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Abstract—Healthcare systems are struggling with increasing
workloads that adversely affect quality of care and patient
outcomes. When clinical practitioners have to make countless
medical decisions, they are not always able to make them
prudently or consistently. In this work, we formulate clinical
decision making as a reinforcement learning (RL) problem and
propose a human-controlled machine-assisted (HC-MA) decision
making framework whereby we can simultaneously give clinical
practitioners (the humans) control over the decision-making
process while supporting effective decision-making. In our HC-
MA framework, the role of the RL agent is to nudge clinicians
only if they make suboptimal decisions at critical moments. This
framework is supported by a general Critical Deep RL (Critical-
DRL) approach, which uses Long-Short Term Rewards (LSTRs)
and Critical Deep Q-learning Networks (CriQNs). Critical-DRL’s
effectiveness has been evaluated in both a GridWorld game and
real-world datasets from two medical systems: Christiana Care
Health System (CCHS) in Newark, Delaware and Mayo Clinic
in Rochester, Minnesota, USA for septic patient treatment. We
found that our Critical-DRL approach, by which decisions are
made at critical junctures, is as effective as a fully executed
DRL policy and moreover, it enables us to identify the critical
moments in the septic treatment process, thus greatly reducing
burden on medical decision-makers by allowing them to make
critical clinical decisions without negatively impacting outcomes.

Index Terms—Reinforcement Learning, Sepsis, Critical Deci-
sion

I. INTRODUCTION

Many studies show that the medical operational features
of the healthcare delivery environment impact the quality of
care and hence patient health outcomes [1]–[5]. For example,
nurse workload, which is a function of the number and
complexity of patients a nurse cares for [3], has been shown
to affect length of stay (LOS) and rates of hospital acquired
infections [6], [7]. Workload is defined as “the task demand of
accomplishing mission requirements for the human operator”
[8]. Interpretation and quantification of workload in healthcare

delivery depends on many factors [9] and has been quantified
using objective, physiological and subjective measures [10].
Treatment decision-making is a type of workload which plays
a critical role in clinician performance. In hospitals, physicians
make a large number of clinical decisions from defining the
problem, to evaluating test results, to treatments. For example,
in one study, an average of 13.4 decisions were made during
a patient visit [11]. However, clinical decision-makers do
not always make optimal or consistent decisions in such
complex tasks for many reasons. One of them is ”decision
fatigue”. After a long series of decisions, people tend to
develop cognitive fatigue which can lead them to favor the
seemingly easiest option over all the others. One study found
that decision-makers tend to procrastinate, be less persistent,
and even fail to recognize decision opportunities at all [12].
For instance, nurses who suffer from decision fatigue are more
likely to make conservative decisions, which indicates that
they prefer to choose the ‘default’ option [13]. An abundance
of conservative decisions can have unwanted consequences in
resource and time-limited environments.

Like many real-world tasks, decision-making in healthcare
can present itself as a sequential multi-step learning prob-
lem when the outcome of the selected actions is delayed.
Reinforcement Learning (RL) offers an effective data-driven
solution based on a mathematically-grounded framework that
learns an optimal policy from data to maximize expected
reward [14]. In particular, Deep RL (DRL) effectively models
high-dimensional data and has been applied to healthcare [15],
[16]. In real-world domains like healthcare, however, such
automated decision-making approaches are undesirable and
unacceptable due to ethical, legal, and moral reasons.

We propose a general human-controlled machine-assisted
(HC-MA) DRL framework that nudges decision-makers
towards promising medical treatment decisions. As shown
in Fig 1, in our HC-MA framework, the human (medical



practitioners such as physicians or clinician teams) is the front-
end decision-maker, whereas the RL agent provides back-end
support. In Fig 1, there is only one physical environment which
is modelled differently Shuman for the human and SRL for the
RL agent. It is because the way humans perceive the environ-
ment differs greatly from the way RL agents model it, and
perceptions of people within the same physical environment
can also vary greatly. Consequently, human’s decision ahuman

can be different from the RL agent’s decision aRL. With this
HC-MA framework, the role of the RL agent is to support
the human to make effective decisions that contribute to the
desired outcomes and to prevent pitfalls by nudging the human
to make optimal decisions only if the human makes suboptimal
decisions when it matters, that is, at critical moments.

Fig. 1. Human-Controlled Machine-Assisted Framework

The ultimate goal of this HC-MA framework is to strike
a balance between giving human decision-makers control
over the process while supporting effective decision-making.
In this work, we focus on an extremely challenging task:
sepsis treatment. Sepsis, defined as infection plus systemic
manifestations of infection, is the greatest in-hospital cause
of mortality and source of expense; the syndrome has a high
mortality (43.8% in the high-target group and 42.3% in the
low-target group at 90 days, where the high-target group is
a single-center trial targeting high MAP, which is the driving
pressure of tissue perfusion [17]) even if treated according
to recommended guidelines [18]. This is due, in part, to
difficulties in diagnosis and delayed treatment. For every one
hour delay in treatment of severe sepsis/shock with antibiotics,
there is 10% decrease in patient survival probability [19]. On
the other hand, there are many barriers to timely, effective
treatment of sepsis: response and treatment depend on many
factors including the type of infection and the predisposition.
The treatment of sepsis patients is complex – the patient’s
condition is stochastic and dynamically changing during the
diagnosis process. Furthermore, the diagnosis of sepsis re-
quires the selection and ordering of potentially invasive and/or
costly imprecise tests. Patients’ responses to treatment are
uncertain, and the treatment itself is continually evolving as
the care provider gains insight into the patient’s condition and
learns more about the patient’s vital signs, laboratory tests,
and their response to treatment over time.

Similar to a large body of real-world tasks, sepsis treatment
can be characterized as a temporal sequential multi-step de-
cision process, where the outcome of the selected treatment

is often delayed. To identify critical moments, we proposed
and developed a Critical Deep RL (Critical-DRL) framework
based on the Long-Short Term Rewards (LSTRs) and Critical
Deep Q-Network (CriQN) algorithms for inducing the critical
policy. In the critical policy, optimal actions must be taken in
critical states and any action is allowed to be taken in non-
critical states. Critical-DRL’s effectiveness is assessed first on
a GridWorld, and then on two medical systems: Christiana
Care Health System (CCHS) in Newark, Delaware and Mayo
Clinic in Rochester, Minnesota, USA on the task of sepsis
shock prevention. We evaluated our proposed Critical-DRL
framework from two aspects: 1) effectiveness in that the
critical policy should be as effective as a fully-executed policy
2) how much it honors HC-MA decision making. Our results
show that the proposed Critical-DRL framework does indeed
identify critical decisions, in that critical policy can be imple-
mented as effectively as fully implemented policies. Moreover,
it can be leveraged in our HC-MA framework to lower burden
on medical decision-makers by allowing them to make critical
clinical decisions without compromising outcomes. Our main
contributions are: 1) we developed a Critical-DRL framework
to identify critical decisions and evaluated it; 2) we proposed
a HC-MA framework based on Critical-DQN and investigated
its potential for reducing healthcare workload.

II. METHOD

Our Critical-DRL framework is an offline approach. RL
approaches have been categorized as being either online or of-
fline. In the online RL, the agent learns while interacting with
the environment; in the offline case, the agent learns the policy
from pre-collected data. Online RL algorithms are generally
appropriate for domains where interacting with simulations
and actual environments is computationally cheap and feasible.
Simulations in healthcare domains can be especially difficult
due to disease progression modelling being very complex,
poorly understood processes; learning policies while working
with patients is unethical, if not illegal. Therefore, we focus
on offline RL. Inspired by neuroscience [20], our Critical-DRL
framework is built upon the Long-Short Term Rewards, which
are heuristics to measure the importance of a state. Throughout
the following sections, we will describe the Long-Short Term
Rewards approach for defining critical states, our Critical Deep
Q-Network algorithm, and the critical policies for evaluating
the quality of critical decisions.

A. Long Term Rewards

In conventional RL, an agent’s interactions with an environ-
ment are often framed as a Markov Decision Process (MDP),
where at each time-step the agent observes the environment in
state s, it takes an action a and receives a scalar reward r and
the environment moves to the next state. Q(s, a) is defined
as the expected cumulative rewards the agent will receive by
taking action a at state s and following the policy to the
end. Much of prior research applied Q-value difference among
different actions on a state as a heuristic value to measure the
importance of the state [21]–[24]. In general, the higher the



difference, the more important the state should be. Intuitively,
if all the actions for a given state have the same Q-value, then
it does not matter which action should be taken because all the
actions will lead to the same ultimate outcome. On the other
hand, if the difference of Q-values among different actions is
large, then taking a suboptimal action can result in a significant
loss in the final outcome. Therefore, we define the Long Term
Reward (LongTR) as the difference between the cumulative
future rewards of the best action and that of the worst action
for a given state s expressed as:

LongTR(s) = max
a

Q(s, a)−min
a′

Q(s, a′) (1)

B. Short-Term Rewards

As part of making decisions, humans use immediate rewards
as well as long-term rewards [20]. It is often said that humans
prefer immediate rewards to long-term rewards, particularly
when the immediate rewards are large. This is due to the fact
that the real world is unpredictable and dynamic. In general,
the longer someone waits for a future return, the higher the risk
of losing it. So while we use Q-values for long term reward,
we use immediate rewards for Short Term Reward (ShortTR).

However, in many real-world applications like healthcare,
the rewards are often delayed until the end of the trajectory.
Different from the delayed rewards in the classic mouse-in-
the-maze situations where agents receive insignificant rewards
along the path and a significant reward in the final goal state
(the food), in healthcare, there are immediate rewards along the
way but they are often unobservable. This is due to the nature
of disease, which makes it difficult to assess patient’s health
moment by moment. For instance, the most proper rewards in
healthcare is the patient outcomes, which are often unavailable
until the end of the trajectory. Therefore, the challenge is
how to infer these unobservable immediate rewards from the
delayed rewards, while taking the noise and uncertainty in the
data into account.

Fig. 2. Architecture of InferNet

In this work, following [25] we apply a neural network
based approach (InferNet) to infer “immediate” rewards from
delayed rewards. Fig 2 shows the general architecture of the
InferNet. Basically, given a trajectory (s0, a0, s1, a1 · · · sT−1)
with length T to the InferNet as input, it outputs an “inferred”
immediate reward rt = f(st, at|θ) for each state-action pair in
the trajectory. Here, θ indicates the parameters (weights and
biases) of the neural network. When learning the “inferred”

immediate rewards, there should be a constraint that: the sum
of all the predicted rewards in one trajectory is equal to the
delayed reward, as shown in Equation 2 where Rdel indicates
the delayed reward.

Rdel = f(s0, a0|θ)+f(s1, a1|θ)+ ...+f(sT−1, aT−1|θ) (2)

Therefore, the InferNet is trained by minimizing the loss
function between the sum of the predicted rewards and the
delayed reward for each trajectory, as shown in Equation 3.

Loss(θ) = (Rdel −
T∑

t=1

f(st, at|θ))2 (3)

Once the InferNet model is trained, we can predict the
immediate rewards, the ShortTRs, for any state-action pairs.

C. Critical Decision & Critical Policy

Generally, we refer to critical decisions as those which
have a significant influence on the desired outcome, whereas
non-critical decisions have a lesser impact. While Long-Short
Term Rewards defined above can be regarded as heuristics
for estimating the relative significance of a decision; however,
quantifying the ratio of critical vs. non-critical decisions is
challenging. Therefore, we categorize decision into binary
categories (critical versus non-critical) by varying thresholds
based on both long-term and short-term rewards.

Furthermore, our Critical Policy is a policy that takes the
optimal action for critical states, but random actions for non-
critical states. The intuition is that in critical states, different
actions have great impacts on the desired outcomes, and
therefore the optimal action should be taken, whereas in non-
critical states, any action can be taken. Consequently, the
more accurate the critical decisions are, the more effective
the Critical Policy will be. To induce effective critical policy,
we proposed Critical Deep Q-Network (CriQN).

D. Critical Deep Q-Network (CriQN)

Deep Q-Network (DQN) is one of the most promising
approaches that is widely used in areas like robotics and video
games [26]. In DQN, the Q functions are estimated based on
the Bellman equation that the optimal policy will be followed
all the way to the end. For a single (s, a, r, s′) tuple, the
Bellman Equation can be expressed as:

Q(s, a) = r + γmax
a′

Q(s′, a′). (4)

where r is the immediate reward for taking action a at state
s; γ is the discount factor; and Q(s′, a′) is the action-value
function for taking action a′ at the subsequent state s′.

The Critical Policy, in the critical states, will take optimal
actions, while in the noncritical states, any action will be
considered. As a result, it fundamentally violates the Q-value
assumptions in the Bellman equation by failing to take the
optimal actions on non-critical states. In order to take into
account our critical decisions, we modify the Bellman equation
based on whether the state is critical. The core intuition behind
the Critical Deep Q-Network (CriDQN) is that an agent should



take the optimal action if a state is critical, else it can choose
any action and thus we have:

Q(s, a) =

{
r + γmaxQ(s′, a′) s’ is critical
r + γmeanQ(s′, a′) s’ is non-critical.

(5)

The Equation 5 states that when updating Q-values, the
maximum Q-value for a state is used if the state is critical,
while if the state is not critical, the average of all possible
Q-values is used since any action can be taken.

Algorithm 1 presents the pseudo-code for the CriQN. First
of all, the InferNet model is trained to infer the immediate
rewards from delayed rewards in the training dataset. Then,
there are three parameters in the algorithm: T+

ShortTR and
T−ShortTR are the ShortTR thresholds originating from the
elbows of the inferred immediate reward distribution and,
TLongTR is the LongTR threshold used to determine the Q-
value difference threshold. Lines 7-17 in Algorithm 1 applies
the InferNet to predict the maximum and minimum inferred
immediate rewards for the next state s′. If the maximum
is larger than T+

ShortTR or the minimum is smaller than
T−ShortTR, the next state s′ is critical and a label ci is added to
the tuple. Second, it initializes all Q-values using the inferred
immediate rewards to avoid the bias of the neural network.

Lines 26-48 show that for each iteration, we will first
calculates the Q-value difference for all states. The Q-value
difference threshold T∆ is defined as the top TLongTR percent
value in the training dataset. It means that TLongTR percent
states with higher Q-value difference are critical. In other
words, TLongTR is like a calibrated score (e.g. p50, p80)
to determine how many states are critical, and T∆ is the
real cutoff on the Q-value difference value. Finally, for each
(s, a, r, s′, c′) tuple, if the Q-value difference of s′ is larger
than T∆ or it is identified as critical by the immediate rewards
c′ == True, we consider the state s′ as critical and its value
function is maxa′Q(s′, a′; θ−); for non-critical states, their
value function are defined as meana′Q(s′, a′; θ−).

In summary, Algorithm 1 applies ShortTR to identify one
set of critical states and LongTR to identify another set
of critical states. The final critical states are the union of
the two sets. More specifically, the set of ShortTR is static
because the thresholds TShortTR and InferNet are pre-defined
before training. Though, the set of LongTR is dynamic and
determined by the RL policy and threshold TLongTR.

E. Identifying & Evaluating Critical Decisions

A standard RL agent would always take the optimal action,
applying maximum-Q in Bellman equations to all states, and
thus it is guaranteed to converge and lead to an optimal
policy. Our critical RL agent, however, only takes the optimal
actions on critical states and any actions on other states, taking
average-Q on non-critical states and thus it is not guaranteed
to converge. On the other hand, our critical policy can be
seen as two relative independent steps: identifying critical
states and determining the optimal action for critical states.
Therefore, we explored different combinations of Critical-
DQN (CriQN) and DQN for these two steps separately. That

Algorithm 1 Pseudocode of CriQN
1: Train and load InferNet model
2: Initialize the training dataset D as (s, a, r, s′) tuples.
3: Initialize the Q function with random parameters θ
4: Initialize the target Q̂ function with parameters θ− = θ
5: Set user-defined parameters: T+

ShortTR, T−ShortTR, TLongTR

6:
7: // Initialize critical states based on immediate rewards
8: for each (si, ai, ri, s

′
i) in D do

9: r′max = max(InferNet(s′i, a
′))

10: r′min = min(InferNet(s′i, a
′))

11: if r′max > T+
ShortTR or r′min < T−ShortTR then

12: c′i = True
13: else
14: c′i = False
15: end if
16: D ← (si, ai, ri, s

′
i, c
′
i)

17: end for
18:
19: // Initialize Q(s, a) as immediate reward
20: for each (si, ai, ri, s

′
i, c
′
i) in D do

21: set yi = ri
22: end for
23: Perform gradient descent on (yi −Q(si, ai; θ))

2

24: Reset Q̂ = Q
25:
26: // Main training loop
27: for iteration k = 1, 2, ... till convergence do
28: Initialize empty array Qdiffs

29: for each (si, ai, ri, s
′
i, c
′
i) in D do

30: Qdiffs ← (maxQ(si, a
′; θ−)−minQ(si, a

′; θ−))
31: end for
32: T∆(Q) = top TLongTR percent of Qdiffs

33:
34: for each (si, ai, ri, s

′
i, c
′
i) in D do

35: if terminal s′i then
36: Set yi = ri
37: else
38: Qdiff = maxQ(s′i, a

′; θ−)−minQ(s′i, a
′; θ−)

39: if Qdiff > T∆(Q) or c′i == True then
40: Set yi = ri + γmaxa′Q(s′, a′; θ−)
41: else
42: Set yi = ri + γmeana′Q(s′, a′; θ−)
43: end if
44: end if
45: end for
46: Perform gradient descent on (yi −Q(si, ai; θ))

2

47: Every C steps reset Q̂ = Q
48: end for

is, we explored four critical policies denoted in the form of
state-action pairs as: CriQN-CriQN, CriQN-DQN, DQN-DQN,
DQN-CriQN. For example, the CriQN-DQN refers to use the
CriQN to identify critical states and DQN to select optimal
actions. Consequently, the performance of the critical policy
is determined by both factors: the accuracy of critical state
identification and the choice of optimal action on the critical
state. In the following, we investigate 1) how the two factors
affect the performance of the critical policy and 2) how close
the critical policy’s performance is to a fully-executed policy.



III. GRIDWORLD GAME TESTBED

A. GridWorld Description

In the GridWorld game, the agent learns an optimal policy
to collect as much reward as possible from the start point to
the end point. Fig 3 shows our GridWorld environment. The
agent starts from the start state (right bottom corner), explores
the 2D space and finishes at the end state (left upper corner).
There are several walls in the GridWorld which are marked as
black blocks. The agent state is simply represented by the X
and Y coordinates.

Fig. 3. The Interface of the GridWorld Game

1) Action: There are three actions: up, down and left. In
Fig 3, the possible actions for each state are labeled with
small purple triangles such that some states have three possible
actions whereas others only have two or one possible action(s).
The possible action(s) for each state is predefined in the
environment, so that the agent never hits the wall or boundary.

2) Reward: In the GridWorld, there is a -0.1 penalty reward
for each step, and the agent can collect -1 and +1 rewards.
In order to simulate the real world, the reward function is
designed in terms of state-action-state, R(s, a, s′). The black
arrows indicate that if the agent enters the reward state along
that arrow, the agent will get the reward; otherwise, the agent
will not receive the reward. Furthermore, when the agent enters
the reward state, it is forced to move left. This design aims
to avoid the agent from collecting the same reward repeatedly
without moving towards the terminal state.

3) Stochastic: The GridWorld environment is stochastic in
that the same state-action pair can result in a different next
state. For example, if the agent takes action ‘left’, it only has
an 85% chance of moving left, and a 15% chance of moving
to other possible directions.

B. Experiment Setup

To align with our healthcare application in which online
learning is infeasible, we focus on an offline RL approach and
follow the three steps: 1) collect the training dataset by random
exploration, 2) induce the policies offline and, 3) evaluate the
performance of induced policies online.

1) Data Collection: The training dataset contains 1000
trajectories that are generated from a random policy under
different random seeds.

2) Offline Learning: Before inducing the policies, we train
the InferNet model to infer the immediate rewards in the
training dataset. Fig 4 (Left) shows the training process for
InferNet that the Root Mean Square Error (RMSE) between
the sum of inferred immediate rewards in a trajectory and
its delayed reward is decreasing during the training process.
After about 1 million training iterations, the InferNet has
converged. Fig 4 (Right) shows the inferred immediate rewards
distribution in the training dataset. We sorted the inferred
immediate rewards in descent order and the X axis shows the
ranking percentage for the whole dataset.

Fig. 4. Left: Training process for InferNet. Right: Inferred Immediate Rewards
Distribution

To identify critical states, a key thing is to choose an
appropriate threshold that would not include too many trivial
decisions, but at the same would not exclude too many critical
decisions. For CriQN, the T−ShortTR and T+

ShortTR are fixed as
−0.4 and +0.3 based on the elbows of the inferred immediate
reward distribution, which are indicated by the two vertical
red dot lines in Fig 4 (Right). For the TLongTR parameter,
we cap the critical decisions to be no more than 50% that
determines the final outcome and thus, using the training data
we explore five different thresholds, the top [10%, 20%, 30%,
40%, 50%] of all the Q-value difference in the training data as
the cut-off points for TLongTR rewards and thus five CriQN
policies are induced. Therefore, a total of six policies were
trained in this step, five CriDQN policies and one DQN policy.
More specifically, since we are applying offline learning, the
converge criterion is controlled by the number of training
iterations. With enough training iterations, both CriDQN and
DQN could learn how to act optimally in the GridWorld game.

3) Online Evaluation: In the online evaluation, for any
given state, we first apply InferNet to estimate the inferred
immediate reward for each action. If the maximum inferred
reward is larger than T+

ShortTR or the minimum is smaller
than T−ShortTR, then the state is critical. Second, if the state is
not critical, then we utilize the RL policy to calculate Q-value
difference and compare with its threshold T∆(Q), which is
calculated based on the corresponding policy and TLongTR in
the training dataset. In the end, if the state is critical, the agent
follows the corresponding policy to take the optimal action.
Otherwise, the agent can select any action randomly. Thus,
there are two stages in the online evaluation, identify critical
state and then select optimal action. For example, the critical
policy CriQN-DQN will apply CriQN policy to calculate Q-
value difference and compare with its threshold to determine
critical, but apply DQN policy to select optimal actions.



The performance of the critical policy is measured by the
average of cumulative rewards over 100 trials under different
random seeds. For a more robust or accurate result, we
repeat the entire experiment 20 times with completely different
random seeds to minimize the bias caused by data collection.

C. Results

Fig. 5. Online Evaluation Result

Fig 5 shows the online evaluation result. The X axis
represents the LongTR threshold used by the corresponding
identification policy to identify critical states. It is important
to note that we define 100% as a fully-executed DQN policy
which carries out the optimal actions all the time, and 0%
as a fully random policy which always randomly selects
actions. Thus, 0% and 100% indicate the lower and upper
performance bounds for critical policy. The Y axis shows the
reward (average of 20 replications with the shadows depicting
the standard error) received by each critical policy. More
specifically, we involved a Full (DQN) policy, which randomly
pick states to take optimal actions, as a baseline policy to test
whether the identified set of critical states are indeed critical.
For example, for the Full policy, TLongTR = 30% means we
randomly pick 30% states to take optimal actions and 70%
states to take any actions.

Overall, there is a general trend that the larger the threshold
(the more states classified as critical states and take optimal
actions), the better the critical policy performs.

1) Performance Comparison: First, we investigate how the
identification policy and execution policy may impact the
performance of the critical policy. Fig 5 shows that CriQN-
CriQN (red) and CriQN-DQN (blue) perform very closely to
each other while the performance of DQN-CriQN (green) and
DQN-DQN (magenta) are very close; more importantly, the
former two outperform the latter two across different LongTR
thresholds. It suggests that the CriQN is more accurate in
identifying critical states than DQN while for carrying out
the optimal actions, both CriQN and DQN can be effective.
Second, when comparing the Full policy with the four critical
policies, the Full policy performs significantly worse than
the others. It means that identified critical states through
LSTRs are indeed critical and better than a randomly picked
set of states. Finally, when comparing to the fully-executed

policy (100% threshold), the CriQN-CriQN and CriQN-DQN
with threshold 50% can reach 90% performance of a fully-
executed DQN policy. Note that because DQN-CriQN (green)
and DQN-DQN (magenta) have very close performance, for
simplicity reasons we only include DQN-DQN for the purpose
of comparisons in the following healthcare dataset.

Fig. 6. Total Steps in Online Evaluation

2) Step Saving Comparison: Fig 6 shows the run-time steps
for each critical policy. The X axis is the LongTR thresholds
while the Y axis is the number of total steps from start to end
point in the online evaluation. In Fig 6, before threshold 30%,
all the four critical policies take similar steps. However, after
30%, CriQN-CriQN and CriQN-DQN take significant fewer
steps than the DQN-CriQN and DQN-DQN. It suggests that
the critical states identified by CriQN are more effective in
reducing the number of steps in the trajectory. However, DQN-
CriQN and DQN-DQN take more steps than the Full policy
after 40%. Note that the goal of the RL-induced policy is to
collect as much reward as possible, but not to find the shortcut
path to the destination. So it suggests that inaccurate critical
states can misguide the agent to take more steps to obtain
reward. Overall, the results show that make optimal decisions
on critical states could reduce the number of total decisions
for achieving the goal.

3) Data-Efficiency for CriQN policy: From the online eval-
uation results in GridWorld, CriQN-CriQN and CriQN-DQN
are better than DQN-CriQN and DQN-DQN and thus we
could conclude that CriQN is better than DQN in identifying
critical states, but there’s no big difference between the two
in selecting optimal actions. This is because both CriQN and
DQN have enough data to induce an optimal policy and select
the best action. However, what if we do not have enough data
to train an optimal policy, how does the CriQN perform?

Fig 7 (a)-(e) show the GridWorld online performance of
CriQN-CriQN vs. CriQN-DQN as the number of training
trajectories increases. The X axis is the number of trajectories
used to train the critical policies. The Y axis is the reward
received by each critical policy. In this experiment, we applied
different LongTR thresholds to identify critical states and the
only difference is which RL policy makes the decisions on
the critical states. The results show that when the training
dataset is less than 500 trajectories, the CriQN-CriQN is



(a) TLongTR : 10% (b) TLongTR : 20% (c) TLongTR : 30% (d) TLongTR : 40% (e) TLongTR : 50%

Fig. 7. CriQN vs. Original-DQN in Decision Making

worse than the CriQN-DQN across all five figures. When the
training dataset is larger than 500 trajectories, they have similar
performance. Our results demonstrate that CriQN-DQN can
achieve the same or better performance than CriQN-CriQN
with the same amount of data.

IV. REAL-WORLD APPLICATION: SEPSIS TREATMENT

A. Two Medical Datasets

Sepsis is a life-threatening disease associated with a high
mortality rate and costly medical treatment. Our datasets
are the electronic health records (EHR) collected from two
different medical systems: Christiana Care Health System
(CCHS) in Newark, Delaware and Mayo Clinic in Rochester,
Minnesota, USA.

1) CCHS Dataset: In total there are 210,289 visits and
9,029,493 events. By combining the International Classifica-
tion of Diseases, Ninth Revision (ICD-9), and clinician rules,
we sampled 1,800 positive septic shock trajectories and 1,800
negative trajectories (no shock), keeping the same distribution
of age, gender, race, and the length of hospital stay. To impute
the missing value, we applied the expert imputation rules that
1) the values of vital signs were carried forward for 8 hours,
2) the values of lab results were carried forward for 24 hours
and, 3) the remaining missing values were imputed by mean
values. The final dataset consists of 3,600 visits (50% shock,
50% no shock) and 84,160 events for which the average length
of trajectories is 24 and the maximum length is 317.

2) Mayo Dataset: In total, there are 221,700 visits and
144,693,491 events. Similarly, by combining the ICD-9 and
clinician rules, we sampled 2,205 positive septic shock trajec-
tories and 2,205 negative trajectories (no shock), keeping the
same distribution of age, gender, race, and length of hospital
stay. To impute the missing value, we applied the same rule
with the CCHS dataset. The final dataset includes 4,410 visits
(50% shock, 50% no shock) and 392,850 events where the
average trajectory length is 65 and the maximum trajectory
length is 1160.

B. Experiment Setup

1) State, Action, Reward: Our states, actions and rewards
were built based on the advice from clinicians with high
domain expertise. This definition and the following data pre-
processing steps are determined by three leading clinicians
with extensive experience on this subject. The states are
approximated from 15 sepsis-related clinical measurements,

including 7 vital signs (HeartRate, PulseOx, Respiratory rate,
Temperature, SystolicBP, DiastoicBP, Mean Arterial Pressure)
and 8 lab results (Bands, BiliRubin, Blood Urea Nitrogen,
FiO2, Creatinine, Lactate, Platelet, White Blood Cell).

Generally, medical treatments can be defined in both dis-
crete and continuous action spaces; for example, a decision
of whether a certain drug is administrated is discrete, while
the dosage of drug is continuous. Continuous action space has
been mainly handled with policy-based RL models such as
actor-critic models [27], and it is generally only available for
online RL. Since EHRs are offline data, and it is infeasible to
search continuous treatment action by interacting with actual
patients, we focus on discrete actions. Thus, we defined three
discrete actions: two types of medical treatments (antibiotic
administration (A) and oxygen assistance (O)) and no
treatment (N). The agent should learn a treatment policy
that determines when and which types of treatments should be
executed. More specifically, the two treatments can be applied
simultaneously, which results in a total of four actions.

For the reward function, we defined four stages of sepsis,
and the delayed rewards are set for each stage: infection (±5),
inflammation (±10), organ failure (±20), and septic shock
(±50). The designated negative reward was given when a
patient enters into the corresponding stage, and its positive
reward was given back when the patient recovers from the
stage. As an example, if a patient recovers from the ‘inflam-
mation’ stage, he receives a positive reward (+10) while if
a patient enters the ‘inflammation’ stage, he gets a negative
reward (−10). In this way, an optimal policy should keep
patients from getting negative rewards and help them stay in
non-negative states.

2) Offline Learning: The critical policy induction follows
the same process as with the GridWorld III-B2, train InferNet
model to infer immediate rewards, select the T+

ShortTR and
T−ShortTR thresholds, induce five CriDQN policies with dif-
ferent TLongTR parameters from 10% to 50% and one DQN
policy.

More specifically, we compared three types of critical poli-
cies: CriQN-CriQN, DQN-DQN and CriQN-DQN with two
baseline policies: a fully-executed DQN (Full) policy and a
Physician’s policy. To train a policy that follows the physician
actions, we followed the same procedure as described in [28]
by using SARSA. Note that different from the GridWorld
game, it is not ethical and undesirable to experiment the RL-
induced policy on real patients. For the purpose of offline



evaluation, it is necessary to exclude part of the dataset
from offline learning. Therefore, we conducted a 5-fold cross-
validation and the dataset was split into 80% training and
20% test sets with the equal number of positive/negative shock
trajectories.

3) Offline Evaluation: The effectiveness of critical policies
were evaluated offline on the test dataset using two metrics:
1) septic shock rate and 2) percentage of nudges. In general,
our expectation is that an effective critical policy will have
the same low rate of septic shock as the Full and Physician
policies, but with fewer nudges.
Septic Shock Rate: In similar fashion to prior studies (
[28]–[30]), the induced policies were evaluated using the
septic shock rate. The septic shock rate rshock was first
used in [15] and the assumption behind it is: when a septic
shock prevention policy is indeed effective, the more the real
treatments in a patient trajectory agree with the induced policy,
the lower the chance the patient would get into septic shock;
vice versa, the less the real treatments in a patient trajectory
agree with the induced policy (more dissimilar), the higher the
chance the patient would get into septic shock.

In this analysis, we compared three critical policies against
the Full and Physician policies by looking at the septic shock
rates for the 10% most similar group and the 10% least similar
group (most dissimilar). To do so, first, for each trajectory, a
similarity rate rs between the policy’s action and the actual
physicians’ action is calculated. The higher the rs, the more
similar the RL policy is to the physicians’ treatment. Then
we sort the trajectories by their similarity rate in ascending
order and calculate the septic shock rate for the top 10% of
trajectories with the highest similarity rate, referred as 10%
most similar group and the bottom 10% of trajectories with the
least similarity rate, referred as 10% least similar group. The
septic shock rate is defined as: rshock = vshock/vs, where vs is
the number of trajectories and vshock is the number of positive-
shock-trajectories. In general, we expect the septic shock rate
for the 10% most similar group should be as low as possible,
whereas those for the 10% least similar group to be higher.
Percentages of Decision States and Nudges: Percentage
of decision States represents how often certain decisions
are required to be made by the physician, while Percentage
of Nudges indicates how often the induced policies would
differ from physician’s decisions and require the physician’s
attention. For critical policies, a nudge is needed if the state
is critical and the physicians’ action is different from the
critical policy’s action while for non-critical policy, a nudge
is needed whenever the physicians’ action differ from the
policy. Note that when identifying critical states, the LongTR
threshold functions as a hyper-parameter which approximately
determines the percentage of the critical decisions in which the
physicians must follow the corresponding policy (the higher
the LongTR threshold, the more states will be considered as
critical). In other words, it affects the percentage of critical
states and nudges. In the offline evaluation, we explored the
LongTR thresholds from 10% to 50% and stopped when either
the critical policy beat the Full policy, or the threshold reaches

Fig. 8. Septic Shock Rate for CCHS

Fig. 9. Septic Shock Rate for Mayo

50%. After that, we investigated how fewer decisions and
nudges are required to achieve the same effectiveness with
the Full policy.

C. Results

1) Septic Shock Rate: Fig 8 and 9 shows the results of
septic shock rate on CCHS and Mayo, respectively. In the X
axis, there are two levels; the top level indicates the LongTR
thresholds, and the second level shows the name of the policy.
More specifically, for each bar, the wide column shows the
septic shock rate of the 10% least group while the narrow
column shows the 10% most similar group. For the critical
policies, we only considered the similarity on the critical
states. Note that the horizontal black line represents the septic
shock rate of the Full policy in the 10% most similar group,
which is our gold standard.

First, within each of the three types of critical policies
on both datasets, there is a general trend that the larger the
LongTR threshold, the lower the septic shock rate in the
10% most similar group. It suggests that as more states are
considered critical and optimal actions are taken, the critical
policy will become more and more effective in preventing
septic shock. Furthermore, as expected, the septic shock rate in
the 10% least group are significantly higher than the 10% most
group. Such results suggest that our critical policies indeed
have learned the common optimal treatments from the EHR
dataset; following these treatments will reduce the odds of
getting into septic shock, while not following them may greatly
increase the likelihood of septic shock.

Second, when comparing the three types of critical policies,
CriQN-DQN performs better than the other two across differ-
ent LongTR thresholds on both datasets. It aligns with our
GridWorld results that the best critical policy is CriQN-DQN
which applying CriQN to identify critical states while original



DQN to select optimal actions. It is also important to note that
the Physician policy fails to perform as well as the Full policy
on both datasets and has a higher rate of septic shock for the
10% most similar groups of patients.

Finally, across the five TLongTR thresholds, the CriQN-
DQN with TLongTR = 0.5 has the lowest sepsis rate for both
CCHS and Mayo. When comparing the best critical policy
setting with the corresponding Full policy (black horizontal
bar), the CriQN-DQN with TLongTR = 0.5 policy outper-
forms the corresponding Full policy on CCHS and the two
policies are very close on Mayo. Thus, the CriQN-DQN with
TLongTR = 0.5 will be used for the following analysis for both
CCHS and Mayo. Overall, our analysis shows that CriQN-
DQN is the best critical policy and can be as effective as a
fully-executed policy or even better.

Fig. 10. Percentages of Decision States (transparent wide column) &
nudges(solid narrow column) on different groups of patients, CCHS (Left)
and Mayo (Right).

2) Percentage of Decision States and Nudges: Fig 10 illus-
trates the average percentages of decision states and nudges
per trajectory identified by the corresponding policies in the
test dataset. In Fig 10, we further split the patients into shock
and non-shock groups to gain a better understanding of where
the critical states and nudge happens.

First, the transparent wide columns show the percentage of
decision states for each policy across all patient groups. Note
that the CriQN-DQN policy uses LSTRs to identify ”critical”
states and it only requires decisions to be made in critical
states, but for the Physician and Full policies, it requires
decisions to be made in all states. Fig 10 shows that CriQN-
DQN can identify around 60% of states as critical across both
CCHS and Mayo, and specifically, about 80% of states are
critical among shock patients, and only about 40% among
non-shock patients.

Second, across all comparisons, the Physician policy has the
most nudges. This suggests that physicians may not always fol-
low a consistent treatment regimen. It is especially noticeable
in CCHS since physician actions contradict its corresponding
Physician Policy more than 90% of the time for both sepsis
shock and non-shock patients; however, these differences are
lower at Mayo: 75% for shock cases and 50% for non-shock
patients.

Third, the proposed CriQN-DQN policy can significantly
reduce the amount of decisions that physicians need to make
through our HC-MA framework. Using the Full policy in our
HC-MA framework would still require physicians to make
all of decisions. Using CriQN-DQN requires them to make
60% of decisions. Decisions are saved especially evident in

non-shock patients in that only about 40 percent of them are
critical. Furthermore, physicians will receive fewer nudges.
With CCHS, the CriQN-DQN is nudged 50% of times and less
than 30% for non-shock patients, while at Mayo it is nudged
less than 20% and less than 10% for non-shock patients. The
majority of the nudge savings come from non-shock patients
since it saves 60% of decisions requiring physician attention.

Finally, the number of non-shock patients (before sampling)
is several times that of shock patients. It indicates that the
critical policy could save tremendous amounts of nudges in
real life. Moreover, in both medical systems, all the policies
have more nudges on shock patients than that on the non-shock
patients. It is reasonable that shock patients are experiencing
more severe moments and require more attention. According to
the results, CriQN-DQN requires the least amount of nudging,
and this shrinkage is the result of reducing nudging on the non-
shock patients while still paying close attention to the shock
patients. This aligns with our expectations that the policy
should alert on the critical moments and in the meantime,
minimize the number of unnecessary alerts in order to avoid
decision fatigue.

3) Case Study: To illustrate how the CriQN-DQN policy
nudges physicians in the sepsis treatment, Fig 11 shows a
case study on a shock patient and a non-shock patient from
Mayo. In Fig 11, there are two levels in the X axis that
the top level shows the event number in chronological order
and the second level indicates the time after first arrival in
the hospital. For the Y axis, there are two categories that
’Treatment’ shows the real physicians’ treatments and ’Nudge’
indicates the suggested treatment from CriQN-DQN policy.
More specifically, ’transparent’ blocks in Nudge indicates
either the decision is non-critical or the policy’s treatment is
the identical to that of the physician. In Fig 11, for the shock
patient, our critical policy would nudge at the very start of
the treatment process to bring attention to this patient and
then continue to nudge the physician in order to suggest the
best possible treatment, which indicates the patient is in a
severe condition. In the meantime, for the non-shock patient,
our critical policy only nudge the physician two times. Overall,
the case study shows that our policy is capable of providing
early warnings on shock patients and continuing to do so as the
patient condition deteriorates. Furthermore, it would minimize
the unnecessary alerts on the non-shock patients.

V. RELATED WORK

Healthcare Workload and Alert: In healthcare systems, prac-
titioners’ workload is a critical concept affecting the quality of
care and patient outcomes. The review by Fishbein et al. [31]
identified objective measures of workload at four levels (task,
patient, clinician, and unit). Workload measures at the task
level included time to perform the task and task complexity;
at the clinician level, measures included time spent on a
task, number of procedures, and number of patients managed
simultaneously; at the unit level, factors included work inter-
ruptions and unit activity. Clinician workload plays a critical
role in clinician performance [32] and has been associated



Fig. 11. Case Study: whole treatment trajectory to show the real physicians’ treatments and Nudges from the critical policy.
For treatment: ’N’ means no action, ’A’ means antibiotic administration, ’O’ means oxygen assistance, ’A+O’ means apply two treatments together.

with provider burnout [33], [34], likelihood of medication error
[34], mortality [35], [36], adverse events related to mechanical
ventilation [37], length of stay (LOS) and procedure related
infections [38]. Thus, even though it is important to improve
treatment of patients, it is equally important to do so in a
manner that does not increase the workload of clinicians.
However, broad alerts can do little to improve performance
while negatively impacting physician workflow. In one study,
EHR alerts were automated for emergency physicians; these
alerts were received frequently and most were perceived to
not impact patient care (changing clinical management about
2% of the time) [39]. Clinical decision support systems that
warn of irrelevant actions can result in alert fatigue which can
actually lead providers to overlook important signals. Conse-
quently, when implementing technology to improve care, it is
important to consider provider alert fatigue by minimizing the
number of unnecessary warnings.

Deep Reinforcement Learning: Recent advances in deep
learning have allowed RL to work in complex interactive
environments which was often impractical before. Recent work
showed that RL can induce effective policies for a variety
of tasks, such as game playing [26], [40], robotic control
[41], [42], recommendation generation [43], [44] and also
healthcare treatment [15] and [45]. However, all of the state-of-
art RL algorithms focused on inducing effective policies. None
of them considered interpreting, explaining and identifying
critical decisions from RL induced policies.

LSTRs in Animal and Human Decision-making: The rise
of computational neuroscience has allowed researchers to treat
the brain as a super computing machine so as to understand the
learning and decision-making process in animals and humans.
A lot of studies have shown that many key RL signals exist in
the human and animal brains during the learning and decision-
making process. In animal studies, Morris [46] and Roesch
[47] trained monkeys and rats to perform a binary choice
task with different actions associated with different sizes of
rewards. They found that monkeys and rats maintain Q-values

in their brain and prefer to choose the action with higher Q-
value. In Sul’s work [48], he trained rats in a maze to choose
to go left or go right to get rewards. He found that some brain
neurons encode the Q-value difference signal when making
decisions and this Q-value difference reflects the desirability
of choosing an action. In human studies, Li [49] also found
the Q-value signals in the human brain when performing a
two-armed bandit task. In Samuel’s experiment [20], human
participants took a series of binary choices between (small,
early) and (big, later) monetary rewards. The results showed
that there are two separate systems in our brain to deal with
immediate rewards and delayed rewards. In summary, prior
research has shown that Q-values and rewards are widely
used in animal and human decision-making and RL is one of
the most promising frameworks to model the decision-making
process in humans.

VI. CONCLUSIONS

In this study, we explored a Critical-DRL approach to
identify critical decisions in both a synthetic simple GridWorld
game and a real-world healthcare dataset. Our results from
both tasks showed that the CriQN is significantly better than
the original DQN in identifying critical states. For GridWorld,
the performance of CriQN-CriQN and CriQN-DQN are very
close and both perform better than DQN-CriQN and DQN-
DQN while for sepsis prevention, CriQN-DQN performs the
best. Overall, the best critical policy is using CriQN to identify
critical states but utilizing original DQN to select optimal
actions. Our results on sepsis treatment show that the induced
critical policy could reduce the percentage of nudges while
keeping the septic shock rate as low as a fully-executed policy.
In summary, this paper provides some evidence for employing
our proposed general human-controlled machine-assisted (HC-
MA) DRL framework in healthcare domain where physicians
are always overloaded and efficient alert is needed.
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