NetVRM periodically polls the counters from
the data plane, obtains the utility of each application, and
dynamically allocates the register memory between the ap-
plications based on their utilities. There is a long line of
work related to network utility maximization [26, 38, 40].
NetVRM presents three particular challenges for network
utility maximization, including how to define the application
utility properly, how to approximate the utility functions, and
how to allocate the register memory in the network, which
will be demonstrated in detail as follows.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 159

actual actual
& Utility
target
current

Utility

target approximate)
| with cf=1 ‘:ﬂ\ approximate
1 with cf=1
1 > ! [>
current Memory current Memory
over_mem under_mem

(a) Estimate over_mem. (b) Estimate under_mem.

Figure 3: Utility function estimation.

5.1 Definition of Application Utility

Finding a proper definition of application utility is challeng-
ing, because different applications have their own application-
level objectives that cannot be directly compared with each
other (e.g., accuracy for a heavy-hitter detector or through-
put for NetCache). NetVRM allows applications to compute
their own utility metrics and report them to the allocator. Be-
cause not all the application-level metrics can be reported
online (e.g., accuracy for a heavy-hitter detector), NetVRM
also provides a default, generic utility definition. It is based
on the observation that for many elastic applications, a reg-
ister memory miss in packet processing usually affects the
application-level performance, e.g., extra latency to process a
packet with the fallback mechanism. Therefore, one effective
utility definition is the memory hit ratio, which is the ratio
of packets directly processed by the register memory in the
switch. Besides being application-agnostic, this utility can be
computed by tracking counters for memory hits in the data
plane by NetVRM itself (§4). Moreover, the memory hit ratio
is also a widely-used metric to evaluate the workload reduc-
tion for the fallback mechanism in many elastic applications
on programmable networks [18, 39, 47].

5.2 Problem Formulation

We denote the available virtual register memory size of ¢
switches in the network as M1, M,, ..., M., respectively. There
are [applications running in the network. Let i.target be the
utility target of application i, and i.utility(i.my,...,i.m.,i.T)
be the utility function of application i where i.m; is the mem-
ory usage of application i on switch j and i.7T is the real-time
traffic of application i. The network resource allocation prob-
lem is formllllated as follows.

max Z 1(i.utility(i.my, ...,
i=1

i.mg,i.T) > i.targer)
l
sLY imp<M;jVj=1,...c

The objective is to maximize the number of applications
of which the utility targets can be satisfied, and the constraint
is to ensure the sum of allocated memory on each switch
does not exceed its memory size. We remark that this is one
objective that is provided by default and has been used in sev-

S3
DO
Client

Client Key-Value
Rack Rack Rack

(a) Wide area network. (b) Datacenter network.

Figure 4: Examples for network-wide allocation.

eral network management scenarios [36, 37]. NetVRM also
supports other objectives and memory allocation algorithms.

Main challenge: unknown and dynamic utility functions.
The main challenge to solve the allocation problem is that the
utility functions of the applications are unknown and change
over time. It is true that some utility functions can be known
as a priori, e.g., the worst-case accuracy and the memory
requirement for sketch-based heavy hitter detection (SHH)
using count-min sketch [12] can be calculated mathemati-
cally [54]. But utility functions for many applications such
as HH, NO and SS (§2) are hard to know in advance. More
importantly, the solution needs to adapt to real-time traffic
and as the applications are started and stopped dynamically.

Solution: online utility curve estimation without appli-
cation knowledge. In order to adapt memory allocation
for the applications without knowing their utility function,
NetVRM leverages the observation that the utility func-
tion follows diminishing returns, i.e., that it is concave,
which holds for a wide range of reg-stateful network ap-
plications [18, 23, 34, 47, 58], and approximates the mem-
ory requirement for each application. Let i.util, i.target and
i.mem be the current utility, the utility target and the current
memory for application i, respectively. The utility function
is approximated by a polynomial function that intersects the
origin. For an application i above its utility target, we use
LIGTSC el ximem (1)

iutil
to estimate the amount of memory that can be moved from i
to other applications (i.over_mem). Because of diminishing
returns, the utility function is concave and a linear function
(when c¢f = 1) may underestimate i.over_mem (Figure 3(a)).
We use a compensation factor ¢ f which is set to be larger than
1 to compensate this. For an application i below its utility
target, we use

i.over_mem < i.mem — (

i.target

i.under_mem <+ (Yl s imem—imem (2)

i.util
to estimate the amount of memory to be added to i
(i.under_mem). We use a cf larger than 1 for faster con-

vergence (Figure 3(b)).
5.3 Network-Wide Register Memory Allocation

Based on the approximation in §5.2, NetVRM uses an online
algorithm to move memory from over-provisioned applica-
tions (those above their utility targets) to under-provisioned
applications (those below their utility targets) to maximize

160 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Algorithm 1 Network-wide memory allocation

1: new_plan < cur_plan.copy()
2: for application i in applications do

3: if i.util > i.target then
4: satis fied _list.append (i)
5: i.over_mem < i.mem — (i.target /i.util)°l x i.mem
6: distributed i.over__mem to i.paths proportionally
7: else
8: unsatisfied _list.append(i)
9: i.under _mem < (i.target /i.util)°f x i.mem — i.mem
10: distributed i.under_mem to i.paths inverse proportionally

11: sort satisfied _list by over _mem in decreasing order

12: sort unsatis fied _list by i.under _mem in increasing order
13: for application i in unsatis fied _list do

14: for path p in i.paths do

15: sort p.switches based on i’s existence and s.over_mem

16: for switch s in p.switches do

17: allocate memory from satis fied _list to p.under _mem
18: if all paths are satisfied then

19: update new_plan

20: else

21: move memory back to satis fied_list

22: return new_ plan

the objective. The allocation are performed periodically to
handle real-time traffic dynamics and application changes.

Main challenge: multiple and overlapped paths of an ap-
plication. Besides the unknown and dynamic utility functions,
the network-wide allocation problem is further complicated
by the following two challenges. First, an application may
need to handle traffic between multiple origin-destination
(OD) pairs, and the traffic between each OD pair may use
multiple paths. For example, in a wide area network, the
operator may want to detect heavy hitters for flows between
multiple OD pairs, e.g., O0-DO and O1-D1 in Figure 4(a).
In a datacenter network, the operator may want to provide
in-network caching for traffic from multiple client racks to
a key-value store rack, e.g., SO-S2 and S1-S2 in Figure 4(b).
Datacenter networks typically use multi-path routing, e.g.,
path SO-S3-S2 and path S0-S4-S2 for traffic between SO and
S2. Second, different paths of an application may overlap,
and thus can share their allocated memory. For example, in
Figure 4(b), NetCache can be placed in S2 to save memory
instead of in both S3 and S4.

Solution: network-wide memory allocation. At a high level,
NetVRM performs network-wide memory allocation in two
steps. First, NetVRM uses the utility estimation mechanism
in §5.2 to estimate the required memory for each application,
and decomposes over _mem or under__mem of each applica-
tion to multiple paths. Second, it moves the memory from
over-provisioned applications to under-provisioned applica-
tions. The pseudocode is shown in Algorithm 1.

The first step is to compute and decompose over mem or
under__mem of each application to multiple paths (line 2-10).
NetVRM measures the utility (i.e., the memory hit ratio by
default) and the traffic on each path. With the memory hit
ratio as the utility, the utility (memory) of application i is
the weighted average of its utilities (memories) by the traffic

developers
heavy_hitter heavy_hitter .p4 with VRM
netcache netcache compiler .cpp for
.p4 .pdvrm updates

Figure 5: PAVRM compiler compiles PAVRM programs.

volume on its paths. We use the utility estimation mechanism
in §5.2 to estimate i.over mem and i.under mem. Then
i.over _mem is distributed to each path in proportional to their
traffic (line 6) and i.under mem is distributed to each path in
inverse proportional to their traffic (line 10). We remark that
NetVRM also allows disproportional memory allocation.

The second step is to move memory from over-provisioned
applications to under-provisioned applications (line 11-21).
We use a heuristic that reduces the memory for applications
that are more over-provisioned first, and allocates the mem-
ory to the applications that are more likely to be satisfied first
(line 11-12). For each unsatisfied application, it tries to satisfy
the estimated memory requirement on each path (line 13-21).
Because each path contains several switches, the algorithm
needs to decide which switch to allocate memory from to sat-
isfy the application (line 15-17). Two factors are considered
in the decision, which are whether the application already has
memory allocated on a switch (i.e., i’s existence) and how
much extra memory a switch has (i.e., s.over__mem). These
factors aim to avoid small amounts of memory scattering in
many switches. If the application’s requirement can be satis-
fied, the plan is updated (line 18-19). Otherwise, the memory
is moved back to the satisfied applications (line 20-21).

To accommodate path overlapping, two extensions are re-
quired to the algorithm. First, in the utility estimation, the
memory on overlapping switches is counted once for each
overlapping path. Second, in memory allocation, the memory
allocated to an application on overlapping switches is also
counted once for each overlapping path.

Admission control, drop and priority. Admission control
is critical when the total memory requirement exceeds the
register memory size in the network. NetVRM admits one
application into the network only if there is more available
memory on each path than a predefined fraction of the total
memory. NetVRM drops one application if it cannot meet
the utility target in multiple consecutive allocation epochs.
NetVRM targets elastic applications which can work even
with no register memory. Thus, if one application is rejected
or dropped, it can turn to the fallback mechanism. A mali-
cious application with a tough utility target to satisfy would
likely be dropped after a few allocation epochs. The operator
can also assign custom priorities for the applications. For
example, an application can be configured to not be dropped,
or be assigned with a minimal amount of memory to avoid
starvation when it is under-provisioned.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 161

u= (vrm_reg_declaration) | (vim_blb_declaration) | ...

(vrm_reg_declaration) ::= ‘vrmReq’ (virt_stage)
(vrm_blb_declaration) ::= ‘vrmMergeable’
| ‘vrmNonMergeable’

| ‘vrmMergeable’ (virt_stage)
| ‘vrmNonMergeable’

| ‘vrmMergeable’
| ‘vrmNonMergeable’

| ‘HIT_COUNTER;’
| ‘PKT_COUNTER;’

(virt_stage) ::=

Figure 6: The PAVRM extensions to the P4-14. non-
terminal nodes refer to legacy rules in P4-14.

Memory reallocation process. At the end of each alloca-
tion epoch, NetVRM fetches the counters from the control
plane, and computes the online utilities and the new memory
allocation plan. Updating the memory allocation plan results
in remapping from virtual addresses to physical addresses
and moving existing entries because of the remapping. There
are general solutions that can be applied to ensure the consis-
tency of memory allocation updates [24, 53]. We apply two
optimizations for particular cases in NetVRM. First, network
measurement applications periodically reset the state such as
counters maintained by the register memory. We align the
memory allocation updates with the resetting operations, so
that the memory allocation can be updated without moving
existing entries and does not scarifice application correctness.
Second, network applications that use lookup-table-based
address translation can simply use a delta update when the
memory size decreases, and allow more entries when the
memory size increases. This ensures consistency because a
lookup table is used for maintaining each address mapping.

6 Language Extension and Autogeneration

NetVRM provides PAVRM, an extension to the basic syntax
and semantics of the P4 programming language [8] that sup-
ports virtual register memory abstraction and online utility
measurement. Our implementation is based on P4-14, as more
existing implementations are implemented in this version, but
the same extensions could be applied to P4-16 as well. As
shown in Figure 5, to port existing .p4 programs, developers
extend them to .p4vrm programs by marking which register
arrays are to be virtualized and adding the online utility mea-
surement primitives (HIT_COUNTER and PKT_COUNTER)
correctly according to the applications. The PAVRM com-
piler takes multiple .p4vrm programs as input and outputs one
merged P4 program (for the data plane) with virtual mem-
ory abstraction and online utility measurement, together with
the C++ APIs (for the control plane) to configure the virtual
register memory efficiently.

+ #include "params.p4"

=

FERReg——req >r—s+
+ register virtual stgl {
vidth:32;

H e ey NV IWNOE WY PN
Y € t 5152

+ instance_count:65536;

}

NerMe BN DRUI I DROS & S8 N 1 . ‘
mNonMergeable—blackd et Bt sttt

+ blackbox stateful_alu salu_stgl {

e~ + -
regr—sEgTi-

+ reg: virtual stgl;

1 5 - (
BE=5%¢ —t

M

action act_stgl() {
ree—atateful = N S N

=2 =+ atefut—atu—from—hashthash—1)r;

salu_stgl.execute_stateful alu(params_md.slot_idx);

}

+

NonMex 1 ble : i
miNorMergeabte—tapte stg+—+

table tbl_stgl {
actions {act_stgl;};
default_action:act_stgl();
}

+ + + + |

control ingress {
if (valid(tcp) or valid(udp)) {
apply (set_app_id);
apply (set_offset_ hf);
apply (add_offset);
if (params_md.app_type==0) {
apply (tbl_stgl);

+ + + +

- T COUNTER-:
H-E COUNTER;

appIy (hit_counter);

PRT COUNTER
: —OUNTERS

+ appIy (pkt_counter) ;

}

Figure 7: An example of PAVRM code transformation by
P4VRM compiler. ‘-’ and ‘+’ annotate the change before and
after the transformation, respectively.

Grammar. As shown in Figure 6, PAVRM extends the P4-
14 language specification [2] by introducing new keywords
(vrmReg, vrmMergeable and vrmNonMergeable) to
tag declarations related to a register array (register,
blackbox, action, and table). It marks the regis-
ter array as virtualized, and marks the related blackboxes,
actions and tables that have the same logic as mergeable.
It also specifies the stages at which the mergeable tables
should be placed (virt_stage). The two primitive state-
ments (i.e., HIT_COUNTER and PKT_COUNTER) are used
for online utility measurement. HIT_COUNTER tracks the
number of packets processed by the register memory, and
PKT_COUNTER tracks the total number of packets of the
application.

Generating merged P4 programs and C++ APIs. To merge
parsers, PAVRM compiler abstracts the packet parser of each
application as a Finite State Machine (FSM) and merges
the identical states into a single FSM. Then, the PAVRM
compiler transforms P4VRM-introduced declarations (i.e.,
vrmReg, vrmMergeable and vrmNonMergeable) to
P4-14 declarations (i.e., register, blackbox, action
and table), and adds the additional logic for address trans-

162 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

=== Tofino (default) = C++ w/ batching == Fetch mmm Reconfig

- Vanilla C++ NetVRM 15 == Calc Runtime
__400 .
2 210
E 300 £
> >
©
§ 200 3 s
100
0
32 64 128 256 32 64 128 256

Number of concurrent applications Number of concurrent applications

(a) Total control loop delay vs. differ- (b) Delay breakdown for NetVRM.
ent implementations.

Figure 8: Analysis of control loop delay.
lation, as shown in Figure 7. The compiler also loads a P4
library (params .p4) provided by PAVRM, containing ad-
ditional metadata and logic (e.g., to perform the page table
lookup) and adds the appropriate invocations at the begin-
ning of the pipeline. Finally, the compiler generates control
plane APIs for resetting counters, fetching counters, resetting
virtual memory and configuring the virtual memory.

Requirement for merge. Merging multiple reg-stateful ap-
plications needs to comply with the same resource constraints
as in existing work [19, 56, 57], most notably those related
to register memory (e.g., total register memory size per stage,
stateful ALUs per stage). If merging violates hardware con-
straints, the PAVRM compiler would fail and produce no
output.

7 Implementation

We have implemented a NetVRM prototype on a 6.5 Tbps
Intel Tofino switch [50], and used commodity servers to re-
play traces and generate traffic. The P4 library we provide
for virtual register memory support is around 500 lines of
P4-14 code. The virtual register memory spans eight physical
stages. Other stages are used for necessary functionalities
(e.g., routing and enabling concurrent applications). We em-
ulate four switches with the four independent pipelines of
the Tofino switch. The data plane program decides which
emulated switch one packet enters by checking the ingress
port. The implementation batches the data plane updates, and
uses multithreading to update the four pipelines simultane-
ously. The NetVRM control plane implementation consists
of around 2200 lines of C++ code. The PAVRM compiler is
built on Flex/Bison [31] and parses the .p4vrm files to build
an AST. It consists of around 2000 lines of C++ and 900 lines
of grammar.

Overhead of NetVRM. The address translation needs to
be done in two stages (§4), which is realized with two ta-
bles to adjust the slot_idx (Figure 7). The first table
(set_offset_hf) can be placed in the same stage with
other tables (e.g., set_app_id) that are necessary and in-
evitable for concurrent applications running. The register
memory in the second stage where add_ of fset is placed
cannot be virtualized, which can be used for basic networking
functionality and inelastic applications. In some cases, the
register memory in some stages cannot be used even without

—— NetVRM —— AIAD MIAD

— MIMD AIMD ---- Target
5 =0.75
2 0 50 ;ﬁv“-\rv-\\r;:[t\ Ak da e vy
= 0 25 ¢
= {
= 0.00 ; ; ' ;
0 20 40 60 80
Time (s)
(a) Application utility over time.
—— NetVRM —— AIAD MIAD
— MIMD AIMD ---- Target
£ 15000
o
(2]
% 10000 ¢
E :.,.,..u...
£ 5000
[S
3 0 }‘\pﬁ"—ﬁﬁ-ﬁ-ﬁﬁv’v‘
0 80
T|me()

(b) Register memory consumption over time.
Figure 9: Comparison of different algorithms to update mem-

ory allocation.

NetVRM because of the indivisibility between the virtual slot
size and the number of stages. For example, if there are three
physical stages available for virtualization, an application
with 2-stage virtual slots can use two stages at most. Then the
page table placed in the first stage does not introduce extra
register memory overhead. We remark that this is a common
case for many applications [18, 23, 34, 47, 54]. The extra
resource needed by each application in NetVRM is only one
table entry in the page table and two counters for the online
utility measurement, without extra stage overhead.

8 Evaluation

We evaluate our NetVRM prototype in two scales. We first
use microbenchmarks to examine the control loop delay and
the properties of the resource allocation algorithm (i.e., sta-
bility and convergence speed). With macrobenchmarks, we
demonstrate the benefits of NetVRM in combination with a
variety of network applications, workload parameters, com-
parisons with alternative approaches and network topologies.

8.1 Microbenchmark

Control loop delay. We emulate four switches by the four
independent pipelines of the Tofino switch. First, we compare
the total control loop delay, i.e., the time to complete a virtual
memory reallocation (§5.3), with different implementations,
including the default implementation on Tofino switches
which uses Python Thrift APIs, a vanilla C++ implementation,
a C++ implementation with batching, and NetVRM, which
incorporates both batching and multithreading. As shown in
Figure 8(a), the C++ implementations are an order of magni-
tude more efficient than the default implementation of Tofino
control plane APIs. NetVRM’s optimizations further reduce
the delay by a factor of ~ 3.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 163

= NetVRM = - Equal-Active - -+ Equal-All

= NetVRM == Equal-Active *-- Equal-All

1.00

1.00
2 I' !aL B Q2 I
®0.75 mean Iz & ®0.75
5 - RN - 1
£0.50 | S%taill: H i £050 | m
S o | N N K 1
® I H é: ° D 1
% 0.25 k B : %5 0.25 I
» I I : %] I
0.00 0.00 &
256 512 1024 2048 256

512 1024

2048

= NetVRM =- Equal-Active -+ Equal-All
1.00

&
&:=r
r

Satisfaction ratio
o o
N wn
(4,1 o

0.00

Satisfaction ratio
o
[y
o

256 512 1024 2048

= NetVRM ==~ Equal-Active -+ Equal-All

1.00

e
g
o

o
N
a

0.00

256

512

1024

2048

Register memory (KB) per logical switch

Register memory (KB) per logical switch

(a) Heavy hitter detection (HH). (b) Newly opened TCP (NO).

Register memory (KB) per logical switch Register memory (KB) per logical switch

(c) Superspreader detection (SS). (d) Mix of HH, NO, SS.

Figure 10: Satisfaction for flow-based applications in the WAN scenario.

0.5

o —@— HH drop —@-- HH reject

= 04| —&— NO drop =B NO reject

503+t =—&— SS drop =4A=: SS reject

@)

T | V— Mix drop =¥-: Mix reject

E_0.2 L

9) k= % o

501+t o —_ N
256 512 1024 2048

Register memory (KB) per logical switch

Figure 11: Drop/reject ratio of NetVRM for flow-based appli-
cations in the WAN scenario.

We further break down the control loop delay of NetVRM
into four parts, i.e., Fetch, Calc, Reconfig and Runtime, and
measure the latencies with different number of concurrent
applications. Fetch, Calc, Reconfig and Runtime represent the
time of fetching counters, calculating online utility and new
memory allocation plan, configuring the page table, and the
runtime overhead for resetting the state (e.g., the counters),
respectively. As shown in Figure 8(b), the time of Fetch
remains relatively constant since we use batching to fetch all
the counters together where the data size does not influence
the latency significantly. The time of Calc increases with
more applications, due to the heavier overhead to compute
the online utility and memory allocation plans. The time
of Reconfig dominates the control loop delay because of the
intensive updates to the data plane for four pipelines.

Due to the limit of our testbed, we only emulate four
switches with one Tofino switch in our experiment. We re-
mark that NetVRM can maintain the low control loop delay
and scale in real wide area networks and datacenters with
a larger number of switches for two reasons. First, Fetch,
Reconfig and Runtime, which do not need coordination be-
tween multiple switches, can be done in different switches
locally and simultaneously. Second, Calc needs to compute
the online network-wide utility and memory allocation plans
for each application which has to be done in a centralized
location. Instead of doing it on the switch OS with limited
computation capability in our experiment, the time of Calc
can be reduced easily by running it in a more powerful server.

Stability and fast convergence of NetVRM. In this experi-
ment, we compare NetVRM with other alternative approaches
which are commonly used in network resource allocation, in-
cluding AIAD, MIAD, MIMD and AIMD. Those approaches

estimate the memory requirements by increasing (decreasing)
the step size additively (A) or multiplicatively (M) when the
satisfaction status remains the same (changes) compared with
the previous epoch. We run one NetCache [23] application
on the switch and set its memory hit ratio target to be 0.5.
The workload skewness is Zipf-0.99 at the beginning, then
changes to Zipf-0.9 at 18 seconds, and finally changes to
Zipf-0.95 at 38 seconds. Figure 9(a) and Figure 9(b) show
the utility and memory usage over time, respectively. AIAD
and AIMD fail to meet the utility target when the skewness
becomes Zipf-0.9 because increasing the memory additively
is too slow. MIAD converges slower after 38 seconds because
decreasing the step size additively from a large step size is
slow. MIMD has the closest performance to NetVRM, but the
utility fluctuates around the utility target after convergence.
NetVRM estimates the memory requirements based on the
online utility (§5.2). Thus, it can react fast and more accu-
rately to the traffic dynamics and maintain the utility above
its target most of the time.

8.2 Macrobenchmark

NetVRM configuration and network topology. The default
allocation epoch and measurement epoch are both one second.
The default network topology is the Wide Area Network
(WAN), where each application has traffic from 4 switches
independently. NetVRM drops an application if it cannot
meet the utility target in four consecutive epochs and rejects
an application if the available memory on the switch is smaller
than 1/128 of the total memory.

Network applications. NetVRM supports a wide range of
network applications. We use five applications in the evalu-
ation, i.e., heavy hitter detection (HH) [47], newly opened
TCP connection detection (NO) [55], superspreader detection
(SS) [47], sketch-based heavy hitter detection (SHH) [54]
and NetCache [23]. HH, NO and SS are flow-based appli-
cations which store precise flow records on the data plane,
and evict the existing entries to the control plane upon hash
collisions, following the eviction policy in TurboFlow [47].
SHH is a sketch-based application that uses approximate data
structures (i.e., count-min sketch [12]) to approximate flow
records. NetCache maintains hot key-value pairs on the data
plane to serve a request upon a cache hit. For each application
type, there can be multiple instances of this application, e.g.,
belonging to different clients/tenants. Each client/tenant owns

164

19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

— NetVRM —- Equal-Active --- Equal-Al =@ Drop ratio =B+ Reject ratio

1.00 1.0
2 : : : : 208
®0.75 ®
s] 5 0.6
"% 0.50) o)
K [B K] Ik 5 04
2 L] : I: o
55025 I : :: I 502

& & &% & [EELY DR S
0.00 0
256 512 1024 2048 256 512 1024 2048

Register memory (KB) per logical switch Register memory (KB) per logical switch

(a) Satisfaction. (b) Drop/reject ratio.
Figure 12: Experimental results for sketch-based applications
(SHH) in the WAN scenario.

a /8 subnet of source IP, and can dynamically start or stop
application instances within its subnet.

Traffic traces. The traces for measurement applications on
WAN are the 2019 passive CAIDA traces [10]. The data-
center traces are from Facebook’s production clusters [41].
We replay the traces via MoonGen [15]. The NetCache traf-
fic is generated by our DPDK client according to the Zipf
distribution with different skewness parameters.
Alternative approaches. We compare NetVRM with two
alternative approaches. (i) One is Equal-All, which statically
assigns an equal amount of register memory to all applica-
tions, active or not. For example, if each application instance
runs within a /8 subnet, then there are at most 256 concurrent
application instances. Thus, Equal-All assigns 1/256 of to-
tal memory to each instance. (if) The other is Equal-Active,
which only assigns an equal amount of register memory to
active instances. We emphasize that Equal-Active is enabled
by the ability of NetVRM to dynamically allocate register
memory at runtime. NetVRM further improves Equal-Active
with the network-wide memory allocation algorithm in §5.
Performance metric. We use satisfaction ratio as the perfor-
mance metric for these network applications. Each applica-
tion instance has a utility target. The satisfaction ratio of an
instance is the fraction of time the utility target is met during
its lifetime. For each experiment, we compute the satisfaction
ratio for every instance, and show the mean and 5th percentile
of the satisfaction ratios across all instances. Considering the
number of instances is only a few hundreds (i.e., 256), the
5th percentile catches the tail pattern in the last ten instances,
while other options (e.g., 1th, 0.1th) are too limited which
only show the satisfaction of the last one or two instances.

8.2.1 Generality

We show that NetVRM is general to a wide range of network
application types in the WAN scenario.

Setup. We replay the CAIDA traffic on the four emulated
switches as in §8.1. We deploy four types of applications
including HH, NO, SS and SHH. We omit NetCache as it is
not a good use case for the WAN scenario. HH maintains the
flow records of the source IP and the corresponding number
of packets for all the IP traffic. NO maintains the flow records
of the source IP and the corresponding number of packets
only for TCP SYN packets. SS records the distinct I[P address

= NetVRM == Equal-Active -+ Equal-All — NetVRM =- Equal-Active --- Equal-All

1.00 1.00
2 "l ,! L I] ; L L I
8075 I - 075 | | 1
c ! I Im c I m Im !.
k] | 1 'R L] o = I 'R It
5 0.50 1 : 0 I % 0.50 g 5 : 1=
8 H 1 [H o S [H H [H H
5 ° 1 It H 5 H H I I
%025 R I I 7025 & H I: A
» o B [H %] & B I:
000 L@ o & & 000 L—& & &
0.96 0.97 0.98 0.99 128 192 256 320

Utility target (hit ratio) Number of application instances

(a) Satisfaction vs. utility target. (b) Satisfaction vs. number of appli-
cation instances.

—@— Drop ratio =B Reject ratio —@— Drop ratio =B Reject ratio

0.5 0.5
Lo04 204
[c
B 03 © 0.3
2 2
L2 Lo2
s S —o—_ o
o o
So1 o1
b PR Lokeabuste. oy r— L L |
0.96 0.97 0.98 0.99 128 192 256 320

Utility target (hit ratio) Number of application instances

(c) Drop/reject ratio vs. utility target.(d) Drop/reject ratio vs. number of
application instances.
Figure 13: Impact of workload parameters.

pair (source IP and destination IP) for all the IP traffic. SHH
maintains the flow records of the source IP and the threshold
to be identified as a heavy hitter is set to 200. We do the
following extension for a network-wide SHH: one SHH’s
utility is defined as the smallest worst-case accuracy across
its switches. Since each stage only supports 32-bit read and
write from register memory on the data plane, each virtual slot
of the three applications spans two physical stages and there
are up to 256K virtual slots (i.e., 2048 KB register memory)
on each switch.

By default, there are 256 application instances started in 20
minutes based on a Poisson Process and the running time of
the instances follows a uniform distribution from 6 minutes
to 14 minutes. The utility targets are specified by the operator
based on operational requirements. The default utility target
for HH, NO, SS, i.e., the memory hit ratio, is 0.98, and the
default utility target for SHH, i.e., the worst-case accuracy,
is 0.98. On each switch, we use a /8 instance filter and a /2
switch filter to identify the traffic to be processed by each
instance. We feed the CAIDA traces into four switches si-
multaneously and measure the mean and 5th percentile of
satisfaction across the 256 instances.

We remark that this is only one setup of a demanding
workload to stress the system, following the similar workload
pattern in [36, 37]. We show that NetVRM outperforms the
alternatives with different workload parameters in §8.2.2.

Results. Figure 10 shows the satisfaction ratios for flow-
based applications (i.e., HH, NO, SS) under different amounts
of register memory. For each vertical line, the upper square
end is the mean satisfaction ratio, and the lower round end
is the 5th percentile satisfaction ratio, among the 256 appli-
cation instances. Figure 10(a), (b) and (c) show the cases
that the instances are from the same application type, and (d)
shows the case that the instances are from all the three types.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 165

—@— Mean —@— 5% tail —&— Drop ratio —¥— Reject ratio
1.0

o T T 1T 1
el

8 16
Allocation epoch (s)

Figure 14: Impact of allocation epochs on NetVRM.

When the register memory is limited (e.g., 256 KB), NetVRM
significantly outperforms Equal-All and Equal-Active on both
the mean and the tail. When the register memory is abundant
(e.g., 2048 KB), NetVRM is able to maintain both high mean
and 5th percentile satisfaction ratios. In contrast, Equal-All
and Equal-Active have comparable mean satisfaction ratios,
but suffer from the tail behavior. The advantage of NetVRM
over Equal-All and Equal-Active is consistent across different
application types. SS uses src IP and dst IP as the hash key.
Thus, it has fewer hash collisions than HH and NO, leading
to a higher satisfaction ratio. Figure 11 shows the drop ratios
and rejection ratios of NetVRM under the four workloads.
Similarly, SS drops and rejects fewer application instances
than HH and NO, because it has fewer hash collisions and
less memory requirement.

Figure 12 shows that NetVRM outperforms Equal-All and
Equal-Active with the sketch-based applications (i.e., SHH)
as well. Compared with flow-based applications, the alterna-
tives have lower satisfaction ratios and NetVRM drops more
application instances because SHH needs more memory to
guarantee the worst-case accuracy bounds.

The alternatives, Equal-All and Equal-Active, have close
performance for all the applications, which means only hav-
ing the mechanism of virtual register memory to allocate
resources to active applications is not sufficient. The allo-
cation algorithm that decides the memory allocation plan is
critical to the performance.

8.2.2 Analysis of NetVRM

We analyze NetVRM by showing the impact of workload pa-
rameters and the allocation epoch. We use the same setup in
§8.2.1 and show the results for the workload of HH. The find-
ings for other application types are similar. We demonstrate
the benefits of NetVRM over the local memory allocation
approach in Appendix B.

Impact of workload parameters. Figure 13(a) shows that
NetVRM is able to manage the register memory efficiently
with different utility targets. With more strict targets, the
three approaches have worse performance as the application
instances have higher memory requirements. Figure 13(c)
shows the drop ratio and reject ratio increase with more strict
targets. Figure 13(b) studies the impact of the number of
application instances arriving in each experiment. Fewer
instances mean less resource contention, leading to higher
satisfaction. NetVRM consistently outperforms the alterna-
tives. Interestingly, Figure 13(d) shows that the drop ratio and

— NetVRM —- Equal-Active --- Equal-All =@ Drop ratio =B Reject ratio

1.00 !ﬁ = = .t o

il
®0.75 0 It & ®
< I I : 503
= - : @ L
gosor o Zo2
@ I : g
g0 & & 2o \‘\\-
0.00 —2 0l= = =
256 512 1024 2048 256 512 1024 2048

Register memory (KB) per logical switch Register memory (KB) per logical switch

(a) Satisfaction. (b) Drop/reject ratio.

Figure 15: Experimental results in the datacenter scenario.

reject ratio are not significantly influenced by the number of
instances in the evaluated range.

Impact of the allocation epoch. Figure 14 shows that a
shorter allocation epoch leads to a slightly better performance,
both in mean and tail. A longer allocation epoch can get a
comparable satisfaction ratio but it comes with rejecting more
applications. For example, when the allocation epoch is 16
seconds, NetVRM drops and rejects about 40% application
instances, while the sum of drop ratio and reject ratio is 25%
when the allocation epoch is 2 seconds.

8.2.3 NetVRM in Datacenter Network

Setup. We use the four independent pipelines of the Tofino
switch to emulate four switches, and wire the four switches to
build a datacenter network topology (shown in Appendix C).
S0, S1 and S2 are ToR switches for client rack 1, client rack
2 and the key-value rack respectively. S3 is a spine switch
connecting to them. We run two types of applications, which
are HH and NetCache. HH records the number of packets
of distinct four tuples (source IP, destination IP, source port,
destination port). We use the Cluster-C traffic trace from Face-
book’s production datacenters [41]. The trace is anonymized
by hashing. The IP addresses are hashed to 64 bits and the
port numbers are hashed to 32 bits in the trace. The HH appli-
cation uses six physical stages to store the four tuples and one
extra stage to store the number of packets. We generate pcap
files from the Facebook trace, and assign the timestamps of
the packets uniformly in one second as the original timestamp
is at second granularity. Each application instance owns a
/8 subnet. There are 318 HH instances arriving in 20 min-
utes based on a Poisson process, and the running time of the
instances follows a uniform distribution from 6 minutes to
14 minutes. The HH instances use two paths, SO-S3-S2 and
S1-S3-S2. The utility target of HH is set to 0.96.

We run two NetCache instances. NetCachel (NC1) uses
path SO-S3-S2, and NetCache2 (NC2) uses path S1-S3-S2.
The tenants of NC1 and NC2 are in client rack 1 and client
rack 2, respectively, which access different key-value items
in the key-value rack, so they cannot share the memory on
S2 and S3. NCI and NC2 run throughout the 30-minute
experiment time. The workload skewness changes between
Zipf-0.99 and Zipf-0.95 every 6 minutes. The utility target
is 0.5. Each virtual slot of NetCache spans 8 physical stages,

166 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

resulting in up to 64K virtual slots per switch. The NetCache
instances are set to not be dropped.

Results. Figure 15(a) shows the satisfaction ratios of the three
approaches, and Figure 15(b) shows the drop ratios and reject
ratios of NetVRM. Similarly, NetVRM outperforms Equal-
All and Equal-Active consistently under different amounts of
register memory. It indicates that NetVRM can multiplex
the register memory between different switches in a compli-
cated scenario where applications have multiple paths and
measurement applications run along with datacenter-specific
applications such as NetCache.

9 Conclusion

We present NetVRM, a network management system to sup-
port dynamic register memory sharing between multiple con-
current applications on a programmable network. NetVRM
provides a virtual register memory abstraction that enables
register memory sharing in the switch data plane, and dy-
namically allocates memory for better resource efficiency and
application utility. NetVRM also provides PAVRM as an ex-
tension of P4 for developing applications with virtual register
memory, and a compiler to generate data plane programs and
control plane APIs.

Acknowledgments. We thank our shepherd Laurent Van-
bever and the anonymous reviewers for their valuable feed-
back on this paper. Xin Jin (xinjinpku@pku.edu.cn) is the
corresponding author. Xin Jin is with the Key Laboratory of
High Confidence Software Technologies (Peking University),
Ministry of Education. This work is supported in part by NSF
grants CNS-1813487, CCF-1918757 and CNS-2008048, and
the National Natural Science Foundation of China under the
grant number 62172008.

References

[1] In-band Network Telemetry (INT) Dataplane Spec-
ification. https://github.com/p4lang/
pd-applications/blob/master/docs/INT.
pdf.

[2] P4-14 Language Specification. https://p4.org/
pd-spec/p4-14/v1.0.5/tex/p4d.pdf.

[3] P4 Behavioral Model Repository. https://github.

com/p4lang/behavioral-model.

[4] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-
value store. In ACM SIGMETRICS, June 2012.

[5] Networking and Content Delivery on AWS. https://
aws.amazon.com/products/networking/.

[6] Multitenant SaaS on Azure. https:
//docs.microsoft.com/en—-us/azure/

architecture/example—-scenario/
multi-saas/multitenant-saas.

[7] Azure networking services overview.
https://docs.microsoft.com/en-us/
azure/networking/fundamentals/
networking-overview.

[8] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming protocol-
independent packet processors. SIGCOMM CCR, July
2014.

[9] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McK-
eown, M. Izzard, F. Mujica, and M. Horowitz. Forward-
ing metamorphosis: Fast programmable match-action
processing in hardware for SDN. In ACM SIGCOMM,
August 2013.

[10] The CAIDA Anonymized Internet Traces 2019 Dataset.
https://data.caida.org/datasets/
passive—-2019/.

[11] Cavium XPliant. https://www.cavium.com/.

[12] G. Cormode and S. Muthukrishnan. An improved data
stream summary: the count-min sketch and its applica-
tions. Journal of Algorithms, 2005.

[13] H. T. Dang, M. Canini, F. Pedone, and R. Soulé. Paxos
made switch-y. SIGCOMM CCR, April 2016.

[14] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and
R. Soulé. NetPaxos: Consensus at network speed. In
ACM SOSR, June 2015.

[15] P. Emmerich, S. Gallenmiiller, D. Raumer, F. Wohlfart,
and G. Carle. Moongen: A scriptable high-speed packet
generator. In ACM SIGCOMM Conference on Internet
Measurement Conference, 2015.

[16] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. Bo-
hatei: Flexible and elastic ddos defense. In {USENIX}
Security, 2015.

[17] A.Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Kr-
ishnamurthi. Participatory networking: An API for ap-
plication control of SDNs. In ACM SIGCOMM, August
2013.

[18] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rex-
ford, and W. Willinger. Sonata: Query-driven streaming
network telemetry. In ACM SIGCOMM, 2018.

[19] D. Hancock and J. Van der Merwe. Hyper4: Using p4 to
virtualize the programmable data plane. In Proceedings
of the 12th International on Conference on emerging
Networking EXperiments and Technologies, 2016.

USENIX Association

19th USENIX Symposium on Networked Systems Design and Implementation 167

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Q. Huang, P. P. Lee, and Y. Bao. Sketchlearn: Relieving
user burdens in approximate measurement with auto-
mated statistical inference. In ACM SIGCOMM, 2018.

X. Jin, J. Gossels, J. Rexford, and D. Walker. CoVi-
sor: A compositional hypervisor for software-defined
networks. In USENIX NSDI, May 2015.

X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé,
C. Kim, and I. Stoica. NetChain: Scale-free sub-RTT
coordination. In USENIX NSDI, April 2018.

X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,
C. Kim, and I. Stoica. NetCache: Balancing key-value
stores with fast in-network caching. In ACM SOSP,
October 2017.

X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan,
M. Zhang, J. Rexford, and R. Wattenhofer. Dynamic
scheduling of network updates. In ACM SIGCOMM,
August 2014.

N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford.
Hula: Scalable load balancing using programmable data
planes. In ACM SOSR, March 2016.

F. Kelly and T. Voice. Stability of end-to-end algorithms
for joint routing and rate control. SIGCOMM CCR,
2005.

D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and
S. Seshan. Tea: Enabling state-intensive network func-
tions on programmable switches. In ACM SIGCOMM,
2020.

D. Kim, J. Nelson, D. R. Ports, V. Sekar, and S. Seshan.
Redplane: enabling fault-tolerant stateful in-switch ap-
plications. In ACM SIGCOMM, 2021.

D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan. Generic
external memory for switch data planes. In ACM Hot-
Nets Workshop, 2018.

T. Koponen, K. Amidon, P. Balland, M. Casado,
A. Chanda, B. Fulton, I. Ganichev, J. Gross, N. Gude,
P. Ingram, et al. Network virtualization in multi-tenant
datacenters. In USENIX NSDI, April 2014.

29

J. Levine. Flex & Bison: Text Processing Tools.
O’Reilly Media, Inc.”, 2009.

M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy,
and K. Atreya. IncBricks: Toward in-network computa-
tion with an in-network cache. In ACM ASPLOS, April
2017.

Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman,
X. Jin, and L. Stoica. Distcache: Provable load balancing
for large-scale storage systems with distributed caching.
In USENIX FAST, 2019.

[34]

[35]

[36]

[37]

(38]

[39]

(40]

[41]

[42]

[43]

[44]

[45]

[40]

Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and
V. Braverman. One sketch to rule them all: Rethink-
ing network flow monitoring with univmon. In ACM
SIGCOMM, 2016.

R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. Silkroad:
Making stateful layer-4 load balancing fast and cheap
using switching asics. In ACM SIGCOMM, 2017.

M. Moshref, M. Yu, R. Govindan, and A. Vahdat.
DREAM: Dynamic resource allocation for software-
defined measurement. In ACM SIGCOMM, August
2014.

M. Moshref, M. Yu, R. Govindan, and A. Vahdat.
Scream: Sketch resource allocation for software-defined
measurement. In ACM CoNEXT, 2015.

K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Al-
izadeh, and S. Katti. Numfabric: Fast and flexible band-
width allocation in datacenters. In ACM SIGCOMM,
2016.

S. Narayana, A. Sivaraman, V. Nathan, P. Goyal,
V. Arun, M. Alizadeh, V. Jeyakumar, and C. Kim.
Language-directed hardware design for network per-
formance monitoring. In ACM SIGCOMM, August
2017.

V. Nathan, V. Sivaraman, R. Addanki, M. Khani,
P. Goyal, and M. Alizadeh. End-to-end transport for
video qoe fairness. In ACM SIGCOMM, 2019.

A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren.
Inside the social network’s (datacenter) network. In
ACM SIGCOMM, 2015.

A. Sapio, . Abdelaziz, M. Canini, and P. Kalnis. Daiet:
a system for data aggregation inside the network. In
ACM Symposium on Cloud Computing, 2017.

A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis,
C. Kim, A. Krishnamurthy, M. Moshref, D. R. K. Ports,
and P. Richtarik. Scaling distributed machine learning
with in-network aggregation, 2019.

M. Saquetti, G. Bueno, W. Cordeiro, and J. R. Azambuja.
P4vbox: Enabling p4-based switch virtualization. /EEE
Communications Letters, 2019.

N. K. Sharma, A. Kaufmann, T. E. Anderson, A. Krish-
namurthy, J. Nelson, and S. Peter. Evaluating the power
of flexible packet processing for network resource allo-
cation. In USENIX NSDI, March 2017.

R. Sherwood, G. Gibb, K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar. Can the
production network be the testbed? In USENIX OSDI,
October 2010.

168

19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

[47] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith.
Turboflow: Information rich flow record generation on
commodity switches. In EuroSys, 2018.

[48] H. Soni, T. Turletti, and W. Dabbous. P4Bricks: En-
abling multiprocessing using linker-based network data
plane architecture. 2018.

[49] R. Stoyanov and N. Zilberman. Mtpsa: Multi-tenant
programmable switches. In Proceedings of the 3rd P4
Workshop in Europe, 2020.

[50] Intel Tofino. https://www.
intel.com/content/www/us/
en/products/network—io/
programmable—-ethernet-switch/
tofino-series.html.

[51] T. Wang, H. Zhu, F. Ruffy, X. Jin, A. Sivaraman, D. R. K.
Ports, and A. Panda. Multitenancy for fast and pro-
grammable networks in the cloud. In USENIX HotCloud
Workshop, 2020.

[52] D. Wu, A. Chen, T. E. Ng, G. Wang, and H. Wang.
Accelerated service chaining on a single switch asic. In
ACM HotNets Workshop, 2019.

[53] L. Yu, J. Sonchack, and V. Liu. Mantis: Reactive pro-
grammable switches. In ACM SIGCOMM, August 2020.

[54] M. Yu, L. Jose, and R. Miao. Software defined traffic
measurement with opensketch. In USENIX NSDI, 2013.

[55] Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and
B. T. Loo. Quantitative network monitoring with netgre.
In ACM SIGCOMM, 2017.

[56] C.Zhang,J. Bi, Y. Zhou, A. B. Dogar, and J. Wu. Hy-
perv: A high performance hypervisor for virtualization
of the programmable data plane. In 2017 26th Inter-
national Conference on Computer Communication and
Networks (ICCCN), 2017.

[57] P. Zheng, T. Benson, and C. Hu. P4visor: Lightweight
virtualization and composition primitives for building
and testing modular programs. In ACM CoNEXT, 2018.

[58] H.Zhu, Z. Bai, J. Li, E. Michael, D. Ports, 1. Stoica, and
X. Jin. Harmonia: Near-linear scalability for replicated
storage with in-network conflict detection. In Proceed-
ings of the VLDB Endowment, November 2019.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation

169

A Diminishing Return Examples

Figure 16 demonstrates the diminishing returns for four appli-
cations. The first three are measurement applications: heavy
hitter detection (HH) [54], newly opened TCP connection de-
tection (NO) [55], superspreader detection (SS) [54]. These
applications store flow records in the data plane; hash colli-
sions caused by inadequate memory require additional control
plane processing. The fourth, NetCache [23] caches hot ob-
jects in the switch data plane to improve the throughput of
a key-value store. The utility is measured using memory
hit ratio. We evaluate the measurement applications (Fig-
ure 16(a—c)) on traffic from different subnets of the 2019
passive CAIDA trace [10], and NetCache on a synthetic Zipf
workload with different skewness parameters (Figure 16(d)).

1.00 1.00
%0-75 7; —e— subnet0 %0-75 —e— subnet0
s I I X S
% 0.25 v— subnet3 g 0.25 v— subnet3
O'OOO 1024 2048 3072 4096 O'000 1024 2048 3072 4096

Number of slots Number of slots

(a) Heavy hitter detection. (b) Newly opened TCP connections.

-

o

o
-
o
o

- r - —o— zipf-0.99
% 0.75 —o— subnet0 % 0.75 —a— 7ipf-0.95
Z S |—— zipf0.9
£ 050 —a— subnet1 £ 050 P!
= —a&— subnet2 g
£0.25 v— subnet3 £025
0.000—024 2048 3072 4096 00 7024 2048 3072 4096

Number of slots Number of slots

(c) Superspreader detection. (d) NetCache.
Figure 16: Examples for the diminishing returns of the utility
curves in reg-stateful network applications.

B Additional Evaluation Results

—— NetVRM ===+ Equal-All —&— NetVRM drop =B-- Local-Alloc reject
== Equal-Active Local-Alloc —&— NetVRM reject —@- - Local-Alloc drop
1.00 5] 0.5
2 ;‘:‘ hl S04
©0.75 a 1o e
gl W gos
g b I J o2
2025} I I : g ’\"\o\.
3 I i : S0 i S
& & o B

0.00 Nl 0 <
256 512 1024 2048 256 512 1024 2048

Register memory (KB) per logical switch Register memory (KB) per logical switch

(b) Drop/reject ratios of NetVRM and
Local-Alloc.

(a) Satisfaction.

Figure 17: Comparison with Local-Alloc.

Comparison with local memory allocation. Besides the
Equal-all and Equal-Active, we also compare NetVRM with
Local-Alloc which only does memory allocation and makes
drop/reject decisions on individual switches locally. One

application is counted as drop/reject only after all the four
switches have decided to drop/reject it. We report the results
for HH workload. The findings for other application types
are similar. Figure 17 shows that Local-Alloc has better per-
formance than Equal-all and Equal-Active, but is still worse
than NetVRM because it fails to capture network-wide in-
formation and makes sub-optimal allocation and drop/reject
decisions.

C Network Topology in Datacenter Scenario

We wire the four emulated switches to build a datacenter
network topology, as shown in Figure 18, to evaluate the
performance of NetVRM in the datacenter scenario.

S3

SO S1 S2

Client Client Key-Value
Rack1 Rack2 Rack

Figure 18: Datacenter topology for evaluation.

170 19th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

	Introduction
	Motivation and Related Work
	The Case of Dynamic Register Memory Allocation
	Target and Scope of NetVRM
	Existing Solutions and Limitations

	NetVRM Overview
	Virtual Register Memory
	Dynamic Memory Allocation
	Definition of Application Utility
	Problem Formulation
	Network-Wide Register Memory Allocation

	Language Extension and Autogeneration
	Implementation
	Evaluation
	Microbenchmark
	Macrobenchmark
	Generality
	Analysis of NetVRM
	NetVRM in Datacenter Network

	Conclusion
	Diminishing Return Examples
	Additional Evaluation Results
	Network Topology in Datacenter Scenario

