Traffic State Estimation for Connected Vehicles using a
Second Order Traffic Model

Suyash C. Vishnoi®*, Sebastian A. Nugroho”, Ahmad F. Taha®, Christian G.
Claudel®

®Department of Ciwil, Architectural, and Environmental Engineering, The University of
Texas at Austin, 801 E. Dean Keeton St. Stop C1700, Austin, TX 78712.
b Department of Electrical Engineering and Computer Science, University of Michigan, 1801
Beal Ave., Ann Arbor, MI 48109.
¢Department of Civil and Environmental Engineering, Vanderbilt University, 2201 West
End Ave, Nashville, TN 37235.

Abstract

This paper addresses the problem of traffic state estimation (TSE) in the pres-
ence of heterogeneous sensors which include both fixed and moving sensors.
Traditional fixed sensors are expensive and cannot be installed throughout the
highway. Moving sensors such as Connected Vehicles (CVs) offer a relatively
cheap alternative to measure traffic states across the network. Moving forward
it is thus important to develop such models that effectively use the data from
CVs. One such model is the nonlinear second-order Aw-Rascle-Zhang (ARZ)
model which is a realistic traffic model, reliable for TSE and control. A state-
space formulation is presented for the ARZ model considering junctions in the
formulation which is important to model real highways with ramps. Linear
approximation of the state-space model is investigated with respect to two tech-
niques, first-order Taylor series approximation and Carleman linearization. A
Moving Horizon Estimation (MHE) implementation is presented for TSE us-
ing a linearized ARZ model. Various state-estimation techniques used for TSE
in the literature along with the presented approach are compared with regard

to accuracy, computational tractability and parameter tuning with the help of
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a case study using the VISSIM traffic simulation software. Several research
questions are posed and addressed with thorough analysis of the results.
Keywords: Traffic state estimation, highway traffic networks, second-order
models, Aw-Rascle-Zhang model, Moving Horizon Estimation, connected

vehicles.

1. Motivation and Paper Contributions

With the large number of vehicles overloading the transportation systems
across the world, problems like congestion, accidents, and pollution have become
common. As aremedy to such circumstances, control techniques such as variable
speed limits, ramp metering, route control and their combinations have become
quite popular for instance see [1, 2, 3, 4].

These techniques require the knowledge of the system at all times to make
them work effectively. A popular method for real-time monitoring of traffic
systems is by means of traffic state estimation (TSE) using dynamic traffic
models which provide a high-fidelity picture of the traffic spatio-temporally while
utilizing data from sensors available throughout the highway. In general, more
data results in better estimates of the system states. However, since fixed sensors
like inductive loop detectors are quite expensive, they cannot be placed at short
intervals throughout the highway. Connected vehicles (CVs) offer a potential
solution to this problem by providing additional sources of data relatively free of
cost [5]. Here, we assume that most of the communication between the CVs and
the network operator will take place via existing cellular networks so there will
be no additional costs of building connected highway infrastructure everywhere.
As the proportion of CVs in the traffic rises, CVs will be able to provide useful
data from across the system. Thus, moving forward, it is imperative to develop
such models that can utilize well the data from both fixed sensors and CVs to
perform state estimation and control.

Traditionally, TSE is performed using first-order traffic models such as the
Lighthill- Whitham-Richards (LWR) model [6, 7]. First-order models are simple
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to implement as they only have a single equation that is the conservation of
vehicles to describe the traffic dynamics. They also have very few calibration
parameters, making them a popular choice for state estimation. However, they
only consider equilibrium traffic conditions, that is, the traffic density (vehicles
per unit distance) and traffic flux (vehicles per unit time) are assumed to follow
a predefined relationship known as the fundamental diagram. This makes them
unable to represent certain non-equilibrium traffic phenomena like capacity drop
which are essential for the purpose of traffic control [8]. Thus, the use of these
models in traffic control is considered less effective.

Second-order traffic models such as the Payne-Whitham (PW) model [9, 10]
and the Aw-Rascle-Zhang (ARZ) model [11, 12], on the other hand, can repre-
sent non-equilibrium traffic phenomena with the help of an additional equation
to describe the traffic dynamics. They are, therefore, considered more realistic
than the first-order models. As a result, these models are not only good for state
estimation but are also reliable for control. Additionally, second-order models
provide a natural way to incorporate multiple sources of data as they consider
both density and speed to be independent variables. In first-order models which
only consider either the density or the speed as a variable at a time, any devi-
ation of the speed from its equilibrium relationship must be considered a part
of the modeling error. Thus, second-order models become a natural choice for
state estimation using CV data. Note that while Lagrangian (vehicle-based)
models of traffic exist [13] which are arguably more compatible with trajec-
tory based data from CVs, here we are using road density and average vehicle
speed information obtained using both CVs and fixed detectors and not just
relying on trajectory based information. Therefore, we have chosen a Eulerian
(location-based) second-order model over a Lagrangian model besides the above
reasons.

In light of the aforementioned discussion, the objective of this work is to
develop a state-space representation of a reliable second-order traffic model and
further investigate various state estimation techniques for the purpose of TSE in

the presence of heterogeneous traffic sensors including CVs. Given this objective,
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in the following discussion, we present a literature review of traffic models used
for TSE followed by a brief discussion on the estimation techniques used.

The most popular model for TSE in the literature is the first-order LWR
model. The simple form of the model with a minimal number of calibration
parameters makes it an attractive option for large scale implementation. Some
works that implement a first-order model to perform state estimation using
heterogeneous sensors include [14, 15, 16]. Readers can also refer to [17] for
a comprehensive review of TSE literature involving first-order models. Due to
the known limitations of first-order models, several studies have also under-
taken state estimation using second-order models such as in [18, 19, 20] and the
references therein. Most of these studies use the second-order PW model imple-
mented in the METANET |21, 22| framework. The PW model has well known
limitations [8] such as physical inconsistency under certain heterogeneous traffic
conditions which make it unreliable. A significantly better model is the ARZ
model which retains the benefits of second-order models without sacrificing the
physical consistency of the first-order models. Despite this, there are very few
studies in the literature that use the ARZ model for state estimation. The
work in [23] develops a state-space formulation for the nonlinear ARZ model
and performs state estimation using Extended Kalman Filter (EKF) consider-
ing both fixed and moving sensors. In [24], the authors propose a boundary
observer for state estimation using a linearized ARZ model. The study in [25]
uses Particle Filter (PF) for estimation of traffic states using a modified ARZ
model. However, it is worth noting that none of these papers considers junc-
tions in the modeling. Modeling the traffic dynamics at junctions is essential to
the modeling of traffic on real highways which consist of on-ramp and off-ramp
connections. Therefore, unlike past studies, we formulate herein a state-space
model for the nonlinear ARZ model considering junctions. Note that the afore-
mentioned studies using second-order models as well as the present work are
different from studies like [26] which while do consider the speed to be an inde-
pendent variable like the second-order models but consider it to be known at all

times using CV data. These have been categorized as data-driven methods by
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[17]. In this work, unlike [26], we do not assume to have speed data from every
part of the road and speed is still a variable to be estimated for the unmeasured
segments.

A majority of the TSE literature either uses one of the Kalman Filter (KF)
variants from among EKF, Unscented Kalman Filter (UKF), and Ensemble
Kalman Filter (EnKF), or other techniques like PF, and observers to perform
state estimation, for instance see [17, 27, 28]. While these methods are com-
putationally attractive, they have certain limitations with respect to TSE. The
primary limitation is that they do not have an inherent way to deal with state
constraints. Thus, it is possible that the estimates generated from these meth-
ods contain nonphysical values of certain states which can further cause the
process model to collapse. Besides, these methods do not naturally handle ar-
bitrary constraints such as privacy constraints like those which forbid the state
estimator to use data of certain CVs for estimation due to privacy reasons if the
collection of such data is otherwise unavoidable.

An estimation technique which handles these limitations naturally, due to its
optimization-based structure, is Moving Horizon Estimation (MHE). MHE has
been explored extensively in the general state estimation literature, for instance
in |29, 30, 31, 32], but not so much in the TSE literature. In [33] and [34],
the authors propose an MHE formulation for estimation and control of large
scale highway networks using the Macroscopic fundamental diagram (MFD).
MFD is a network level traffic model and does not consider the variation in
traffic density on individual stretches of the highway. Unlike [33] and [34], we
investigate estimating the density throughout the highway stretch. The study
in [35] presents an MHE formulation for traffic density estimation using the
Asymmetric Cell Transmission model (ACTM). ACTM is based on the LWR
model and therefore, has the drawbacks previously mentioned for first-order
models. Moreover, the work in [35] does not consider moving sensors from CVs.

Given that, the main research gaps on this topic are: a) the absence of a
state-space formulation for a reliable second-order traffic model with junctions,

b) the lack of exploration of MHE in the context of TSE, and ¢) the absence of a



comparative study between different state-estimation techniques for TSE using
a second-order model in the presence of heterogeneous data. In what follows,

o we highlight the main contributions of this paper:

1

N

e We derive a nonlinear state-space formulation for the second-order ARZ
model with junctions in the form of ramp-connections. In that, we present
the detailed dynamic equations of the model. This is a development
over [23] which does not consider junctions in the formulation. Addi-

125 tion of junctions adds additional complexity to the model in terms of the
nonlinearity which now comprises of minimum and piecewise functions in
the model. Second-order traffic models are more realistic than first-order
models like the LWR model as they can capture certain phenomena like
capacity drop which are essential to control applications. The obtained

130 state-space formulation can thus be used for state estimation as well as

control purposes.

e We consider heterogeneous sensors including both fixed and moving sen-
sors. The former consists of sensors like inductive loop detectors while
the latter includes CVs. The state-space description is appended to in-

135 clude the measurement model which is also nonlinear thus resulting in a

nonlinear input-output mapping of the system dynamics.

e Since the model is indeed large scale due to modeling large highways with
several ramps, there is a need for scalable state estimation methods. One
way of achieving this is by linearizing the nonlinear model and applying

140 linear state estimation techniques to it. We investigate the accuracy of
some linear approximation techniques in approximating the nonlinear dy-
namics of traffic states in the ARZ model. In particular, we compare the
performance of Taylor series and Carleman linearization [36] techniques
of different orders. With the linearization of the ARZ model, it is also

145 possible to use it in Model Predictive Control (MPC) [37] frameworks to
perform real-time traffic control using for instance variable speed limit

control or ramp metering based control [38] among others.
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e We investigate the performance of various state estimation techniques in
terms of accuracy, computational tractability and parameter tuning using
the VISSIM traffic simulation software. As a departure from estimation
based on KFs, PF, observers and so on, we investigate MHE for TSE.
MHE, unlike the other techniques, allows us to include different constraints

on the state variables making the problem more practical.

Paper’s Notation: Let N, R, R, and RP*? denote the set of natural num-
bers, real numbers, and real-valued row vectors with size of n, and p-by-q real
matrices respectively. ST, denotes the set of positive definite matrices. For any
vector z € R™, |||z denotes its Euclidean norm, i.e. ||z|| = V2T z, where 2 is
the transpose of z.

The symbol ® denotes the Kronecker product. Tab. 1 provides the nomen-

clature utilized in this paper.

2. Nonlinear Discrete-Time Modeling of Traffic Networks with ramps

The objective of this section is to develop a state-space formulation for the
nonlinear second-order ARZ model describing the evolution of traffic density on
highways with ramps. The developed formulation is useful for several control

theoretic purposes including state estimation and control of highway traffic.

2.1. The Aw-Rascle-Zhang model

In this section, we present the modeling of traffic dynamics for a stretched
highway connected with ramps. To that end, we use the the second-order ARZ

Model [11, 12] given by the following partial differential equations:

% + % =0, (1la)
dp(v+p(p)  Opw+tp(p)v  plv—"Ve(p))
o ad I (1b)

where ¢ and d denote the time and distance; p is shorthand for p(t,d) which
denotes the traffic density (vehicles/distance), and v is shorthand for wv(t,d)



Table 1: Paper nomenclature: parameter, variable, and set definitions.

H Notation ‘ Description H

Q the set of highway segments on the stretched highway
Q={1,2,...,N}, N:=1Q]

Qr the set of highway segments with on-ramps
Qr ={1,2,...,Nr}, Ny := Q]

Qo the set of highway segments with off-ramps
Qo ={1,2,...,No}, No := Q0]

Q the set ofon-ramps,Q:{l,Q,...,N]} ,N1:|Q|

Q the set of off-ramps, Q = {1,2,...,No} , No = |

T duration of each time-step

l

length of each segment, on-ramp, and off-ramp

pilk], pilk], wik]

traffic density, relative flow and driver characteristic for

Segment i € Q at time kT, k € N

qi k], dilk] traffic flow and relative flux from Segment i € Q into the
next segment
D;[k], S; K] demand and supply functions for Segment i € Q2

traffic density, relative flow and driver characteristic for

On-ramp i € Q) at time kT, k € N

Gi[k], bi[k) traffic flow and relative flux from On-ramp i € €2 into the
attached highway segment
D, [k], S (k] demand and supply functions for On-ramp i €

traffic density, relative flow and driver characteristic for

Off-ramp i € Q at time kT, k € N

Gilk], dilk] traffic flow and relative flux from Off-ramp i €
D;[k], S;[K] demand and supply functions for Off-ramp i € Q
Gi[k], pi[k] incoming traffic flow and relative flux for Segment ¢ € Q

incoming traffic flow and traffic flux for Off-ramp i €

i
Din [K], win[K]

demand and driver characteristic of traffic wanting to

enter Segment 1 of the highway

Pout [k]

traffic density downstream of Segment N of the highway

Din i [k], Win, s [k]

demand and driver characteristic of traffic wanting to

enter On-ramp i € Q

Pout,i k] traffic density downstream of Off-ramp i €

Bilk] proportion of traffic entering from Segment ¢ € 2 into the
next segment at an on-ramp junction, where 3;[k] € [0, 1]

o k] split ratio for the off-ramp attached to Segment i € §,
where a;[k] € [0, 1]

v free-flow speed

Pm maximum density 8

« model parameter called relaxation time, where a € Ry

o7 fundamental diagram parameter, where v € R4

p(p) pressure function which takes traffic density p as input

Ve(p)

equilibrium traffic speed at traffic density p




which denotes the traffic speed (distance/time). Here, p(p) is given by

and V.(p) is given by

Vo) =or (1- (:ﬂ)) . 3)

In traffic literature, relationships like (3) are commonly called the fundamental
diagram. The first PDE in the ARZ model ensures the conservation of vehicles
which is also present in the first-order traffic models. The second PDE which
ensures conservation of traffic momentum is unique to second-order models and
accounts for the deviation of traffic from an equilibrium position. This equation
makes the second-order models more realistic than the first order models as it
allows them to represent some non-equilibrium traffic phenomena such as capac-
ity drop. As second-order models allow traffic flow to deviate from equilibrium,
they also inherently allow traffic speed to deviate from the equilibrium speed
which allows speed data to be incorporated independent of the density. With
first-order models, any deviation of the speed from the equilibrium speed would
have to be considered a part of modeling error. Therefore, second-order models
are more naturally suited to perform estimation using both density and speed
data provided by the fixed sensors and CVs. The quantity v+ p(p) is also called
the driver characteristic and is denoted by the variable w(t,d). The expression
p(v+p(p)) is also called the relative flow denoted by v (t, d) which is essentially
the difference between the actual flow and the equilibrium flow at any p. Notice
that in (1), pv is the flux of traffic (vehicles/time) which will be denoted by
q(t,d), while p(v+p(p))v is the flux of relative flow (vehicles/time?), also called
the relative flux, which will be denoted by ¢(t,d). Using the relative flow and

the two flux, the ARZ model can simply be rewritten as

Ip(t, d) N q(t,d)

at aq % (4a)
a'll)(ta d) 6¢(ta d) _ ¢(t7 d) Ufp(tv d)
ot + od T + T (4b)

which can be converted to a state-space equation with p and y as the states.
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To represent this model as a series of difference, state-space equations, we
discretize the ARZ Model (4) with respect to both space and time, also referred
to as the Godunov scheme [39]. This allows us to divide the highway of length L
into segments of equal length [ and the traffic networks model to be represented
by discrete-time equations. These segments form both the highway and the
attached ramps. Throughout the paper, the segments forming the highway
are referred to as mainline segments. We assume the highway is split into NV
mainline segments.

To ensure computational stability, the Courant-Friedrichs-Lewy condition
(CFL) [40] given as v¢T1~! < 1 has to be satisfied. Since each segment is of
the same length [, then we have p(t,d) = p(kT,l), where k € N represents
the discrete-time index. For simplicity, we define p(kT,1) := p[k]. The other
variables are also defined in the same way, namely w[k],¥[k], q[k] and ¢[k].
The expressions for the flux functions ¢[k] and ¢[k] for any segment depend
on the arrangement of the segments before and after that segment. In what
follows, we define the flux expressions for different types of segment junctions,
but before that, we need to define two other functions called the demand and

supply functions which are given below.

2.2. Demand and supply functions

The demand of a segment denotes the traffic flux that wants to leave that
segment while the supply of a segment denotes the traffic flux that can enter
that segment. Based on these definitions, the demand D;[k] for Segment i can
be written, similar to [41, 42], as

Difk]= pi(wilk] — p(pilk])), if p;[k] < o(w;lk]),

o (wi[k])(wilk] — p(o(wilk]))),if pi[k] > o (wi[k]),

Here, o(w;[k]) denotes the density that maximizes the demand function and is

given as

oi(wlk) = pm (%) .

10
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The supply function S;[k] on the other hand is given by

o(wilk])(wlk] — plo(wlk]))), if pilk] < o(w[k]),
Silk]= (5)

pi(wlk] = p(pilk])), if pilk] > o (w[k]).
Notice that w[k] used in (5) does not belong to Segment 4. Instead, it is calcu-
lated from the p[k] and y[k] of the incoming traffic upstream of Segment i. The

exact method of calculating this w[k] is given in the following section. Next, we

define the expressions for the flux functions g[k] and ¢[k].

2.8. Fluzx formulae at junctions

This section presents the expressions for the traffic flux ¢[k] and the relative
flux ¢[k], which form the nonlinear part of the state-space model. Development
of analytical equations for junction flows in the ARZ and other similar second-
order models is an active field of research [43, 42, 41], with different papers
providing different approaches to model the junction flows, some more complex
than the others. However, since state estimation allows for some extent of
modeling errors, it is possible to develop a simple state-space formulation for
the ARZ model without going into intractable schemes. We consider three types
of segment junctions, a one-to-one junction between two mainline segments, a
merge junction between two mainline segments and an on-ramp, and a diverge
junction between two mainline segments and an off-ramp. In the following
discussion, we assume that the mainline segment before the junction has index
1 € ), the segment after the junction has index ¢ + 1 and the ramp has index

jE Q for on-ramp and j € Q for off-ramp.

2.8.1. One-to-one junction
The traffic flux leaving Segment ¢ and entering Segment i+ 1 at a one-to-one

junction is given as
qi[k] = min(D; [k], Sit1[k])),

while the relative flux is given as

Vilk]
pilK] .

bilk] = qi[k]wilk] = qi[k]

11



2.8.2. Merge junction (on-ramp connection)
At a merge junction, we have that g;41[k] = ¢;[k] + ¢;[k]. We assume that
the flow entering Segment ¢ + 1 from each of the incoming segments is in the

proportion of their demands, that is, if

D;[k]
k] = A
ot Di[k] + D;[k]’
then
qi[k] = Bi[k]qi+1[K], (6a)
qj[k] = (1 = Bi[k]) @i+ [K]. (6b)

In case of a merge junction, the wk] used to calculate the supply for the outgoing

segment using (5) is denoted as w[k] and is calculated as

wlk] = Bik]wilk] + (1 — Bi[k])w;[k].
Then the traffic flux leaving Segment ¢ is given by

Bilk]
1_51[ ]

i+1[k] and ¢;[k] can thereafter be calculated using (6). The relative flux entering

q; k] = min(B;[k]Si11[k], Ds[k], —— =D [k]).

Segment i + 1 is given as

Piv1[k] = Giva[K]w[K],
and those exiting the incoming segments are given by

oilk] = qilk]w;[k],

2.8.3. Diverge junction (off-ramp connection)
At diverge junctions, we have that ¢;[k] = ;[k] + Gi+1[k]. We assume that
the proportion of the flow entering the Off-ramp j from Segment i is given by a

predefined constant «;[k], such that



@it [k] = (1 — ci[k])gi[K]-

In case of a diverge junction, we use w;[k] to calculate the supply for both the
mainline Segment i + 1 and the Off-ramp j. The flow ¢;[k] can then be written

as

q;[k] = min(D;[k], iz {Z}]v (1Si+;£l[€]]g]) )

while the relative flux leaving Segment i is given as
¢ilk] = qilk|w;[k].

The relative flux entering the outgoing segments have the same relationship as

the flows, that is

¢;lk] = culk] k],
<51'+1[k] = (1 — ay[k])pi[k].

2.4. State-space equations

The discrete time traffic flow and relative flow conservation equations for

any Segment i € () can be written as

k1] = pilk] + T (ai1 (K] — il (10a)
wler1] = (1= D) i+ T - el + Lo, (on

Similar equations can be written for ramp segments as well. Here, ¢;[k] and ¢;[k]
take the expressions from the previous section depending upon the arrangement
of Segment ¢ with respect to other segments. The state vector for this system

can be defined as

x[k] == [pslk] wilk] ... p;[k] ;[k] ... pilk] dulk] ..]T € REVFNi+No)

for which i € ©, j € Q and k € Q. In this work, we assume that the demand
and the driver characteristic upstream of the first mainline segment are known,

that is, Dolk] = Dinlk] and wolk] = win[k] and the density downstream of

13



the last mainline segment is also assumed to be known, that is pni1[k] =
Pout|k]. Similarly, the demand and driver characteristic upstream of the on-
ramps and the density downstream of the off-ramps is also considered to be
known. These values can be obtained using conventional detectors like the
inductive loop detectors placed upstream of the input segments and downstream
of the output segments of the highway. An approximate value of the demand
can also be obtained using Origin-Destination flow matrices [44] if available for

the given region. Then,

ulk] := [Dinlk] winlk] poutlk] - .. Dinj[k] Wini[k]... Poutalk] ...]" € R3FT2NITNo

210 where j € QandleQ.
The evolution of traffic density and relative flow described in (10) can be

written in a compact state-space form as follows

|2lk+1] = Azk] + Gf(z, u), | (11)

where A € R"*"= for n, := 2(N + N; 4+ Np) represents the linear dynamics
of the system, f : R"™ x R" — R" for n, = 3 + 2N; + Np is a vector
valued function representing nonlinearities in the state-space equation, and G €
R™= %"= i3 a matrix representing the distribution of nonlinearities.

215 The nonlinearities in f are in the form of a minimum of weighted nonlinear
functions of the states and inputs. The structure of the above mentioned matri-
ces and functions is provided in Appendix A. Next, we discuss the measurement

model for the ARZ model which is also nonlinear in nature.

2.5. Sensor data and measurement model

220 We consider two types of sensors in this work, first are the fixed sensors
like the inductive loop detectors and second are the CVs. This study assumes
that it is possible to retrieve density and speed data from both the types of
sensors. While it is not possible to obtain density data directly from a sin-
gle loop detector, two loop detectors installed at opposite ends of a segment

225 can provide us with this information. Here, one loop detector provides us with

14
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the vehicle counts entering the segment while the other detector provides the
counts leaving that segment. Then, starting from an empty highway segment,
the continuous vehicle counts can provide us with the total number of vehicles
at any time on a road segment of known length which gives us the traffic den-
sity for that segment. This is similar to the approach used in [45] for density
calculation. To determine when the segment is empty, one can look at both the
loop detectors’ readings over time and start to calculate the density from that
point onwards. The loop detectors when installed in pairs are already known
to provide speed data directly. CVs are known to provide the current position
and speed data directly. The average speed of a segment can be assumed to be
the average of the speed data provided by all the queried CVs in that segment
similar to [46]. To obtain density data from CVs, we assume additional func-
tionality including either spacing measurement equipment which is available as
part of advanced driver assistance systems [47] or availability of vehicular ad-
hoc networks (VANETS) which allow vehicles to communicate with each other
in a neighbourhood around the queried CV [48]. When assuming the latter it
is important to note the limitation imposed by the communication range of the
vehicles on the maximum cell length for traffic modeling. In case of the former,
while a cell length limitation may not be required, a sufficient penetration of
CVs is necessary on the segments which are queried for data. The data from the
CVs is sent via cellular network to a network operator who performs any prior
computation if necessary to convert the received information like the spacing
data or neighbourhood counts into density measurements before using them for
state estimation. A measurement error can also be associated with the data
at this point based on the available information on penetration rate or other
factors.

Figure 1 presents a schematic of the sensors’ placement on the highway.

Among the measurements, density p;[k] for any mainline segment i € 2, and

similarly for the ramps, is directly a state and is used as it is, while the velocity

15
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Figure 1: Heterogenous sensors on the highway: fixed sensors represented by dashed lines

across the highway and CVs represented by the solid black rectangles.

v;[k] can be written in terms of the states as follows:

Pilk]
pilk]

We define a nonlinear measurement function h(z[k]) such that

vi[k] = — p(pilK]).

hai_1 (Cb‘[k]) = T2i-1 [k]a
x2i—1[k]

Now, we can define the measurement vector y[k] as

hai(x[k]) = — p(z2i-1[k]).

ylk] = Clk]h(@[k]) +v[H] |

where C[k] is the observation matrix at time k describing the availability of
measurements from sensors. Note, that the observation matrix here is variable in
time because of the measurements from connected vehicles which keep changing
their location with time. At any time k, n,[k] is the number of measurements.
Here, v[k] € R™* n,[k] = n,[k] lumps all the measurement errors including
the sensor noise into a single vector.

The above results are important as they allow us to perform state estima-
tion for traffic systems using the second-order ARZ model. The state-space
equation (11) can also be used for control purposes using control theoretic ap-
proaches from the literature. In the following section, we discuss some methods
for linearization of nonlinear functions which allow us to apply some linear state

estimation techniques to the otherwise nonlinear ARZ model.

3. Linear Model Approximation

The ARZ model specified in Section 2 is nonlinear due to the presence of

the piecewise linear and nonlinear expressions in the traffic flux and relative
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flux terms. This prevents from directly using some of the well-known and effi-
cient linear state estimation techniques from the literature. However, it is still
possible to apply linear state estimation techniques to a linearized version of
the ARZ model. Techniques such as Taylor series expansion [49] and Carleman
Linearization [36] allow to obtain good linear approximations of nonlinear func-
tions. In this section, we show that it is possible to obtain a close approximation
of the nonlinear ARZ model about suitable operating points which can then be

used for state estimation.

3.1. First-order Taylor series approzimation

For the nonlinear function f : R x R™ — R"  specified in (11), the

first-order Taylor series expansion [49] about a point (zg,uo) can be written as

fx,u) =~ f(xo,uo) + Vfr(xo, uo)(x — x0)

—'_V.f’u,(:l507’UIO)('U/—’l.l,o)7 (13)
where
9 o
Voo, u0) = [8!1 (@0, uo) -+ 63:{1(330’”0)} € RneXne
and
9 d
V fu(®o, wo) = {81{; (zo,ug) - - &;i(mo’uo)} € R"= XN

Here, the operating states xy and operating inputs ug are not fixed for all k,
instead they are selected as close to the time step k as permitted by the avail-
ability of reliable input data and state estimates. The choice of operating point
is discussed in Section 5.3. We add the coefficients of « from this linearization
to the A matrix in (11) to get a new coefficient matrix for the approximate

model. We obtain the following linear state-space equation
zlk + 1] ~ Az[k] + Bulk] + ¢,

where A = A + GV f.(xo,u0), B = GV f,(xg,up), and ¢; = G(f(xo,uo) —

V fu(xo, wo)xo — V fu(To, wg)up). Similarly, we can also linearize the measure-
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ment model as follows:
y[k] ~ Clklz[k] + ca[k],

where C[k] = C[k]Vh, () and ¢c3[k] = C[k]h(x0)—Vh,(xo)xo, where Vh, ()
is the gradient of the measurement function given in (12) at .

Since we know the input at every time step, we can always linearize using
the current input value. In that case, we do not need the third term in the

linearization equation (13) as it will always be equal to zero.

3.2. Carleman linearization

Another technique for linearization which is considered to give very good
approximations for nonlinear functions is called Carleman linearization [36]. In
this technique, a nonlinear model is first polynomialised using Taylor series
approximation of a certain order (if not already in the form of a polynomial)
followed by linearization of the polynomial by writing the unique monomials
as new states of the system. For discrete-time systems, the methodology for
Carleman linearization is specified in [50]. We discuss it briefly in Appendix C.

As also mentioned in Appendix C, a major drawback of the approach is that
it requires truncation of the newly defined state vectors for implementation in
a state-space formulation. Besides this, since the first step of this approach
involves polynomializing the nonlinear model, the accuracy of the approach
depends on the accuracy of the Taylor series approximation. A quantitative
comparison between the given linearizaiton techniques is presented in Section

5.3.

4. State Estimation Techniques

In this section, we briefly discuss the different techniques implemented in

this work for TSE using the ARZ model.
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4.1. Moving Horizon Estimation

MHE is an optimization based state estimation technique which uses mea-
surement data in batches from the most recent time horizon along with a process
model to determine the states of the system. It involves solving an optimization
problem at every time step of the process with the objective of minimizing the
deviation of the estimated states from the modeled states as well as from the
measurement data. Being an optimization problem, it is possible to include
additional constraints in the problem such as bounds on the state variables.
Depending upon whether the model is linear or nonlinear, MHE is divided into
linear MHE and nonlinear MHE, both of which have been well explored in
the literature. While linear MHE only requires solving a linear program or a
quadratic program (QP) and is generally fast and easy to solve using available
solvers, nonlinear MHE involves solving a nonlinear optimization problem which
is both time consuming and difficult. Since TSE for the purpose of control is
required to be done in real time, in practice it is not always possible to spend
enough time in solving a nonlinear optimization problem. Therefore, in this pa-
per we implement a linear MHE approach on a linearized version of the process
model. Throughout this section, IV is used to denote the size of the horizon for
optimization. For time steps up to IV, that is, near the start of the process, the
horizon size is kept equal to the number of time steps from the initial time up to
that time. The MHE implemented in this work has a similar objective function
to [29]. In the following discussion, we first present our implementation of the
MHE optimization problem and then discuss the limitation of another MHE
implementation from the literature with respect to TSE and why the current

implementation works better for TSE.

4.1.1. Decision variables

The primary decision variables for a single run of the MHE optimization
problem at time step k are the state vectors from time step k— N to k denoted by
xk[t] Vt € [k—N, k]. These should not be confused with &[k—N], ..., &[k] which

are the final state estimates. Out of the decision variables for the optimization
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at time step k, we set the value of the vector xy[k] as the final estimate, that

is, &[k] = a[k].

4.1.2. Objective function
The objective function for MHE at time step k € [N + 1, 00] is denoted by

J[k] and is given as

k
J[K] = pll@plk — N] = &[k — NJ||> + w1 Y [[yli] — (Cimi[i] + c20)|

i=k—N
k—1 _
+wy Y [|wli + 1) = (Aiweli] + Biuli] + c13)|, (14)
i=k—N

Here, [k — N] is a prediction of [k — N| based on a previously obtained

state estimate and is expressed as
Zlk—N] = Azlk—N—-1]+ Gf(z[k— N —1],ulk— N —1]). (15)

Some literature such as [51] suggest using another state estimation technique
like UKF to obtain the predicted states from the previous estimate to better
utilize the available measurement data. In this work, we simply use the process
model as shown in (15). The notation y[i] is the measurement vector at time
step i € [k — N, k], Ai, B; and c;; are parameters of the linearized state-space
equation Vi € [k — N,k — 1], and C; and co; are parameters of the linearized
measurement model Vi € [k — N,k]. Here, Ay, By and ¢ are computed
at (o, u[k]) where ¢, =71 @y 1[i]/(N + 1), and Cy and ¢y, are are
computed at x,.

The first term in the the objective is known as the arrival cost which serves
to connect the decision variables of the current optimization problem with the
estimates up to the previous time step. This effectively allows us to consider
the impact of data prior to the current horizon in the estimation process. The
second and third terms in the objective are penalties on the deviation of the
estimates from the measurement data and the modeled dynamics respectively.
1, wy and wo are the weights specifying our relative confidence on the past data

and past estimates, the current measurement data, and the process model, and
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can be set by the modeler accordingly. The overall goal of the problem is to

minimize J[k] under the following constraints.

4.1.3. Constraints
The constraints for the MHE optimization problem consist of the lower and
upper bounds on the states, that is, if the bound vectors are @i, and Ty, €

R™ respectively, then the constraints are defined as
Tmin < Zg[i] < Tmax, Vi € [k — N, K] (16)
For the problem at hand, we have i, = 0, and Zimax = [Pm PmVf Pm PmUyf

4.1.4. Optimization problem
The above objective and constraints are used to write the following opti-
mization problem
minimize J[k]
xp[k—N,...,; 2k K]

subject to (16). (17)

The objective function J[k] can also be expressed as a sum of quadratic and
linear terms of the state vectors as shown in Appendix B. Defining z; by con-
catenating the decision variables from (17) such that z; = [zi[k — N]T [k —
N+1]T -+ xi[k]]T, we can write the optimization problem (17) in the standard

form of a QP defined as

minimize ngzk + quk
Zk
subject to Zmin < 2k < Zmax- (18)

where H € RWHDnx(N+ne and g € RW+TD7 consist of the coefficients of
the quadratic and linear terms in the objective respectively. zpin and zpax €
RV+D72 are the lower bound and upper bound vectors of zj, obtained by con-
catenating Ty, and @, respectively. From Appendix B, it can be seen that

H is a positive definite matrix. This makes (18) a convex program which can
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Algorithm 1: MHE Implementation for TSE

1 input: total time ¢, horizon length N, weights i, wq, and wo,
state-space matrices A, G and function f, measurements from sensors
y[i) Vi € [1,t4], inputs w[i] Vi € [1,ty], assumed initial state [0], and
state bounds i, and Tyax

2 whilet < ¢y do

3 set: operating state ¢, = Zf;tl_l_N xi_1[i]/(N +1)

4 compute: predicted state &[t — N] using (15), linearized

state-space equation matrices A, By, and ¢1; at (o, ult]),

linearized measurement equation matrices é’t and ¢y at x,

5 set: coefficient matrices H and g using

Z[t — N],y[i]Vi € [t — N,t], A;, B;, and ¢,,Vi € [t — N,t — 1], and

C; and co; Vi € [t — N, t], and bound vectors zpin and zyax using

Lmin and Lmax

6 solve: optimization problem (18) for z,
7 | set: Z[t] = xyt]
8 output: &[1],...,&[t/]

be solved efficiently using readily available QP solvers like CPLEX or MAT-
LAB’s quadprog function. Algorithm 1 presents the steps involved in MHE as

implemented in this study.

4.1.5. Limitation of other implementation

The MHE literature presents some other implementations of the optimiza-
tion problem as well such as the one presented in [52]. The said approach only
considers minimization of the arrival cost and the measurement errors but not
the modeling errors that is, the third term in the objective function (14) is
missing. This results in a problem that is faster to solve. However, since actual
traffic states fluctuate more than what is captured by even a second-order traffic
model like the ARZ model, there are always some modeling errors which need

to be accounted for by considering modeling errors. Additionally, we have some
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errors due to the linearization of both the process and the measurement models.
As a result, not considering modeling error or the third term in (14) results in
a relatively bad performance of MHE for TSE.

Next, we present a brief discussion on the usage of KFs for TSE.

4.2. Kalman Filter variants and limitations

KFs are quite popular when it comes to TSE. Since the traffic process models
are nonlinear we cannot use the ordinary KF, instead, most works use variants
of KF designed for nonlinear systems namely the EKF, UKF, and EnKF. There
is ample literature available on the design of these filters and their application
in TSE, see [17] for references. A common limitation of the KF variants is
that they do not inherently allow bounds on the state estimates. Since traffic
states can only take values from a particular range, this makes it difficult to
apply the KF variants directly. Instead some modifications are required such as
manually restricting the states to within their bounds after the state estimate
for any time step is obtained. Another limitation of the KF variants is that
they assume all errors to be Gaussian. This assumption is not necessarily true
in many cases including the traffic system which can result in potential errors
in state estimation. MHE naturally overcomes both these limitations.

In the following section, we discuss the implementation and results obtained
by applying the above mentioned estimation techniques with the help of a nu-

merical example.

5. Case Study using VISSIM

In this section, we apply the state estimation techniques discussed above
namely EKF, UKF, EnKF, and MHE, on a traffic simulation example gener-
ated in VISSIM micro-simulation software to highlight their advantages and
limitations with respect to TSE.

All the simulations are carried out using MATLAB R2020a running on a 64-
bit Windows 10 with 2.2GHz Intel® Core™ i7-8750H CPU and 16GB of RAM.
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We use the quadprog function in MATLAB to solve the MHE optimization

problem.

5.1. Case study objectives
The main idea of this case study is to test the performance of the state
estimation techniques discussed in Section 4. In particular, we are interested in

knowing the answers to the following questions:

e (Q1: How does the number and placement of sensors impact the perfor-

mance of the various estimation techniques?

Q2: Is the state estimation performance robust to changing initial condi-

tions?

@3: Is there an algorithm which requires least tuning to its parameters?

@4: Which estimation technique utilizes best the data from CVs?

Q5: Which estimation technique is the most reliable overall?

Following is a description of the highway structure used for this study.

5.2. Highway setup and VISSIM simulation

In this study, we model the highway stretch as shown in Figure 2 consisting
of one on-ramp and two off-ramps. An additional 100 m of highway stretch is
modeled in VISSIM preceding the shown stretch. While we only perform state
estimation on the latter 900 m and the attached ramps, this additional stretch
of highway modeled in VISSIM provides us with the system inputs namely
the demand upstream of Segment 1 as well as the upstream density and speed
which are used to calculate the upstream driver characteristic. A similar 100
m stretch is modeled upstream of the on-ramp as well and serves the same
purpose of providing the exact inputs. We set the following parameters for the
Weidemann 99 model in VISSIM: CC0 1.50 m, CC1 0.9 s, CC2 4.00 m, CC3
8.00, CC4 0.50, CC5 0.60, CC6 6.00, CC7 0.25 m/s?, CC8 1.00 m/s?, and CCY
1.50 m/s?. The ARZ model parameters are selected to keep the simulated state
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Figure 2: Schematic diagram of the highway considered in this study.

trajectories from the macroscopic model as close to the VISSIM simulation as
possible. The selected values are: v = 102 km/hr, p,,, = 345 veh/km, 7 = 20,
and v = 1.75. Under the Godunov scheme, the highway and ramps are divided
into segments of length 100 m each with a time-step value of 1 s, which satisfies
the CFL condition. Thus, there are a total of 24 states in this highway system.
In this paper, we consider two types of sensors, first is the fixed sensors which
provide density and speed data for every segment they are placed in. The second
type of sensor is the CVs which provide the average speed and density data for
the segment they are traveling in. In the next section, we look at the results
obtained by applying the linearization techniques mentioned in Section 3 on the
highway and model specified above. The study that follows will make use of the

linearization technique selected based on the ensuing results.

5.8. Comparison of linearization techniques

Here, we present a quantitative comparison of the different linearization
techniques discussed in Section 3. Since there is a large difference in scale
between the density and relative flow, we use the Normalized Root Mean Square
Error (NRMSE) for this comparison which is defined in this work, similar to [53]

as

where o; is the standard deviation of the i state values, k ¢ = 200 sec is the total
time of simulation, and e;[k] is the error for the i*" state between the nonlinear
and linearized model at time k. Table 2 presents the NRMSE for first, second,

and third-order Taylor series approximations for different choices of the gap
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Table 2: NRMSE for different approximation techniques for different gap between state update

of the operating point for linearization.

Gap (time steps)
Approximation Technique 1 ‘ 2 ‘ 5 ‘ 10
1st Order Taylor 0.072 | 0.229 | 1.014 | 2.698
2nd Order Taylor 0.054 | 0.114 | 0.369 | 1.759
3rd Order Taylor 0.051 | 0.104 | 0.212 | 0.795
2st Order Carleman 1.379 | 1.377 | 1.386 | 1.670
3rd Order Carleman 0.396 | 0.431 | 0.630 | 2.349

between the states used for linearization. This is done to get a sense of where
the first-order expansion stands and whether it is valuable to go for a higher
order approximation instead and further linearize it with Carleman linearization.
While the approximation is performed at every time step with the available
input for that time step, the state in the operating point is only updated once
every certain number of steps. This is done to emulate the condition when
applying MHE where all the states within a horizon are decision variables and
the approximation cannot use the knowledge of the current state at every time
step but it can still use the inputs which are assumed to be known. As expected,
the NRMSE between the linearized and nonlinear model trajectories increases
with the increasing duration of this gap.

Table 2 also presents the NRMSE for the truncated Carleman Linearization
for second and third-order polynomials of the ARZ model. Carleman lineariza-
tion of both orders has a higher NRMSE than even the first-order Taylor ap-
proximation for smaller gap between state update of the operating point. This
is probably because of the error induced by truncation which consistently de-
teriorates the quality of the higher-order terms in the state vector (C.2) over
several iterations. Although, since our final aim is to perform state estimation,
some amount of error in the model is acceptable and can simply be considered
a part of the process noise. Based on these results, in what follows, we use the

first-order Taylor series approximation for linearization of the ARZ model.
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5.4. Observability of the system

To determine the required minimum number and the corresponding place-
ment of sensors, we perform a test of observability for our system using the
concept of Observability Gramian for discrete time systems [54]. The method
is originally meant to determine the observability of linear systems. In this
case, we use it to check the observability of the linearized ARZ model. The

observability Gramian is defined as
Wi =Y (AD)"C[K"ClK] A},

where A, is the coefficient matrix of the linearized state-space model and C[k] is
the observation matrix of the linearized measurement model at time k around a
suitable operating point. The system is considered observable if W}, is positive
definite. In this case, since the model parameters change with time due to
changing operating points of linearization, the Gramian changes with time as
well. This can result in a change in the observability properties. To check if the
system is observable for a given sensor placement, we calculate the Gramian for
each time step over a duration of the simulation.

From this study, we find that to make the system observable, we need to
at least sense the states on the last mainline segment and on all the off-ramps.
Therefore, throughout the case study, we keep fixed sensors on these segments.
Any additional sensors are placed after these segments are populated with sen-
sors. This is similar to the observations in [26] with respect to observability of
the model used in that paper. It appears to be a common property of traffic
models that the states of the output segments of the network (last mainline
segment and off-ramps) need to be measured to ensure full-observability of the
system. This is not surprising as traffic models share similar state-update equa-
tions and therefore have similar structure of the state-space matrices which form
the observability matrix. While the concept of observability can also be used
to determine the optimal sensor placement for state estimation for any given

number of sensors under certain conditions [55], here we only use it to determine
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a minimum number of sensors and its placement. In the following section, we
discuss some nuances of implementing the aforementioned estimation techniques

in the current study.

5.5. Implementation of estimation techniques

5.5.1. Parameter Tuning

In the implementation of KFs, we need to set three parameters beforehand
namely the estimate error co-variance matrix denoted by P, the process noise
co-variance matrix denoted by @, and the measurement noise co-variance ma-
trix denoted by R. In practical applications, these matrices are not known in
advance or are difficult to get. In this paper, for all the KF variants, we use a
process noise co-variance matrix of the form Q = ¢I,,, where ¢ € R} and I, is
a identity matrix of dimension n,. Similarly, the measurement noise co-variance
matrix is set as R = r1,, ;) with r € Ry and n,[k] is the number of measured
states at time k. The initial guess for the estimate noise co-variance matrix is
taken as P = 10721, . We manually tune ¢ and r for each case whenever there
is a different number or placement of sensors, in an attempt to get the best
performance out of the Filters for a comparison between the techniques at their
best. Similarly, we also tune the weights in the MHE objective function. In the
case study, we note how robust these parameters are in terms of how often they
need to be changed for each technique to achieve a good performance.

Besides these values, there are also some technique specific parameters such
as in UKF, EnKF and MHE. We find that the fine tuning the values of these
parameters does not influence the performance of the techniques considerably.
For UKF, we set the following values: a = 0.1,k = —4 and 8 = 2. For EnKF,
we set the number of ensemble points to 100, and for MHE, we set the value of
N to 24, which is the number of states in the system. These values are found to
be sufficient for the respective techniques. Interested readers can refer to [56]
and [57] for interpretation of parameters and more detail on implementation of

UKF and EnKF respectively.
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5.5.2. Re-scaling to avoid numerical issues

The large difference in the order of magnitude of the two states, density and
relative flow, results in numerical issues in both the KFs as well as in MHE.
This is handled by re-scaling the objective and constraints of the optimization

problem in case of MHE and by re-scaling the state vector in case of KFs.

5.5.8. Applying external bounds on states

The KFs sometimes run into the problem of producing non-physical states
such as negative or extremely large densities and relative flows. This is an
issue for the process model which includes terms like density raised to fractional
power as in (2), which results in numerical issues and forces the estimation to
stop. Therefore, it is important to bound the estimates from the KFs to only
physical values of the states. In that, we project the obtained estimates in case
of EKF to a range with lower bound of zero on all the states, and an upper
bound of py, on the traffic densities and p,,v; on the relative flows. In case of
UKF, the sigma points are projected first followed by the obtained estimate.
In case of EnKF, the ensemble points are projected to within specified bounds.
This method of projecting vectors for EKF and UKF has been shown to fit in
the KF theory mathematically and is among the popular methods mentioned
in [58].

We present the results of the study in the following section.

5.6. Results and discussion

5.6.1. Impact of number of fized sensors

As sensors are indeed costly, it is thus imperative to determine which state
estimation techniques perform better with less number of sensors, and how the
performance varies with a changing number of sensors. Herein, we test the
effect of increasing the number of fixed sensors on the performance of the four
estimation techniques. We do not consider any CVs in this case. As discussed
in Section 5.4, we have a minimum of three sensors, one on the last mainline

segment and one each on the off-ramps. The first additional sensor is placed
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Figure 3: 8 sensor placement configurations for fixed sensors starting with 5 sensors (top) to
12 sensors (bottom). 3 sensors are placed on the 3 ramps and are not shown here. Black boxes
depict segments with sensors and white boxes depict otherwise. Arrows indicate direction of

traffic.

on the on-ramp. As we add more sensors we try to keep them well distributed
across the highway. We have the following placement configurations up to eight
sensors: {1,9},{1,5,9},{1,3,7,9}, and {1,3,5,7,9}, after which we add the
sensors to the segments without sensors, starting from the second segment. Fig.
3 shows the configuration of sensors starting from 5 sensors up to 12 sensors.
We do not add any additional process noise to the state values generated from
VISSIM, but we do add a uniform random noise of the order 1073 to the sensor
measurements. Figure 4 presents the plots of NRMSE for each of the techniques
with changing number of sensors. Figure 4 shows that all the techniques provide
better estimation performance with more number of sensors. EKF and MHE
perform better than UKF and EnKF in all the cases. Between EKF and MHE,
EKEF has a slight edge when there are less number of sensors while MHE performs
better with more sensors. The difference is quite small though and can probably
be attributed to tuning. Among all the techniques, UKF requires slight tweak in
the values of the noise co-variance matrices with changing number of sensors to
achieve its best performance while the other techniques work well with a single
set of values for all the cases. UKF sometimes also runs into numerical issues if
the best performance tuning of one case is used in another case. This is a major
drawback of UKF making the technique unreliable. EnKF can also sometimes
give much worse estimates than presented in Figure 4 as it depends on Monte

Carlo sampling which is not always reliable. A noticeable advantage of MHE
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Figure 4: NRMSE values for the four state estimation techniques with different number of

sensors with external bounds on the state estimates from KF.

Table 3: Computational time for state estimation per time step (1 sec) of simulation.

Technique | Computation Time (sec)
EKF 0.002
UKF 0.006
EnKF 0.016
MHE 0.075

is that it performs well with quite general values of weights for all settings like
p = 102, w; = 10%,wy = 1 without requiring any fine tuning whereas other
techniques require fine tuning to achieve the same level of performance such as
g=10"%and r = 4-107% for EKF, ¢ = 10* and r = 9- 10~* for UKF, and
q =1 = 1078 for EnKF. The average run times per time step of simulation for
the techniques are given in Table 3.

For all the KFs it includes the time spent on the prediction and update steps.
Figure 6 presents a comparison of the real states and estimated states from
MHE for a case with seven sensors. Figure 5 presents the actual and estimated
trajectory of the density state from Segment 2 of the highway produced using
MHE and EKF.
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Figure 5: Plots of estimated trajectory for (a) unmeasured density state on Segment 2 [top]

and (b) measured density state on Segment 3 [bottom| in the presence of 7 fixed sensors.
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Figure 6: Comparison of real #[k] and estimated &[k] traffic densities obtained from MHE for

the mainline segments (1 to 9), on-ramp segment (10), and off-ramps segments (11 & 12).
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Table 4: NRMSE values for the four state estimation techniques under different sensor place-
ments. Here, in each case, we have sensors on all the ramps and the last mainline segment.

# of sensors 5 7
Placement | {1} | {5} | {8} | {1.2.3} | {45.6} | {6.7.8)

EKF 11.02 | 10.01 | 10.21 7.89 7.24 7.39
UKF 16.58 | 15.37 | 15.81 13.71 11.84 12.57
EnKF 16.69 | 15.19 | 16.41 14.70 13.80 15.13
MHE 11.16 | 10.34 | 10.81 7.15 7.15 8.12

5.6.2. Impact of fized sensor placement

Under a limited budget resulting in a limited number of sensors, it is im-
portant to determine where to place the available sensors to obtain the best
state estimation performance. In this section, we test the impact of placing
the same number of fixed sensors at different locations on the highway on the
performance of the state estimation techniques. We again use NRMSE for a
quantitative comparison between the four techniques. First, we test with a
total of five sensors where three are needed to maintain observability and are
placed on the last mainline segment and the two off-ramps. Here, we fix the
fourth sensor on the on-ramp while the fifth sensor is placed at three different
locations, once on the first mainline segment, once on the fifth mainline seg-
ment, and once on the eighth mainline segment. The idea is to see whether the
performance varies if the sensor is placed towards the start, middle or end of
the highway. We also test another case with seven sensors. Again, four sensors
are placed on the last mainline segment and the three ramps. The remaining
three sensors are placed in three placement configurations namely on mainline
segments 1, 2 and 3, 4, 5 and 6, and 6, 7 and 8. Table 4 presents the NRMSE
values for the different cases mentioned above.

While the error in all the cases with the same number of sensors is not very
different for each technique, there appears to be a trend that is followed by all
the techniques, that is, sensors at the middle produce the least error followed

by sensors towards the end and the worst performance is with sensors at the
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start of the highway. A possible reason for this could be that since we already
have a sensor at the end of the highway providing us data, and we have the
inputs from the start of the highway, then the most value of additional sensors

is derived by placing them in the middle of the highway.

5.6.3. Robustness to initial conditions

Since the initial value of the states is not known in advance, it is important
to assess the robustness of the state estimation techniques to different assumed
initial conditions. Here, we increase the gap between the actual initial condi-
tion and the assumed initial condition and compare the change in the NRMSE
values for each technique. The gap here is measured in terms of the norm be-
tween the standardized initial state vectors. Fixed sensors are placed on all the
ramps and on mainline segments 1, 3, 7 and 9. Figure 7 shows the trajectories
of the NRMSE values for the four techniques with varying initial conditions.
As expected, the error increases as we go further away from the actual initial
conditions. A majority of this error is from the initial time-steps of simulation,
that is the time taken for the estimate to converge to the actual state. The
difference in error increment between different techniques therefore shows how
quickly a method converges to the actual state. In case of the KF variants,
the additional errors due to bad initial conditions disappear after convergence
and if the NRMSE is calculated excluding the initial time-steps for instance the
first minute, the results are comparable for all the tested initial conditions. In
case of MHE however, even though the estimate converges to the actual state
quite quickly, the estimates are deteriorated for future time steps as well. This
somewhat explains why MHE performance worsens quickly compared to EKF

despite being better than EKF when the errors in initial state are small.

5.6.4. Estimation with CVs
As CVs provide a cost effective alternative to the traditional fixed sensors, it
is important to study the performance of the state estimation techniques using

CVs as opposed to fixed sensors. The present work assumes that there are
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Figure 7: NRMSE values for the four state estimation techniques with changing L2-norm
between actual and assumed initial states. Fixed sensors placed on all ramps and mainline
segments 1, 3, 7 and 9.
sufficient number of CVs on the highway to obtain the density and speed values
of decent quality from the segments of choice. Due to bandwidth constraints we
can only query a limited number of CVs at a time, therefore we chose certain
segments at the start of the process and follow the CVs on those segments
for data. We assume that these connected vehicles are moving at a certain
speed, here 0.25 segments/second, so the segments from which we are receiving
the information keep changing with time. If these CVs slow down or change
course, we stop querying them and select new CVs in the original segment
progression. Note that a better method to select CVs for querying within the
given bandwidth may be available but is not explored in this paper which only
focuses on comparative performance of estimation techniques using the given
sources of data. For this study, we fix the location of four fixed sensors, three
on the ramps and one on the last mainline segment and further add CVs to the
network. At first, the CVs are queried from the first mainline segment, second,
from the first and second mainline segment and so on up to seven segments

in total. We compare the performance of the estimation techniques using CV
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Figure 8: NRMSE values for the four state estimation techniques when using connected

vehicles (CV) versus when using fixed sensors (FS).

data against their performance with an equal number of segments installed with
fixed sensors. The results are presented in Figure 8. It is seen that among the
four techniques, the difference between the performance with CVs and fixed
sensors is highest for UKF. This is because, UKF heavily depends on the slight
tweaks in the values of @ and R for achieving its best performance with fixed
sensors. In this case, since we cannot tune UKF precisely, as the placement is
changing with every few time steps, UKF does not achieve its best performance.
While the performance of all the techniques is better with fixed sensors, it is
promising to see that the techniques perform quite comparably even with just
CV data which can be obtained for much less cost than installing fixed sensors.
In general, more investigation related to selection of CVs at any time is needed

to exploit the full potential of CV data availability for state estimation.

5.6.5. Impact of sensor noise

As sensors are prone to faults, it is possible that the sensor noise changes
from its specified value for the sensor from time to time. In such scenarios, a
technique more robust to sensor noise would be considered more reliable. In

this section, we check the impact of changing the sensor noise on the estimation
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error of the four techniques. We assume a Gaussian error in this case with
distribution N(0,0?) with a changing standard deviation o. Here, for the KFs,
we set the @ same as the optimal tuning for the given sensor placement as was
obtained for a uniform sensor error. The same is found to give pretty good
estimates except in case of UKF which runs into instability for certain values
of 0. The tuning of R is done in two ways, one is the standard method of
tuning where R = lenp[k]. The other way is to fine tune R so as to reduce
the estimation error and keep the same R for all values of 0. Note that this is
not always possible in practice as we do not know the actual states. Here we
do it to compare all the estimation techniques at a somewhat best performance
for each. For MHE, the weights are kept the same as before. Figure 9 and
Figure 10 present the variation of the NRMSE values with increasing o. We
subtract the error at ¢ = 0.1 from all the values for each estimation technique
to only focus on the variation of the error. The error value at ¢ = 0.1 is
instead reported in the legend next to each technique. It is observed that when
the R is not tuned precisely, the errors from the KFs are much larger than
MHE although the increase in the errors with o is more for MHE. The poor
performance of the KFs can be explained by the fact that tuning is an important
component of the KF performance and without it the NRMSE is high. Why the
NRMSE does not increase too much at larger values of measurement error can
be explained by the fact that at larger corresponding R matrices, the impact
of data on the estimation is already quite small so worsening the data does not
influence the NRMSE further. On the other hand, when using a tuned R, the
performance of EKF is comparable to MHE, and the variation with o is also
almost the same. While the performance of UKF and EnKF are comparatively
worse, the estimate is not affected much by measurement errors. This could
indicate a trade-off between accuracy and robustness to noise. The sudden
spikes in the plot of EnKF could be due to the associated randomness in its
formulation which sometimes cause EnKF to produce larger NRMSE values for

certain combinations of tuning and measurement errors.
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reported in the legend.
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5.6.6. Estimation under congested scenario

All of the above results are obtained using simulations with free-flowing
traffic conditions. In this section, we test whether the obtained results on TSE
performance under free-flow conditions hold true when there is congestion some-
where on the highway stretch. We simulate a case with congestion forming in-
ternally on the highway. In VISSIM, this is achieved by adding reduced speed
decisions on Segment 8 of the highway between 100 to 200 seconds from the start.
First we test the impact of changing the number of fixed sensors and CVs on
the state estimation performance of the different techniques. It is observed that
while NRMSE based on standard deviation was a sufficient measure to compare
TSE performance under free-flow conditions, it produces biased results when
there is congestion. Since some segments of the highway undergo congestion for
some part of the simulation and are at free-flow for the remainder, the state
values for those segments vary significantly over the duration of the simulation
leading to large values of standard deviation of states as compared to segments
which are only under free-flow conditions or only under congested conditions
during the entire simulation. Therefore, the total NRMSE values will be lower
when the estimation error is lower for states with smaller standard deviation..
Therefore in this case we use a scaled version of the RMSE where a value of
0.01 is multiplied with all the relative flow states. The scaled-RMSE or SRMSE
is reported in Figure 11.

Comparing with Fig. 8, the performance of the different techniques is more
comparable now. MHE performs the best with both fixed sensors and CVs fol-
lowed by EKF. The performance with fixed sensors and CVs in more comparable
now especially for UKF which earlier showed much worse performance with CVs
as the source of data. An interesting observation with respect to tuning is that
while MHE and EnKF work well with the same tuning as the free-flow case,
UKF and EKF do require the co-variance matrices to be tuned again for best
results. While EKF works fine with the same new tuning applied to all cases

of sensors, UKF still requires the tuning to be changed with different number
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Figure 11: SRMSE values for the four state estimation techniques with changing number of

fixed sensors (FS) and connected vehicles (C'Vs) with internal congestion on the highway.

of sensors or else risks running into numerical issues which increase the error
considerably.

Next we check if the impact of sensor placement on estimation is increased when
the highway is congested. Since an internal congestion on the highway is not
directly captured by the state-space model or the inputs, performance of esti-
mation in this case should depend more on the available data and therefore on
the sensor placement. Table 5 presents the SRMSE values for the four tech-
niques under three configurations of fixed sensor placement. The table shows
that sensor placement does impact state estimation significantly when there is
congestion occurring in some parts of the highway. Specifically, the middle of
the highway where most of the congestion occurs is the best place to put the
sensors, followed by the start of the highway and the end of the highway. This
is similar to the results we saw before with the free-flow condition however the
difference was very small in that case. It appears that middle of the highway is
indeed better for sensor placement especially when there is congestion. However,
a theoretical study may be needed to say anything for sure. Figure 12 presents
the actual and estimated density on the highway stretch with congestion with

8 fixed sensors.
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Figure 12: Comparison of real x[k] and estimated @[k] traffic densities obtained from MHE
for the mainline segments (1 to 9), on-ramp segment (10), and off-ramps segments (11 & 12)

for congested scenario.

Table 5: SRMSE values for the four state estimation techniques under different sensor place-
ments with internal congestion on the highway. Here, in each case, we have sensors on all the

ramps and the last mainline segment.

# of sensors 7

Placement | {1,2,3} | {4,5,6} | {6,7,8}

EKF 583.0 436.0 636.4
UKF 594.2 428.9 583.9
EnKF 618.1 549.6 868.6
MHE 477.4 316.3 453.1
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6. Conclusions and Future Work

From the previous analysis, we have some preliminary suggestions regarding

the questions posed in Section 5.1 which are as follows:

e Al: As expected, the performance of the state estimation techniques is

750

760

improved upon increasing the number of sensors in the system. The place-
ment of sensors, on the other hand, does not considerably affect the perfor-
mance under free-flow conditions but plays a significant role in congested
conditions. There is incremental benefit to putting any additional sensors

in the middle of the highway as opposed to the start or the end.

A2: The error in state estimation increases as the assumed initial state
is taken further away from the actual state. Out of the considered tech-
niques, EKF is most robust to the changing initial conditions as its error

changes the least as we go away from the actual initial condition.

A8: UKF requires tweaks in the values of the error co-variance matrices
to achieve its best performance and sometimes also runs into numerical
issues if the best tuning from one case is used in another case. Other
techniques work consistently with a single set of tuning parameters and
do not run into numerical issues. MHE performs well with a quite general
setting for the weights as opposed to other techniques where the values

need to be selected carefully, something not always possible in practice.

A4: EKF, MHE and EnKF work well with CV data under free-flow con-
ditions while all the methods perform closely under congested condition.
EKF and MHE perform better overall. Under the free-flow scenario, UKF
does not utilize the data well because of its limitation with tuning and

numerical issues.

Ab5: Out of the four techniques studied in this paper, EKF and MHE

perform similarly in different scenarios with the exception that MHE is
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more computationally intensive than EKF while MHE can handle arbi-
trary constraints and is easier to tune. UKF and EnKF are less reliable

than the previous two techniques.

To summarize, we present a state-space formulation for the nonlinear ARZ
model while considering junctions in the form of ramp connections. Since the
ARZ model is nonlinear, it is not possible to directly apply linear state estima-
tion techniques on it which are considered to be more efficient than nonlinear
techniques. We show that it is possible to linearize the nonlinear state-space
equation with reasonable accuracy and use the linearized model to implement
linear state estimation such as through linear MHE. Besides, the gradient cal-
culated in the process can also be used to implement EKF. We present the
formulation for linear MHE which has not previously been used for TSE and
show that it is a good choice for TSE. At the end, we compare the linear MHE
and EKF with nonlinear state estimation techniques namely UKF and EnKF
and show that MHE and EKF perform better than the latter. Future work will
consider the optimal placement of sensors considering CVs for TSE. Besides,
while the performance of ARZ model against first-order LWR model has been
studied in prior research [23] which claims the superiority of the former, some of
the newer works [59] have suggested the possibility of the order of the model be-
ing less significant for TSE in the presence of sufficient data. Therefore, it will be
interesting to carry out a detailed comparative study between the performance
of the ARZ model and a first-order model under different scenarios specifically

those depicting non-equilibrium conditions under different sensor placements.
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Appendix A. State-Space Equation Parameters

In this section, we present the parameters of the state-space equation (11).

The said parameters are given as follows:

(1 0 0 0o o0 ]
“o1-1 90 0 0

a 0 0 1}1 0 0 A
0o 0 % 1-10
o o0 o0 0 1
[T 0 0 0 ..]
o T o o0

G=|0 0 T 0 (A.2)
o 0o o T
[ qolk] — aa[k] |
o[k] — o1 [K]
q1[k] — qa[k]

f(@[k], ulk]) = | o1[k] — d2[K] (A.3)

q2[k] — g3[k]
d2[k] — ¢3[k]

where ¢;[k] and ¢;[k] are the traffic flux and relative flux terms for traffic leaving
some segment . As an example of the nonlinear difference terms in (A.3), we
present the expressions for ¢;—1[k] — ¢;[k] and ¢;_1[k] — ¢;[k] where segments
i,i—1,i+1 € Q. There is an On-ramp j € Q between Segment i — 1 and i and
no ramp between Segment ¢ and i+ 1. The time parameter is omitted from the
notations for all the discrete time variables for compactness of the expressions.

Also, the state variables are written in terms of the traffic variables that they

o1



represent.

Bi1 »

gi—1 — ¢; = min(B;_15;, D;_1, 1-3- D;) —min(D;, Sit1),
— Bi—1
i i
Gii1— i = g1 —— — g,
Pi—1 Pi

where the expressions for the various terms are given in Section 2.3. Similarly,
if there is an Off-ramp j €  between Segment i and i+ 1, and no ramp between

Segment ¢ — 1 and ¢, then the expressions are given as

S, S
Gi—1 — q; = IIliIl(Di_l, S,) — miH(Di7 OTZ’ ﬁ%
(. i
Gi1— by = g1 —— — g
Pi—1 Pi

Other expressions can also be written in the same manner.

sss Appendix B. QP formulation for MHE

The MHE objective function is given in (14) as

k
J[K] = pll@rlk — N] = &[k — N[> + w1 Y [[yli] — (Cimi[i] + e20)|

i=k—N
k—1 B
+wy Y [lwrli + 1] — (Agai[i] + Biuli] + c17)| .
i=k—N

The square of the Euclidean norm can be expressed as a product of vectors
which can be simplified into quadratic and linear terms in the associated decision
variables. For instance, the arrival cost term can be expanded as

ullwilk — N] - @[k — N2

— (@u[k — N] — &[k — N))"uL,, (@elk — N] - Z[k — N))

= xpk — N ul,,, x[k — N] — &k — N|T2ul,,, x[k — N|

+ &k — N1 ul, ®[k — N] (B.1)

Similarly, the second term can be expressed as

k

wi Y [[yli] = (Cizpli] + e20)|?
i=k—N
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k
= 3" (Ciwnli) w1y Ciaeli] — (yli] — e20)"2w1 L, 1y Ciali]
i=k—N
+ (yli] = cas)Twi Ly, (y[i] — €2:)) (B.2)

and the third term as

o

-1
wy Y [Jefi + 1] = (Aizi[i] + Biuli] + c1)|)?
i=k—N

I
ey

-1
= ((xp[i +1] — Az [i)))Two I, (w]i + 1] — Az [i])
i=k—N

+ (Biuli] + ¢1:) wa I, (Bjuli] + c1;)) (B.3)

S

[i] + e10) T 2wo I, (zx]i + 1] — Ajzi[i])

Here, the last term in each expansion is a constant and can be removed from
the objective function. The sum of the remaining terms can be expressed in

terms of the vector z = [zx[k — N|T zi[k — N +1]7 --- x4 [k]]T as
= zj, (Hi + Hy + H3)z), + (@1 + @2 + 43)" 2 (B.4)

where the various matrices and vectors are defined as follows:

ul,, O

H, = , (B.5)
0 O
H, = H w Iy, He (B.6)
where
C..xn 0 0
HC = 0 0>
0 0 Cg
and N, = Zf:ka nyi], and
H; = H woIn, Hy (B.7)
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where

—A;_N I,, 0 0 0
0 —Ap-ni1 I, 0 0
H,y =
0 0 0
0 0 0 —-Ap, I,
T T
Z[k — N]
q1 = —2 H, | , (B.8)
0
T T
ylk — N| — car—n
qs = -2 wl-[NpHC ) (Bg)
y[k] — C2k
and
T
Bk_N’U,[k’ — N] +cik-N
qs = -2 U)gIanHA . (BlO)

By_1ulk — 1]+ cip—1

Replacing Hy + Hs + Hs with H and q; + g2 + g3 with g we get the objective

function in (18).

Appendix C. Carleman Linearization

Let the polynomial expansion for the update of the state vector  be defined

as:
d o
xlk+1]=> F[klz[k], k€N, (C.1)
i=0
where d is the maximum degree of the polynomial and !’ [k] represents the "

Kronecker product of the state vector at time k. Since we assume to know the

input at each time step, we consider the input to be a part of the constant term
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in (C.1). Let all the coefficients in this expansion be lumped into a single vector

F[k] as follows:
Fk] = [Fo[k] F1lk] Falk] --- Fyulk]] € Rnxngd.

We define a new state vector A(j, k) consisting of the unique mononomials in

x[k] up to an arbitrary degree dy € N ,that is,

<dp

A(dn, k) 2 [1 z[k]) P[E] - 2lI[E)) e R? (C.2)
Then we can write
x[k + 1] = Fk]A(d, k)
V[l + 1] = (F[E]A(d, k))V]
— plil [k]A[j] (d, k)
jd
=> > F,k®---aFIk | "k, (C.3)

h=0 \ (41)i<;€EHj n
where
J
Hj’h = {(il)l§j| Zil =k and il < d}
=1
The above can be reduced to the following evolution equation for the new

state vector for any dy:

Aldpy, k+1) =1 xk+1) @k + 1] - 2k +1)]
= A(k;dp, dad)[1 2[k] PI[k) - 2l 9d]k))

= A(k;da, dpd)A(dnd, k) (C.4)

where A(k;dp,dad) is a matrix of the coefficients of the monomial terms as ob-
tained from (C.3). Interested readers are referred to [50] for the exact structure
of A(k;dp,dad) matrix.

Note that A(dad, k) on the right-hand side in (C.4) has a different length
from A(dy, k) on the left-hand side due to different number of Kronecker product

terms and A(k;da,dad) is also not square, so this equation cannot directly be
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used as a state-space equation for state estimation. To deal with this, we need
to truncate the A(k;da, dad) matrix and A(dad, k) vector which results in some

loss of accuracy especially at small values of dj.
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