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Abstract

Matching in observational studies faces complications when units enroll in treatment
on a rolling basis. While each treated unit has a specific time of entry into the study,
control units each have many possible comparison, or “pseudo-treatment,” times. The
recent GroupMatch framework (Pimentel et al., 2020) solves this problem by searching
over all possible pseudo-treatment times for each control and selecting those permitting
the closest matches based on covariate histories. However, valid methods of inference
have been described only for special cases of the general GroupMatch design, and these
rely on strong assumptions. We provide three important innovations to address these
problems. First, we introduce a new design, GroupMatch with instance replacement,
that allows additional flexibility in control selection and proves more amenable to anal-
ysis. Second, we propose a block bootstrap approach for inference in GroupMatch with
instance replacement and demonstrate that it accounts properly for complex correla-
tions across matched sets. Third, we develop a permutation-based falsification test to
detect possible violations of the important timepoint agnosticism assumption under-
pinning GroupMatch, which requires homogeneity of potential outcome means across
time. Via simulation and a case study of the impact of short-term injuries on batting
performance in major league baseball, we demonstrate the effectiveness of our methods
for data analysis in practice.

1 Introduction
Quantifying the impact of injury on player performance in professional sports is important
for both managers and players themselves. Increasingly, players are valued and compensated
in a manner driven by quantitative metrics of past performance, but injuries have potential to
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disrupt the continuity between past and future performance (Begly et al., 2018; Conte et al.,
2016; Frangiamore et al., 2018; Wasserman et al., 2015). How should a player’s expected
future value to a team be adjusted in the event of injury? One way to quantify impact in this
setting is as the difference between the value of a performance metric the player would have
achieved in the absence of injury and the value of the same metric achieved after a given
injury. Unfortunately, even post hoc, at most one of these two counterfactual outcomes is
observed. This phenomenon, often known as the fundamental problem of causal inference
(Holland and Rubin, 1980), is also present in impact evaluation settings across social science
and medicine

One approach to impact evaluation is matching, in which individuals experiencing a
treatment or condition of interest (in our case, injuries) are paired to otherwise similar
control individuals who did not experience the treatment. Assuming that paired individuals
are sufficiently similar on observed attributes and that no important unobserved attributes
confound the comparison, the difference in outcomes approximates the impact of treatment
for individuals in the pair (Stuart, 2010). When controls are plentiful, each treated unit may
be matched to multiple controls, forming matched sets instead of matched pairs. In Section
7 we use this strategy to evaluate the impact of minor injury on batting performance in
Major League Baseball (MLB), comparing on-base percentage between players who recently
spent a short period of time on their team’s injured list (IL) and otherwise similar players
who did not go on the IL.

In contrast to common matched studies, the treatment in our setting is not given to
all individuals at the same time. Instead, each player is observed repeatedly in games
throughout the MLB season, and each treated player experiences injury at a different point
in time. The longitudinal structure of the data and rolling nature of entry into treatment
create complications for pairing injured players to uninjured controls. Specifically, each
injured player has a date of entry onto the IL, and a similarly well-defined follow-up date at
which performance is assessed based on a certain period elapsing after return from the IL.
However, dates of treatment (and hence follow-up) are not defined in the data for control
individuals, and the matching process involves not only selecting which control individuals
will be paired to injured players but at which point in time the control unit will be measured.
Two primary strategies exist for aligning control individuals in time, or equivalently selecting
“pseudo-treatment” dates at which counterfactual outcomes for controls will be considered.
The most common strategy is to compare players at the same point in time; for instance,
if a treated player experiences injury on August 1st, then he is compared to control units
only as they appear on August 1st. This approach is conceptually straightforward, although
it requires specialized software as described in Witman et al. (2019); however, it implicitly
prioritizes calendar time itself as the most important dimension of similarity between units,
and in settings where time is not an especially important confounder it has the effect of
arbitrarily limiting the pool of potential control comparisons.

The second approach is to allow comparisons between a treated unit at one calendar time
and a control unit at a potentially different calendar time. For instance, a player’s attributes
and to-date performance in the MLB season at his time of injury on August 1 may more
closely resemble the attributes and to-date performance of a an uninjured player on July
1 than it does any other player in his August 1 state, and under the second approach the
first player at August 1 could be matched to the second at July 1. The resulting flexibility
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has the potential to greatly improve similarity between matched units on measured variables
besides time. The recent GroupMatch algorithm (Pimentel et al., 2020) constructs matches
optimally across time in this manner. Our investigation focuses on this second method of
matching.

In introducing the GroupMatch framework, Pimentel et al. (2020) grappled with several
challenges. Whenever multiple controls are paired to a single treated unit, the presence
of multiple copies of the same control individual necessitates a constraint to ensure that a
treated unit is not simply paired to multiple slightly different copies of the same control.
Two possible constraints were suggested but methods for inference were presented under
only under one of them, in which multiple copies of a control individual are forbidden from
appearing in the matched design. Furthermore, the guarantees given for causal effect esti-
mation using GroupMatch designs rely heavily on a strong assumption that time itself is not
a confounder.

In what follows, we address these challenges and provide additional tools to enhance
GroupMatch. First, we introduce a new type of constraint on repeated use of control in-
formation within a GroupMatch design. This constraint has computational, analytical, and
statistical advantages over existing constraints in many common settings. Secondly, we in-
troduce a new block-bootstrap-based method for inference that applies to any GroupMatch
design, motivated by related work on inference for cross-sectional matching designs by Otsu
and Rai (2017). Finally, we introduce a falsification test to partially check the assumption of
time agnosticism underpinning GroupMatch’s validity, empowering investigators to extract
evidence from the data about this key assumption prior to matching. We prove the validity
of our bootstrap method under the most relevant set of constraints on reuse of controls, and
we demonstrate the effectiveness of both the placebo test and the bootstrap inference ap-
proach through simulations and an analysis of MLB injury data. In particular, the bootstrap
method shows similar performance to linear-regression-based approaches to inference often
applied in similar settings, while making much weaker assumptions.

The paper is organized as follows. Section 2 presents the basic statistical framework
and reviews the GroupMatch framework, inference approaches for matching designs, and
other related literature. In Section 3 we introduce a new constraint for use of controls in
GroupMatch designs, leading to a new design called GroupMatch with instance replacement.
Section 4 presents a block bootstrap inference approach for GroupMatch. We apply our block
bootstrap inference to a simulation study in Section 5. In Section 6 we present a falsification
test for the assumption that time is not a confounder. In Secton 7 we revist our baseball
example and evaluate whether short-term injury impacts short term MLB performance. We
conclude with a discussion in Section 8.

2 Preliminaries

2.1 Matching in longitudinal settings and GroupMatch

Matching methods attempt to estimate average causal effects by grouping each treated unit
with one or more otherwise similar controls and using paired individuals to approximate the
missing potential outcomes. A number of other authors have considered matching in datasets
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containing repeated measures for the same individuals over time. Some focus on the case in
which only a single time of treatment is present, and the primary challenge is deciding how
to construct matching distances from pre-treatment repeated measures and assess outcomes
using post-treatment repeated measures. For example, in Haviland et al. (2008), the authors
choose as a treatment the act of joining a gang at age 14, the age requirement ensuring
that there is a single potential time of treatment for all individuals. The situation is more
complex when individuals opt in to treatment at different times as in Li et al. (2001); Lu
(2005); Witman et al. (2019); and Imai et al. (2020). These authors address the problem
by matching each treated unit to the version of the control unit present in the data at the
time of treatment. For example, in Imai et al. (2020)’s reanalysis of data from Acemoglu
et al. (2019) on the impact of democratization on economic growth, countries undergoing
democratizing political reforms are matched to similar control countries not undergoing such
reforms in the same year. Although this method is logical whenever strong time trends are
present, in other cases it may overemphasize similarity on time at the expense of other
variables. For example, Bohl et al. (2010) study the impact of serious falls on subsequent
healthcare expenditures for elderly adults using patient data from a large health system.
While patients who fall could be matched to patients who appear similar based on recent
health history on the calendar date of the fall, the degree of similarity in health histories is
probably much more important than the similarity of the exact date at which each patient
is measured.

GroupMatch is a new framework for matching in longitudinal settings with rolling entry
into treatment that relaxes the assumption that treated units must be matched to control
units at the same time (Pimentel et al., 2020). The relaxation of this assumption yields
higher quality matches on other variables of interest. We focus on GroupMatch designs in
what follows.

In brief, GroupMatch designs are solutions to a discrete optimization problem that con-
structs matched sets, each with the same number of control units, with maximum overall
similarity on pre-treatment attributes between a treated unit at the time of treatment and
controls, choosing freely among different possible pseudo-treatment times for controls. While
GroupMatch does not require units in the same matched set to be aligned at identical time-
points, it does impose constraints on how often control information can be reused within
the match. Pimentel et al. (2020) outline two possible specific forms for this constraint. In
GroupMatch without replacement (a setup referred to by the original authors as Design A),
each control individual may contribute at most one version of itself to any matched set. In
GroupMatch with trajectory replacement (Design B in the original paper), multiple copies-
in-time of a control individual may appear in the match, but no individual copy may be used
twice and no two copies of the same individual may appear in the same matched set. For
further discussion of these constraints, see Section 3.

2.2 Sampling framework

We observe n subjects. For each subject i in the study, we observe repeated measures
(Yi,t, Zi,t,Xi,t) for timepoints t = 1, . . . , T , where Yi,t is an outcome of interest, Zi,t is equal
to the number of timepoints since subject i entered treatment (inclusive of t) or equal to
zero if i has not yet been treated, and Xi,t is a vector of covariates. We denote the collection
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of repeated measures for each subject i as the trajectory Oi.For convenience, we also define
Ti as the time t for which Zi,t = 1 (or ∞ otherwise) and Di as an indicator for Ti < ∞.
We specify a burn-in period of length L − 1 during which no individuals are treated (or
allow treatment at t = 1 by setting L = 1). Let Yi,t(z) (with z ≤ max{t− L+ 1, 0}) be the
potential outcome for unit i at time t if it had been enrolled in treatment for z timepoints.We
will focus on assessing outcomes at a fixed follow-up period after treatment; for simplicity of
exposition, we focus on the case in which the length of this follow-up period is zero, so that
outcomes are observed immediately following treatment at the same timepoint. Although in
principle there are up to t−L+2 potential outcomes Yi,t(z) for each i and t ≥ L by choosing
different z-values, we will restrict attention to the two potential outcomes Yi,t(1) and Yi,t(0).
These potential outcomes allow us to define the finite sample average effect of the treatment
on the treated (ATT), denoted by ∆:

∆ =
1

N1

N∑
i=1

T∑
t=1

1{t = Ti}[Yi,t(1)− Yi,t(0)]

=
1

N1

N∑
i=1

Di [Yi,t=Ti(1)− Yi,t=Ti(0)]

Finally, we consider the data-generating process. We assume that trajectories Oi are
sampled independently from some infinite population, although we do not assume indepen-
dence of observations within the same trajectory. Defining expectation E(·) with respect to
sampling from this population, we may now also define the population version of the ATT as
∆pop = E(∆). For future convenience, we also introduce a concise notation for conditional
expectation (again, over the sampling distribution) of potential outcomes given no treatment
through time t and the covariates observed in the previous L timepoints:

µtz(X) = E[Yi,t(z)|{Xi,t′}t
′=t
t′=t−L+1 = X, Ti > t]

Throughout the paper we abuse notation slightly by writing µ0(Xi,t) to indicate condi-
tional expectation given the L lagged values of Xi directly preceding time t.

2.3 Identification assumptions

Pimentel et al. (2020) studied the following difference-in-means estimator in GroupMatch
designs where each treated unit is matched to C control observations. Mit,jt′ is an indicator
for whether subject i at time t has been matched to subject j at time t′:

∆̂ =
1

N1

n∑
i=1

Di[Yi,t=Ti −
1

C

N∑
j=1

T∑
t′=1

MiTi,jt′Yj,t′ ]

Pimentel et al. (2020) show that this estimator is unbiased for the population ATT under
the following conditions:

1. Exact matching:
Matched units share identical values for covariates in the L timepoints preceding treat-
ment.
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2. L-ignorability:
Conditional on the covariate history over the previous L timepoints and any treatment
enrollment in or prior to baseline, an individual’s potential outcome at a given time is
independent of the individual’s treatment status. Formally,

Di ⊥⊥ Yi,t(0)|Zi,t, {Xi,s}ts=t−L+1, ∀i.

3. Timepoint agnosticism: mean potential outcomes under control do not differ for any
instances with identical covariate histories at different timepoints. Formally, for any
set of L covariate values X,

µt0(X) = µt
′

0 (X) = µ0(X) for any 1 ≤ t, t′ ≤ T.

For simplicity of notation we will drop the t superscript when discussing the conditional
expectation µ0(X) for the sequel, with the exception of Section 6 where we temporarily
consider failures of this assumption.

4. Covariate L-exogeneity: future covariates do not encode information about the po-
tential outcome at time t given covariates and treatment status over the previous L
timepoints. Formally,

(Xi,1, ..., Xi,T ) ⊥⊥ Yi,t(0)|(Zi,t, {Xi,s}ts=t−L+1), ∀i.

5. Overlap condition: given that a unit is not yet treated at time t−1 ≥ L, the probability
of entering treatment at the next time point is neither 0 nor 1 for any choice of covariates
over the L timepoints at and preceding t.

0 < P (Ti = t | Ti > t− 1, X t
i , . . . , X

t−L+1
i ) < 1 ∀t > L

While this assumption is not stated explicitly in Pimentel et al. (2020), we note that
the authors rely implicitly on an overlap assumption of this type in the proof of their
main result.

Assumption 1 is no longer needed for asymptotic identification of the population ATT
if we modify the estimator by adding in a bias correction term. As in Otsu and Rai (2017)
and Abadie and Imbens (2011), we first estimate the conditional mean function µ0(X) of the
potential outcomes and use this outcome regression to adjust each matched pair for residual
differences in covariates not addressed by matching. As outlined in Abadie and Imbens
(2011), bias correction leads to asymptotic consistency under regularity conditions on the
potential outcome mean estimator µ̂(·) (for further discussion of regularity assumptions on
µ̂0(·) see the proof of Theorem 1 in the Appendix). Many authors have also documented
benefits from adjusting matched designs using outcome models (Rubin, 1979; Antonelli et al.,
2018). The specific form of our bias-corrected estimator is as follows:

∆̂adj =
1

N1

n∑
i=1

Di[(Yi,t=Ti − µ̂0(Xi,Ti))−
1

C

N∑
j=1

T∑
t′=1

MiTi,jt′(Yj,t′ − µ̂0(Xi,t′))]

Large datasets with continuous variables ensure that exact matching is rarely possible in
practice, and in light of this we focus primarily on estimator ∆̂adj in what follows.
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3 GroupMatch with instance replacement
Before discussing our method for inference in general GroupMatch designs, we introduce a
new type of GroupMatch design. Pimentel et al. (2020) described two different types of
designs produced by GroupMatch denoted Problems A and B, designs we refer to as Group-
Match without replacement and GroupMatch with trajectory replacement respectively.

1. GroupMatch without replacement: each control unit can be matched to at most
one treated unit. This means that if a treated unit is matched to an instance of a
control unit, no other treated unit can match to (any instance) of that control unit.

2. GroupMatch with trajectory replacement: each control instance can be matched
to at most one treated unit. Each treated unit can match to no more than one instance
from the same control trajectory. However different treated units can match to different
instances of the same control trajectory, so a single control trajectory can contribute
multiple distinct instances to the design.

As our chosen names for these designs suggest, their relative costs and benefits are similar
to the relative costs and benefits of matching without and with replacement in cross-sectional
settings. As discussed by Hansen (2004), matching without replacement (in which each con-
trol may appear in at most one matched set), leads to slightly less similar matches compared
to matching with replacement (in which controls can reappear in many matched sets) since
in cases where two treated units both share the same nearest control only can use it. On
the other hand, matching without replacement frequently leads to estimators with lower
variance than those from matching with replacement, since in matching with replacement
an individual control unit may appear in many matched sets and the resulting large weight
on a single observation makes the estimator more sensitive to random fluctuations in its
response. Thus one aspect of choosing between these designs is a choice about how to strike
a bias-variance tradeoff. The other important aspect distinguishing these designs is that ran-
domization inference, which is based on permuting treatment assignments in each matched
set independently of others, generally requires matching without replacement.

These same dynamics play out with slightly more complexity in comparing GroupMatch
without replacement and GroupMatch with trajectory replacement. In particular, Group-
Match without replacement ensures that responses in distinct matched sets are statistically
independent (under a model in which trajectories are sampled independently), allowing for
randomization inference, and ensures that the total weight on observations from any one
control trajectory can sum only to 1/C, ensuring that the estimator’s variance cannot be
too highly inflated by a single trajectory with large weight. On the other hand, GroupMatch
with trajectory replacement leads to higher-quality matches and reduced bias in matched
pairs.

We suggest a third GroupMatch design which leans even further towards expanding the
potential control pool and reducing bias.

3. GroupMatch with instance replacement: Each treated unit can match to no more
than one instance from the same control unit, but control instances can be matched
to more than one treated unit.
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GroupMatch with instance replacement is identical to GroupMatch without trajectory
replacement except that it also allows repetition of individual instances within the matched
design as well as non-identical instances from the same trajectory. As such, it is guaranteed
to produce higher-quality matches than GroupMatch without trajectory replacement, but
may lead to higher-variance estimators since individual instances may receive weights larger
than 1/C. Figure 1 illustrates the these three GroupMatch methods with a toy example that
matches injured baseball players to non-injured players based on on-base percentage (OBP).

In practice we view GroupMatch with instance replacement as a more attractive approach
than GroupMatch with trajectory replacement almost without exception. One reason is that
while the true variance of estimators from GroupMatch with instance replacement may often
exceed that of estimators from GroupMatch with trajectory replacement by a small amount,
our recommended approach for estimating the variance and conducting inference are not able
to capture this difference. As we describe in Section 3, in the absence of a specific parametric
model for correlations within a trajectory, inference proceeds in a conservative manner by
assuming arbitrarily high correlations within a trajectory (much like the clustered standard
error adjustment in linear regression). Since the variance advantage for GroupMatch with
trajectory replacement arises only when correlations between instances within a trajectory
are lower than one, the estimation strategy is not able to take advantage of them. This
disconnect means that GroupMatch with trajectory replacement will not generally lead to
narrower empirical confidence intervals even though it is known to be less variable in reality,
much how the variance gains associated with paired randomized trials relative to less-finely-
stratified randomized trials may fail to translate into improved variance estimates (Imbens,
2011).

A second important advantage of GroupMatch with instance replacement is its com-
putational and analytical tractability relative to the other GroupMatch designs. We note
that one easy way to implement GroupMatch with instance replacement as a network flow
optimization problem is to remove a set of constraints in Pimentel et al. (2020)’s Network
B (specifically the upper capacity on the directed edges connected to the sink node), and
in Sections 5 and 7 we use this implementation for its convenient leveraging of the exist-
ing groupmatch package in R. However, much more computationally efficient algorithms are
also possible. Crucially, the removal of the constraint forbidding instance replacement means
that matches can be calculated for each treated instance without any reference to the choices
made for other treated units; the C best matches for a given treated unit are simply the
C nearest neighbor instances such that no two such control instances within the matched
set come from the same trajectory. In principle, this allows for complete parallelization of
the matching routine. On the analytical side, this aspect of the design makes it possible to
characterize the matching algorithm as a generalized form of nearest neighbor matching, a
strategy we adopt in the proof of Theorem 1 to leverage proof techniques used by Abadie and
Imbens (2006) for cross-sectional nearest neighbor matching. In light of these considerations,
we focus primarily on GroupMatch with instance replacement in what follows, although the
methods derived appear to perform well empirically for other GroupMatch designs too.
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Figure 1: Toy example illustrating the three GroupMatch matching methods. Two injured
baseball players (T1 and T2) are matched 1-1 to non-injured baseball players (C1a/b and
C2a/b) based on player on-base percentage (OBP). Each non-injured player has two pseudo-
injury times. Each instances in trajectory 1 is more similar to both treated units than
either instance in trajectory 2, and instance C1a is more similar to both treated units than
instance C1b. Under GroupMatch without replacement, T2 must match to an instance in
Trajectory 2 because at most one instance from Trajectory 1 can participate in the match.
under GroupMatch with trajectory replacement, T2 can match to C1b but not to C1a,
since multiple control instances can be chosen from the same trajectory as long as they are
distinct. Under GroupMatch with instance replacement, both T1 and T2 are able to match
to C1a. However, if each treated instance were matched to two control instances instead of
1, Groupmatch with instance replacement would still forbid either T1 or T2 to match to a
second instance in Trajectory 1 in addition to C1a.

9



4 Block Bootstrap Inference

4.1 Inference methods for matched designs

Broadly speaking, there are two schools of thought in conducting inference for matched
designs. One approach, spearheaded by Abadie and Imbens (2006, 2008, 2011, 2012), relies
on viewing the raw treated and control data as samples from an infinite population and
on demonstrating that estimators based on matched designs (which in this framework are
considered to be random variables, as functions of random data) are asymptotically normal.
Inferences are based on the asymptotic distributions of matched estimators.

A second approach, described in detail in Rosenbaum (2002a,b) and Fogarty (2020),
adopts the perspective of randomization inference in controlled experiments; one conditions
on the structure of the match and the potential outcomes and considers the null distribu-
tion of a test statistic over all possible values of the treatment vector by permuting values
of treatment within matched sets. This framework offers strong finite sample guarantees
without assumptions on outcome variables for testing sharp null hypotheses, and asymp-
totic guarantees for testing weak null hypotheses. In this case the asymptotics are over a
sequence of successively larger finite populations (Li and Ding, 2017). Well-studied methods
of sensitivity analysis are also available. One way to understand the link between the first
and second approaches to inference is to view the latter as a conditional version of the first;
indeed Rosenbaum (2002b, §3) derives distributions of treatment vectors used to construct
randomization tests by assuming a sampling model as in the first approach and conditioning
on the matched design produced from the random data.

As described in Pimentel et al. (2020), while standard methods of inference may be
applied to GroupMatch without replacement, in which control individuals contribute at most
one unit to any part of the match, none have been adequately developed for GroupMatch
with trajectory replacement, in which distinct matched sets may contain different versions
of the same control individual. For randomization inference, the barrier appears to be
quite fundamental, because permutations of treatment within one matched set can no longer
be considered independently for different matched sets. In GroupMatch with trajectory
replacement, a treated unit receives treatment at one time and appears in the match only
once; if treatment is permuted among members of a matched set so that a former control now
attains treatment status, what is to be done about other versions of this control unit that
are present in distinct matched sets? We note that similar issues arise when contemplating
randomization inference for cross-sectional matching designs with replacement, and we are
aware of no solutions for randomization inference even in this relatively less complex case.

The problems with applying sampling-based inference to GroupMatch designs with tra-
jectory replacement are quite distinct. Here the primary issue relates to the unknown cor-
relation structure for repeated measures from a single control individual. The literature on
matching with replacement provides estimators for pairs that are fully independent (Abadie
and Imbens, 2012) and for cases in which a single observation appears identically in multiple
pairs (Abadie and Imbens, 2006), but not for the intermediate case of GroupMatch with tra-
jectory replacement where distinct but correlated observations appear in distinct matched
sets.

In what follows we develop a sampling-based inference method appropriate for Group-

10



Match with trajectory replacement by generalizing a recent proposal of Otsu and Rai (2017)
for valid sampling-based inference of cross-sectional matched studies using the bootstrap.
Although the bootstrap often works well for matched designs without replacement (Austin
and Small, 2014), naïve applications of the bootstrap in matched designs with replacement
have been shown to produce incorrect inferences as a consequence of the failure of certain
regularity conditions (Abadie and Imbens, 2008). Intuitively, if matching is performed after
bootstrapping the original data, multiple copies of a treated unit will necessarily all match to
the same control unit, creating a clumping effect not present in the original data. However,
Otsu and Rai (2017) arrived at an asymptotically valid block bootstrap inference method for
matching by bootstrapping weighted and bias-corrected functions of the original observations
after matching rather than repeatedly matching from scratch in new bootstrap samples.

While Otsu and Rai (2017) focus their analysis on cross-sectional studies, it has been
conjectured elsewhere that a similar bootstrap approach, applied to entire trajectories of
repeated measures in a form of the block bootstrap, provides valid inference for certain
matched longitudinal designs (Imai et al., 2020). In this section, we formalize this idea and
demonstrate its applicability specifically to GroupMatch designs.

4.2 Block Bootstrap

In order to conduct inference under GroupMatch with trajectory or instance replacement we
propose a weighted block bootstrap approach. We rearrange the GroupMatch ATT estimator
from Section 2 as follows, letting KM(i, t) be the number of times the instance at trajectory
i and time t is used as a match.

∆̂adj =
1

N1

N∑
i=1

Di[(Yi,Ti − µ̂0(Xi,Ti))−
1

C

N∑
j=1

T∑
t′=1

MiTi,jt′(Yj,t′ − µ̂0(Xi,t′))]

=
1

N1

N∑
i=1

Di[(Yi,Ti − µ̂0(Xi,Ti))− (1−Di)
T∑
t=1

KM(i, t)

C
(Yi,t − µ̂0(Xi,t))]

=
1

N1

N∑
i=1

∆̂i

Because different instances of the same control unit are correlated, we resample information
at the trajectory level rather than the instance level. Specifically we resample the ∆̂i; note
that since these quantities are functions of the KM(i, t) weights in the original match, we
do not repeat the matching process within bootstrap samples. In particular, we proceed as
follows:

1. Fit an outcome regression µ̂0(·) for outcomes based on covariates in the previous L
timepoints using only control trajectories.

2. Match treated instances to control instances using a GroupMatch design with instance
replacements. Calculate matching weights KM(i, t) equal to the number of times the
instance at time t in trajectory i appears in the matched design.
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3. Calculate the bias-corrected ATT estimator ∆̂adj.

4. Repeat B times:

(a) Randomly sample N elements ∆̂∗i with replacement from {∆̂1, . . . , ∆̂N}.

(b) Calculate the bootstrap bias-corrected ATT estimator ∆̂∗adj for this sample of
trajectories as follows:

∆̂∗adj =
1

N1

N∑
i=1

∆̂∗i

5. Construct a (1 - α) confidence interval based on the α/2 and 1−α/2 percentile of the
∆̂∗adj- values calculated from the bootstrap samples.

This method is essentially a block-bootstrap procedure, very similar to the method pro-
posed in Imai et al. (2020). Our main result below shows the asymptotic validity of this
approach.

First we outline several assumptions needed to prove this result, in addition to Assump-
tions 2-5 in Section 2.3. We summarize these assumptions verbally here, deferring formal
mathematical statements to the appendix. First, we require the covariates Xi to be con-
tinous with compact and convex support and a density both bounded and bounded away
from zero. Secondly, we require that the conditional mean functions are smooth in X, with
bounded fourth moments. In addition, we require that conditional variances of the treated
potential outcomes and conditional variances of nontrivial linear combinations of control
potential outcomes from the same trajectory of are smooth and bounded away from zero.
We also require that conditional fourth moments of potential outcomes under treatment and
linear combinations of potential outcomes under control are uniformly bounded in the sup-
port of the covariates. Finally, we make additional assumptions related to the conditional
outcome mean estimator µ̂0(·) specifically that the kLth derivative of the true conditional
mean functions µt1(·) and µ0(·) exist and have finite suprema, and that the µ̂(·) converges to
µ0(·) at a sufficiently fast rate. To state the theorem, we also define

√
N1U

∗ =
1

N1

N∑
i=1

(
∆̂∗i − ∆̂adj

)
Theorem 1. Under assumptions Mt, W, and R presented in the Appendix,

supr|Pr{
√
N1U

∗ ≤ r|(Y,D,X)} − Pr{
√
N1(∆̂adj −∆) ≤ r}| p−→ 0

as N →∞ with fixed control:treated ratio, C.

Remark 1. While we focus on the nonparametric bootstrap, the result holds for a wide variety
of other bootstrap approaches including the wild bootstrap and the Bayesian bootstrap. For
required conditions on the bootstrap algorithm see the proof in the Appendix.

We note that Assumptions M and R are modeled closely on those of Abadie and Imbens
(2006) and later Otsu and Rai (2017), and that the proof technique we adopt is very similar
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to the one used for the main result in Otsu and Rai (2017). Briefly, U∗ is decomposed into
three terms which correspond to deviations of the potential outcome variables around their
conditional means, approximation errors for µ̂0(X) terms as estimates of µ0(X) terms, and
deviations of conditional average treatment effects µt1(X) − µ0(X) around the population
ATT ∆. Regularity conditions from Assumption M ensure that the conditional average
treatment effects converge quickly to the population ATT, and Assumption R, combined
with Assumption-M-reliant bounds on the largest nearest-neighbor discrepancies inX vectors
due originally to Abadie and Imbens (2006) and adapted to our GroupMatch with instance
replacement design, show that the deviation between µ̂0(·) and µ0(·) disappears at a fast
rate. Finally, a central limit theorem applies to the deviations of the potential outcomes,
producing the desired results. For full details, see the Appendix.

4.3 Difference-in-Differences Estimator

Our block bootstrap inference approach is similar to that of Imai et al. (2020), however the
ATT estimator they consider is a difference-in-differences estimator. We can easily extend
our setup and results to apply to the difference-in-differences estimator.

∆̂DiD =
1

N1

N∑
i=1

Di[((Yi,Ti − µ̂0(Xi,Ti))− (Yi,Ti−1 − µ̂0(Xi,Ti−1)))−

1

C

N∑
j=1

T∑
t′=1

MiTi,jt′((Yj,t′ − µ̂0(Xi,t′))− (Yj,t′−1 − µ̂0(Xi,t′−1)))]

=
1

N1

N∑
i=1

Di[((Yi,t=Ti − µ̂0(Xi,Ti))− (Yi,t=Ti−1 − µ̂0(Xi,Ti−1)))−

(1−Di)
T∑
t=1

KM(i, t)

C
((Yi,t − µ̂0(Xi,t))− (Yi,t−1 − µ̂0(Xi,t−1)))]

=
1

N1

N∑
i=1

∆̂DiD
i

Note that this estimator requires L lags to be measured at time Ti − 1, which requires
a burn-in period of length L rather than length L − 1. Imai et al. (2020) assume exact
matching, which eliminates the need for a bias correction term, µ̂0(Xi,t), and simplifies the
proof of Theorem 1.

As described in the previous section, valid inference is possible if we resample the ∆̂DiD
i .

Our proof of Theorem 1 presented in the appendix requires mild modification to work for this
difference-in-differences estimator. In particular, the variance estimators include additional
covariance terms. For more details, see Appendix A.
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5 Simulations
We now explore the performance of weighted block bootstrap inference via simulation. In
particular, we investigate coverage and length of confidence intervals compared to those
obtained by conducting standard parametric inference for the classical linear model (OLS),
with and without cluster-robust error adjustment for controls from the same trajectory. We
choose to compare to OLS with and without cluster-robust error adjustment because, to the
best of our understanding, this is what is used in practice.

5.1 Data Generation

We generate eight covariates, four of them uniform across time for each individual i, (i.e.,
they take on the same value at every timepoint):

X1,i, X3,i, X4,i ∼ N(0, 1)

X2,i ∼ N(0, 1) for control units
X2,i ∼ N(0.25, 1) for treated units

Additionally, for treated units:

X5, X7, X8 ∼ N(0, 1)

X6 ∼ N(0.5, 1)

Four of the covariates are time-varying for control units. In particular, for each control
unit, three instances are generated from a random walk process to correlate their values
across time. Covariate j = 5, 6, 7, 8 values for an instance t in a trajectory i are generated
in the following way:

Xj,i1 ∼ N(0, 1)

Xj,i2 = Xj,i1 + εi1

Xj,i3 = Xj,i2 + εi2

εi1, εi2 ∼ N(0, 0.52)

Our outcome is defined as follows fixing aL = log(1.25), aM = log(2), aH = log(4) and
aV H = log(10) and drawing the εit terms independently from a standard normal distribution.

Yit = aL

4∑
j=1

Xj,it + aV HX5,it + aM(X6,it +X8,it) + aH(X7,it) + ∆Di + εit

The outcome for a unit is thus correlated across time as it is generated from some time-
varying covariates. Each simulation consists of 400 treated and 600 control individuals. We
consider 1:2 matching. The true treatment effect, ∆, is set at 0.25.
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We consider three different ways of generating the continuous outcome variable. First,
we generate the outcome based on a linear model of all the covariates with independent error
terms (as described above). Second, we add correlation to the error terms, so that the error
terms for a trajectory, εit for a given trajectory i, are generated from a normal distribution
with mean 0 and covariance matrix with off diagonal values of 0.8. Finally, in addition to
the correlated error terms, we square the X2,it term of the model, so it is no longer linear.

We compare the weighted bias-corrected bootstrap approach outlined in Section 4 to
the confidence intervals obtained from weighted least squares (WLS) regression and WLS
with clustered standard errors. We choose to compare to WLS because this is commonly
recommended in matching literature (Ho et al., 2007; Stuart et al., 2011). However, Abadie
and Spiess (2021) pointed out that standard errors from regression may be incorrect due to
dependencies among outcomes of matched units, and identified matching with replacement
as a setting in which these dependencies are particularly difficult to correct for. Our sim-
ulation results suggest that these difficulties carry over into the case of repeated measures.
Additionally, in running our simulations we noticed that standard functions in R used to
compute WLS with matching weights such as lm and Zelig (which calls lm), compute biased
standard error estimates in most settings. See Appendix B for details.

5.2 Results

Tables 1 and 2 show the coverage and average 95% confidence interval (CI) length, respec-
tively, of WLS, WLS cluster, and bootstrap bias-corrected methods for each of our three
simulation settings under 10,000 simulations. As misspecification increases the bootstrap
method is substantially more robust (although under substantial misspecification the bias-
corrected method also fails to achieve nominal coverage). In settings where strong scientific
knowledge about the exact form of the outcome model is absent, the bootstrap approach
appears more reliable than its chief competitors.

Coverage WLS WLS Cluster Bootstrap Bias Corrected
Linear DGP 93.2% 94.8% 94.8%
Linear DGP, Correlated Errors 89.4% 91.5% 94.5%
Nonlinear DGP, Correlated Errors 83.4% 86.0% 89.8%

Table 1: Coverage of the WLS, WLS cluster and bootstrap bias corrected methods of infer-
ence for our three simulation set-ups.

Average CI Length WLS WLS Cluster Bootstrap Bias Corrected
Linear DGP 0.25 0.27 0.27
Linear DGP, Correlated Errors 0.25 0.27 0.30
Nonlinear DGP, Correlated Errors 0.26 0.28 0.31

Table 2: Average 95% confidence interval length for the WLS, WLS cluster and bootstrap
bias corrected methods of inference for our three simulation set-ups.
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6 Testing for Timepoint Agnosticism
The key advantage of GroupMatch (Pimentel et al., 2020) relative to other matching tech-
niques designed for rolling enrollment settings (e.g., Witman et al. (2019), Imai et al. (2020),
and Lu (2005)) is its ability to consider and optimize over matches between units at differ-
ent timepoints, which leads to higher quality matches on lagged covariates. This advantage
comes with a price in additional assumptions, notably the assumption of timepoint agnos-
ticism. Timepoint agnosticism means that mean potential outcomes under control for any
two individual timepoints in the data should be identical; in particular, this rules out time
trends of any kind in the outcome model that cannot be explained by covariates in the prior
L timepoints.

While in many applications scientific intuition about the data generating process suggests
this assumption may be reasonable, it is essential that we consider any information contained
in the observed data about whether it holds in a particular case. Accordingly, we present
a falsification test for time agnosticism. Falsification tests are tests “for treatment effects
in places where the analyst knows they should not exist,” (Keele, 2015) and are useful in
a variety of settings in observational studies (Rosenbaum, 1999). In particular, our test is
designed to detect violations of time agnosticism, or “treatment effects of time” when they
should be absent; rejections indicate setting in which GroupMatch is not advisable and other
rolling enrollment matching techniques that do not rely on timepoint agnosticism are likely
more suitable. While failure to reject may not constitute proof positive of time agnosticism’s
validity, it rules out gross violations, thereby limiting the potential for bias.

To test the timepoint agnosticism assumption we propose control-control time match-
ing : matching control units at different timepoints and testing if the average difference in
outcomes between the two timepoint groups, conditional on relevant covariates, is signif-
icantly different from zero using a permutation test. Specifically, restricting attention to
trajectories i from the control group, we select two timepoints t0 and t1 and match each
instance at one timepoint to one at the other timepoint using the GroupMatch optimization
routine, based on similarity of covariate histories over the previous L timepoints. We note
that since this match compares instances at two fixed time points, it is not strictly necessary
for GroupMatch to be applied, and any optimal method of matching without replacement
should suffice. One practical issue arises: GroupMatch and related matching routines expect
one group to be designated “treated,” all members of which are generally retained in the
match, and the other “control,” some members of which will be included, but both matching
groups are controls in this case. We label whichever of the two groups has fewer instances as
treated; without loss of generality, we will assume there are fewer instances at time t1 and
use these instances as the reference group to be retained.

We now define a test statistic for the falsification test, by close analogy to our ATT
estimator in section 2.3. Let Nc be the overall number of control units in total and let Nt1 be
the number of control instances at time t1. Let µ̂t00 be a bias correction model fit on our new
control group (i.e., control instances at time t0). In addition, let D′i = 1 if unit i is present
at time t1. We define the test statistic as follows:
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∆̂cc =
1

Nt1

Nc∑
i=1

D′i((Yi,t=t1 − µ̂
t0
0 (Xi,t=t1))−

Nc∑
j=1

Mit1,jt0(Yi,t=t0 − µ̂t00 (Xi,t=t0)))

To conduct inference, we use a permutation test to test the following null hypothesis,
where Et1

0 {·} indicates expectation over the distribution of the covariates in control instances
at time t1.

Et1
0

{
µt00 (X)

}
= Et1

0

{
µt10 (X)

}
In words, this null hypothesis says that, accounting for differences in the covariate distri-
bution at times 0 and 1, the difference in the average outcomes of control instances at the
two timepoints is zero. The test amounts to considering the tail probability of the distribu-
tion of the following test statistic ∆̂perm under many draws of the random vector R, where
R = (R1, ..., RNc) and Ri are independent Rademacher random variables:

∆̂perm =
1

Nt1

Nc∑
i=1

RiD
′
i((Yi,t=t1 − µ̂

t0
0 (Xi,t=t1))−

Nc∑
j=1

Mit1,jt0(Yi,t=t0 − µ̂t00 (Xi,t=t0)))

This permutation test is identical in implementation to the standard test of a sharp null
hypothesis that outcomes are unchanged by group assignment for matched designs without
replacement, discussed in detail in Rosenbaum (2002b, §2-§3). In steps:

1. Randomly partition the set of control trajectories into two groups. Label control
instances from the first group of trajectories at timepoint t1 the new “treated” units,
and control instances from the second grouf of trajectories at timepoint t0 the new
“control” units.

2. Fit a bias correction model on the new control units.

3. Match the new treated units to the new control units and calculate the test statistic.

4. Repeat B times:

(a) For each matched pair randomly and independently switch which unit is labelled
the treated and which is labelled the control unit with probability 0.5 (with prob-
ability 0.5 do not switch the treated/control labels). This amounts to multiplying
the treatment effect by -1 for that pair with probability 0.5.

(b) Calculate the test statistic for this randomization.

5. Calculate the proportion of permutations that result in an absolute value of the test
statistic greater than or equal to the absolute value of the observed value calculated in
1. This is the P -value.

6. If the P -value is smaller than a predefined significance level α, reject the null hypothesis
of no difference between groups, indicating the presence of systematic variation of
outcomes with time given covariates.
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We do not allow the same unit to appear in both the new control and treated group,
because this would lead to dependence across matches. We employ 1-1 matching because
we are testing a weak null hypothesis using a permutation test. As Wu and Ding (2020)
demonstrate, issues can arise when using a randomization test to test a weak null hypothesis
when treatment and control sample sizes are not equal. However, 1-1 matching allows us to
avoid this issue by balancing the treatment and control sample sizes. We recommend the use
of caliper matching to ensure high quality matches, especially in the case where all control
units are present at both timepoints.

Note that it is important to permute treatment after matching (indeed, conditional on
the matched pairs chosen) in order to preserve the covariate distribution of the treated
and control units. If we permute treatment and then perform matching we risk changing
the covariate distribution of the treated units under permutation. This could become an
issue especially if some covariates are correlated with time, but the outcome is not. Then
permuting before matching could cause an effect to appear as a result of destroying the
original treated covariate distribution.

We choose to use a permutation test here rather than the bootstrap because the data
split and 1:1 matching ratio ensure matches are independent under the original sampling
model, making for a tractable permutation distribution. If desired, the bootstrap approach
of Section 4 could be applied instead, and we expect that results would be similar given
the fundamental similarity between bootstrap and randomization inference where both are
viable (Romano, 1989).

A key consideration for this test is which timepoints to choose as t0 and t1. The choice
of timepoint comparison depends largely on what a plausible time trend would be for the
problem at hand. For example, if you suspect a linear time trend, it makes sense to look
at the first and last timepoints. If the trend is linear, this test should have high power to
detect a problem in moderate to large samples.

If one is uncertain about the specific shape of the time trend that is most likely to
occur and want to test for all possible trends, we recommend testing each sequential pair of
timepoints (i.e., timepoints 1 and 2, 2 and 3, 3 and 4, and so on) and combining the tests
via a nonparametric combination of tests (Pesarin and Salmaso, 2010).

6.1 Simulations

We illustrate this method via simulation. We generate a dataset with 4 covariates and 1000
control units each with 2 instances occuring at time t0 and t1. Two of the covariates vary
with time, and two are uniform across time:

X1,i, X2,i ∼ N(0, 1)

X3,i,t0 , X4,i,t0 ∼ N(0, 1)

X3,i,t1 = X3,i,t0 + εi

X4,i,t1 = X4,i,t0 + εi

εi ∼ N(0, 0.52)
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The outcome variable is a linear combination of the four covariates, a time trend con-
trolled by parameter γ, and an error term (εit ∼ N(0, 1)):

Yit = log(4)(X1,it +X4,it) + log(10)(X3,it +X4,it) + 1{t = t1}γ + εit

We generate data for the setting γ = 0, which does not include a time varying component,
1000 times. On each dataset, we perform the test for timepoint agnosticism outlined in
this section, with 1-1 matching and bias correction. Our simulated data only contains two
timepoints and the sample size is balanced so we choose the first timepoint as t0, our new
control group, and the second timepoint as t1, our new treated group. In 0.049 of the
simulations the P -value is less than 0.05, which shows that type I error is controlled. Now,
we add in a time trend where there is an additional term, γ, added to the second timepoint.
For γ = 0.1 for the second timepoint (resulting in a time trend of 0.1), our simulations result
in a P -value less than 0.05 in 0.327 of the 1000 simulations. For γ = 0.25 for the second
timepoint (resulting in a time trend of 0.25), our simulations result in a P -value less than
0.05 in 0.981 of the 1000 simulations. Table 3 summarizes these results.

Figure 2 shows two simulated datasets with γ = 0.1. The test for timepoint agnosticism
detects the trend in one of the two datasets. Overall, the simulations show that the test
is not a panacea for issues with time agnosticism, failing to detect small violations more
often than not. However, it still adds substantial value to the analysis pipeline, detecting
moderate violations of time agnosticism not especially obvious to the eye in visualization
plots with a very high rate of success.

Time Trend, γ 0 0.1 0.25
Proportion P -values < 0.05 0.049 0.327 0.981

Table 3: Summary of timepoint agnosticism simulation results. Proportion of 1000 simula-
tions where the P -value from the test is less than 0.05, for time trends, γ = 0, 0.1, 0.25.

7 Application: Baseball Injuries
A large body of literature evaluates major league baseball players’ performance (Baumer,
2008), and a different body of literature analyzes injury trends and impact of injuries in ath-
letics (Conte et al., 2016). The intersection of these two research areas is relatively small. In
particular, there have been relatively few studies evaluating the impact of injury on position
players’ hitting performance. Studies that have evaluated the impact of injury on batters
have generally been focused on specific injury types, and have not found strong evidence that
injury is associated with a decline in performance (Begly et al., 2018; Frangiamore et al.,
2018; Wasserman et al., 2015).

We study the impact of short-term injury on hitting performance in observational data
from major league baseball during 2013-2017, by using GroupMatch to match baseball play-
ers injured at different times to similar players at other points in the season not receiving
injuries. We evaluate whether players see a decline in offensive performance immediately
after their return from injury. In contrast to other studies, we pool across injury types to
see if there is a more general effect of short term injury on hitter performance.
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Figure 2: Simulated datasets with time trend, γ = 0.1. The figures show outcome data for
a dataset where the timepoint agnosticism test detects the time trend (P = 0.04) and does
detect the time trend (P = 0.37) respectively.

7.1 Data and Methodology

We use publicly available MLB player data from Retrosheet.org and injury data scraped
from ProSportsTransactions.com for the years 2013-2017. Our dataset is composed of player
height, weight and age, quantities that remain constant over a single season of play, as well
as on-base percentage (OBP) and plate appearances (PAs) at different points in the season,
and dates of short-term injuries, in which the player’s team designated him for a 7-10 day
stay on the team’s official injured list, for each year. OBP is a common measure of batter
performance and is approximately equal to the number of times a player makes it on base
divided by their number of plate appearances.1 Each plate appearance is a batter’s complete
turn batting.

For each non-injured player, we generate three pseudo-injury dates evenly spaced over
their number of PAs. In each season, we match injured players to four non-injured players.
Matches were formed using GroupMatch with instance replacement and matching on age,
weight, height, number of times previously injured, recent performance as measured by OBP
over the previous 100 PAs, and performance over the entire previous year as measured by
end-of-year OBP after James-Stein shrinkage2 We choose to shrink the OBP using James-
Stein instead of using raw OBP to reduce the variability for players that had a relatively
small number of PAs the previous season (Efron and Morris, 1975).

Table 4 shows the balance for each of the covariates prior to matching and Table 5 shows
the balance after matching. For each covariate, matching shrinks the standardized difference
between the treated and control means.

We compare the results for bias-corrected block bootstrap inference, OLS and OLS with
clustered standard errors.

1OBP = (Hits + Walks + Hit By Pitch) / (At Bats + Walks + Hit by Pitch + Sacrifice Flies)
2See https://chris-said.io/2017/05/03/empirical-bayes-for-multiple-sample-sizes/ for dis-

cussion on how to apply James-Stein to data with multiple sample sizes.
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Treated Mean Control Mean Standardized Difference
Height 73.7 73.1 0.26
Weight 213 209 0.24
2016 OBP (JS Shrunk) .324 .328 -0.09
Lag OBP .336 .341 -0.07
Birth Year 1988 1988 -0.08
Number Previous Injuries 2.73 1.91 0.30

Table 4: Balance table for MLB injury analysis after matching each injured player to four
non-injured players.

Treated Mean Control Mean Standardized Difference
Height 73.7 73.4 0.14
Weight 213 212 0.07
2016 OBP (JS Shrunk) .324 .323 0.02
Lag OBP .336 .338 -0.02
Birth Year 1988 1988 -0.06
Number Previous Injuries 2.73 2.16 0.21

Table 5: Balance table for MLB injury analysis after matching each injured player to four
non-injured players.

7.2 Results

The ATT estimates are positive (0.010), but the 95% confidence intervals cover zero for
all methods, indicating that there is not strong evidence that short term injury impacts
batter performance. We present the results for 2017 in Figure 3. Results from 2013 - 2016
were substantively the same. Pooling the matched data across years and the applying the
block bootstrap method also results in the same substantive conclusions. The data pass the
timepoint agnosticism test, comparing the first and last pseudo-injury dates.

8 Discussion
The introduction of matching with instance replacement, a method for block bootstrap
inference, and a test for timepoint agnosticism provide substantial new capability for the
existing GroupMatch framework. We now discuss a number of limitations and opportunities
for improvement.

Our proof of the block bootstrap approach assumes the use of GroupMatch with instance
replacement. The large-sample properties of matched-pair discrepancies are substantially
easier to analyze mathematically in this setting than GroupMatch with trajectory replace-
ment or GroupMatch without replacement, designs in which different treated units may
compete for the same control units, and the technical argument must be altered to account
for this complexity. However, Abadie and Imbens (2012) successfully characterized similar
large-sample properties in cross-sectional settings for matching without replacement. While
beyond the scope of our work here, we believe it is likely that this approach could provide an
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Figure 3: Plot comparing block bootstrap, OLS and Cluster OLS inference methods for the
ATT in our 2017 baseball injury example.

avenue for extending Theorem 1 to cover the other two GroupMatch designs. Empirically,
we have found that the block bootstrap performs well when matches are calculated using
any of the three GroupMatch designs.

Setting aside the technical barriers associated with extending the theory to GroupMatch
without replacement, our new approach provides a competitor method to the existing ran-
domization inference framework described by Pimentel et al. (2020) available for GroupMatch
without replacement. The randomization inference framework offers the advantage of finite
sample validity and freedom from making assumptions about the sampling distribution of
the response variables; on the other hand, the block bootstrap method avoids the need to as-
sume a sharp null hypothesis. In general these same considerations arise in choosing between
sampling-based inference and randomization-based inference for a cross-sectional matched
study, although such choices have received surprisingly little direct and practical attention
in the literature thus far.

The falsification test proposed in Section 6 is subject to several common criticisms levied
at falsification tests, particularly their ineffectiveness in settings with low power. One pos-
sible approach is to reconfigure the test to assume violation of time agnosticism as a null
hypothesis and seek evidence in the data to reject it; Hartman and Hidalgo (2018) recom-
mend a similar change for falsification tests used to assess covariate balance. However, even
in the absence of such a change the test may prove useful in concert with a sensitivity anal-
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ysis. Sensitivity analysis, already widely studied in causal inference as a way to assess the
role of ignorability assumptions, places a nonzero bound on the degree of violation of an as-
sumption and reinterprets the study’s results under this bound, often repeating the process
for larger and larger values of the bound to gain insight. Such a procedure, which focuses
primarily on assessing the impact of small or bounded violations of an assumption, naturally
complements our falsification test, which (as shown in our simulations) can successfully rule
out large violations but is more equivocal about minor violations.

Unfortunately no sensitivity analysis appropriate for block bootstrap inference has yet
been developed, either for time agnosticism or other strong assumptions such as ignorability.
The many existing methods for sensitivity analysis (developed primarily with ignorability
assumptions in mind) are unsatisfying in our framework for a variety of different reasons:
some rely on randomization inference (Rosenbaum, 2002b), others focus on weighting meth-
ods rather than matching (Zhao et al., 2019; Soriano et al., 2021), and others are limited to
specific outcome measures (Ding and VanderWeele, 2016) or specific test statistics (Cinelli
and Hazlett, 2020). We view the development of compelling sensitivity analysis approaches to
be an especially important methodological objective for matching under rolling enrollment.
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A Proof of Theorem

A.1 Assumptions

We begin by rewriting
√
N1U

∗ as follows:

√
N1U

∗ =
1

N1

N∑
i=1

(
∆̂∗i − ∆̂adj

)
=

N∑
i=1

W ∗
i (∆̂i −Di∆̂adj)

Here the W ∗
i , quantities we denote as the bootstrap weights, are random variables of the

form Qi/N1 where Qi is a count of the number of times observation i is selected to appear in
the bootstrap sample. This new form enables us to work separately with stochasticity arising
from the bootstrap and stochasticity arising from the original data-generating process, and
it also makes it easy to generalize our results to other bootstrap approaches as discussed
below.

Our proof relies on the assumptions on sampling described in Section 2.2 and the Group-
Match identification assumptions described in Section 2.3, with the exception of the exact
matching assumption. In addition we invoke two additional sets of assumptions, which we
denote M and R following similar labeling in Otsu and Rai (2017), from whom we adapt our
proof strategy.

Assumption M. (Conditions for ∆̂adj)

1. Let the population distribution of Xi = (Xi,1, . . . , Xi,T ) be continuous on RkT with
compact and convex support XT . In addition, let the densiity of Xi be bounded, and
bounded away from zero on its support.

2. For some r ≥ 1, N
r
1

N0
→ θ for θ ∈ (0,∞).
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3. For z = 0, 1, let µtz(X) be Lipschitz in XL for all t = L+ 1, . . . , T .

4. For all t ∈ {L+ 1, . . . , T}, and z = 0, 1, E[Y 4
i,t(z)|Zi,t−1 = z,Xi] and Cov(Yit, Yit′|Di =

d,Xi,t = x,Xi,t′ = x′) are bounded uniformly on XT , and Var(Yi,t(z)|Zi,t−1 = z,Xi) is
Lipschitz in XT and bounded away from zero.

Assumption R. (Conditions for µd(x))
For d = 0, 1 and λ satisfying

∑kL
l=1 λl = kL, the derivative ∂kLµtd(x) exists and satisfies

supx∈X|∂kLµtd(x)| ≤ R for some R > 0 and for all t ∈ {L + 1, . . . T}. Furthermore, µ̂0(x)
satisfies |µ̂0(·)− µ0(·)|kL−1 = op(N

−1/2+1/(kL)).
While not necessary to prove Theorem 1, we mention one additional set of conditions on

the bootstrap weights W ∗
i . These are satisfied trivially by the nonparametric bootstrap we

adopt, but in fact the proof goes through for any bootstrap algorithm that can be represented
by a set of bootstrap weights satisfying these conditions (for instance, the wild bootstrap).
Again following Otsu and Rai (2017), we denote this set of assumptions as Assumption W
and refer to it in our proof to make the path for generalization clear.

Assumption W. (Conditions for W ∗
i )

1. (W ∗
1 , ...,W

∗
N) is exchangeable and independent of O = (Y,D,X).

2.
∑N

i=1(W
∗
i − W̄ ∗)2

p−→ 1 where W̄ ∗ = 1
N

∑N
i=1W

∗
i

3. maxi=1,...,N |W ∗
i − W̄ ∗| p−→ 0

4. E[W ∗2
i ] = O(N−1) for all i = 1, ..., N

A.2 Lemmas

To bound the size of matching discrepancies, we compare those obtained by GroupMatch
with instance replacement to nearest-neighbor matching at a fixed timepoint, in which only
one instance from each control unit can potentially be used in a match. Nearest-neighbor
matching matches each treated unit to the control instance that is most similar. While
GroupMatch also uses nearest-neighbor matching, nearest-neighbor matching at a fixed time-
point considers a smaller pool of control instances since there is only one instance for each
control unit that can potentially be used in a match. Comparing matching discrepancies
between GroupMatch with instance replacement and nearest-neighbor matching is impor-
tant to apply Lemma A.2, used to prove Theorem 2, in Abadie and Imbens (2011). For
each treated unit i, let jm(i) and jgmm (i) represent the mth instance used as a match for
nearest-neighbors at a fixed timepoint and GroupMatch with instance replacement respec-
tively. Let Um,i = Xjm(i) −Xi,Ti and U

gm
m,i = Xjgmm (i) −Xi,Ti be the matching discrepancies

under nearest neighbors at a fixed timepoint and GroupMatch with instance replacement
matching respectively.

Lemma 1. ||U gm
m,i|| ≤ ||Um,i|| for all m, i.

Proof. Because nearest neighbors (NN) matching at a fixed timepoint only considers
one instance from each control trajectory whereas GroupMatch with instance replacement
(GM) considers multiple, the set of control instances that can be used in a match in NN
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matching, C, is a subset of the set of control instances that can be used in a match in GM,
Cgm: C ⊆ Cgm. Both NN and GM match treated units to the control instance that minimizes
Um,i and U gm

m,i, so we have that

||U gm
m,i|| = minm,j∈Cgm|Xj −Xi,Ti | ≤ minm,j∈C|Xj −Xi,Ti | = ||Um,i||

where minm denotes the mth minimum.

Lemma 2. E[KM(i, t)q] is bounded uniformly in N .
Proof. This proof follows closely with the proof of Lemma 3 in Abadie and Imbens (2006)

with modifications described below. Let f t be the density ofXi,t and define f = infx,w,tf
t
w(x)

and f = supx,w,tf
t
w(x). We define the catchment area, AM(i, t) as the subset of X such that

control unit i at time t is matched to each observation j at time t′ with Wj = 1 −Wi and
Xj,t′ ∈ AM(i, t):

AM(i, t) = {x|
∑

l|Wl=Wi,l 6=i

1{(mint′ ||Xl,t′−x||) ≤ ||Xi,t−x||}1{mint′||Xi,t′−x|| ≥ ||Xi,t−x||} ≤M}

Ultimately, we want to bound the volume of the catchment area. In order to do this, we
need to bound the probability that the distance to a match exceeds some value. To derive
this bound, we must account for our trajectory structure by showing the following inequality:

Pr(||Xj,t −Xi,t′|| > uN
−1/k
1−Wi
|W1, ...,WN ,Xi,t′ = x, j ∈ JM(i))

≤ Pr(||Xj,t −Xi,t′|| > uN
−1/k
1−Wi
|W1, ...,WN ,Xi,t′ = x, (j, t) = jM(i, t′))

=
M−1∑
m=0

(
N1−Wi

m

)
Pr(mint||Xj,t −Xi,t′ || > uN

−1/k
1−Wi
|W1, ...,WN ,Wj = 1−Wi,Xi,t′ = x)N1−Wi−m×

Pr(mint||Xj,t −Xi,t′ || ≤ uN
−1/k
1−Wi
|W1, ...,WN ,Wj = 1−Wi,Xi,t′ = x)m

≤
M−1∑
m=0

(
N1−Wi

m

)
Pr(||Xj,t −Xi,t′|| > uN

−1/k
1−Wi
|W1, ...,WN ,Wj = 1−Wi,Xi,t′ = x)N1−Wi−m×

Pr(||Xj,t −Xi,t′|| ≤ uN
−1/k
1−Wi
|W1, ...,WN ,Wj = 1−Wi,Xi,t′ = x)m

The second inequality follows from the fact that the probability that the minimal dis-
tance over a trajectory is less than or equal to any particular instance. The rest of the proof
follows directly from the proof of Abadie and Imbens (2006)’s Lemma 3 after substituting
in our catchment area, this inequality, and indexing over time.

Lemma 3. Given that E[KM(i, t)q] is uniformly bounded,
∑

i

∑
tKM(i, t) = N1, and

KM(i, t) ≥ 0, we have that
∑

i

∑
t

∑
t′
∑

t′′
∑

t′′′ E[KM(i, t)KM(i, t′)KM(i, t′′)KM(i, t′′′)] ≤
cN

1+o(1)
1 for some constant c.
Proof. For all ε > 0, we have that
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∑
i

∑
t

∑
t′

∑
t′′

∑
t′′′

E[KM (i, t)KM (i, t′)KM (i, t′′)KM (i, t′′′)]

=
∑
i

∑
t

∑
t′

∑
t′′

∑
t′′′

E[KM (i, t)KM (i, t′)KM (i, t′′)KM (i, t′′′);KM (i, t),KM (i, t′),KM (i, t′′),KM (i, t′′′) ≤ N ε
1]+∑

i

∑
t

∑
t′

∑
t′′

∑
t′′′

E[KM (i, t)KM (i, t′)KM (i, t′′)KM (i, t′′′);maxt1=t,t′,t′′,t′′′KM (i, t1) > N ε
1]

≤
∑
i

∑
t

∑
t′

∑
t′′

∑
t′′′

E[KM (i, t)KM (i, t′)KM (i, t′′)KM (i, t′′′);KM (i, t),KM (i, t′),KM (i, t′′),KM (i, t′′′) ≤ N ε
1]+

4
∑
i

∑
t

∑
t′

∑
t′′

∑
t′′′

E[KM (i, t)KM (i, t′)KM (i, t′′)KM (i, t′′′);KM (i, t1) > N ε
1]

This upper bound is derived from the fact that

E[KM(i, t)KM(i, t′)KM(i, t′′)KM(i, t′′′);maxt1=t,t′,t′′,t′′′KM(i, t1) > N ε
1]

≤
∑

t1∈{t,t′,t′′,t′′′}

E[KM(i, t)KM(i, t′)KM(i, t′′)KM(i, t′′′);KM(i, t1) > N ε
1]

and since we are summing over all t, t′, t′′, t′′′ we are able to replace the summation above
with multiplying by four. We bound each of the terms separately. First,

∑
i

∑
t

∑
t′

∑
t′′

∑
t′′′

E[KM (i, t)KM (i, t′)KM (i, t′′)KM (i, t′′′);KM (i, t),KM (i, t′),KM (i, t′′),KM (i, t′′′) ≤ N ε
1]

≤ N3ε
1

∑
i

∑
t

∑
t′

∑
t′′

∑
t′′′

E[KM (i, t)]

= T 3N3ε+1
1

For the next term we use proof by contradiction to show∑
i

∑
t

∑
t′

∑
t′′

∑
t′′′

E[KM(i, t)KM(i, t′)KM(i, t′′)KM(i, t′′′);KM(i, t) > N ε
1] ≤ N1.

Suppose
∑

i

∑
t

∑
t′
∑

t′′
∑

t′′′ E[KM(i, t)KM(i, t′)KM(i, t′′)KM(i, t′′′);KM(i, t) > N ε
1] > N1,

then:

∑
i

∑
t

∑
t′

∑
t′′

∑
t′′′

E[KM(i, t)
r
ε
+1KM(i, t′)KM(i, t′′)KM(i, t′′′);KM(i, t) > N ε

1]

≥ (N ε
1)

r
ε

∑
i

∑
t

∑
t′

∑
t′′

∑
t′′′

E[KM(i, t)KM(i, t′)KM(i, t′′)KM(i, t′′′);KM(i, t) > N ε
1]

= N r
1

∑
i

∑
t

∑
t′

∑
t′′

∑
t′′′

E[KM(i, t)KM(i, t′)KM(i, t′′)KM(i, t′′′);KM(i, t) > N ε
1]

> N r
1N1 = N r+1

1

=⇒ NT 4supi,t,t′,t′′,t′′′E[KM(i, t)
r
ε
+1KM(i, t′)KM(i, t′′)KM(i, t′′′);KM(i, t) > N ε

1] > N r+1
1

=⇒ supi,t,t′,t′′,t′′′E[KM(i, t)
r
ε
+1KM(i, t′)KM(i, t′′)KM(i, t′′′);KM(i, t) > N ε

1] >
N r+1

1

NT 4
= cN1
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for some constant c. This follows from Assumption M.
So, then we have that:

supi,tE[KM(i, t)
r
ε
+4]

≥ supi,t,t′,t′′,t′′′E[KM(i, t)
r
ε
+1KM(i, t′)KM(i, t′′)KM(i, t′′′)]

> supi,t,t′,t′′,t′′′E[KM(i, t)
r
ε
+1KM(i, t′)KM(i, t′′)KM(i, t′′′);KM(i, t) > N ε

1]

> cN1

The first inequality holds by applying Cauchy-Schwarz twice. But then E[KM(i, t)q] is
not uniformly bounded for all q, so by contradiction∑

i

∑
t

∑
t′

∑
t′′

∑
t′′′

E[KM(i, t)KM(i, t′)KM(i, t′′)KM(i, t′′′);KM(i, t) > N ε
1] ≤ N1.

So we have that:

∑
i

∑
t

∑
t′

∑
t′′

∑
t′′′

E[KM(i, t)KM(i, t′)KM(i, t′′)KM(i, t′′′)]

=
∑
i

∑
t

∑
t′

∑
t′′

∑
t′′′

E[KM(i, t)KM(i, t′)KM(i, t′′)KM(i, t′′′);

KM(i, t), KM(i, t′), KM(i, t′′), KM(i, t′′′) ≤ N ε
1]+∑

i

∑
t

∑
t′

∑
t′′

∑
t′′′

E[KM(i, t)KM(i, t′)KM(i, t′′)KM(i, t′′′);maxt1=t,t′,t′′,t′′′KM(i, t1) > N ε
1]

≤
∑
i

∑
t

∑
t′

∑
t′′

∑
t′′′

E[KM(i, t)KM(i, t′)KM(i, t′′)KM(i, t′′′);

KM(i, t), KM(i, t′), KM(i, t′′), KM(i, t′′′) ≤ N ε
1]+

4
∑
i

∑
t

∑
t′

∑
t′′

∑
t′′′

E[KM(i, t)KM(i, t′)KM(i, t′′)KM(i, t′′′);KM(i, t) > N ε
1]

≤ T 3N3ε+1
1 + 4c′N1 ≤ cN

1+o(1)
1

for some constant c.

A.3 Proof

We follow the proof of Theorem 1 in Otsu and Rai (2017) closely, adapting where necessary
to address the possible presence of multiple correlated potential outcomes from the same
trajectory multiple control instances in the matched design. In the case where every control
unit has only one instance, our argument reduces to exactly that presented in Otsu and Rai
(2017).

We decompose
√
N1U

∗ as follows:
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√
N1U

∗ =
N∑
i=1

W ∗
i (∆̂i −Di∆̂adj)

=
N∑
i=1

(W ∗
i − W̄ ∗)(∆̂i −Di∆̂adj)

=
N∑
i=1

(W ∗
i − W̄ ∗)(Di(∆̂i − ∆̂adj) + (1−Di)∆̂i)

=
N∑
i=1

(W ∗
i − W̄ ∗)[Di(Yi,Ti − µ̂0(Xi,Ti)− ∆̂adj) + (1−Di)

T∑
t=1

KM(i, t)

C
(Yi,t − µ̂0(Xi,t))]

=
√
N1(T

∗ +R∗1N1
+R∗2N1

)

We define the following:

ei,t = Yi,t − µDi(Xi,t)

ξi,t = (2Di − 1)(µDi(Xi,t)− µ1−Di(Xi,t))−∆

We can now rewrite the three components as follows.

√
N1T

∗ =
N∑
i=1

(W ∗
i − W̄ ∗)(Di(ei,t=Ti + ξi,t=Ti)− (1−Di)

T∑
t=1

KM(i, t)

C
ei,t)

=
N∑
i=1

(W ∗
i − W̄ ∗)[Di((Yi,t=Ti − µ

Ti
1 (Xi,t)) + (µTi1 (Xi,t)− µ0(Xi,t)−∆))

− (1−Di)
T∑
t=1

KM(i, t)

C
(Yi,t − µ0(Xi,t))]

=
N∑
i=1

(W ∗
i − W̄ ∗)[Di(Yi,t=Ti − µ0(Xi,t)−∆)− (1−Di)

T∑
t=1

KM(i, t)

C
(Yi,t − µ0(Xi,t))]

√
N1R

∗
1N1

=
N∑
i=1

(W ∗
i − W̄ ∗)(Di(µ0(Xi,t)− µ̂0(Xi,t))− (1−Di)

KM(i, t)

C

T∑
t=1

(µ0(Xi,t)− µ̂0(Xi,t)))

√
N1R

∗
2N1

=
N∑
i=1

(W ∗
i − W̄ ∗)Di(∆− ∆̂adj)

We have that Pr{
√
N1R

∗
1N1

> ε|O} p−→ 0 and Pr{
√
N1R

∗
2N1

> ε|O} p−→ 0 for any ε > 0, by
the same argument as Otsu and Rai (2017) which utilizes our Assumptions W, R, Lemma 2
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and the Markov Inequality. This part of the argument also relies on Lemma 1, although the
reliance is not explicit in Otsu and Rai (2017); see Abadie and Imbens (2011) for a similar
derivation where the role of Lemma 1 is more clear.

Next, to show that that supr|Pr{
√
N1T

∗ ≤ r|O} − Pr{
√
N1(∆̂adj − ∆) ≤ r}| p−→ 0, we

define:

ηi = [Di(Yi,t=Ti − µ0(Xi,t)−∆)− (1−Di)
T∑
t=1

KM(i, t)

C
(Yi,t − µ0(Xi,t))]/

√
N1

= Di(ei,t=Ti + ξi,t=Ti)− (1−Di)
T∑
t=1

KM(i, t)

C
ei,t

We have the following:

σ2
N = σ2

1N + σ2
2

σ2
1N =

1

N1

N∑
i=1

V ar(
T∑
t=1

(Di1{t = Ti}+
KM(i, t)

C
(1−Di))Yit|D,X)

=
1

N1

N∑
i=1

Cov
{ T∑

t=1

(Di1{t = Ti}+
KM(i, t)

C
(1−Di))Yit,

T∑
t=1

(Di1{t = Ti}+
KM(i, t)

C
(1−Di))Yit|D,X

}
=

1

N1

N∑
i=1

T∑
t=1

T∑
t′=1

(Di1{t = Ti}+
KM(i, t)

C
(1−Di))(Di1{t′ = Ti}+

KM(i, t′)

C
(1−Di))Cov(Yit, Yit′)

σ2
2 = E[((µTi1 (Xi,t)− µ0(Xi,t))−∆)2|Di = 1]

Within σ2
1N , note that V ar(

∑T
t=1(Di1{t = Ti} + KM (i,t)

C
(1 − Di))Yit|D,X) reduces to

V ar(Yit) for treated units. However, for control units, we have this variance term plus extra
covariance terms between that control unit instance and the other instances in its trajectory.
From here, we are able to follow the same proof strategy as in Otsu and Rai (2017), with
our modified assumptions, and some modifications (detailed below) to Lemmas (i)-(iii) in
Otsu and Rai (2017) to account for the extra covariance terms resulting from the trajectory
structure of the control units. Lemma(i)-(iii) in Otsu and Rai (2017) show that the sampling
variance of the ηi’s converge to the population variance, σ2

N , and that other random variables
converge in probability to 0. They show this by leveraging the boundedness of higher order
moments of ηi and use of the Markov inequality. We are able to utilize the same arguments,
with changes laid out more explicitly for lemma (i), below, and generalized for lemmas (ii)
and (iii).

To apply Lemmas (i)-(iii) in Otsu and Rai (2017) we define:

σ̂2
1N =

1

N1

N∑
i=1

T∑
t=1

T∑
t′=1

(Di1{t = Ti}+
KM(i, t)

C
(1−Di))(Di1{t′ = Ti}+

KM(i, t′)

C
(1−Di))ei,tei,t′
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Then note that:

E[(σ̂2
1N − σ2

1N)2]

= E[{( 1

N1

N∑
i=1

T∑
t=1

T∑
t′=1

(Di1{t = Ti}+
KM(i, t)

C
(1−Di))(Di1{t′ = Ti}+

KM(i, t′)

C
(1−Di))ei,tei,t′)−

(
1

N1

N∑
i=1

T∑
t=1

T∑
t′=1

(Di1{t = Ti}+
KM(i, t)

C
(1−Di))(Di1{t′ = Ti}+

KM(i, t′)

C
(1−Di))Cov(Yit, Yit′))}2]

=
1

N2
1

E[{
N∑
i=1

T∑
t=1

T∑
t′=1

(Di1{t = Ti}+
KM(i, t)

C
(1−Di))(Di1{t′ = Ti}+

KM(i, t′)

C
(1−Di))

× (ei,tei,t′ − Cov(Yit, Yit′))}2]

=
1

N2
1

E[
N∑
i=1

T∑
t=1

T∑
t′=1

N∑
j=1

T∑
t1=1

T∑
t′1=1

(Di1{t = Ti}+
KM(i, t)

C
(1−Di))(Di1{t′ = Ti}+

KM(i, t′)

C
(1−Di))

× (Dj1{t1 = Tj}+
KM(j, t1)

C
(1−Dj))(Dj1{t′1 = Tj}+

KM(j, t′1)

C
(1−Dj))

× (ei,tei,t′ − Cov(Yit, Yit′))(ej,t1ej,t′1 − Cov(Yjt1 , Yjt′1))]

=
1

N2
1

N∑
i=1

T∑
t=1

T∑
t′=1

T∑
t1=1

T∑
t′1=1

E[(Di1{t = Ti}+
KM(i, t)

C
(1−Di))(Di1{t′ = Ti}+

KM(i, t′)

C
(1−Di))

× (Di1{t1 = Ti}+
KM(i, t1)

C
(1−Di))(Di1{t′1 = Ti}+

KM(i, t′1)

C
(1−Di))

× E[(ei,tei,t′ − Cov(Yit, Yit′))(ei,t1ei,t′1 − Cov(Yit1 , Yit′1))|Di,Xi,t,Xi,t′ ,Xi,t1 ,Xi,t′1
]]

≤ 1

N2
1

(N1 + cN
1+o(1)
1 )×

3×max(supd,xE[e4it|Di = d,Xi,t = x],

− 2supd,x,x′E[e2it|Di = d,Xi,t = x]supd,x,x′Cov(Yit, Yit′|Di = d,Xi,t = x,Xi,t′ = x′),

supd,x,x′Cov(Yit, Yit′|Di = d,Xi,t = x,Xi,t′ = x′)2)→ 0

The inequality follows from Lemma 3. The convergence follows from Assumption M(4)
and Lemma 2.

A.3.1 Difference-in-differences Estimator

This proof extends easily to the difference-in-differences ATT estimator described in Sec-
tion 4.3 with the modifications described below.

We replace ∆̂adj with ∆̂DiD and the outcome Yi,t with the difference-in-differences outcome
Yi,t − Yi,t−1

We modify

ei,t = Yi,t − Yi,t−1 − (µDi(Xi,t)− µDi(Xi,t−1))

33



and

ξi,t = (2Di − 1)((µDi(Xi,t)− µ1−Di(Xi,t))− (µDi(Xi,t−1)− µ1−Di(Xi,t−1)))

.
We also update our variance formulas to reflect the additional covariance terms intro-

duced by the difference-in-differences outcome. In particular, our formula for σ2
1N includes

additional terms:

σ2
1N =

1

N1

N∑
i=1

V ar(
T∑
t=1

(Di1{t = Ti}+
KM(i, t)

C
(1−Di))(Yit − Yi,t−1)|D,X)

=
1

N1

N∑
i=1

Cov
{ T∑

t=1

(Di1{t = Ti}+
KM(i, t)

C
(1−Di))(Yit − Yi,t−1),

T∑
t=1

(Di1{t = Ti}+
KM(i, t)

C
(1−Di))(Yit − Yi,t−1)|D,X

}
=

1

N1

N∑
i=1

T∑
t=1

T∑
t′=1

(Di1{t = Ti}+
KM(i, t)

C
(1−Di))(Di1{t′ = Ti}+

KM(i, t′)

C
(1−Di))×

(Cov(Yit, Yit′)− Cov(Yit, Yi,t′−1)− Cov(Yi,t−1, Yit′) + Cov(Yi,t−1, Yi,t′−1))

To show that E[(σ̂2
1N−σ2

1N)2]→ 0 we use a similar argument to before, where we are able
to bound the difference between the ei,tei,t′ and Cov(Yit, Yit′) by a fourth order polynomial in
eit terms and use the assumption that the expectation of these fourth moments is bounded.

B Weighted Least Squares
Weighted least squares (WLS) is commonly used with matching weights to calculate the
ATT and its corresponding confidence interval (Ho et al., 2007; Stuart et al., 2011). For
WLS, we have the following estimator for β:

β̂ = (XTWX)−1XTWY

Where W is a diagonal matrix with entries corresponding to the matching weights. Note
that W = W T . We can compute the variance as follows:

V ar(β̂) = (XTWX)−1XTW [V ar(Y )]((XTWX)−1XTW )T

Software to compute WLS estimates, such as lm and Zelig (which calls on lm) in R, often
assumes that V ar(Y ) = σ2W−1. If this is true we get a cancellation that yields a nicer
formula for variance:
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V ar(β̂) = (XTWX)−1XTWσ2W−1((XTWX)−1XTW )T

= (XTWX)−1XTWW−1W TXσ2(W TWX)−1

= (XTWX)−1(XTWX)σ2(W TWX)−1

= σ2(W TWX)−1

In R, lm (and Zelig) use this formula3 in order to compute standard errors and confidence
intervals for WLS regression. However, when this assumption is not true, as is the case in
our simulations (and often in practice), this formula is incorrect.

Assume V ar(Y ) = σ2I, as in some of our simulations, then:

V ar(β̂) = (XTWX)−1XTWσ2I((XTWX)−1XTW )T

= σ2(XTWX)−1XTW 2X(XTWX)−1

To get an unbiased estimator of σ2 we note that:

E[eT Ie] = tr(IΣee)

Where e = Y − Ŷ = Y −Xβ̂ = Y −X(XTWX)−1XTWY . Now,

Σee = Cov(Y −X(XTWX)−1XTWY, Y −X(XTWX)−1XTWY )

= V ar(Y )− 2Cov(Y,X(XTWX)−1XTWY ) + V ar(X(XTWX)−1XTWY )

= σ2I − 2X(XTWX)−1XTWV ar(Y ) + (X(XTWX)−1XTW )T (X(XTWX)−1XTW )V ar(Y )

= σ2(I − 2X(XTWX)−1XTW +WX(XTWX)−1XTX(XTWX)−1XTW )

Thus, to get an unbiased estimator of σ2 we must divide eT e by the trace of I −
2X(XTWX)−1XTW +WX(XTWX)−1XTX(XTWX)−1XTW .

When we use this formula to create confidence intervals for WLS, instead of using lm,
our simulations cover in the linear DGP, uncorrelated errors case.

3Last verified 04-11-2022.
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