2105.11367v4 [cs.LG]| 22 May 2022

arxiv

FedScale: Benchmarking Model and System Performance of Federated
Learning at Scale

Fan Lai' Yinwei Dai! Sanjay S. Singapuram I Tianhon Tinl Vianafona Zho |2 Hawcha V Madhwvactha |

Mosha

Abstract

We present FedScale, a federated learning (FL)
benchmarking suite with realistic datasets and a
scalable runtime to enable reproducible FL re-
search. FedScale datasets encompass a wide
range of critical FL tasks, ranging from image
classification and object detection to language
modeling and speech recognition. Each dataset
comes with a unified evaluation protocol using
real-world data splits and evaluation metrics. To
reproduce realistic FL behavior, FedScale con-
tains a scalable and extensible runtime. It pro-
vides high-level APIs to implement FL algo-
rithms, deploy them at scale across diverse hard-
ware and software backends, and evaluate them at
scale, all with minimal developer efforts. We com-
bine the two to perform systematic benchmark-
ing experiments and highlight potential opportu-
nities for heterogeneity-aware co-optimizations
in FL. FedScale is open-source and actively main-
tained by contributors from different institutions
athttp://fedscale.ai. We welcome feed-
back and contributions from the community.

1. Introduction

Federated learning (FL) is an emerging machine learning
(ML) setting where a logically centralized coordinator or-
chestrates many distributed clients (e.g., smartphones or lap-
tops) to collaboratively train or evaluate a model (Bonawitz
et al., 2019; Kairouz et al., 2021b) (Figure 1). It enables
model training and evaluation on end-user data, while cir-
cumventing high cost and privacy risks in gathering the raw
data from clients, with applications across diverse ML tasks.

In the presence of heterogeneous execution speeds of client

'"Department of Computer Science, University of Michigan
*Department of Computer Science, University of Washington. Cor-
respondence to: Fan Lai <fanlai@umich.edu>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Configuration Execution Reporting
RN RN 5 EC)
! Internet * @ Q@ QN

Drop out o}
iss deadline2

I+ punoy

Client device

T
Round i

(@ Devices check-in with server; then (3 On-device training is performed; then model
sever selects a subset of clients update is reported back if training succeeds

(@ Model and configuration are sent @ Server aggregates updates into the global
to selected devices model; then training moves to next round

Figure 1. Standard FL protocol.

devices as well as non-IID data distributions, existing ef-
forts have focused on optimizing different aspects of FL:
(1) System efficiency: reducing computation load (e.g., using
smaller models (Sandler et al., 2018)) or communication
traffic (e.g., local SGD (McMahan et al., 2017)) to achieve
shorter round duration; (2) Statistical efficiency: designing
data heterogeneity-aware algorithms (e.g., client clustering
(Ghosh et al., 2020b)) to obtain better training accuracy with
fewer training rounds; (3) Privacy and security: develop-
ing reliable strategies (e.g., differentially private training
(Kairouz et al., 2021a)) to make FL more privacy-preserving
and robust to potential attacks.

A comprehensive benchmark to evaluate an FL solution
must investigate its behavior under the practical FL setting
with (1) data heterogeneity and (2) device heterogeneity
under (3) heterogeneous connectivity and (4) availability
conditions at (5) multiple scales on a (6) broad variety of
ML tasks. While the first two aspects are oft-mentioned in
the literature (Li et al., 2020), realistic network connectivity
and the availability of client devices can affect both het-
erogeneities (e.g., distribution drift (Eichner et al., 2019)),
impairing model convergence. Similarly, evaluation at a
large scale can expose an algorithm’s robustness, as practi-
cal FL deployment often runs across thousands of concur-
rent participants out of millions of clients (Yang et al., 2018).
Overlooking any one aspect can mislead FL evaluation (§2).

Unfortunately, existing FL benchmarks often fall short
across multiple dimensions (Table 1). First, they are limited
in the versatility of data for various real-world FL appli-

http://fedscale.ai

FedScale: Benchmarking Model and System Performance of Federated Learning at Scale

Features LEAF TFF FedML Flower FedScale
Heter. Client Dataset (O X O O v
Heter. System Speed X X O O v

Client Availability X X X X v
Scalable Platform X v O 4 v
Real FL Runtime X X X X v

Flexible APIs X v v 4 v

Table 1. Comparing FedScale with existing FL. benchmarks and
libraries. O implies limited support.

cations. Indeed, even though they may have quite a few
datasets and FL training tasks (e.g., LEAF (Caldas et al.,
2019)), their datasets often contain synthetically generated
partitions derived from conventional datasets (e.g., CIFAR)
and do not represent realistic characteristics. This is be-
cause these benchmarks are mostly borrowed from tradi-
tional ML benchmarks (e.g., MLPerf (Mattson et al., 2020))
or designed for simulated FL environments like TensorFlow
Federated (TFF) (tff) or PySyft (pys). Second, existing
benchmarks often overlook system speed, connectivity, and
availability of the clients (e.g., FedML (He et al., 2020) and
Flower (Beutel et al., 2021)). This discourages FL efforts
from considering system efficiency and leads to overly op-
timistic statistical performance (§2). Third, their datasets
are primarily small-scale, because their experimental en-
vironments are unable to emulate large-scale FL deploy-
ments. While real FL often involves thousands of partici-
pants in each training round (Kairouz et al., 2021b; Yang
et al., 2018), most existing benchmarking platforms can
merely support the training of tens of participants per round;
Finally, most of them lack user-friendly APIs for automated
integration, resulting in great engineering efforts for bench-
marking at scale. We attached the detailed comparison of
existing benchmarks with FedScale in Appendix C.

Contributions We introduce an FL benchmark, FedScale,
to enable comprehensive and standardized FL evaluations:

* To the best of our knowledge, we incorporate the most
comprehensive FL datasets for evaluating different as-
pects of real FL deployments. FedScale currently has 20
realistic FL datasets spanning across small, medium, and
large scales for a wide variety of task categories, such
as image classification, object detection, word predic-
tion, speech recognition, and reinforcement learning. To
account for practical client behaviors, we include real-
world measurements of mobile devices, and associate
each client with his computation and communication
speeds, as well as the availability status over time.

* We build an automated evaluation platform, FedScale
Runtime, to simplify and standardize the FL evaluation
in a more realistic setting. FedScale Runtime provides

5r 751
TN -
g 60 |- § 60
>)
Q Q
[g
B E 45
g 45 —— W/ Sys. Trace £ 20 Clients/Round
=-==- W/o Sys. Trace ===+ 100 Clients/Round
30 1 1 1 30 ! 1 1 1
0 500 1000 1500 0 500 1000 1500

Training Rounds Training Rounds

(a) Impact of system trace. (b) Impact of scale.
Figure 2. Existing benchmarks can be misleading. We train Shuf-
fleNet on Openlmage classification (Detailed setup in Section 5).

a mobile backend to enable on-device FL evaluation,
and a cluster backend to benchmark various practical FL
metrics (e.g., real client round duration) on GPUs/CPUs
using real FL statistical and system dataset. The cluster
backend can perform the training of thousands of clients
in each round on a few GPUs efficiently, and allows easy
deployment of new plugins with flexible APIs.

* We perform systematic experiments to show how Fed-
Scale facilitates today’s FL benchmarking, and highlight
the pressing need of co-optimizing system and statisti-
cal efficiency, especially in tackling system stragglers,
biased model accuracy, and device energy trade-offs.

2. Background

Existing efforts for various goals of practical FL. To
tackle heterogeneous client data, FedProx (Li et al., 2020),
FedYogi (Reddi et al., 2020) and Scaffold (Karimireddy
et al., 2020) introduce adaptive client/server optimiza-
tions that use control variates to account for the ‘drift’ in
model updates. Instead of training a single global model,
some efforts train a mixture of models (Shi et al., 2021;
Fallah et al., 2020), cluster clients over training (Ghosh
et al., 2020a), or enforce guided client selection (Lai et al.,
2021); To tackle the scarce and heterogeneous device re-
source, FedAvg (McMahan et al., 2017) reduces communi-
cation cost by performing multiple local SGD steps, while
some works compress the model update by filtering out
or quantizing unimportant parameters (Rothchild et al.,
2020; Karimireddy et al., 2019); After realizing the pri-
vacy risk in FL (Geiping et al., 2020; Wang et al., 2020),
DP-SGD (Geyer et al., 2017) enhances the privacy by em-
ploying differential privacy, and DP-FTRL (Kairouz et al.,
2021a) applies the tree aggregation to add noise to the sum
of mini-batch gradients. These FL efforts often navigate
accuracy-computation-privacy trade-offs. As such, a realis-
tic FL setting is crucial for comprehensive evaluations.

Existing FL. benchmarks can be misleading Existing
benchmarks often lack realistic client statistical and system
behavior datasets, and/or fail to reproduce large-scale FL

FedScale: Benchmarking Model and System Performance of Federated Learning at Scale

Name #Clients #Instances

Category Data Type Example Task Openlmage
GSpeech
Openlmage Image 13,771 1.3M Classification, Object detection > 10 Charades
Google Landmark ~ Tmage 43,484 3.6M Classification E Reddit
Cv Charades Video 266 10K Action recognition /s
VLOG Video 4,900 9.6K Classification, Object detection
Waymo Motion Video 496,358 32.5M Motion prediction 9% o2 LOLA A(i\6 08 10
Europarl Text 27,835 1.2M Text translation Normalized Data Size
Reddit Text 1,660,820 351IM Word prediction (a) Data size.
NLP LibriTTS Text 2,456 37K Text to speech
Google Speech Audio 2,618 105K Speech recognition ggenlm:ge
Common Voice Audio 12,976 1.1M Speech recognition 10 Ch;adcs
Z Reddi
A eddit
Taobao Text 182,806 20.9M Recommendation 2 S
Misc ML Puffer Streaming Text 121,551 15.4M Sequence prediction
Fox Go Text 150,333 4.9M Reinforcement learning

0 r—
00 02 04 06 08 1.0
Pairwise Data Divergence

Table 2. Statistics of partial FedScale datasets (the full list of data and its partition are available in

Appendix B). FedScale has 20 real-world federated datasets; each dataset is partitioned by its real
client-data mapping, and we have removed sensitive information in these datasets.

deployments. Unfortunately, these limitations imply that
they are not only insufficient for benchmarking diverse FL.
optimizations, but can even mislead performance evalua-
tions: (1) As shown in Figure 2(a), the statistical perfor-
mance becomes worse when encountering practical client
behaviors (e.g., client training failures and availability dy-
namics), which indicates existing benchmarks that do not
have systems traces can produce overly optimistic statistical
performance; (2) FL training with hundreds of participants
each round performs better than that with tens of partici-
pants (Figure 2(b)). As such, existing benchmark platforms
can under-report FL optimizations as they cannot support
the practical FL scale with a large number of participants.

3. FedScale Dataset: Realistic FL. Workloads

We next introduce how we build realistic datasets in Fed-
Scale to fulfill the desired properties of FL datasets, such as
the client statistical dataset and system traces.

3.1. Client Statistical Dataset

FedScale currently has 20 realistic FL datasets (Table 2)
across diverse practical FL scenarios and disciplines. For
example, Puffer dataset (Yan et al., 2020) is from FL video
streaming deployed to edge users over the Internet. The
raw data of FedScale datasets are collected from different
sources and stored in various formats. We clean up the
raw data, partition them into new FL datasets, streamline
new datasets into consistent formats, and categorize them
into different FL use cases. Moreover, FedScale provides
standardized APIs, a Python package, for the user to easily
leverage these datasets (e.g., using different distributions of

(b) Data distribution.
Figure 3. Non-IID client data.

the same data or new datasets) in other frameworks.

Realistic data and partitions We target realistic datasets
with client information, and partition the raw dataset using
the unique client identification. For example, Openlmage
is a vision dataset collected by Flickr, wherein different
mobile users upload their images to the cloud for public use.
We use the AuthorProfileUrl attribute of the OpenImage data
to map data instances to each client, whereby we extract the
realistic distribution of the raw data. Following the practical
FL deployments (Yang et al., 2018), we assign the clients of
each dataset into the training, validation and testing groups,
to get its training, validation and testing set. Here, we pick
four real-world datasets — video (Charades), audio (Google
Speech), image (Openlmage), and text (Reddit) — to illus-
trate practical FL characteristics. Each dataset consists of
hundreds or up to millions of clients and millions of data
points. Figure 3 reports the Probability Density Function
(PDF) of the data distribution, wherein we see a high statis-
tical deviation (e.g., wide distribution of the density) across
clients not only in the quantity of samples (Figure 3(a)) but
also in the data distribution (Figure 3(b)).! We notice that
realistic datasets mostly have unique Non-IID patterns, im-
plying the impracticality of existing artificial FL partitions.

Different scales across diverse task categories To ac-
commodate diverse scenarios in practical FL, FedScale in-
cludes small-, medium-, and large-scale datasets across a
wide range of tasks, from hundreds to millions of clients.
Some datasets can be applied in different tasks, as we en-

"We report the pairwise Jensen—Shannon distance of the label
distribution between two clients.

FedScale: Benchmarking Model and System Performance of Federated Learning at Scale

x10~*
0.04
> 1.0
g 0.02 g
a R 05
0.00 0.0 -
10! 10? 10° 10* 10°
Compute Latency (ms) Network bandwidth (kbps)
(a) Compute capacity. (b) Network capacity.
Figure 4. Heterogeneous client system speed.
S 0t
g - 0.010
@) 7
< =
g 1o & 0.005
8
% —— Available clients
~ 0 1 1 1 1 1 0.000 " N
0 24 48 72 96 120 0 100 200 300 400 500

Timeline (h) Duration of Avail. (min)

(a) Inter-device availability. (b) Intra-device availability.

Figure 5. Client availability is dynamic.

rich their use case by deriving different metadata from the
same raw data. For example, the raw Openlmage dataset
can be used for object detection, and we extract each object
therein and generate a new dataset for image classification.
Moreover, we provide APIs for the developer to customize
their dataset (e.g., enforcing new data distribution or taking
a subset of clients for evaluations with a smaller scale).

3.2. Client System Behavior Dataset

Client device system speed is heterogeneous We for-
mulate the system trace of different clients using Al
Benchmark (Ignatov et al., 2019) and MobiPerf Measure-
ments (mob) on mobiles. Al Benchmark provides the train-
ing and inference speed of diverse models (e.g., MobileNet)
across a wide range of device models (e.g., Huawei P40 and
Samsung Galaxy S20), while MobiPerf has collected the
available cloud-to-edge network throughput of over 100k
world-wide mobile clients. As specified in real FL deploy-
ments (Bonawitz et al., 2019; Yang et al., 2018), we focus
on mobile devices that have larger than 2GB RAM and
connect with WiFi; Figure 4 reports that their compute and
network capacity can exhibit order-of-magnitude difference.
As such, how to orchestrate scarce resources and mitigate
stragglers are paramount.

Client device availability is dynamic We incorporate
a large-scale user behavior dataset spanning across 136k
users (Yang et al., 2021) to emulate the behaviors of clients.

It includes 180 million trace items of client devices (e.g.,
battery charge or screen lock) over a week. We follow the
real FL setting, which considers the device in charging to be
available (Bonawitz et al., 2019) and observe great dynam-
ics in their availability: (i) the number of available clients
reports diurnal variation (Figure 5(a)). This confirms the
cyclic patterns in the client data, which can deteriorate the
statistical performance of FL (Eichner et al., 2019). (ii)
the duration of each available slot is not long-lasting (Fig-
ure 5(b)). This highlights the need of handling failures (e.g.,
clients become offline) during training, as the round duration
(also a few minutes) is comparable to that of each available
slot. This, however, is largely overlooked in the literature.

4. FedScale Runtime: Evaluation Platform

Existing FL evaluation platforms can hardly reproduce the
practical FL scale. Worse, they often lack user-friendly
APISs, requiring great developer efforts to deploy new plug-
ins. As such, we introduce, FedScale Runtime, an automated
and easily-deployable evaluation platform equipped with
mobile and cluster backends, to simplify and standardize
the FL evaluation under a practical setting.

4.1. FedScale Runtime: Mobile Backend

FedScale Runtime deploys a mobile backend to enable on-
device FL evaluation on smartphones. The first principle, in
building our mobile backend, is to minimize any engineer-
ing effort for the developer (e.g., without reinventing their
Python code) to benchmark FL. on mobiles. To this end,
FedScale mobile backend is built atop the Termux app (ter),
an Android terminal that supports Linux environment.

from fedscale.core.client import Client

class Mobile_Client (Client) :
def train(self,client_data,model, conf) :
for local_step in range (conf.local_steps):
optimizer.zero_grad()

loss.backward()

optimizer.step ()
Results will be sent to cloud aggregator via gRPC
return gradient_update

Figure 6. Training on mobile client.

Figure 6 shows a snippet of code running on FedScale mo-
bile backend. By integrating with Termux, FedScale Run-
time allows the developer to run an unmodified version of
Python script (e.g., PyTorch) built from source on the mobile
device, and the full-operator set (e.g., PyTorch Modules)
is available too. This eases the deployment cycle, in that
FL models and algorithms that were prototyped on server
GPUs/CPUs, can also be deployed using FedScale Runtime.
We are currently implementing the Google Remote Proce-
dure Call (gRPC) for distributed mobile devices to interface

FedScale: Benchmarking Model =~

S
e(\d ¢
ey —a

10
A,

o
Y
y

(a) Xiaomi Mil0O (b) Samsung S1
Figure 7. FedScale Runtime can benchmark the mobile
power, energy and latency. We train Resnet34 and Shu
ImageNet and CIFAR-10 on Xiaomi mil0 and Samsun,

with FedScale Runtime cloud server.

Benchmarking Mobile Runtime FedScale mobile back-
end enables the developer to benchmark realistic FL train-
ing/testing performance on mobile phones. For example,
Figure 7 reports the performance metrics of training Shuf-
flenet and Resnet34 on one mini-batch (batch size 32),
drawn from the Imagenet and CIFAR-10 datasets, on Xi-
aomi Mil0 and Samsung S10e Android devices. We bench-
mark the average training time. We notice that Resnet34
runs at higher instantaneous power than Shufflenet on both
devices, but it requires less total energy to train since it
takes shorter latency. ImageNet takes longer than CIFAR-
10 per mini-batch, as the larger training image sizes lead
to longer execution. The heterogeneity in computational
capacity is evident as the Xiaomi Mil0 device outperforms
the Samsung S10e device due to a more capable proces-
sor. As such, we believe that FedScale mobile backend can
facilitate future on-device FL optimizations (e.g., hardware-
aware Neural Architecture Search (He et al., 2018)).

4.2. FedScale Runtime: Simulator

However, benchmarking on mobile devices is often pro-
hibitively expensive. As such, FedScale Runtime provides
an automated simulator that performs FL training/testing
on GPUs/CPUs, while providing various practical FL met-
rics by emulating realistic FL behaviors, such as computa-
tion/communication cost, latency and wall clock time. To
the best of our knowledge, FedScale Runtime is the first
platform that enables FL benchmarking with practical FL
runtime on GPUs/CPUs.

Overview of FedScale Runtime Simulator FedScale
Runtime primarily consists of three components (Figure 8):

» Aggregator Simulator: It acts as the aggregator in prac-
tical FL, which selects participants, distributes execu-
tion profiles (e.g., model weight), and handles result

FedScale Runtime

@ Submit config . Aggregator

Event Monitor

o -
o/ N - Client Manager
B % Aggregation Handler @ > g
¢ < H - Client Selector
Model Config
: : T
Metrics : Resource Manager
Accuracy/loss L ; . t
ii Client Simulator i i’ Clien
Vi l Device Monit ‘ lC cat ‘ Simulator
; v evice Monitor ommunicator
® Output; ; Client
< Vi l Compute Engine (e.g., PyTorch) ‘ Simulator
Vi Client
C . Cost
FedScale Data Loader Simulator
[] GPU GPU2

(2 Simulation of Practical FL

Figure 8. FedScale Runtime enables the developer to benchmark
various FL efforts with practical FL data and metrics.

(e.g., model updates) aggregation. In each round, its
client manager uses the client behavior trace to monitor
whether a client is available; then it selects the speci-
fied number of clients to participate that round. Once
receiving new events, the event monitor activates the
handler (e.g., aggregation handler to perform model ag-
gregation), or the gRPC communicator to send/receive
messages. The communicator records the size (cost)
of every network traffic, and its runtime latency in FL
wall-clock time ((M%).

* Client Simulator: It works as the FL client. FedScale
data loader loads the federated dataset of that client and
feeds this data to the compute engine to run real train-
ing/testing. The computation latency is determined by
(#_processed_sample X latency_per_sample), and
the communicator handles network traffics and records
the communication latency (M%). The de-

vice monitor will terminate the simulation of a client if

the current FL runtime exceeds his available slot (e.g.,

client drops out), indicated by the availability trace.

* Resource Manager: It orchestrates the available phys-
ical resource for evaluation to maximize the resource
utilization. For example, when the number of partici-
pants/round exceeds the resource capacity (e.g., simulat-
ing thousands of clients on a few GPUs), the resource
manager queues the overcommitted tasks of clients and
schedules new client simulation from this queue once
resource becomes available. Note that this queuing will
not affect the simulated FL runtime, as this runtime is
controlled by global virtual clock, and the event monitor
will manage events in the correct FL runtime order.

Note that capturing runtime performance (e.g., wall clock
time) is rather slow and expensive in practical FL — each
mobile device takes several minutes to train a round — but
our simulator enables fast-forward simulation, as training
on CPUs/GPUs takes only a few seconds per round, while

FedScale

FedScale: Benchmarking M

Module | API Name

Aggregator | round_completion_handler

Simulator |client_completion_handle

Client
Manager

select_participants()
select_model_for_client(

Client
Simulator

train()

serialize_results()

Table 3. Some example APIs. FedScale provides
for various designs. We omit input arguments for |

providing simulated runtime using realistic tr

FedScale Runtime enables automated F]
FedScale Runtime incorporates realistic FL tr¢
aforementioned trace by default or the develc
profile from the mobile backend, to automati
the practical FL workflow: (D Task submissi
opers specify their configurations (e.g., mode
which can be federated training or testing, an
manager will initiate the aggregator and cli
on available resource (GPU, CPU, other ac
even smartphones); @ FL simulation: Follo
dardized FL lifecycle (Figure 1), in each tr
the aggregator inquires the client manager to
pants, whereby the resource manager distribi
configuration to the available client simulatc
completion of each client, the client simulat
model update to the aggregator, which then
model aggregation. Q) Metrics output: Durin
developer can query the practical evaluation 1
fly. Figure 8 lists some popular metrics in Fe:

FedScale Runtime is easily-deployable ar

for plugins FedScale Runtime provides 1

which can accommodate with different execu

(e.g., PyTorch) by design, for the developer to ¢

mark new plugins. Table 3 illustrates some ¢

that can facilitate diverse FL efforts, and Fig.... . «.cccc
an example showing how these APIs help to benchmark a
new design of local client training with a few lines of code
by inheriting the base Client module. Moreover, FedScale
Runtime can embrace new realistic (statistical client or sys-
tem behavior) datasets with the built-in APIs. For example,
the developer can import his own dataset of the client avail-
ability with the API (load_client_availability),
and FedScale Runtime will automatically enforce this trace
during evaluations. We provide more examples and the
comparison with other frameworks, in Appendix D to show
the ease of evaluating various today’s FL. work in FedScale
Runtime- a few lines are all we need!

0.1 0.2 0.6
100
g FedML [l Flower FedScale
He 4 =
Did not -

2‘5’ 10 | compluclc
S =
S8
R - =

0 o [=

10 100 1000 10000
of Clients/Round

Figure 10. FedScale Runtime can run thousands of clients/round,
while FedML and Flower failed to run large-scale clients on 10
GPUs. We have more scalability experiments in Appendix C.

FedScale Runtime is scalable and efficient FedScale
Runtime simulator can perform large-scale simulations
(thousands of clients per round) in both standalone (sin-
gle CPU/GPU) and distributed (multiple machines) settings.
This is because: (1) FedScale Runtime can support mul-
tiprocessing on GPUs so that multiple client simulators
can co-locate on the same GPU; (2) our resource manager
monitors the fine-grained resource utilization of machines,
queues the overcommitted simulation requests, adaptively
dispatches simulation requests of the client across machines
to achieve load balance, and then orchestrates the simulatidn
based on the client virtual clock. Instead, state-of-the-art
platforms can hardly support the practical FL scale, due to
their limited support for distributed simulations (e.g., Fed-
Jax (Ro et al., 2021)), and/or the reliance on the traditional
ML architecture that trains on a few workers with long-run-
ning computation, whereas FedScale Runtime minimizes
the overhead (e.g., frequent data serialization) in the fleet
training of FL clients. As shown in Figure 10 2, other than
being able to evaluate the practical FL runtime, FedScale
Runtime not only runs faster than FedML (He et al., 2020)
and Flower (Beutel et al., 2021), but can support large-scale
evaluations efficiently.

2We train ShuffleNet on OpenImage classification task on 10
GPU nodes. Detailed experimental setups in Appendix A.

FedScale: Benchmarking Model and System Performance of Federated Learning at Scale

Task Dataset Model 1ID FedAvg FedProx FedYogi
FEMNIST ResNet-18 86.40% 78.50% 78.40% 76.30%
Image Classification ShuffleNet-V2 81.37% 70.27% 69.54% 74.04%
Openlmage -
Mobi
Text Classification Amazon Review Logistic
Language Modeling Reddit yi
Speech Recognition Google Speech Re:
Table 4. Benchmarking of different FL algorithms across
75 F —_
§ 75 F 85 Hl FedML FedScale
s >
< 60 & ~
oy 5 60 S 70.1
I~ 3 B
2 ---FedProx < g 65
S 45/ i v 45 g 59.8
< / —— FedYoGi & z
. <@
— 1D = <
30 . . 30
0 200 400 0 45
Training Rounds Openlmage Google Speech

(®)

(a) Convergence on Google speech.

(c) Final model performance.

Figure 11. FedScale can benchmark the statistical FL performance. (c) shows existing benchmarks can under-report the FedYoGi

performance as they cannot support a large number of participants.

S. Experiments

In this section, we show how FedScale can facilitate better
benchmarking of FL efforts over its counterparts.

Experimental setup We use 10 NVIDIA Tesla P100
GPUs in our evaluations. Following the real FL deploy-
ments (Bonawitz et al., 2019; Yang et al., 2018), the aggre-
gator collects updates from the first N completed partici-
pants out of 1.3V participants to mitigate system stragglers
in each round, and N = 100 by default. We experiment
with representative FedScale datasets in different scales and
tasks (detailed experiment setup in Appendix A).

5.1. How Does FedScale Help FL. Benchmarking?

Existing benchmarks are insufficient to evaluate the various
metrics needed in today’s FL. We note that the performance
of existing benchmarks and FedScale are quite close in the
same settings if we turn off the optional system traces in
FedScale. Because the underlying training and FL protocols
in evaluations are the same. However, the limited scalability
can mislead the practical FL performance. Next, we show
the effectiveness of FedScale in benchmarking different FL
aspects over its counterparts.

Benchmarking FL statistical efficiency. FedScale pro-
vides various realistic client datasets to benchmark the FL

statistical efficiency. Here, we experiment with state-of-the-
art optimizations (FedAvg, FedProx and FedYoGi) — each
aims to mitigate the data heterogeneity — and the traditional
IID data setting. Figure 11 and Table 4 report that: (1) the
round-to-accuracy performance and final model accuracy
of the non-IID setting is worse than that of the IID setting,
which is consistent with existing findings (Kairouz et al.,
2021b); (2) different tasks can have different preferences
on the optimizations. For example, FedYoGi performs the
best on Openlmage, but it is inferior to FedAvg on Google
Speech. With much more FL datasets, FedScale enables
extensive studies of the sweet spot of different optimiza-
tions; and (3) existing benchmarks can under-report the FL
performance due to their inability to reproduce the FL set-
ting. Figure 11(c) reports the final model accuracy using
FedML and FedScale, where we attempt to reproduce the
scale of practical FL with 100 participants per round in both
frameworks, but FedML can only support 30 participants
because of its suboptimal scalability, which under-reports
the FL performance that the algorithm can indeed achieve.

Benchmarking FL system efficiency. Existing system
optimizations for FL focus on the practical runtime (e.g.,
wall-clock time in real FL training) and the FL execution
cost. Unfortunately, existing benchmarks can hardly evalu-
ate the FL runtime due to the lack of realistic system traces,
but we now show how FedScale can help such benchmark-

s 7 Setting FL runtime (Evaluation 1 - 12 - S Bl Openlmage
= (hours) (hours) £ o Google Speech
3 bt 9
= _ -~ ~
3 6 K=1 97 17 £ E NS
Q E o
17 . -
"é 4 K=10 52 9 8 (3 i -
= = 3
3 K=20 130 47 =
0 1 1 1 J
Avg Prox YoGi Avg Prox YoGi
(a) 1 (b) FedScale enables fast-forward e (c) FedScale reports FL. communication cost.

Figure 12. FedScale can benchmark realistic FL runtime. (a) and (b) report FedYoGi results on Openlmage with different number of local
1

steps (K); (b) reports the FL runtime to reach convergence.

ing: (1) FedScale Runtime enables fast-forward evaluations
of the practical FL wall-clock time with fewer evaluation
hours. Taking different number of local steps K in local
SGD as an example (McMahan et al., 2017), Figure 12(a)
and Table 12(b) illustrate that FedScale can evaluate this
impact of K on practical FL runtime in a few hours. This
allows the developer to evaluate large-scale system opti-
mizations efficiently; and (2) FedScale Runtime can dictate
the FL execution cost by using realistic system traces. For
example, Figure 12(c) reports the practical FL. communica-
tion cost in achieving the performance of Figure 11, while
Figure 15 reports the system duration of individual clients.
These system metrics can facilitate developers to navigate
the accuracy-cost trade-off.

Benchmarking FL privacy and security. FedScale can
evaluate the statistical and system efficiency for privacy and
security optimizations more realistically. Here, we give an
example of benchmarking the DP-SGD (Geyer et al., 2017;
Kairouz et al., 2021a), which applies differential privacy to
improve the client privacy. We experiment with different
privacy targets o (0=0 indicates no privacy enhancement)
and different number of participants per round N. Figure 13
shows that the scale of participants (e.g., N=30) that today’s
benchmarks can support can mislead the privacy evaluations
too: for 6=0.01, while we notice great performance degra-
dation (12.8%) in the final model accuracy when N=30, this
enhancement is viable in practical FL (N=100) with decent
accuracy drop (4.6%). Moreover, FedScale is able to bench-
mark more practical FL metrics, such as wall-clock time,
communication cost added in privacy optimizations, and the
number of rounds needed to leak the client privacy under
realistic individual client data and Non-IID distributions.

As for benchmarking the FL security, we follow the example
setting of recent backdoor attacks (Sun et al., 2019; Wang
et al., 2020) on the Openlmage, where corrupted clients flip

HKeo

o=0, N=100 ‘X~-_9<

Accuracy (%)
~
W
Accuracy (%)

-=-=- 0=0.01, N=100
30 —— =0, N=30 ->- W/o Defense
....... 6=0.01, N=30 —+— W/ Defense
L L 1 1 1 1 1
0 20 40 60 10 15 20 25

FL Runtime (hours) Percentage of Corrupted Clients
Figure 13. FedScale can bench-
mark privacy efforts in more re-
alistic FL settings.

Figure 14. FedScale can bench-
mark security optimizations
with realistic FL data.

their ground-truth labels to poison the training. We bench-
marked two settings: one without security enhancement,
while the other clips the model updates as (Sun et al., 2019).
As shown in Figure 14, while state-of-the-art optimizations
report this can mitigate the attacks without hurting the over-
all performance on their synthesized dataset, we notice a
great accuracy drop in more practical FL settings.

5.2. Opportunities for Future FL. Optimizations

Next, we show FedScale can shine light on the need for yet
unexplored optimizations owing to its realistic FL settings.

Heterogeneity-aware co-optimizations of communica-
tion and computation Existing optimizations for the sys-
tem efficiency often apply the same strategy on all clients
(e.g., using the same number of local steps (McMabhan et al.,
2017) or compression threshold (Rothchild et al., 2020)),
while ignoring the heterogeneous client system speed. When
we outline the timeline of 5 randomly picked participants in
training of the ShuffleNet (Figure 15), we find: (1) system
stragglers can greatly slow down the round aggregation in
practical FL; and (2) simply optimizing the communication
or computation efficiency may not lead to faster rounds, as
the last participant can be bottlenecked by the other resource.

0.06

| =

[B Download Model | £

Compute g
| e B Upload Updates | A 0.04

1 =l

=] — =
E 3 . - 151 Round completion : E 0.02

2 2
Sojmm mmmmc 0 £

750 60 70 80 90 100
s | ‘416
Accuracy (%)

0 150 300 450

Timeline of a Round (s . .
et und © Figure 16. Biased accuracy

distributions of the trained
model across clients (Shuf-
flenet on Openlmage).

Figure 15. System stragglers slow
down practical FL greatly.

Here, optimizing the communication can greatly benefit
Client 4, but it achieves marginal improvement on the round
duration as Client 5 is computation-bound. This implies
an urgent need of heterogeneity-aware co-optimizations of
communication and computation efficiency.

Co-optimizations of statistical and system efficiency
Most of today’s FL efforts focus on either optimizing the sta-
tistical or the system efficiency, whereas we observe a great
opportunity to jointly optimize both efficiencies: (1) As
the system behavior determines the availability of client
data, predictable system performance can benefit statistical
efficiency. For example, in alleviating the biased model
accuracy (Figure 16), we may prioritize the use of upcom-
ing offline clients to curb the upcoming distribution drift of
client data; (2) Statistical optimizations should be aware of
the heterogeneous client system speed. For example, instead
of applying one-fit-all strategies (e.g., local steps or gradient
compression) for all clients, faster workers can trade more
system latency for more statistical benefits (e.g., transferring
more traffics with less intensive compression).

FL design-decisions considering mobile environment
Existing efforts have largely overlooked the interplay of
client devices and training speed (e.g., using a large local
steps to save communication (McMahan et al., 2017)), how-
ever, as shown in Figure 7, running intensive on-device
computation for a long time can quickly drain the battery, or
even burn the device, leading to the unavailability of clients.
Therefore, we believe that a power and temperature-aware
training algorithm (e.g., different local steps across clients
or device-aware NAS) can be an important open problem.

6. Conclusion

To enable scalable and reproducible FL research, we in-
troduce FedScale, a diverse set of realistic FL datasets in
terms of scales, task categories and client system behaviors,
along with a more scalable evaluation platform, FedScale
Runtime, than the existing. FedScale Runtime performs
fast-forward evaluation of the practical FL runtime metrics
needed in today’s work. More subtly, FedScale Runtime

SyStem Performance Of Federated Learning = Scale

provides ready-to-use realistic datasets and flexible APIs to
allow more FL applications, such as benchmarking NAS,
model inference, and a broader view of federated compu-
tation (e.g., multi-party computation). FedScale is open-
source at http://fedscale.ai, and we hereby invite
the community to develop and contribute state-of-the-art FL.
efforts.

Acknowledgments

We would like to thank the anonymous reviewers and Sym-
bioticLab members for their insightful feedback. We also
thank FedScale contributors and users from many differ-
ent academic institutions and industry for their valuable
feedbacks to improve FedScale. This work was supported
in part by NSF grants CNS-1900665, CNS-1909067, and
CNS-2106184.

References

Common Voice Data. https://commonvoice.
mozilla.org/en/datasets.

Fox go dataset. https://github.com/
featurecat/go-dataset.
iNaturalist 2019. https://sites.google.

com/view/fgvc6/competitions/
inaturalist-20109.

MobiPerf. https://www.measurementlab.net/
tests/mobiperf/.

Google Open Images Dataset. https://storage.
googleapis.com/openimages/web/index.
html.

PySyft.
PySyft.

https://github.com/OpenMined/

Reddit Comment Data. https://files.pushshift.
io/reddit/comments/.

Stack Overflow Data. https://cloud.google.com/
bigquery/public-data/stackoverflow.

Taobao Dataset. https://tianchi.aliyun.com/
dataset/dataDetail?dataId=56&lang=
en-us.

Termux. https://termux.com/.

TensorFlow Federated. https://www.tensorflow.
org/federated.

Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Parcollet, T.,
de Gusmao, P. P. B., and Lane, N. D. FLOWER: A
friendly federated learning framework. arXiv preprint
arXiv:2007.14390, 2021.

http://fedscale.ai
https://commonvoice.mozilla.org/en/datasets
https://commonvoice.mozilla.org/en/datasets
https://github.com/featurecat/go-dataset
https://github.com/featurecat/go-dataset
https://sites.google.com/view/fgvc6/competitions/inaturalist-2019
https://sites.google.com/view/fgvc6/competitions/inaturalist-2019
https://sites.google.com/view/fgvc6/competitions/inaturalist-2019
https://www.measurementlab.net/tests/mobiperf/
https://www.measurementlab.net/tests/mobiperf/
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PySyft
https://files.pushshift.io/reddit/comments/
https://files.pushshift.io/reddit/comments/
https://cloud.google.com/bigquery/public-data/stackoverflow
https://cloud.google.com/bigquery/public-data/stackoverflow
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56&lang=en-us
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56&lang=en-us
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56&lang=en-us
https://termux.com/
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated

FedScale: Benchmarking Model and System Performance of Federated Learning at Scale

Bonawitz, K., Eichner, H., and et al. Towards federated
learning at scale: System design. In MLSys, 2019.

Caldas, S., Meher, S., Duddu, K., and et al. Leaf: A bench-
mark for federated settings. NeurlPS’ Workshop, 2019.

Chai, D., Wang, L., Chen, K., and Yang, Q.
FedEval: A benchmark system with a comprehen-
sive evaluation model for federated learning. In
arxiv.org/abs/2011.09655, 2020.

Cohen, G., Afshar, S., Tapson, J., and van Schaik, A. EM-
NIST: an extension of MNIST to handwritten letters. In
arxiv.org/abs/1702.05373, 2017.

Eichner, H., Koren, T., McMahan, H. B., Srebro, N., and
Talwar, K. Semi-cyclic stochastic gradient descent. In
ICML, 2019.

Ettinger, S., Cheng, S., Caine, B., Liu, C., Zhao, H., Pradhan,
S., Chai, Y., Sapp, B., Qi, C., Zhou, Y., Yang, Z., Chouard,
A., Sun, P., Ngiam, J., Vasudevan, V., McCauley, A.,
Shlens, J., and Anguelov, D. Large scale interactive
motion forecasting for autonomous driving : The waymo
open motion dataset. CoRR, abs/2104.10133, 2021.

Fallah, A., Mokhtari, A., and Ozdaglar, A. Personalized
federated learning with theoretical guarantees: A model-
agnostic meta-learning approach. In 34th Conference on
Neural Information Processing Systems (NeurlPS 2020),
2020.

Fouhey, D. F., Kuo, W., Efros, A. A., and Malik, J. From
lifestyle vlogs to everyday interactions. In CVPR, 2018.

Geiping, J., Bauermeister, H., Droge, H., and Moeller, M.
Inverting gradients - how easy is it to break privacy in
federated learning? In NeurIPS, 2020.

Geyer, R. C,, Klein, T., and Nabi, M. Differentially private
federated learning: A client level perspective. In NeurIPS,
2017.

Ghosh, A., Chung, J., Yin, D., and Ramchandran, K. An
efficient framework for clustered federated learning. In
NeurlPS, 2020a.

Ghosh, A., Chung, J., Yin, D., and Ramchandran, K. An effi-
cient framework for clustered federated learning. In 34th
Conference on Neural Information Processing Systems
(NeurIPS 2020), 2020b.

He, C., Li, S., So, J., and Zeng, X. FedML: A research
library and benchmark for federated machine learning. In
arxiv.org/abs/2007.13518, 2020.

He, Y., Lin, J,, Liu, Z., Wang, H., Li, L.-J., and Han, S.
Amc: Automl for model compression and acceleration
on mobile devices. In ECCV, 2018.

Ignatov, A., Timofte, R., Kulik, A., Yang, S., Wang, K.,
Baum, F., Wu, M., Xu, L., and Gool, L. V. Al benchmark:
All about deep learning on smartphones in 2019. CoRR,
abs/1910.06663, 2019. URL http://arxiv.org/
abs/1910.06663.

Kairouz, P., McMahan, B., Song, S., Thakkar, O., Thakurta,
A., and Xu, Z. Practical and private (deep) learning with-
out sampling or shuffling. In arxiv.org/abs/2103.00039,
2021a.

Kairouz, P., McMahan, H. B., and et al. Advances and
open problems in federated learning. In Foundations and
Trends® in Machine Learning, 2021b.

Karimireddy, S. P., Rebjock, Q., Stich, S. U., and Jaggi,
M. Error feedback fixes signsgd and other gradient com-
pression schemes. In arXiv preprint arXiv:1901.09847,
2019.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S. J., Stich,
S. U., and Suresh, A. T. SCAFFOLD: Stochastic con-
trolled averaging for federated learning. In ICML, 2020.

Koehn, P. Europarl: A Parallel Corpus for Statistical Ma-
chine Translation. In Conference Proceedings: the tenth
Machine Translation Summit, 2005.

Lai, F., Zhu, X., Madhyastha, H. V., and Chowdhury, M.
Oort: Efficient federated learning via guided participant
selection. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2021.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. In MLSys, 2020.

Mao, H., Netravali, R., and Alizadeh, M. Neural adap-
tive video streaming with pensieve. In Proceedings of
the Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’17, pp. 197-210,
New York, NY, USA, 2017. Association for Comput-
ing Machinery. ISBN 9781450346535. doi: 10.1145/
3098822.3098843. URL https://doi.org/10.
1145/3098822.3098843.

Mattson, P., Cheng, C., Coleman, C., and et al. Mlperf
training benchmark. In MLSys, 2020.

McAuley, J., Targett, C., Shi, Q., and van den Hengel, A.
Image-based recommendations on styles and substitutes.
In SIGIR, 2015.

McMabhan, H. B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In AISTATS, 2017.

Reddi, S., Charles, Z., and et al. Adaptive federated opti-
mization. In arxiv.org/abs/2003.00295, 2020.

http://arxiv.org/abs/1910.06663
http://arxiv.org/abs/1910.06663
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1145/3098822.3098843

FedScale: Benchmarking Model and System Performance of Federated Learning at Scale

Reddy, S., Chen, D., and Manning, C. D. Coqa: A con-
versational question answering challenge. arXiv preprint
arXiv:1808.07042, 2019.

Ro, J. H., Suresh, A. T., and Wu, K. Fedjax: Federated
learning simulation with jax, 2021.

Rothchild, D., Panda, A., Ullah, E., Ivkin, N., Stoica, I.,
Braverman, V., Gonzalez, J., and Arora, R. Fetchsgd:
Communication-efficient federated learning with sketch-
ing. In ICML, 2020.

Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In CVPR, 2018.

Schler, J., Koppel, M., Argamon, S., and Pennebaker, J.
Effects of age and gender on blogging. In Proceedings of
AAAI Spring Symposium on Computational Approaches
for Analyzing Weblogs, 2006.

Shi, N., Lai, F., Kontar, R. A., and Chowdhury, M. Fed-
ensemble: Improving generalization through model en-
sembling in federated learning, 2021.

Sigurdsson, G. A., Varol, G., Wang, X., Farhadi, A., Laptev,
L., and Gupta, A. Hollywood in homes: Crowdsourc-
ing data collection for activity understanding. In ECCV,
2016.

Sun, Z., Kairouz, P., Suresh, A. T., and McMahan,
H. B. Can you really backdoor federated learning. In
arxiv.org/abs/1911.07963, 2019.

Wang, H., Sreenivasan, K., Rajput, S., Vishwakarma, H.,
Agarwal, S., yong Sohn, J., Lee, K., and Papailiopoulos,
D. Attack of the tails: Yes, you really can backdoor
federated learning. In NeurlPS, 2020.

Warden, P. Speech commands: A dataset for

limited-vocabulary speech recognition. In
arxiv.org/abs/1804.03209, 2018.
Weyand, T., Araujo, A., Cao, B., and Sim, IJ.

Google landmarks dataset v2 a large-scale bench-
mark for instance-level recognition and retrieval. In
arxiv.org/abs/2004.01804, 2020.

Yan, F. Y., Ayers, H., and et al. Learning in situ: a random-
ized experiment in video streaming. In NSDI, 2020.

Yang, C., Wang, Q., and et al. Characterizing impacts
of heterogeneity in federated learning upon large-scale
smartphone data. In WWW, 2021.

Yang, T., Andrew, G., Eichner, H., Sun, H., Li, W., Kong,
N., Ramage, D., and Beaufays, F. Applied federated
learning: Improving Google keyboard query suggestions.
In arxiv.org/abs/1812.02903, 2018.

Zen, H., Dang, V., Clark, R., Zhang, Y., Weiss, R. J.,
Jia, Y., Chen, Z., and Wu, Y. Libritts: A corpus de-
rived from librispeech for text-to-speech. arXiv preprint
arXiv:1904.02882, 2019.

FedScale: Benchmarking Model and System Performance of Federated Learning at Scale

A. Experiment Setup

Scalability Evaluations We evaluate the scalability of
FedScale Runtime, FedML (GitHub commit@2ee0517) and
Flower (v0.17.0 atop Ray v1.9.2) using a cluster with 10
GPU nodes. Each GPU node has a P100 GPU with 12GB
GPU memory and 192GB RAM. We train the ShuffleNet-
V2 model on the Openlmage dataset. We set the minibatch
size of each participant to 32, and the number of local steps
K to 20, which takes around 2800MB GPU memory for
each model training. As such, we allow each GPU node to
run 4 processes in benchmarking these three frameworks.

Evaluation Setup Applications and models used in our
evaluations are widely used on mobile devices. We set the
minibatch size of each participant to 32, and the number of
local steps K to 20. We cherry-pick the hyper-parameters
with grid search, ending up with an initial learning rate 0.04
for CV tasks and 5e-5 for NLP tasks. The learning rate
decays by 0.98 every 10 training rounds. These settings are
consistent with the literature. More details about the input
dataset are available in Appendix B.

B. Introduction of FedScale Datasets

FedScale currently has 20 realistic federated datasets across
a wide range of scales and task categories (Table 5). Here,
we provide the description of some representative datasets.

Google Speech Commands. A speech recognition
dataset (Warden, 2018) with over ten thousand clips of
one-second-long duration. Each clip contains one of the
35 common words (e.g., digits zero to nine, "Yes", "No",
"Up", "Down") spoken by thousands of different people.

Openlmage. Openlmage (ope) is a vision dataset col-
lected from Flickr, an image and video hosting service.
It contains a total of 16M bounding boxes for 600 object
classes (e.g., Microwave oven). We clean up the dataset ac-
cording to the provided indices of clients. In our evaluation,
the size of each image is 256 x 256.

Reddit and StackOverflow. Reddit (red) (StackOverflow
(sta)) consists of comments from the Reddit (StackOverflow)
website. It has been widely used for language modeling
tasks, and we consider each user as a client. In this dataset,
we restrict to the 30k most frequently used words, and rep-
resent each sentence as a sequence of indices corresponding
to these 30k frequently used words.

VLOG. VLOG (Fouhey et al., 2018) is a video dataset
collected from YouTube. It contains more than 10k Lifestyle
Vlogs, videos that people purportedly record to show their
lives, from more than 4k actors. This dataset is aimed

at understanding everyday human interaction and contains
labels for scene classification, hand-state prediction, and
hand detection tasks.

LibriTTS. LibriTTS (Zen et al., 2019) is a large-scale
text-to-speech dataset. It is derived from audiobooks that
are part of the LibriVox project. There are 585 hours of read
English speech from 2456 speakers at a 24kHz sampling
rate.

Taobao. Taobao Dataset (tao) is a dataset of click rate
prediction about display Ad, which is displayed on the web-
site of Taobao. It is composed of 1,140,000 users ad dis-
play/click logs for 8 days, which are randomly sampled
from the website of Taobao. We partitioned it using its real
client-data mapping.

Waymo Motion. Waymo Motion (Ettinger et al., 2021) is
composed of 103,354 segments each containing 20 seconds
of object tracks at 10Hz and map data for the area covered
by the segment. These segments are further broken into 9
second scenarios (8 seconds of future data and 1 second
of history) with 5 second overlap, and we consider each
scenario as a client.

Puffer Streaming. Puffer is a Stanford University re-
search study about using machine learning (e.g., rein-
forcement learning (Mao et al., 2017)) to improve video-
streaming algorithms: the kind of algorithms used by
services such as YouTube, Netflix, and Twitch. Puffer
dataset (Yan et al., 2020) consists of 15.4M sequences of
network throughput on edge clients over time.

We will make FedScale open-source on the Github. So
the code and dataset can be downloaded from the reposi-
tory. For each dataset, we will provide detailed descriptions
(README . md) of the source, organization, format and use
case under the repository. In the future, these datasets will
be hosted on our server, or be migrated to the stable storage
of AWS. For the evaluation platform FedScale Runtime, we
will provide the configuration and job submission guidelines
as well.

C. Comparison with Existing FL. Benchmarks

In this section, we compare FedScale with existing FL
benchmarks in more details.

Data Heterogeneity Existing benchmarks for FL are
mostly limited in the variety of realistic datasets for real-
world FL applications. Even they have various datasets
(e.g., LEAF (Caldas et al., 2019)) and FedEval (Chai et al.,
2020)), their datasets are mostly synthetically derived from
conventional datasets (e.g., CIFAR) and limited to quite a

FedScale: Benchmarking Model and System Performance of Federated Learning at Scale

Category Name Data Type #Clients #Instances Example Task
iNature (ina) Image 2,295 193K Classification
FEMNIST (Cohen et al., 2017) Image 3,400 640K Classification
Openlmage (ope) Image 13,771 1.3M Classification, Object detection
Cv Google Landmark (Weyand et al., 2020) Image 43,484 3.6M Classification
Charades (Sigurdsson et al., 2016) Video 266 10K Action recognition
VLOG (Fouhey et al., 2018) Video 4,900 9.6K Classification, Object detection
Waymo Motion (Ettinger et al., 2021) Video 496,358 32.5M Motion prediction
Europarl (Koehn, 2005) Text 27,835 1.2M Text translation
Blog Corpus (Schler et al., 2006) Text 19,320 137M Word prediction
Stackoverflow (sta) Text 342,477 135M Word prediction, Classification
Reddit (red) Text 1,660,820 351M Word prediction
NLP Amazon Review (McAuley et al., 2015) Text 1,822,925 166M Classification, Word prediction
CoQA (Reddy et al., 2019) Text 7,189 114K Question Answering
LibriTTS (Zen et al., 2019) Text 2,456 37K Text to speech
Google Speech (Warden, 2018) Audio 2,618 105K Speech recognition
Common Voice (com) Audio 12,976 1.1IM Speech recognition
Misc ML Taxi Trajectory Text 442 1.7M Sequence prediétion
Taobao (tao) Text 182,806 20.9M Recommendation
Puffer Streaming (Yan et al., 2020) Text 121,551 15.4M Sequence prediction
Fox Go (go-) Text 150,333 4.9M Reinforcement learning

Table 5. Statistics of FedScale datasets. FedScale has 20 realistic client datasets, which are from the real-world collection, and we

partitioned each dataset using its real client-data mapping.

few FL tasks. These statistical client datasets can not repre-
sent realistic characteristics and are inefficient to benchmark
various real FL applications. Instead, FedScale provides
20 comprehensive realistic datasets for a wide variety of
tasks and across small, medium, and large scales, and these
datasets can also be used in data analysis to motivate more
FL designs.

System Heterogeneity The practical FL statistical per-
formance also depends on the system heterogeneity (e.g.,
client system speed and availability of the client), which
has inspired lots of optimizations for FL system efficiency.
However, existing FL. benchmarks have largely overlooked
the system behaviors of FL clients, which can produce mis-
leading evaluations, and discourage the benchmarking of
system efforts. To emulate the heterogeneous system be-
haviors in practical FL, FedScale incorporates real-world
traces of mobile devices, and associates each client with
his system speeds, as well as the availability. Moreover,
it is non-trivial to emulate these behaviors at scale, so we
develop FedScale Runtime, which is more efficient than the
existing ones.

Scalability Existing frameworks, perhaps due to the
heavy burden of building complicated system support,
largely rely on the traditional ML architectures (e.g., the
primitive parameter-server architecture of Pytorch). These

architectures are primarily designed for the traditional large-
batch training on a number of workers, and each worker
often trains a single batch at a time. However, this is ill-
suited to the simulation of thousands of clients concurrently:
(1) they lack tailored system implementations to orchestrate
the synchronization and resource scheduling, for which they
can easily run into synchronization/memory issues and crash
down; (2) their resource can be under-utilized, as FL evalu-
ations often use a much smaller batch size than that in the
traditional architecture.

Tackling all these inefficiencies requires domain-specific
system designs. Specifically, we first built an advanced
resource scheduler: It monitors the fine-grained resource
utilization of machines, queues the overcommitted simu-
lation requests, adaptively dispatches simulation requests
of the client across machines to achieve load balance, and
then orchestrates the simulation based on the client virtual
clock. Moreover, given a much smaller batch size in FL,
we maximize the resource utilization by overlapping the
communication and computation phrases of different client
simulations. The former and the latter make FedScale more
scalable across machines and on single machines, respec-
tively.

Empirically, we have run the 20-GPU set up on different
datasets and models in Figure 10 and Table 6, and are aware
of at least one group who ran FedScale Runtime with more

FedScale: Benchmarking Model and System Performance of Federated Learning at Scale

than 60 GPUs (Lai et al., 2021).

Eval. Duration/Round vs. # of Clients/Round
10 100 1K 10K
FedScale | 0.03 min | 0.16 min | 1.14 min 10.9 min
FedML 0.58 min 4.4 min fail to run | fail to run
Flower 0.05 min | 0.23 min 2.4 min fail to run

Table 6. FedScale is more scalable and faster. Image classification
on iNature dataset using MobileNet-V2 on 20-GPU setting.

Modularity As shown in Table 1, some existing frame-
works (e.g., LEAF and FedEval) do not provide user-
friendly modularity, which requires great engineering efforts
to benchmark different components, and we recognize that
FedML and Flower provide the API modularity in this table
too.

On the other hand, FedScale Runtime’s modularity for easy
deployments and broader use cases is not limited to APIs
(Figure 8): (1) FedScale Runtime Data Loader: it simplifies
and expands the use of realistic datasets. e.g., developers
can load and analyze the realistic FL data to motivate new
algorithm designs, or imports new datasets/customize data
distributions in FedScale evaluations; (2) Client simulator:
it emulates the system behaviors of FL clients, and devel-
opers can customize their system traces in evaluating the
FL system efficiency too; (3) Resource Manager: it hides
the system complexity in training large-scale participants
simultaneously for the deployment.

D. Examples of New Plugins

from fedscale.core.client_manager import ClientManager
import Oort

class Customized ClientManager (ClientManager) :
def _ init__ (self, =xargs):
super () .__init__ (*xargs)
self.oort_selector =
Oort.create_training_ selector (*args)

Replace default client selection algorithm w/ Oort
def select_participants(self, numOfClients, cur_time,
feedbacks) :
Feed Oort w/ execution feedbacks from last
training round
oort_selector.update_client_info (feedbacks)
selected_clients =
oort_selector.select_participants (numOfClients,
cur_time)

return selected_clients

Figure 17. Evaluate new client selection algorithm (Lai et al.,
2021).

In this section, we demonstrate several examples to show the
ease of integrating today’s FL efforts for realistic evaluations
in FedScale.

At its core, FedScale Runtime provides flexible APIs on

from fedscale.core.client import Client

class Customized_Client (Client):
Customize the training on each client
def train(self,client_data,model, conf) :
Get the training result from
the default training component
training result = super () .train(
client_data, model, conf)

Implementation of compression
compressed_result = compress_impl (
training result)

return compressed_result

Figure 18. Evaluate model compression (Rothchild et al., 2020).

from fedscale.core.client import Client

class Customized_Client (Client):
Customize the training on each client
def train(self,client_data,model, conf) :
Get the training result from
the default training component
training_result = super().train(
client_data, model, conf)

Clip updates and add noise
secure_result = secure_impl (

training_ result)
return secure_result

Figure 19. Evaluate security enhancement (Sun et al., 2019).

each module so that the developer can access and customize
methods of the base class. Table 3 illustrates some exam-
ple APIs that can facilitate diverse FL efforts. Note that
FedScale Runtime will automatically integrate new plug-
ins into evaluations, and then produces practical FL. met-
rics. Figure 17 demonstrates that we can easily evaluate
new client selection algorithms, Oort (Lai et al., 2021), by
modifying a few lines of the clientManager module.
Similarly, Figure 18 and Figure 19 show that we can extend
the basic C1ient module to apply new gradient compres-
sion (Rothchild et al., 2020) and enhancement for malicious
attack (Sun et al., 2019), respectively.

Comparison with other work Figure 20 shows the same
evaluation of gradient compression (Rothchild et al., 2020)
as that in Figure 18 using flower (Beutel et al., 2021), which
requires much more human efforts than Figure 18. The gray
components in figure 20 requires implementation. Flower
falls short in providing APIs for passing metadata between
client and server, for example client id, which makes server
and running workers client-agnostic. To customized any-
thing for clients during FL training, developers have to go
through the source code and override many components to
share client meta data between server and workers.

FedScale: Benchmarking Model and System Performance of Federated Learning at Scale

import argparse
import flwr as fl

def get_config_ fn():
def fit_config(rnd: int):
Implementation of randomly selection
client_ids = random_ selection()
config = {"ids": client_ids}
return config

return fit_config

Customized Strategy

strategy = CustomizedStrategy (
on_fit_config_ fn=get_config fn(),

)

fl.server.start_server (
config={"num_ rounds":args.round},
strategy=strategy)

import argparse
import flwr as fl

class Customized Client () :

def fit(self, config, net):
Customization of client data
trainloader = select_dataset (

config["ids"] [args.partition])
train(net, trainloader)
compressed_result = self.get_parameters()
Implementation of compression
compressed_result = compress_impl (
training_ result)

return compressed_result

fl.client.start _numpy_ client (
args.address,
client=CustomizedClient ())

Figure 20. Evaluate model compression with flower (Beutel et al.,
2021). The developer needs to implement the functions in grey by
his own. Note that each function can take tens of lines of code.

	1 Introduction
	2 Background
	3 FedScale Dataset: Realistic FL Workloads
	3.1 Client Statistical Dataset
	3.2 Client System Behavior Dataset

	4 FedScale Runtime: Evaluation Platform
	4.1 FedScale Runtime: Mobile Backend
	4.2 FedScale Runtime: Simulator

	5 Experiments
	5.1 How Does FedScale Help FL Benchmarking?
	5.2 Opportunities for Future FL Optimizations

	6 Conclusion
	A Experiment Setup
	B Introduction of FedScale Datasets
	C Comparison with Existing FL Benchmarks
	D Examples of New Plugins

