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ABSTRACT1
This paper investigates the practical engineering problem of traffic sensors placement on stretched2
highways with ramps. Since it is virtually impossible to install bulky traffic sensors on each high-3
way segment, it is crucial to find placements that result in optimized network-wide, traffic observ-4
ability. Consequently, this results in accurate traffic density estimates on segments where sensors5
are not installed. The substantial contribution of this paper is the utilization of control-theoretic6
observability analysis—jointly with integer programming—to determine traffic sensor locations7
based on the nonlinear dynamics and parameters of traffic networks. In particular, the celebrated8
asymmetric cell transmission model is used to guide the placement strategy jointly with observ-9
ability analysis of nonlinear dynamic systems through Gramians. Thorough numerical case studies10
are presented to corroborate the proposed theoretical methods and various computational research11
questions are posed and addressed. The presented approach can also be extended to other models12
of traffic dynamics.13
Keywords: Traffic sensor placement, highway traffic networks, asymmetric cell transmission14
model, observability Gramian, convex integer programming.15
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1 INTRODUCTION1
With the development of intelligent transportation systems technologies, numerous sensing meth-2
ods for traffic data collection have become popular (1, 2). Fixed sensors such as induction loops3
and magnetometers allow network operators to obtain high-quality measurements of vehicle den-4
sity besides other information such as vehicle speeds and flow (1). Sensors, however, are generally5
expensive to install and maintain which makes them infeasible for installation throughout the net-6
work and covering all segments. This poses a problem for traffic management operations and7
controls that require knowledge of the traffic state on all segments. Such operations include traffic8
control tasks such as ramp metering, and variable speed limit control. While it may only be fea-9
sible to collect data from a fixed number of segments in the network, it is still possible to obtain10
accurate estimates of the state of traffic on all the segments if the sensors are strategically placed.11

The problem of placing traffic sensors on highway networks has been divided into two main12
categories in the literature, one involving estimation and the other involving observability. Under13
the former category, the objective is to determine the optimal placement of sensors that minimizes14
the estimation error for unmeasured quantities such as travel time, OD matrix, link flows. Under15
observability, the literature is further divided based on the type of observability that is considered,16
full or partial observability. A fully observable system is one in which all the states are observable17
given the available measurements from the sensors. Different observability problems considered18
in this category are link flow observability, route flow observability and OD flow observailibty.19
Partial observability implies that not all states are observable given the set of available sensor20
measurements. This concept is attractive in cases where the number of sensors required to achieve21
full observability is too large. Interested readers can refer to (2–7) and references therein for a22
literature review of the aforementioned categories of sensor placement problem. In the current23
work, we focus on determining the optimal sensor placement to achieve full observability of the24
system while maintaining a balance between the number of sensors and the degree of observability25
of the system. Note that the degree of observability is a quantitative measure of the quality of state26
estimates that can be obtained by using a certain sensor placement configuration and is not related27
to the idea of partial observability. Unlike the aforementioned studies that utilize the relationship28
between the various flows in the network such as link and path flows, this study uses a traffic29
dynamics model to determine the relationship between various state variables. Also, the states30
considered here are traffic densities instead of flows.31

Some studies that are closer to the work presented in this paper are (8, 9) which also con-32
sider a traffic dynamics model and applies a control theoretic approach to determine optimal sensor33
locations on highway segments. These studies linearize the nonlinear traffic dynamics around a34
steady-state traffic flow. The major drawback of such approaches is that the linearized dynamics35
are valid only around the specific states. Furthermore, these studies consider the Greenshield’s36
fundamental diagram (10) which is inferior in modeling traffic flows when compared with the tri-37
angular and trapezoidal fundamental diagrams which are often considered in the implementation38
of the cell transmission model (CTM) (11, 12). (1) does deal with optimal sensor placement and39
density reconstruction while considering the CTM model but to simplify things it still linearizes40
the model and thus has the same drawback as above.41

This paper investigates the sensor placement problem for highway networks with ramps42
having nonlinear traffic dynamics. The traffic model is built using the asymmetric CTM (ACTM) (13)43
(a close variant of the CTM) and the triangular fundamental diagram, and thus is also an improve-44
ment over (8, 9, 14) in terms of modeling traffic dynamics, to remove the dependence of optimal45
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sensor placements on assumptions about traffic states. The traffic sensor placement is addressed1
via observability analysis based on the nonlinear traffic model, which is different from the ones2
used in the aforementioned papers.3

In the context of sensor placement for nonlinear systems, four different approaches have4
been proposed recently. The first approach leverages empirical observability Gramian to find the5
best set of sensors that maximizes some metrics on the Gramian matrix—see (15–17). Another6
approach is proposed in (18) where the observability Gramian around a certain initial state is con-7
structed through a moving horizon estimation (MHE) framework. The third approach, developed8
in (19), introduces a randomized algorithm for dealing with the sensor placement problem and9
accordingly, theoretical bounds for eigenvalue and condition number of observability Gramian are10
proposed. The last and most recent approach is established in (20) where the authors make use11
of the numerous observer designs for some classes of nonlinear systems posed as semidefinite12
programs (SDP).13

In this paper, based on the nonlinear traffic model developed using ACTM, we formulate the14
sensor placement problem using traffic observability analysis.The resulting problem—categorized15
as convex IP—is solved via an integer branch-and-bound (BnB) algorithm and therefore, optimal16
traffic sensor locations can be obtained. Notice that the use of nonlinear traffic model and observ-17
ability analysis result in traffic sensor locations that are valid for various traffic conditions.18

The paper is organized as follows. In Section 2, we discuss the modeling of stretched19
highway with ramps using ACTM, which result in a nonlinear state-space form. Next, Section20
3 discusses our strategy for addressing traffic sensor placement based on system’s observability.21
The proposed approach is extensively tested in Section 4 for solving the traffic sensor placement22
problem via numerous case studies. Finally, Section 5 concludes the paper.23
Paper’s Notation: Let R, Rn, and Rp×q denote the set of real numbers, real-valued row vec-24
tors with size of n, and p-by-q real matrices respectively. For any vector z ∈ Rn, ‖z‖2 denotes its25
Euclidean norm, i.e. ‖z‖2 =

√
z>z, where z> is the transpose of z. The symbol ⊗ denotes the26

Kronecker product where det(A) and trace(A) return the determinant and trace of matrix A. For27
any set M, |M| denotes its cardinality.28

29
2 NONLINEAR DISCRETE-TIME MODELING OF TRAFFIC NETWORKS WITH RAMPS30
This section presents the discrete-time modeling of traffic dynamics on a stretched highway with31
arbitrary number and location of ramps. To that end, here we utilize the Lighthill-Whitman-32
Richards (LWR) Model (21, 22) for traffic flow. In this paper, the relationship between traffic33
density and flux is given by the triangular-shaped fundamental diagram which has been exten-34
sively used in the literature (11) and is given as35

36

q(ρ(t,d))=

{
v f ρ(t,d), if 0≤ ρ(t,d)≤ ρc

wc (ρm−ρ(t,d)) , if ρc ≤ ρ(t,d)≤ ρm.
(1)37

38
where t and d denote the time and distance; ρ(t,d) denotes the traffic density, q(t,d) denotes39
the traffic flux, v f denotes the free-flow speed, wc denotes the congestion wave speed and ρm40
denotes the maximum density. To represent the traffic dynamics as a series of difference, state-41
space equations we discretize the LWR Model with respect to both space and time (this is also42
referred to as the Godunov discretization). Thus, the highway of length L is divided into segments43
(cells) of equal length l and the time horizon is divided into steps of duration T . The segments44
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FIGURE 1: Consecutive segments of the highway with on-ramp and off-ramp.

form both the highway and the attached ramps. Throughout the paper, the segments forming the1
highway are referred to as mainline segments. We assume that the highway is split into N mainline2
segments.3

To ensure computational stability, the Courant-Friedrichs-Lewy condition (CFL) given as4
v f T l−1 ≤ 1 has to be satisfied. Since each segment is of the same length l, then we have ρ(t,d) =5
ρ(kT, l), where k ∈ N represents the discrete-time index. For simplicity of notation, from here on6
ρ(kT, l) is simply written as ρ[k].7

As mentioned earlier, traffic is modeled using the ACTM which is originally given in (11,8
13, 23). The ACTM is a variant of the CTM that departs from the CTM in its treatment of asymmet-9
ric merge junctions such as the on-ramp-highway junctions. Unlike the CTM, it assumes separate10
allocations of the available space on the highway for traffic from each merging branch, which al-11
lows for comparatively simple flow conservation equations at those merges than the original CTM.12
A variation to the original ACTM is introduced in the modeling of the ramps which here are treated13
as normal segments rather than point queues as in the original approach. The traffic model used in14
this work is close to the one used in (24). Interested readers can refer to the same for mathematical15
derivations of the traffic model.16

The discrete-time flow conservation equation for a mainline segment with both on- and17
off-ramp can then be written as18

19

ρi[k+1] = ρi[k]+
T
l

(
qi−1[k]+ ri[k]−qi[k]− si[k]

)
(2)20

21
where ρi is the density of Segment i, qi is the traffic flow from Segment i to Segment i+ 1, ri is22
the flow from the on-ramp segment attached to Segment i into Segment i, and si is the flow from23
Segment i into the off-ramp attached to it. Equations for segments with only one or no ramp can24
be written by removing the respective flow terms. The flows and conservation equations for the25
ramps can also be written similar to the mainline segments. An illustration for the highway model26
is given in Fig. 1. In the figure ρ̂ and ρ̌ denote the density of on-ramps and off-ramps respectively,27
and š and r̂ denote the flow leaving the off-ramp and the flow entering the on-ramp respectively.28

The flows are calculated using the demand and supply formulae which can be found in (24).29
Demand of a segment refers to the maximum traffic flux that can leave the segment if there is in-30
finite capacity ahead and supply refers to the maximum traffic flux that can enter the segment31
if there is infinite traffic wanting to enter. In this paper we assume that the upstream demand32
at Segment 1 and downstream supply at Segment N are known, denoted by fin and fout respec-33
tively. Similarly, we assume that all the on-ramp demands f̂ and off-ramp supplies f̌ are also34
known. Let the set of mainline segments, on-ramps and off-ramps be denoted as Ω, ΩI and ΩO35
respectively with N = |Ω|, NI = |ΩI| and NO = |ΩO|. Then the input vector can be defined as36
u[k] = [ fin[k] fout[k] . . . f̂ j[k] . . . f̌l[k] . . .]> ∈ R2+NI+NO, j ∈ ΩI and l ∈ ΩO and the state vector37
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can be defined as x[k] := [ρi[k] . . . ρ̂ j[k] . . . ρ̌l[k] . . .]> ∈ RN+NI+NO, i ∈Ω, j ∈ΩI and l ∈ΩO.1
The evolution of traffic density can be written in a compact state-space form as follows2

3
x[k+1] = Ax[k]+G f (x,u,k)+Buu[k], (3)4

5
where A ∈ Rn×n for n := N +NI +NO represents the linear dynamics of the system, Bu ∈ Rn×m for6
m := 2+NI +NO represents the way external inputs affecting the system, f : Rn×Rm→ Rg is a7
vector valued function representing nonlinearities in (2), and G ∈ Rn×g is a matrix representing the8
distribution of nonlinearities.9

The above result is important as it allows us to perform optimal sensor placement for the10
traffic dynamical system defined by (1)–(2), as well as to develop a robust state observer. This also11
allows for other control-theoretic studies to use this state-space model for other traffic engineering12
applications. The next section presents our strategy to address the optimal sensor placement prob-13
lem for the nonlinear traffic dynamical system derived above.14

15
3 OBSERVABILITY-BASED SENSOR PLACEMENT16
In this section we discuss our approach for addressing the traffic sensor placement problem. The17
traffic dynamics with measurements can be expressed as18

19
x[k+1] = Ax[k]+G f (x,u,k)+Buu[k] (4a)20

21
y[k] = ΓCx[k]. (4b)22

23
In the above model, we introduce y ∈ Rp to represent the vector of measurements, which corre-24
sponds to all of the highway segments equipped with sensors measuring the density. The matrix25
C ∈ Rp×n in (4) is useful to determine the placement of traffic sensors, whereas Γ := Diag(γ)26
with γ ∈ {0,1}p represents the selection of sensors—that is, γi = 1 if the i-th highway segment is27
measured (this consequently leads to nonzero row i in C) and γi = 0 otherwise.28

Having described system (4) with sensor placement, we now state the paper’s major com-29
putational objective: from a given possible set of traffic sensors Gγ such that γ ∈ Gγ , find the best30
(or optimal) sensor configuration γ∗ such that system (4) is observable, i.e., the system’s initial31
state x0 := x[0] can be uniquely determined from a finite set of measurements.32

In this paper, we opt to formulate the traffic sensor placement using the concept of ob-33
servability through MHE framework developed in (18). The framework utilizes a series of past34
measurement data to estimate the initial state at each time window. The reasons of pursuing this35
approach are two-fold. First, as argued in (18), this approach is considerably more scalable than36
using empirical observability Gramian and second, we experience numerical issues in applying the37
method from (20).38

With that in mind, we consider the first N observation window (or N discrete measure-39
ments) of system (4) expressed in the equation below40

41
h(γ,x0) := ỹ−g(γ,x0) . (5)42

43
In (5), the mapping g : N p×Rn→ RN p is given as44
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1
g>(γ,x0):=

[
(ΓCx[0])> (ΓCx[1])> . . . (ΓCx[N−1])>

]
. (6)2

3
Note that g(·) defined above is indeed a function of x0 since for any k such that 0 < k≤ N−1 then4
we have5

6

x[k] = Akx[0]+
k−1

∑
j=0

Ak−1− j (G f (x,u, j)+Buu[ j]) . (7)7

8
The term ỹ ∈ RN p in (5) denotes the stacked N measurements data constructed as9

10
ỹ> :=

[
ỹ[0]> ỹ[1]> . . . ỹ[N−1]>

]
. (8)11

12
Obviously, for every initial condition of the system x0, it holds that h(γ,x0) = 0 such that ỹ =13
g(γ,x0). Hence, for a fixed γ , the mapping g(·) maps the initial state into the N measurements14
output. The observability of system (4) with respect to g(·) is formally defined as follows (25).15

Definition 1: The system (4) with a prescribed γ is uniformly observable if, for all admissible16
inputs, there exists a finite N > 0 such that the mapping g(γ,x0) defined in (6) is injective (one-to-17
one) with respect to x0. Note that, from this Definition, if g(γ,x0) is injective with respect to x0,18
then x0 can be uniquely determined from the set of measurements ỹ. A sufficient condition for g(·)19
to be injective is that the Jacobian of g(·) around x0, denoted by Jw(·), is full rank (25). It can also20
be shown that if system (4) has no nonlinear counterparts, then the Jacobian matrix Jw(·) reduces21
to the N-step observability matrix for the linear dynamics.22

In this work, we use the concept of observability Gramian to quantify the system’s osberv-23
ability for a given set of sensors. The observability Gramian for the nonlinear system (4) with24
respect to γ around x0 can be constructed as25

26
W o(γ,x0) := J>w (γ,x0)Jw(γ,x0), (9)27

28
where W o(·) ∈ Rn×n and Jw(·) ∈ RN p×n is given as (18)29

30

Jw(γ,x0) :=
[
I⊗ΓC

]
×



I
∂x[1]
∂x[0]

...
∂x[N−1]

∂x[0]

 , (10)31

32
where for system (4), by applying chain rule, for 0 < k ≤ N− 1 the k-th partial derivative can be33
obtained from34

35
∂x[k]
∂x[0]

=
k−1

∏
j=0

A+G
∂ f
∂x

(x,u, j), (11)36
37

where the term ∂ f
∂x (·) ∈ Rg×n denotes the Jacobian of f (·) with respect to x evaluated at discrete38

time j. This requires x[ j] and u[ j] to be known, which can be obtained from simulating (4) for up39
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to j-th discrete time. In the context of sensor placement problem, the objective is to find the best1
γ satisfying γ ∈ Gγ which maximizes the observability of system (4) based on the observability2
Gramian (9).3

Some measures that quantify observability based on Gramian matrix include the rank,4
smallest eigenvalue, condition number, trace, and determinant—see reference (16). In this work,5
we maximize the determinant and trace of the observability Gramian. The trace of observability6
Gramian measures the average observability of the system in all directions in state space. There-7
fore, a larger value of the trace indicates an increase in overall observability (17). Similar to the8
trace, determinant of observability Gramian matrix also measures the system’s observability in ev-9
ery directions in state space. Nonetheless, as pointed out in (15), determinant has the ability to10
capture information from all elements of the Gramian matrix as well as taking into account infor-11
mation redundancy for the case when multiple sensors are considered. It is also suggested in (16)12
that the determinant is a better measure for quantifying observability than the trace, since trace13
tends to overlook (near) zero eigenvalues. Despite their differences, both metrics are popular in14
sensor placement literature through empirical observability Gramian; see (15–17). The resulting15
sensor placement problem is given as follows16

17

(P1) κ = minimize
γ

{
−det(W o(γ, x̂0)) ,

−trace(W o(γ, x̂0)) ,
(12a)18

19
subject to γ ∈ Gγ , γ ∈ {0,1}p. (12b)20

21
Notice that P1 only takes the integer variables γ as the optimization variable while x̂0 is fixed. Since22
the constraint and objective function are convex, then P1 is categorized as a convex IP, which can23
be solved optimally via a BnB algorithm. After the observability of the system has been determined24
from the solutions of P1, then the measurement equation (4) can be reformulate into y[k] = C̃x[k]25
where C̃ ∈ Rn×p̃ is the reduced state-to-output matrix that corresponds to the nonzero rows of Γ

∗C,26
where γ∗ is the optimal solution of P1. The traffic density estimation is then performed based on27
y[k] ∈ Rp̃.28

Another metric of interest to us is the relative error ζ which represents the difference be-29
tween actual initial state x0 and the computed initial state x̃0, which is obtained from solving the30
following nonlinear least-square problem (18)31

32
(P3) minimize

x̃0
‖ỹγ −gγ (x̃0)‖2

2 (13a)33
34

subject to 0≤ x̃0 ≤ 1×ρm. (13b)35
36

In (13a), ỹγ is obtained from simulating the undisturbed traffic dynamics (4) with a prescribed set37
of sensors γ from k = 0 to k = N and initial state x0. Likewise, the nonlinear mapping gγ(·) is38
constructed as in (6) with the same sensor combination γ .39

After x̃0 is obtained as the solution of P3, ζ is computed as40
41

ζ :=
‖x̃0− x0‖2

‖x0‖2
. (14)42

43
Note that ζ appraises the quality of sensor placement, as smaller ζ suggests that the given sensor44
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FIGURE 2: Structure of the highway used for case-study; consists of 20 mainline segments
of length 250 m each with 2 on-ramps and 2 off-ramps alternatively placed on every fourth
segment. Arrows indicate the direction of traffic.

configuration is capable to provide a more accurate estimate of the initial state. While this is rea-1
sonable if P3 returns an optimal solution, as P3 is a nonconvex optimization problem, it is highly2
unlikely that optimal solutions can be obtained.3

4
4 CASE STUDY: RESULTS AND ANALYSIS5
This section demonstrates the proposed approach for determining traffic sensors location. Specifi-6
cally, in this numerical study we attempt to answer the following questions:7

– Q1: How does the observation window length relate to traffic observability and initial8
state estimation?9

– Q2: How computationally efficient are the determinant and trace observability metrics10
in terms of solving the sensor placement problem?11

– Q3: How do actual and presumed initial states affect the resulting sensors’ location?12
Are sensor placements robust to changes in initial states?13

– Q4: How reliable is the state estimation when using sensor locations obtained from14
utilizing determinant and trace observability metrics?15

– Q5: How does the theory-driven placement of sensors compare to randomized and uni-16
form sensor placement strategies?17

All simulations are performed using MATLAB R2020a running on 64-bit Windows 10 with 2.2GHz18
IntelR CoreTM i7-8750H CPU and 16 GB of RAM. Throughout the section, all highways are con-19
figured with v f = 28.8889 m/s (65 mph), wc = 6.6667 m/s (15 mph), ρc = 0.0249 vehicles/m (4020
vehicles/mile), ρm = 0.1333 vehicles/m, and l = 250 m. The discrete-time step is chosen to be21
T = 1 sec. The highway, referred to the rest of the section as Highway A, stretches for approxi-22
mately 3.1 miles with 20 segments on the mainline, 2 on-ramps, and 2 off-ramps which are placed23
alternatively on every fourth segment making a total of 24 segments. The structure of the highway24
is depicted in Fig. 2.25

26
4.1 Observability Analysis for Traffic Sensor Placement27
Herein, we perform a numerical analysis on sensor placement approach through traffic network’s28
observability discussed in Section 3. The objective of traffic sensor placement problem translates to29
finding the set of r highway segments that must be equipped with traffic sensors such that the entire30
highway traffic is observable, which is carried out by solving P1. Realize that P1 is classified as a31
convex integer programming (IP) since x̂0, the presumed initial state, is fixed. Here, P1 is solved32
using a greedy approach presented in (26) due to numerical issues presented by available exact33
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(a) (b)

(c)

FIGURE 3: Results on observability analysis for different number of sensor allocations: (a)
the relative error ζ , (b) inverse optimal value of P1, denoted by −κ , and (c) total computa-
tional time, which includes the overall time spent for solving P1 and P3.

solvers.1
In the first instance of observability analysis, problem P1 is solved with fixed actual initial2

state x0 and presumed initial state x̂0, which are generated randomly in (0,ρm]
n. P1 is then solved3

with different observation windows N for varying number of allocated sensors r. In this case,4
r = dp× rp%e where d·e is the ceiling function, p = n = 24, and rp% represents the percentage5
of sensor’s allocation (from 20% to 90%). The number of allocated sensors is a convex constraint6
such that, with respect to (12b), γ ∈ Gγ is equivalent to ∑i γi = r.7

We solve P1 for two observability metrics—the trace and determinant metrics discussed8
in Section 3. Here, the determinant is used in the form of logarithmic determinant based on the9
suggestion in (16). Logarithmic determinant has a concave shape while determinant does not.10

In this numerical study, we put our interest on comparing the relative error ζ , the inverse11
optimal value of P1, denoted by −κ , and total computational time ∆t. Problem P3 is solved by12
using the MATLAB data-fitting function lsqnonlin, which implements a trust region reflective13
algorithm (27). The optimality tolerance is set to be 10−6 and an initial guess equals to x̂0. To14
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(a)

(b)

FIGURE 4: Relative error ζ for (a) various presumed initial state x̂0 and (b) actual initial
state x0.

reduce the chance of variability, the actual x0 and presumed x̂0 initial states are fixed for this1
particular test. The results of this numerical study are depicted in Fig. 3. In particular, it can2
be seen from Fig. 3a that larger observation window yields smaller relative error. Notice that this3
behavior is reflected better from the trace but less evident from the determinant—the variations are4
presumed to be caused by suboptimal solutions obtained from solving P3. Fig. 3b also indicates5
this behavior: larger observation window yields better optimal value P1, which in turn implies that6
the observability measure is directly proportional with observation window. This corroborates first7
principles in control theory; more available data (i.e., a larger observation window) results in a8
better system observability. The corresponding total computational time for both P1 and P3 are9
reported in Fig. 3c. The resulting sensor’s location for observation window N = 100 and N = 20010
are shown in Tab. 1. For the same number of sensors and observation windows, the optimal sensor11
locations for determinant and trace objective functions are different. This observation is expected12
as both metrics measure different aspect on observability Gramian.13

Next, we asses the variability of sensor placement due to the differences in actual x0 and14
presumed x̂0 initial states. The numerical experiment is carried out as follows. First, we set x0 to15
be fixed and use different values for x̂0 which are randomly generated inside (0,ρm]

n in such a way16
that their Euclidean distances, computed as εd := ‖x̂0−x0‖2, are unique to each other. For this sce-17
nario, the results are given in Fig. 4a, which shows the resulting relative error. In another scenario,18
x̂0 is fixed while x0 varies—see Fig. 4b for the results. It can be seen from both figures that, in19
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TABLE 1: Sensor locations for two different observation lengths and observability metrics.
The notation (x)+{y} means that the set of sensors {y} is appended to that of row (x) from
the same column.

r det trace

N = 100 N = 200 N = 100 N = 200

5 {1,7,12,21,24} {1,12,21,23,24} {12,21,22,23,24} {12,21,22,23,24}

8 (5)+{18,22,23} (5)+{6,16,22} (5)+{7,8,16} (5)+{6,7,8}

10 (8)+{4,15} (8)+{9,18} (8)+{6,15} (8)+{14,15}

12 (10)+{3,10} (10)+{3,14} (10)+{5,14} (10)+{5,16}

15 (12)+{6,16,20} (12)+{4,8,19} (12)+{3,4,13} (12)+{3,4,13}

17 (15)+{8,14} (15)+{2,10} (15)+{1,2} (15)+{1,2}

20 (17)+{2,11,19} (17)+{5,7,15} (17)+{9,10,17} (17)+{10,12,17}

22 (20)+{5,13} (20)+{13,17} (20)+{11,12} (20)+{9,11}

general, varying x̂0 while fixing x0 yields higher relative error magnitudes than fixing x̂0 and vary-1
ing x0. Also when x̂0 is fixed, ζ experiences less variations than in the other scenario. However,2
these variations are most likely attributed to the suboptimal solutions obtained from solving P3 via3
lsqnonlin. It is also observed that larger distance εd does not necessarily result in larger relative4
error ζ , suggesting that the proposed method is rather resilient towards the values of actual and5
presumed initial states.6

7
4.2 Traffic Density Estimation with Various Sensor Allocations8
This section investigates different traffic sensor placements—obtained from the previous section—9
for traffic density estimation purpose. To that end, we implement the Extended Kalman Filter10
(EKF) such as in (28). Herein we simulate Highway A with final time k f = 2000 and invoke11
Gaussian noise with covariance matrices Q = νI and R = νI where ν = 10−3 with corresponding12
unknown input matrices Bw =

[
Bu O

]
and Dw =

[
O I
]
, which simulate process and measurement13

noise.14
In this part of numerical study, we are focused on finding out whether different observability15

metrics used to solve P1 have explicit impact on the quality of traffic density estimation, since16
according to Tab. 1, different observability metrics return distinctive sensor locations. With that in17
mind, we compare the resulting estimation errors e[k] and the root-mean-square error (RMSE)—18
which is computed from19

20

RMSE =
n

∑
i=1

√√√√ 1
k f

k f

∑
k=0

(ei[k])2. (15)21

22
The sensor locations used in this test, for both observability metrics, are collected from Tab. 1 that23
correspond to observation window N = 200.24

The results of this numerical test are illustrated in Fig. 5. It is indicated from Fig. 5b that,25
as more sensors are utilized, the estimation error is decreasing. However, it is of importance to note26
that using determinant as the observability metric yields better state estimation results than doing27
so with trace, since the RMSE for determinant is slightly smaller. This showcases the prominence28
of determinant as opposed to trace to quantify observability. The trajectories of estimation error for29
different number of sensors are given in Fig. 5a, from which it can be observed that utilizing more30
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(a)

(b)

FIGURE 5: State estimation results with EKF for different allocations of sensor: (a) the
estimation error and (b) the RMSE.

sensors yields smaller and faster convergence on estimation error—notice that this observation is1
in accordance with RMSE shown in Fig. 5b. It is also observed from Fig. 5a that, in general, the2
determinant returns smaller estimation error compared to the trace. A slight exception occurs when3
the sensor allocation is at 20% (also see Fig. 5b). This is suspected to be caused by suboptimal4
sensor placement from the greedy algorithm—see Tab. 1.5

6
4.3 Optimal, Randomized, and Uniform Sensor Placement7
In the last part of numerical test, we analyze the results of traffic density estimation with optimal,8
randomized, and uniform sensor placement. The result of this numerical experiment are provided9
in Fig. 6. The figure showcases the RMSE of traffic density estimation with optimal, randomized,10
and uniform sensor placement. For the uniform case, the sensors are firstly placed at odd locations11
and will begin to be placed at even locations only when all odd locations are used up. Also note12
that, to compensate randomization on sensor placement, the simulations for this case (randomized13
sensor placement) are performed 10 times for every r and the results are averaged. It is observed14
that the optimal sensor placements return significantly smaller RMSE than the randomized and15
uniform ones, regardless of observability metric being used. These results suggest that using op-16
timal sensor placement, regardless of observability metric, gives better traffic density estimation17
than doing so with randomized sensor placement. The resulting traffic density estimations are de-18
picted in Fig. 7.19

20
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FIGURE 6: RMSE for optimal, randomized and uniform sensor placement for Highway
A. The simulations with randomized sensor placement are performed 10 times and the pre-
sented results correspond to the average values.

(a) (b)

(c)

FIGURE 7: Comparison between real x[k] and estimated x̂[k] traffic densities on (a) mainline
segments, (b) on-ramps, and (c) off-ramps for highway A with 40% measurements—sensor
locations are obtained form solving P1 with trace observability metric.
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5 CONCLUSIONS, PAPER LIMITATIONS, AND FUTURE WORK1
Given the thorough computational analysis in the previous section, the following observations are2
made, thereby answering the posed research questions in Section 4:3

– A1: Increasing observation window yields smaller initial state estimation errors while4
traffic network’s quantifiable observability is directly proportional with observation win-5
dow. This corroborates control-theoretic first principles.6

– A2: Using both trace and determinant observability metrics to solve the sensor place-7
ment problem takes an equivalent amount of time using the greedy algorithm approach.8

– A3: The resulting sensor placement obtained from solving P1 can be used over a wide9
range of initial operating conditions.10

– A4: When used to determine optimal sensor locations, the determinant is better than the11
trace in term of state estimation error and hence offers better network-wide observabil-12
ity.13

– A5: The optimal sensor placement outperforms randomized and uniform sensor place-14
ment in estimating traffic density.15

The approach in this paper has its own set of limitations. First, we consider a time-invariant traffic16
model where in reality, some parameters are in fact time-varying, which include critical density,17
split ratio, free-flow speed, and congestion wave speed. We also do not consider the capacity drop18
phenomenon or the stochasticity of traffic in the model presented in this paper. Second, the sensor19
placement strategy does not consider the effect of measurement noise. To that end, future work20
will include solving the traffic sensor placement problem while considering a time-varying nonlin-21
ear traffic model incorporating capacity drop and stochasticity and taking measurement noise into22
account, which is resulting in a robust sensor placement. Finally, we point out that the presented23
placement approach in the paper can be extended or utilized to other models in transportation24
systems beyond stretched highways, assuming that a nonlinear state-space representation of the25
dynamics is possible.26
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