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The fractional quantum Hall effect stands as a quintessential manifestation of an interacting two-
dimensional electron system. One of the fractional quantum Hall effect’s most fundamental characteristics
is the energy gap separating the incompressible ground state from its excitations. Yet, despite nearly four
decades of investigations, a quantitative agreement between the theoretically calculated and experimentally
measured energy gaps is lacking. Here we report a systematic experimental study that incorporates very
high-quality two-dimensional electron systems confined to GaAs quantum wells with fixed density and
varying well widths. The results demonstrate a clear decrease of the energy gap as the electron layer is made
thicker and the short-range component of the Coulomb interaction is weakened. We also provide a
quantitative comparison between the measured energy gaps and the available theoretical calculations that
takes into account the role of finite layer thickness and Landau level mixing. All the measured energy gaps
fall below the calculations, but as the electron layer thickness increases, the results of experiments and
calculations come closer. Accounting for the role of disorder in a phenomenological manner, we find better
overall agreement between the measured and calculated energy gaps, although some puzzling discrep-
ancies remain.
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The fractional quantum Hall effect (FQHE) [1–4] is one
of the most celebrated many-body phenomena in con-
densed matter physics. It has been under study for nearly
40 years and has influenced other fields of physics beyond
condensed matter [5]. It is observed in clean (low-disorder)
two-dimensional electron systems (2DESs) when cooled to
low temperatures and exposed to a large perpendicular
magnetic field so that the thermal and kinetic (Fermi)
energies are quenched, and electron-electron interaction
dominates. The FQHE signals the formation of an incom-
pressible liquid that has a quantized Hall resistance and
flows without dissipation in the limit of zero temperature. It
is also the first discovered topological state whose emer-
gence requires interaction [6], and some FQHE states are
indeed considered prime platforms for topological quantum
computing [7–9].
The strongest and most basic FQHE is observed at

Landau level (LL) filling factor ν ¼ 1=3 [1]. The physical
properties of this state have been of continued fascination
and research since its discovery [2–4,10–32]. Theoretical
calculations predict an energy gap 1=3Δ ¼ 0.10EC for an
“ideal” 2DES with zero layer thickness, no disorder, and an
infinite separation between the LLs so that the ground state
is formed entirely within the lowest LL [3,15–17]. The
parameter EC ¼ e2=4πϵ0ϵlB is the Coulomb energy, where
lB ¼ ffiffiffiffiffiffiffiffiffiffiffi

ℏ=eB
p

is the magnetic length. The energy gaps
measured in realistic, experimental samples, however, are
smaller than the ideal value because the finite (nonzero)
thickness of the electron layer, the proximity of the higher
LLs, i.e., the ensuing LL mixing (LLM), and the ubiquitous

disorder all tend to lower the energy gaps. Assessing the
role of these factors, and a quantitative comparison of the
measured and calculated 1=3Δ, has been of interest for a
long time. Experimentally, with improvements in sample
quality, the measured energy gaps have generally increased
[18–21]. On the theoretical side, realistic factors such as
electron layer thickness [22–25], LLM [23,26,27], and
disorder [28,29] have been considered to explain the
experimental data. Nevertheless, the experimentally
deduced gaps still fall bellow what theory predicts.
An important, experimentally controllable parameter that

influences 1=3Δ is the thickness (w̃) of the electron layer. A
larger w̃ weakens the short-range component of the
electron-electron interaction and reduces 1=3Δ. Despite its
fundamental importance, systematic experimental measure-
ments of 1=3Δ as a function of w̃ have been very scarce.
Shayegan et al. [30] performed a study of 1=3Δ as a function
of w̃ for an electron system confined to an AlGaAs quantum
well (QW) with a parabolic potential profile. As the
electron density (n) is varied in this system using gate
bias, w̃ varies also. The measurements provided clear
evidence that 1=3Δ decreases as w̃ increases, and eventually
vanishes for sufficiently large values of w̃. Subsequent
calculations [31,32] corroborated the experimental results
qualitatively. However, there are two notable shortcomings
in the measurements of Ref. [30]. First, since the 2DES
resides in an AlGaAs QW, it suffers significantly from alloy
disorder and therefore exhibits reduced gaps. Moreover, as
the charge distribution is made wider by increasing n, the
2DES experiences more severe alloy disorder because the
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electron wave function spreads more into a region with
larger Al alloy fraction. Second, since the experiments are
done by tuning n, the influence of LLM on 1=3Δ also
changes as w̃ is increased. [The LLM parameter κ is defined
as the ratio of the Coulomb energy and the LL separation:
κ ¼ ðe2=4πϵ0ϵlBÞ=ðℏeB=m�Þ, where m� is the effective
band mass. For a fixed ν, κ ∝ 1=

ffiffiffi

n
p

.]
Here we present a systematic experimental study of 1=3Δ

versus w̃ in extremely high-quality 2DESs confined to
modulation-doped GaAs QWs grown on GaAs (001)
substrates. The QWs are flanked by 150-nm-thick
Al0.24Ga0.76As barriers, and the dopants are placed in
doping wells [33]. The 2DESs all have the same density
n ≃ 1.1 × 1011 cm−2, in order to keep the LLM parameter
fixed, and the QW widths (w) are varied from 20 to 80 nm
to change w̃. We designate each sample by Sw; e.g., S20
refers to the sample with a QW of width w ¼ 20 nm. The
samples have a 4 × 4 mm2 van der Pauw geometry, with
alloyed InSn electrical contacts at the corners and edge
midpoints. We used 3He and dilution refrigerator
systems, and conventional lock-in techniques to obtain
magnetoresistance data, and determined 1=3Δ from the
activated temperature dependence of the resistance mini-
mum at ν ¼ 1=3. In addition, we measured the energy
gaps for numerous higher-order FQHE states, and
used the gaps to estimate values for disorder in each
sample. All our measurements were done without
illumination.
The extremely high quality of the samples is illustrated

in Fig. 1(a), which shows the low-temperature (T ¼ 0.3 K)
mobility (μ) versus w. Except for S20, for all samples μ
exceeds 1 × 107 cm2=Vs despite the relatively small den-
sity. The enhancement in mobility with increasing w seen
up to w ¼ 50 (regions I and II) is related to the reduced role
of interface roughness scattering [34,35]. When the 2DES

is confined to a wider QW, the charge distribution pene-
trates the flanking Al0.24Ga0.76As spacers to a smaller
extent and the 2DES effectively experiences less alloy
disorder. Once w exceeds 50 nm [region III in Fig. 1(a)], the
2DES starts to occupy the second electric subband, and the
mobility drops precipitously because of the additional
intersubband scattering [36].
In Figs. 1(b) and 1(c) we show the longitudinal resistance

(Rxx) versus B for S20 and S30 at T ≃ 25 mK. Numerous
minima observed in Rxx at fractional fillings
ν ¼ p=ð2pþ 1Þ, where p is an integer, attest to a plethora
of FQHE states and the high quality of the samples. For S20
[Fig. 1(b)], we observe minima up to ν ¼ 8=17 (p ¼ 8),
while S30 [Fig. 1(c)] exhibits FQHE minima up to ν ¼
10=21 (p ¼ 10). This is consistent with the higher mobility
of S30. Data for samples with larger w, presented in the
Supplemental Material (SM) [37], also show FQHE min-
ima up to p ¼ 10. In the insets of Figs. 1(b) and 1(c) we
show Arrhenius plots of Rxx at ν ¼ 1=3 versus 1=T, from
which we determine 1=3Δ using fits of the form:
Rxx ∝ exp ð−1=3Δ=2TÞ. For S20 and S30, 1=3Δ are
(8.7� 0.1) and (8.0� 0.4) K, respectively. It is noteworthy
that, despite its higher mobility and quality, S30 has the
smaller 1=3Δ, already hinting that a larger electron layer
thickness leads to a smaller 1=3Δ.
Figure 2 presents 1=3Δ (in units EC) versus the effective

layer thickness w̃ (in units of lB); each data point is from a
different 2DES whose QW width is given in the top axis.
We use a Schrödinger-Poisson solver [38] to calculate the
charge distribution in each QW self-consistently, and define
w̃ as the standard deviation of the charge distribution from
its center. Examples are shown in the insets of Fig. 2 for
w ¼ 20 and 70 nm. As seen in Fig. 2, 1=3Δ decreases with
increasing w̃, establishing the qualitatively expected behav-
ior from the softening of the Coulomb interaction in thicker
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FIG. 1. (a) Transport mobility (μ) versus quantum well width (w). (b),(c) Longitudinal resistance (Rxx) versus perpendicular magnetic
field (B) for GaAs 2DESs with density ≃1.1 × 1011 cm−2, and w ¼ 20 and 30 nm. The insets show the Arrhenius plots of Rxx minimum
at ν ¼ 1=3 from which we deduce 1=3Δ.
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2DESs [22–25,30–32]. We emphasize that our result is the
first report of 1=3Δ versus w̃ that keeps LLM and lB fixed so
as to elucidate the quantitative role of layer thickness. Note,
however, that another parameter that affects 1=3Δ, namely
disorder, could vary between our different samples; we will
return to this later in the Letter.
When w > 70 nm, the ν ¼ 1=3 FQHE becomes very

weak quickly and 1=3Δ eventually vanishes. In Fig. 2 we
have included a data point at w ¼ 77 nm from Suen et al.
[39]. For larger w, in sample S80, we observe an insulating
phase instead of a ν ¼ 1=3 FQHE. Such an insulating phase
appears when the charge distribution in wide QWs becomes
predominantly bilayerlike [39–41]. As detailed elsewhere,
the insulating phase signals a correlated, bilayer Wigner
crystal state [40–43]. In Fig. 2, we represent this vanishing
of the FQHE in sample S80 by an open circle for w ¼
80 nm (w̃ ≃ 4.0). We report the energy gaps as a function of
w̃ for FQHE at ν ¼ 2=3, 2=5, and 3=5 in the SM [37].

For a quantitative comparison with the results of calcu-
lations, in Fig. 3 we plot the measured 1=3Δ versus w̃ and,
using open squares, we also present the energy gaps
calculated in three different studies, all of which assume
zero disorder. The green and blue symbols represent
calculations that include only the role of layer thickness
[24,25], while the orange symbols include both layer
thickness and LLM [23]. In Fig. 3 we present Ref. [23]

results for LLM parameter κ ≃ 0.68, which is equal to κ in
our samples; also note that this value of κ reduces the
calculated 1=3Δ from ≃0.10EC to ≃0.09EC at w̃ ¼ 0, as
seen in Fig. 3. References [24,25] computed the Coulomb
potential in a local-density approximation for 2DESs
confined to QWs, while in Ref. [23] the Zhang–Das
Sarma potential [22] for 2DESs confined to heterojunctions
was used. There is an overall, qualitative agreement in
Fig. 3 between the experimental and theoretical results in
that both exhibit a decrease with increasing w̃. However, the
experimental data uniformly fall below calculations, with
the difference being largest at the smallest w̃.
Since one possible source for the discrepancy is the

presence of disorder, we attempt to extract an experimental
estimate for the role of disorder in lowering 1=3Δ
in our samples. We do this by considering the energy gaps
νΔ for higher-order FQHE states at other ν near ν ¼ 1=2.
For an ideal 2DES, these gaps are expected to
scale as νΔ ¼ ðC=j2pþ 1jÞEC [3,44], where C ≃ 0.3
and ν ¼ p=ð2pþ 1Þ. Figure 4 displays νΔ versus
(e2=4πϵ0ϵlBÞ=ð2pþ 1Þ (red symbols) for sample S70 for
ν up to 8=17 and 8=15. In Fig. 4, we also show red lines
representing fits to the measured gaps. The magnitude of
the negative intercepts of these lines with the y axis is
generally believed to provide an estimate of the disorder
energy, Γ, based on the assumption that disorder reduces
the gaps for different FQHE states by a fixed amount
equal to Γ [20,21,45]. For the data of Fig. 4, we find
Γ ¼ ð1.2� 0.2Þ K; this is approximately half the previous
values in 2DESs [20,21] and 2D hole systems [45], and is
about an order of magnitude smaller than in graphene [46],
attesting to the extremely high quality of our 2DESs.
In Fig. 4, the data plotted by red symbols and the fitted

lines are not symmetric with respect to the y axis while
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FIG. 2. 1=3Δ (in units of Coulomb energy EC) versus effective
layer thickness w̃ (in units of magnetic length lB); in our samples
lB ≃ 7.1 nm at ν ¼ 1=3. We show the charge distributions (from
self-consistent calculations) for w ¼ 20 and 70 nm as insets; w̃ is
defined as the standard deviation of the charge distribution from
its center. The black symbol is 1=3Δ by Suen et al. [39] for a 2DES
with similar density to ours and w ¼ 77 nm. For w ¼ 80 nm, we
find an insulating phase instead of a FQHE and represent it with
an open circle. The data show a clear decrease of 1=3Δ with
increasing layer thickness (the dashed line drawn for 20 ≤ w ≤
70 is a least-squares fit through the data points).
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FIG. 3. 1=3Δ versus w̃. The open symbols are from theoretical
calculations that include the role of finite layer thickness [24,25],
and Landau level mixing and finite layer thickness [23].
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theoretically, for an ideal 2DES, they should be symmetric.
The asymmetry can be readily attributed to the finite layer
thickness of the 2DES: since lB changes with B, so does w̃,
implying that the 2DES is effectively wider at higher B, or
equivalently at smaller ν. To account for the changes
in w̃ as a function ν, we plot our measured gaps versus
the Zhang–Das Sarma energy ½e2=4πϵ0ϵðl2B þ w̃2Þ1=2�=
ð2pþ 1Þ [22] (top axis and blue symbols in Fig. 4).
Because of the reduced Coulomb interaction, the blue
symbols cover a smaller range in the x axis compared to the
red symbols. The data are now much more symmetric with
respect to the y axis, as also clearly seen from the blue lines
that are fits through the data points. The average of the
intercepts of these lines with the y axis yields
Γ ¼ ð1.3� 0.2Þ K, slightly larger than Γ deduced from
the red lines. Plots similar to Fig. 4 are reported in the SM
[37] for the other samples in our study.
In Fig. 5(b) we summarize the measured Γ versus w̃,

deduced from analyses similar to the one shown in Fig. 4,
for all the samples in our study [37]. For Γ we use the
average of values deduced from the intercepts of the blue
lines with the y axis in Fig. 4. Note that the measured Γ are
typically a very small fraction (≃1%) of the Coulomb
energy, attesting to the very low disorder in our samples.
On the other hand, Γ values are not negligible compared to
1=3Δ. Moreover, there is significant experimental

uncertainty and scatter in values of Γ. More importantly,
the measured Γ do not correlate with the amount of disorder
expected from the sample mobilities [Fig. 1(a)]. For
example, the sample with a 50-nm-wide well width has
the highest mobility among all the samples [Fig. 1(a)], but it
exhibits the largest Γ in Fig. 5(b), implying the highest
disorder. This lack of a clear correlation between the
experimentally observed strengths of FQHE states and
the transport mobilities, which are measured at zero
magnetic field, was first noted in Ref. [47], and remains
to be explained rigorously.
With the above caveats regarding the values of Γ in mind,

it is nevertheless instructive to add the deduced Γ to the
measured 1=3Δ to assess the role of disorder in affecting the
energy gaps in an approximate manner. The data are shown
in Fig. 5(a). With the added Γ, the adjusted energy gaps
exhibit more scatter compared to the experimental gaps
shown in Figs. 2 and 3; this can be attributed mostly to the
scatter of Γ, as seen in Fig. 5(b). Despite the extra scatter, it
is clear that the energy gaps decrease with increasing layer
thickness. The dashed line (a least-squares fit to the data)
has a negative slope supporting this statement; the magni-
tude of the slope is even larger than in Figs. 2 and 3 fittings.
Also, the adjusted gaps are overall closer to the theoretical
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2=3 to 8=15. The red lines are linear fits to the data. The blue
symbols are νΔ versus the Zhang–Das Sarma energy
½e2=4πϵ0ϵðl2B þ w̃2Þ1=2�=ð2pþ 1Þ. The blue lines are linear fits
to the blue data points. The red and blue lines have negative
intercept values with the y axis that we identify as the phenom-
enological disorder parameter (Γ).

0.10

0.08

0.06

0.04

0.02

43210

18

15

12

9

6

3

0

20 30 40 50 60 70 80

Ref. [23]
Ref. [24]
Ref. [25]

(a)

0.02

0.01

0
80604020

3

0

(b)

0

FIG. 5. (a) Closed red symbols are the measured 1=3Δ with the
added corresponding Γ parameter to account for disorder. (b) The
parameter Γ versus w. The adjusted measured gaps in (a) are
overall in better agreement with the calculations, but have larger
uncertainties and scatter (compared to Fig. 3) because of the
scatter and uncertainties in values of Γ.

PHYSICAL REVIEW LETTERS 127, 056801 (2021)

056801-4



calculations, although they still fall below the calculated
values at small layer thicknesses.
To summarize, we present the first systematic exper-

imental study of the dependence of the ν ¼ 1=3 FQHE
energy gap on the electron layer thicknesses in very high-
quality 2DESs confined to GaAs QWs. There is a clear
decrease of the gap with increasing layer thickness (Fig. 2),
qualitatively consistent with the results of available calcu-
lations. However, the experimental gaps are noticeably
smaller than the calculated values, particularly for smaller
electron layer thicknesses (Fig. 3). Accounting for the role
of disorder in a phenomenological fashion, the adjusted
gaps are in better overall agreement with the calculations
(Fig. 5), although they exhibit additional scatter stemming
from the uncertainty in how the disorder is evaluated. For a
closer, more quantitative comparison of the experimental
and theoretical results, a more rigorous method for incor-
porating the role of disorder, both experimentally and
theoretically, is necessary. Also, future calculations based
on parameters that better match those of our samples would
be welcome. For example, calculations in Ref. [23], which
do take LLM into account, use a charge distribution which
is appropriate for a triangular confinement (GaAs=AlGaAs
heterojunction) but not for a QW with a square potential.
We hope that our systematic experimental data, taken in
extremely high-quality 2DESs, would stimulate future
theoretical calculations relevant to the parameters of our
samples.
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