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A new commutator method for
averaging lemmas

Pierre-Emmanuel Jabin? Hsin-Yi Lin{ Eitan Tadmor?

Abstract

This document corresponds to the talk that the first author gave
at the Laurent Schwartz seminar on March 10th 2020. It introduces,
in a simplified setting, a novel commutator method to obtain averag-
ing lemma estimates. Averaging lemmas are a type regularizing effect
on averages in velocity of solutions to kinetic equations. We intro-
duce a new bilinear approach that naturally leads to velocity averages
in L2([0,T], HS). The new method outperforms classical averaging
lemma results when the right-hand side of the kinetic equation has
enough integrability. It also allows a perturbative approach to av-
eraging lemmas which provides, for the first time, explicit regularity
results for non-homogeneous velocity fluxes.

1 Introduction

The purpose of those notes is to present the commutator method for
kinetic equations introduced in [26] and preview some of the upcoming results
in [27]. In general we would like to consider kinetic equations written in the
general form

b, f + diva(a(z,v) f) = (—A,)*g, (1)
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where ¢ > 0, « > 0, and a : R} — R", g : R, x R} x R? — R are
given functions. € can correspond to various macroscopic scales that are for
instance introduced when hydrodynamics limits are considered.

For simplicity however in this note, we will consider the simpler setting
where a = 0 and div,a(x,v) = 0, leading to

e f +a(x,v) - Vof =g, divea(z,v) =0, (2)

where we will have f € L>®([0, T], LP(R*")) and g € L([0, T], L¥ (R?*"))
over some fixed time interval [0, 7] and where 1/p + 1/p’ = 1 as usual.

In many homogeneous setting, one simply has a(v) = v but several ap-
plications require a more complex relation between the velocity v and the
advection term a(v). One may mention the kinetic formulation of scalar con-
servation laws, and kinetic models in relativistic or quantum settings (for ex-
ample [17], [19]). Heterogeneous media or environment may however impose
also an explicit dependence in z in the flux a(z,v). This is a key distinction
in the context of averaging lemmas as no quantitative regularizing effect had
been proved so far in the heterogeneous case.

Here for simplicity again, we will limit ourselves to a(v) = v in the ho-
mogeneous case or to a perturbation of this in the heterogeneous setting:
a(x,v) — v small enough in some appropriate smooth norm.

Averaging lemmas state that, by taking average in microscopic v vari-
able, the velocity average of f

pt.a)i= [ Fit.z,0000) do

has better regularity than f and g in x variable for any ¢ € L2°, the space of
bounded and compactly supported functions. A typical example in the case
a(v) = v is the L? case: If both f and ¢ belong to L7, , then p, belongs to

t,x,v
Htlf gaining 1/2 of a derivative.

Averaging lemmas have proved themselves as useful estimates in kinetic
theory. First of all by providing compactness on moments, they are a crit-
ical tool to obtain existence of solutions with classical examples for the
Vlasov-Maxwell system [10], or renormalized solutions to the Boltzmann
equation [11]. Compactness of moments is also helpful when deriving hy-
drodynamic limits such as for the Boltzmann equation [20], or for the semi-

conductor Boltzmann-Poisson system [32].
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In those examples, how much regularity is gained by averaging lemmas
is not as important as the fact that compactness is obtained. Quantify-
ing precisely the gain of regularity is however essential for applications to
scalar conservation laws in particular or in other cases where kinetic for-
mulations exist. The first such result was derived for scalar conservation
laws in [30], isentropic gas dynamics in [31], but also so-called line-energy
Ginzburg-Landau model as in [28]. We refer for example to [13, 21, 33] for
more about the optimality of the regularity provided by averaging lemmas
in that context.

Classical averaging lemmas were first introduced in [1] and [18] under L?
setting. The classical approach involves taking Fourier transform in ¢ and x
of the kinetic equation and studying decay in the Fourier variable, which is
connected with non degeneracy assumptions on the flux a(v). Those non-
degeneracy conditions are typically formulated in terms of the behavior in ¢
of {|7+ a(v) - &| < e} (see for example [37]).

In combination with interpolation arguments, it was later extended to
general P, 1 < p < oo by [12] and later [6]. Of course wavelets can also be
used instead of Fourier as in [14] or [38].

Because they are based on orthogonality, such approaches yield the best
results when both f and ¢ belong to L2. Of course no uniform regularity can
be obtained if f, g € L} , as was recognized in [18] (though equi-integrability
in v is still enough for compactness, see [22, 16]). This will lead to a first
key difference with our present bilinear method which is able to compensate
a low integrability for g € L? with ¢ < 2 by a higher integrability in f € L
provided 1/p+1/q < 1.

We want to close this very elementary introduction to the topic by citing
the recent contributions in [3, 4, 5] which rely on the dispersive property of
the kinetic equation in Fourier variables (x and v) in a spirit similar to the
present approach.

In section 2 we present the simple result illustrating the method in the ho-
mogeneous case a(v) = v while the next section focuses on the more complex
inhomogeneous setting.

The results in this document correspond to the talk on the commuta-
tor method given by the first author at the Laurent Schwartz seminar on
March 10th 2020, and announced in [26]. Later, an energy method was in-
dependently introduced in [2] recovering Th. 1. The perspective in [2] is
somewhat different, considering only the homogeneous and stationary case
but being more precise on hypoelliptic effects while restricting f and g to
dual L” exponents (vs. the larger range in that regard in Th. 2 below).
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2 The homogeneous case a(v) = v

This section is devoted to the regularizing effect of Eq. (2) in the case where
a(v) = v does not depend on x. Because there are no derivatives in the right-
hand side (this is the special case of (1)), it is a straightforward example of
application of our method that still shows its interest with respect to classical
approaches.

Specifically, we can prove the following theorem

Theorem 1. Let ¢ < 1. If f € L*([0,T], (L* N LP)(R? x R?)) solves (2)
with a(v) = v for some g € L' ([0,T], L¥(R? x R?)), where 1 < p < oo,
then for all ¢ € H¥*(R}), py € L? ([0, T], HY/*(R?)) , and more precisely

WA, oo < C (1B in, + 912, )
where C' is independent of ¢.

There are obvious connections between this result and other dispersive
approaches. First of all, by Wigner transform, this theorem with p = 2
connects to the local smoothing effect for the Schrodinger equation.

As we explain in details below, the gain of regularity is obtained through
the use of an appropriate commutator, which is also roughly similar to the one
found in hypoelliptic estimates for Fokker-Planck type of operators (see for
example [25, 7]). Our method is also reminiscent of the multiplier method in
[24] which was used to prove moment and trace lemmas for kinetic equations.

2.1 Proof of Theorem 1

It is useful to introduce the basic idea of our method in a general setting,
and then narrow it down to our case shortly. Assume

88tf + Bf =9,

where B is a skew-adjoint operator, ¢ < 1 and g are given. For any time-
independent operator (), we can consider

sat/fQ_fdxdv:/f[B,Q]fda:dv—i—/gQ_fdxdv—l—/fQ_gdxdv,
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where Qf = @Q f with @Q the dual of Q on L?>(R™,C) and [B, Q] is the usual
commutator

[B,Q]=BQ—-QB.

by the fundamental theorem of calculus we have

T
Re/ [B,Q] ff dxdvdt < sup
0

t=0,T

/fQ_fdxdv

+ ‘/gQ_fdxdvdt’
(3)
+‘/fQ_gdxdvdt’.

The idea is to find @), bounded in some LP spaces, such that the commutator
of B and @, [B, @], is positive-definite and gain extra derivatives. Hence by
applying these conditions on (3) we would get the desired bound on f.

This type of method is well-known and was used for example by taking B
to be of Schrodinger type, where the commutator appear naturally from the
Hamilton vector field. Roughly speaking it involves constructing a proper
symbol, which corresponds to @, such that the Poisson bracket [B, @] implies
a spacetime bound on f by Garding’s inequality. See for example [8], [15],
[29] and [34].

In the context of averaging lemmas for kinetic equations, we fix B to be
the kinetic transport operator,

Bf=a(v) V,f. (4)

We choose for () the following bounded multiplier,
Fec(Qf) ==m(& Q) Fec(f),

where m is bounded and F¢ denotes the Fourier transform in both z, with

dual variable &, and v with dual variable (. There exists a tempered distri-
bution K (z,v) such that Qf = K ., f with F¢(K) = m. In this case and
since a(v) = v here, the commutator estimate becomes

JC R

— /(U—w)~VwK(x—y,v—w)f(y,w)dydwf(x,v)dxdv.

i.e. it is the quadratic form with the multiplier £ - V m.
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We consider for example the specific formula

kS ¢
el (T+I¢P)7?

and the corresponding kernel can be expressed as

m(§,C) =

Ky=R-V,GY,

where R is the Riesz kernel and G7 is the Bessel potential of order 1 in
dimension n. With this choice by Plancherel identity,

1 ‘%-Cf ~
N // (14 [CP)2 (1+]C]?)3? € [f]? d¢ dg at

(S -
// 1+ |<—| 3/2 |f’ dgdé-dt = HfHL2(0T] H/2(Rn H- J/Z(Rn))

From classical Fourier theory (see for example [35]), K is bounded on L?
spaces for all 1 < p < oo. Hence the right hand side of (3) is bounded
as long as f is in L™ ([0,T], L* N LP(R? x R")) and ¢ belongs to the space
L ([0, T], L¥(R? x R?)), where we recall that % + Z% = 1.

2.2 A more complete result from [26]

We briefly present here the main result from [26] which deals with the more
general Eq. (1), hence potentially with a > 0, and with more general inte-
grability assumptions on f and g which are not necessarily anymore in dual
spaces.

First of all some sort of non-degeneracy condition is needed on a(v) as
there is no gain of regularity if a is only constant for example. We assume
a(v) € Lip(R™) with

a(v) one-to-one, and J,-1 € L7, (5)

where J,-1 = det(Da™'). This is not the standard non-degeneracy assump-
tion and we refer to [26] for a discussion of that point which goes beyond the
limited scope of these notes.
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The method is considerably more intricate and requires several embed-
dings, leading to the introduction of the various coefficients defined below,

1 1 2 -2
dlzmax{n(—+——€),0}, dgzmax{n<——€),0},€:L,
P2 Q2 P2 v—1

(6)

1 1 2
dgzmax{n(—%———1),0}7 d4:max{n<——1>,0}. (7)
P 41 D1

The main result of [26] then reads

Theorem 2. Given a > 0, T >0 and 0 < ¢ < 1. Let a € Lip(R") satisfy
(5) with v > 2. Let f € L>([0,T], L}}.(R?, L (R"))) solve (1) for some g €
Ll([()?T]Jqu (R;,L(D (Rﬁ)))7 with D1, P2, Q1, G2 € [].,OO] Then fOT all com-

loc loc
pactly supported ¢ € W*(R2), one has that ps(t,z) € L*([0,T], Hi (R?))
for all s < S, with

||p¢||%§H; <C <||f||i§°Lfl b7 + ||g||i%Lq1 L2 ) )
oc,x oc,v oc,v

loc,x

where C' is independent of ¢ and S = 1 {(1 — d»)0 — dy}, with

o= {2 )

where the d; are defined in (6) and (7) for i =1,2,3,4.

Note that because the same type of commutator estimates are at play,
this method always produces averaging results p, in some Sobolev space H®.
We also note that the method performs in the same manner irrespective of
the value of the small parameter . This may prove an important feature for
use for example in hydrodynamic limits (see [23, 32, 36]).

It is not necessarily obvious to determine when Th 2 improves on existing
results due to the interaction between the many parameters py, po, q1, 2, .
In general, Th 2 will be all the more advantageous that we are close to the
setting of Th 1 but we refer to [26] for a more precise discussion.

The proof of Th 2 is considerably more intricate than the simple proof
for Th 1 that we presented. For this reason we only emphasize here some of
the main point.
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e The use of renormalization. Denote the Fourier transform of f only in
x by f , VS f for the whole Fourier transform in x and v. Fix a smooth
convolution kernel ®(v) with supp(®) C B(0,1). A key step in the
proof is to consider F,, = f %, Digj—s1, where Qs (v) = [£]"1D(v]E]™)
for some exponent s; > 0. This function satisfies the equation

88tP181 + ia(v) ) €F51 = (_Av)a/2§*v CI)|§|*51 + C’om, (8)

where the commutator term from the renormalization as introduced in
9] is given by

Com(v) = z'/(a(v) — a(w)) - f(w) Digj-s1 (v — w) dw.

The critical point in this step is to regularize in v the right-hand side
so that we can bound Fj, and (—A,)*?§ %, ®¢- in appropriately
dual spaces as required by our commutator method. The bounds Fj,
or (—A,)Y2 G %, ®|e|-s1 in those spaces will of course explicitly involve
the convolution scale |£]~*' leading to a careful optimization in s;.
The cost of this necessary regularizing step is the commutator C'om
that we can nevertheless show is appropriately small as |{| — oc.

e Pointwise estimate in |£|. The main estimate is obtained by applying
our commutator method pointwise in |£], that is we only integrate in v
and in the directions over the sphere in £ with given norm. Because we
need that commutator to explicitly provide regularity, we first perform
a change of variable v — v' = a(v) and rewrite (8) as

edh + i - Eh =k (9)
for the corresponding right-hand side k.

The commutator method applied to Eq. (9) for a given fixed radius [¢|
provides an L? bound on averages in velocity of h with explicit decay in [£].
This finally allows to recover the actual regularity of averages pg of f.

3 The inhomogeneous case with spatially de-
pendent flux

We present in this subsection a preview of the upcoming [27] which devel-
ops the commutator method to tackle fluxes a with explicit spatial depen-
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dence. For simplicity again, we consider an explicitly perturbative setting

with a(z,v) = v + b(z,v) and b small and we still assume that there is no

derivative in the right-hand side, i.e. we again consider (2) or (1) with a = 0.
As an example of possible result, we prove here

Theorem 3. Assume that we have the perturbative condition
6 = |(T+[&] +I<l) (@—= V)| prreny < 1/2,
that ¢ <1, and that f solves (2) with the following bounds

feLl= (o), (L*NL)®R: xRY), ge L ([0.7], L (R: xRY)),

where 1 < p < co. Then for all € C*(RY) and any s < 1/2 —§, one has
that ps € L* ([0, T], H*(R?)) and more precisely

loslz: < Co (IF1n, + 912, )
where Cy is independent of .

Remark 1. Of course Cs — 0o as s — 1/2—6 and in fact Cs~C(1/2—0—s).
In general, we could also have a more general formulation for the assumption
on a, which can be replaced by conditions like

|Vealler <n 1$nvf |detV ,al,

as will be shown in [27]. We emphasize that the approach is still perturba-
tive in that case as shown by the smallness condition which ensures that
a(x,v) is still close to an z-independent flur. We state here the condi-
tion ||(1+ €] + |¢]) @ — v|| g ey = & in Fourier as it appears naturally in
the proof. Of course by interpolation this could be replaced by any condition
(1 + €1F + |¢I%) CL/—\U||L1(R2n) = 0’ for some k > 0 and enough smoothness
on a at the cost of a worst o0'.

Theorem 3 reads in a very similar manner to Theorem 1 or Theorem 2. In
particular we still gain 1/2 derivative on the averages p,. Most applications
however require some v derivatives in the right-hand side (a > 0 in (1)) and
or some lack of integrability: g € LyLg,, with 1/p 4+ 1/¢q > 1. This creates

an obvious need for an extension to Theorem 3 that would be comparable
to how Theorem 2 generalizes Theorem 1. Such an extension is the focus

of [27].
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3.1 A first estimate with smoothness in velocity

Making explicit the perturbative nature of the flux, we rewrite our inhomo-
geneous kinetic equation

Of + (v+b(z,0)-Vaof =g, (10)

where we recall that div,b = 0 from div,a = 0.
Our first intermediary result uses a slightly different multiplier than be-
fore, namely
§ ¢

m(f,() = E ’ (1 T ‘C‘2>9/2’ (11)

for 6 < 1 instead of # = 1 as in the proof of Theorem 1. This turns out to be
necessary to control the contribution from b(x,v) - V, solely by the gain in
derivatives from v - V,. But unfortunately it also means that this first result
can only apply to solutions f that are somewhat already smooth in v as per

Proposition 1. Assume (1+|¢|+|¢|)be L' and denote A= || (1+|¢|+|¢]) bl 11

Assume moreover that f solves (10) then one has that

(L =0 =24 11115 yrr2 o2 < NN -0 + (=D, 0002

t
IR, yonnt Re [ [mie.o) Faacdcar
t,x” v 0

Proof. We first apply the Fourier transform in x and v to get
Of —€-Vef +i€ (. ) rec f =7, (12)

where ¢ (Z(, ) *ec f= (E(, ) *ee (€ fA') from the divergence free condition
on b.

From the definition (11), we observe that

_ A+ ) —oeH (€ ¢)?

§-Vem = (1+ [C[2)P/2+1 > (1-90)

€
A+ 1P

Now we calculate

d1 n 7
E5/m(g,g)|f\2dgd<z(1—9)/%I}‘fﬁdédc

ctm [ m(e0§ () wee FPEOddc+Re [mie.0F g
(13)

X-10
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All terms are already in their proper form except for the second term in the
right-hand side, for which we use the following

Lemma 1. For any real valued ®, we have that

Im | ®(&0Q) € (0(..) xee fFH(EC)dedC

R2n

=i [ (6.0 2. NEBE €. ¢~ )

R4n

FE.C) FH(€,¢) de de" d¢ d¢.

Assuming at the time being that Lemma 1 holds, we may combine it with
(13) to we deduce that

d1l

=3 /m(f,CHJ?ngdCZ (1-0) /%U?Pdﬁdg

~

+Im /R‘ln m(§7<)_2m(£7C)§/b\(é-_é-/’g_c-/) (f/,C/)f*(ﬁ,C)dde’dgdC’
+Rg/m@oﬁa

(14)
Assuming for example that |¢| < [{’|, it remains to estimate

& &
GRRE
¢ ¢

A+ KPR~ T+ CP)P

Hence, with similar calculations for the second term,
L4le—¢| ., 1+=¢]
max(1, €], [¢]) ~ max(1,[¢[% |¢']%)
Since ||(1+ [€] + [¢]) bl|z: = A, by Cauchy-Schwartz, we have that
1 1o 0 / N Frel AN P 1 g
5 dm (m(& Q) —m(&,¢))E-b(§ =&, ¢ =) f(E.¢) (&) dg d¢’ d€ d¢

R4d

1-6 i ) N 2
<a [ (1l ) e opasic

Im(&,¢) —m(&, ¢ <[¢I?

i

Im(&,¢) —m(¢, ) <2 ¢

X-11
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Inserting this into (14), we conclude as claimed that
0 _ A |€| 2ddd< 1-6 /\()2dd
(1-0-2 T R dedcar < [ iy s ac
+/<1+|<|1 ' < TP dgdc+ ANSI2, o

+ Re /0 [mte.o) pgacac

It remains to prove Lemma 1

Proof of Lemma 1. Simply write

Im [ @(EOE (b)) wee FF(€ Q) ded

~

=Im [ @(E0EHE == N FEC)T(E Q) dgde' ddd
=1Im | @) -bE —€¢ Q) F(E,C)FE ) dEde ¢ dc

R4d

by swapping £ and ¢ and ¢ and (. Taking then the complex conjugate

Im | ®(EQ)€-b(.,.)) *ec fF(EC)dEAC

R2d
==t [ 8.0 FE -0 - OV €O P deds dcac
== [ 8€.0)€BE - €. N TEC e dsagac ac

since b is real valued and hence 3*(5 Q) = Z(—ﬁ ,—().
We now use the divergence free condition on b to obtain

Im | @(&E b)) xec FF1(6,0)dgdg

~

=—Im [ ®E,¢)E-DE—E,¢— ) FE,C) FHEC) dede d¢ dc,

R4d

X-12
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which, by taking the average, leads to

Im [ ®(&,)&-b(.,.)) *ec f[H(E.C)dEdC

R2d

- %[m (D(6,¢) =2, ¢)E-b(E - €, ¢ =)

R44d

FE,C) F¥(€,¢) de de'd¢ dg.

3.2 Regularizing in velocity

As mentioned when stating Prop. 1, it does not immediately yield the answer
that we are looking for since it requires some a priori regularity in velocity
on f which is not readily available. Eq. 2 is obviously not invariant by con-
volution in velocity and any regularization in v comes with a corresponding
loss of regularity in x.

We need to proceed carefully by making the trade-off between x and v as
quantitative as possible. For this reason, we define f, by

fr = (¢ +1€D), (15)
where we typically consider

1

(I)(.CL’) = m, re (O, 1)

For a fixed value of ||, £, decays faster than f in ¢. This will allow us to
control the extra derivatives needed in v through the gain of regularity in x.
More precisely, we can prove from Prop. 1

Proposition 2. Assume that f € LL%, and g € LyL2, satisfy (10).
Then f,. solves
Ofr + (v +b(x,v)) - Vofr =gr +c,

where G, =g ® and ||c|| oo 12 fry gr(1+fl)HfHL?oL%v forg: | (L+]E12+[C12)0]| 11 -

Proof. The proof follows classical commutator estimates for the theory of
renormalized solutions which we perform here in Fourier.

X-13
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Multiplying Eq. (12) on fby ®, we observe that
atfr - 6 : VCfT + 25 (b(a )) *ec fr = /g\r +/C\>
where g, = g® and

G+ G =—FE& Ved(¢]+ [€])
/?5 €.~ ) @ (] +1€) - @ (1| + [€) Fie,¢) e dc.

Note that
/(1+ D" @] ded¢ < /|ﬂ2(1+ €127 1@ (IC] + [EDIF (€17 d€ d.

By the definition of ®, we hence have that

27~ 12 o 72 &P QA +(C)
Jaiarap dcac < [\ S e s

showing indeed that
leillperzmy < vl flloere,- (16)

We perform similar calculations for ¢y, first with

ez <[] /\5(6 — &, =R +1€D) — (| + €N 1F(€,¢) de’ dc.
Next we observe that
|®(z) — ®(y)| < rle—yl (14 |z —y]) inf (L4 [=))7" QA+ y)""),

implying that

l=¢l+le-¢

A+IC=d+1E=¢€1).

Denoting

L= =&) ==+ 1€=¢&D) A+ =+ 1g =€),

X-14
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we hence obtain that

c: ] b( Ld¢ d
Bl < TR / (€ ONIBE — €.¢ — ¢) L' dc
< o € Olbe - c- ol Laeac
Therefore

1A+ 1D Cllz, < rlloLllry (1 f]zz
and adding (16), by the definition of A
lellzoorzry < llerllzoorzmy + lleallzoorzmy < v (1+ A) || f]l e L2, (17)

concluding the proof. O

3.3 Proof of Theorem 3

The strategy is of course to apply Prop. 1 on the regularized f, as defined
by (15). Since by Prop. 2, f, solves the kinetic equation (10) with g, + ¢ as
a right-hand side, we deduce from Prop. 1

(1= 0= 2A) Lol oy < IS0, o + 1ol = T2, oo
LyH;' " H, LZH, LZH,
Hmmﬁwm+%//ﬁ@0ﬁ@+@&«w
’ 0

Provided that r > (1 — 6)/2 then, we trivially have that

Hf”(t)||LgH51‘9>/2 < ||f(t)HL%,U~

The symbol m(¢,¢)/(1+]¢[)1~Y corresponds to the product of two Calderon-
Zygmund operators and is thus bounded on every L” space for 1 < p < oo.
We hence also have that

Rg//mg<ﬁ@+a%«mﬂm%ﬂﬁwﬂwm%yw

‘|‘HfrHL§,OL§W£1—9)/2,p ngHLtng/Wy—e)/z,p/ .
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We have similarly that if » > (1 —6)/2
1Ol s ppwg-oroe < W flleiez s MOl -0 < gl
By the estimate on ¢ in Prop. 2, one also has the bound
HCHL%LgHélfe)/? <tr (1 + A) ”fHL;’OL%U
As a consequence from (18)

(1= 0=22) | £, 202 < (CH7) A4 A) | FI2 s sz, +Cllgl?

L2HY*H = , LiE,”
Finally by the definition of ®,
HfrHL?H;/szfe/z = Hf”L%H;/Zf'FH;G/Zfr,
so that

(1=0=24) |12, oy orns < (CHE0) 0+ A) 1 e n, +C Ny

This obviously leads to taking r as small as possible to obtain the largest
possible regularity. Since we have to take r > (1 — 6)/2, we simply choose
r = (1 —0)/2, and conclude that

(L= 0 =24 I£1I}, orz 1o < (CH8) A+ A Fll7perz orp, + C 9l -

L2HY2a;t? =

Optimizing in € in terms of A finishes the proof by taking s = /2.
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