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Abstract

In machine learning, we traditionally evaluate the performance of a single model, averaged over a collection
of test inputs. In this work, we propose a new approach: we measure the performance of a collection of models
when evaluated on a single input point. Specifically, we study a point’s profile: the relationship between models’
average performance on the test distribution and their pointwise performance on this individual point. We find that
profiles can yield new insights into the structure of both models and data—in and out-of-distribution. For example,
we empirically show that real data distributions consist of points with qualitatively different profiles. On one hand,
there are “compatible” points with strong correlation between the pointwise and average performance. On the other
hand, there are points with weak and even negative correlation: cases where improving overall model accuracy
actually hurts performance on these inputs. We prove that these experimental observations are inconsistent with
the predictions of several simplified models of learning proposed in prior work. As an application, we use profiles
to construct a dataset we call CIFAR-10-NEG: a subset of CINIC-10 such that for standard models, accuracy on
CIFAR-10-NEG is negatively correlated with accuracy on CIFAR-10 test. This illustrates, for the first time, an OOD
dataset that completely inverts “accuracy-on-the-line” (Miller, et al., 2021 (Miller, Taori, Raghunathan, Sagawa, Koh,
Shankar, Liang, Carmon, and Schmidt, 2021)).

1 Introduction

A central question in machine learning is: what are the machines learning? ML practitioners produce models with
surprisingly good performance on inputs outside of their training distribution— exhibiting new and unexpected kinds
of learning such as mathematical problem solving, code generation, and unanticipated forms of robustness'. However,
current formal performance measures are limited, and do not allow us to reason about or even fully describe these
interesting settings.

When measuring human learning using an exam, we do not merely assess a single student by looking at their final
grade on an exam. Instead, we also look at performance on individual questions, which can assess different skills. And
we consider the student’s improvement over time, to see a richer picture of their learning progress. In contrast, when
measuring the performance of a learning algorithm, we typically collapse measurement of its performance to just
a single number. That is, existing tools from learning theory and statistics mainly consider a single model (or a single
distribution over models), and measure the average performance on a single test distributions (Shalev-Shwartz and
Ben-David, 2014; Tsybakov, 2009; Valiant, 1984). Such a coarse measurement fails to capture rich aspects of learning.

“Equal contribution.

1For example, Devlin, Chang, Lee, and Toutanova (2018); Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Sastry,
Askell, Agarwal, Herbert-Voss, Krueger, Henighan, Child, Ramesh, Ziegler, Wu, Winter, Hesse, Chen, Sigler, Litwin, Gray, Chess, Clark, Berner,
McCandlish, Radford, Sutskever, and Amodei (2020); Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, et al. (2021);
Hendrycks, Basart, Kadavath, Mazeika, Arora, Guo, Burns, Puranik, He, Song, and Steinhardt (2021a); Hendrycks, Burns, Basart, Zou, Mazeika,
Song, and Steinhardt (2020a); Hendrycks, Burns, Kadavath, Arora, Basart, Tang, Song, and Steinhardt (2021c).
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Figure 1: Learning Profiles. We consider the “input
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For example, there are many different functions which achieve 75% test accuracy on ImageNet, but it is crucial to
understand which one of these functions we actually obtain when training real models. Some functions with 75%
overall accuracy may fail catastrophically on certain subgroups of inputs (Buolamwini and Gebru, 2018; Koenecke,
Nam, Lake, Nudell, Quartey, Mengesha, Toups, Rickford, Jurafsky, and Goel, 2020; Hooker, Courville, Clark, Dauphin,
and Frome, 2019); yet other functions may fail catastrophically on “out-of-distribution” inputs. The research program
of understanding models as functions, and not just via single scalars, has been developed recently (e.g. in (Nakkiran
and Bansal, 2022)), and we push this program further in our work.

Figure 1 illustrates our approach. Instead of averaging performance over a distribution of inputs, we take a “distribu-
tion free” approach, and consider pointwise performance on one input at a time. For each input point z, we consider
the performance of a collection of models on z as a function of increasing resources (e.g., training time, training set
size, model size, etc.). While more-resourced models have higher global accuracy, the accuracy profile for a single
point z—i.e., the row corresponding to z in the points vs. models matrix—is not always monotonically increasing. That
is, models with higher overall test accuracy can perform worse on certain test points. The pointwise accuracy also
sometimes increases faster (for easier points) or slower (for harder ones) than the global accuracy. We also consider
the full softmax profile of a point z, represented by a stackplot on the bottom of the figure depicting the softmax
probabilities induced on z by this family of models. Using the softmax profile we can identify different types of points,
including those that have non-monotone accuracy due to label ambiguity (as in the figure), and points with softmax
entropy non-monotonicity, for which model certainty decreases with increased resources. And since our framework is
“distribution free,” it applies equally well to describe learning on both in-distribution and “out-of-distribution” inputs.

1.1 Our contributions

In this paper, we initiate a systematic study of pointwise performance in ML (see Figure 1). We show that such
pointwise analysis can be useful both as a conceptual way to reason about learning, and as a practical tool for revealing
structure in learning models and datasets.

Framework: Definition of learning profiles (Section 2.1). We introduce a mathematical object capturing point-
wise performance: the “profile” of a point z with respect to a parameterized family of classifiers 7 and a test
distribution D (see Section 2.1). Roughly speaking, a profile is the formalism of Figure 1—i.e., mapping the global
accuracy of classifiers to the performance on an individual point.



Taxonomy of points (Section 3). Profiles allow deconstructing popular datasets such as CIFAR-10, CINIC-10,
ImageNet, and ImageNet-R into points that display qualitatively distinct behavior (see Figures 3 and 4). For example,
for compatible points the pointwise accuracy closely tracks the global accuracy, whereas for non-monotone points,
the pointwise accuracy can be negatively correlated with the global accuracy. We show that a significant fraction
standard datasets display noticeable non-monotonicity, awhich is fairly insensitive to the choice of architecture.

Pretrained vs. End-to-End Methods (Section 3.2). Our pointwise measures reveal stark differences between
pre-trained and randomly initialized classifiers, even when they share not just identical architectures but also identical
global accuracy. In particular, we see that for pre-trained classifiers the number of points with non-monotone accuracy
is much smaller and the fraction of points with non-monotone softmax entropy is vanishing small.

Accuracy on the line and CIFAR-10-NEG (Section 4). Using profiles, we provide a novel pointwise perspective
on the accuracy-on-the-line phenomenon of (Miller et al., 2021). As an application of our framework, we construct a
new “out-of-distribution” dataset CIFAR-10-NEG: a set of 1000 labeled images from CINIC-10 on which performance of
standard models trained on CIFAR-10 is negatively correlated with CIFAR-10 accuracy. In particular, a 20% improvement
in test accuracy on CIFAR-10 is accompanied by a nearly 20% drop in test accuracy on CIFAR-10-NEG. This shows for
the first time a dataset with low noise which completely inverts “accuracy-on-the-line”

Theory: Monotonicity in models of Learning (Section 5). We consider three different theoretically tractable
models of learning, including Bayesian inference and a few models previously proposed in the scaling law and
distribution-shift literature (Recht, Roelofs, Schmidt, and Shankar, 2019; Sharma and Kaplan, 2020; Bahri, Dyer,
Kaplan, Lee, and Sharma, 2021). For these models, we derive predictions for the monotonicity of certain pointwise
performance measures. In particular, all of these models imply pointwise monotonicity behaviors that (as we show
empirically) are not always seen in practice.

We demonstrate that a pointwise analysis of learning is possible and promising. However, we present only an initial
study of this rich landscape. In Section 6, we discuss how our conceptual framework can guide future work in
understanding in- and out-of-distribution learning, in theory and practice.

1.2 Related Works.

The line of work on Accuracy-on-the-Line (AoL) (Recht et al., 2019; Miller et al., 2021) studies the performance of
models under distribution shift, by examining the relation (if any) between in-distribution and out-of-distribution
accuracy of models. Similar to us, some works examine instance behavior in training: (Zhong, Ghosh, Klein, and
Steinhardt, 2021) propose studying instance-wise performance in the NLP setting, and also take expectations over
ensembles of models. Our framework is considerably more general, however, and we give new applications of
this general approach. (Toneva, Sordoni, des Combes, Trischler, Bengio, and Gordon, 2018) look at “forgetting
events”, i.e., when a training examples move from being classified correctly to incorrectly, resembling our notion of
non-monotonicity.

OOD Robustness (Hendrycks, Liu, Wallace, Dziedzic, Krishnan, and Song, 2020b; Radford et al., 2021) show that
large pretrained models are more robust to distributions shift and (Desai and Durrett, 2020) show that large pretrained
models are better calibrated on OOD inputs. There is a also long line of literature on OOD detection (Hendrycks and
Gimpel, 2016; Geifman and El-Yaniv, 2017; Liang, Li, and Srikant, 2017; Lakshminarayanan, Pritzel, and Blundell,
2016; Jiang, Kim, Guan, and Gupta, 2018; Zhang, Li, Guo, and Guo, 2020), uncertainty estimation (Ovadia, Fertig, Ren,
Nado, Sculley, Nowozin, Dillon, Lakshminarayanan, and Snoek, 2019), and accuracy prediction (Deng and Zheng,
2021; Guillory, Shankar, Ebrahimi, Darrell, and Schmidt, 2021; Garg, Balakrishnan, Lipton, Neyshabur, and Sedghi,
2022) under distribution shift. Our work can be seen as an extreme version of “distribution shift”, using distributions
focused on a single point.
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Figure 2: Zooming In. Average ImageNet accuracy for different models (ResNet-50, DenseNet-121, and DenseNet-
169) on the x-axis with the y-axis corresponding (from left to right) to 1) ImageNet-v2 accuracy; 2) ImageNet-v2
dog-superclass accuracy; 3) the performance on a single image of a dog (i.e., the accuracy profile). The rightmost
panel zooms in further and shows the softmax-profile of a single image for ResNet-50. This image is a “compatible
point” in the sense that as global ImageNet accuracy increases, the pointwise accuracy increases, and the entropy
of the softmax distribution decreases.

Example difficulty Much work was made recently to understand example difficulty for deep learning (e.g., (Jiang,
Zhang, Talwar, and Mozer, 2020; Agarwal and Hooker, 2020; Lalor, Wu, Munkhdalai, and Yu, 2017)). Several works
study deep learning (Nakkiran, Kaplun, Kalimeris, Yang, Edelman, Zhang, and Barak, 2019b; Baldock, Maennel, and
Neyshabur, 2021) through the lens of example difficulty to understand certain properties (e.g., generalization or
uncertainty) of deep models, while others try to modify the training distribution via either removing mislabeled
examples (Pleiss, Zhang, Elenberg, and Weinberger, 2020; Northcutt, Athalye, and Mueller, 2021), or controlling for
hardness (Shrivastava, Gupta, and Girshick, 2016; Hacohen and Weinshall, 2019). The main difference with our work
is that we focus on the shape of the curve of example accuracy with respect to a parameterized family of models.

Model Similarity Several works demonstrated that the best supervised models tend to make similar predictions.
(Mania, Miller, Schmidt, Hardt, and Recht, 2019) measure the prediction agreement between standard vision models
on ImageNet and CIFAR-10 and concluding that agreement levels are much higher than they would be under the
assumption of independent mistakes. (Gontijo-Lopes, Dauphin, and Cubuk, 2021) study the effect of different training
methodologies on model similarity. (Nixon, Lakshminarayanan, and Tran, 2020) shows high similarity between
models independently trained on different data subsets. In contrast, we focus not on comparing different types of
models, but rather comparing models that span a large interval of accuracies. However, the above results, as well
as our investigations, suggest most points’ profiles remain similar under varying architectures or subsets of data.

2 Accuracy-on-the-Curve: Zooming In

We first explore the pointwise perspective through the distribution shift from ImageNet to ImageNet-v2 (Recht et al.,
2019). To start, in the left panel of Figure 2 we replicate (Miller et al., 2021) and show that for a wide variety of
models, accuracy on ImageNet-v2 is well-approximated by a simple monotone function of the ImageNet accuracy.
In the middle panel, we see that such a relation holds even when we consider accuracy only on the ImageNet-v2
dog super-class. That is, we zoom-in on the y-axis, and go from averaging over the entire ImageNet-v2 distribution
to averaging over only dog classes. We see that accuracy on this sub-distribution also obeys a strong correlation with
the global accuracy. This is interesting, since a priori classifiers with equally-good global performance could have
very different performance on dogs.

Zooming in even further, in the third panel of this figure we evaluate the same models on an just one individual dog
sample. That is, we compute the accuracy profiles (per Definition 2.2) of this particular point with respect to several
parameterized learning algorithms. This example illustrates and puts into context the type of object we are interested
in studying, namely general learning profiles which measure pointwise statistics of learning algorithms as a function
of global performance.



2.1 Formal Definitions

We now formally define our central objects which are the learning profiles of a point z = (z,y) with respect to
some parameterized family of learning algorithms and a test distribution. These objects, visually represented in the
bottom of Figure 1, capture the behavior of models from the parameterized family on z as a function of their global
performance on the test distribution. A classifier (or model) is a function f : X — A()) that maps an input z € X
into a probability distribution over the set of labels ). For example, for a DNN, f(z) denotes the softmax probabilities
on input x. We denote by f (z) the prediction of the classifier on z, obtained by outputting the highest probability
label. We consider a parameterized family T (n) of algorithms, where n corresponds to some measure of resources:
number of samples, model size, training time, etc., and 7 (n) denotes the distribution of models obtained by running
the (randomized) learning algorithm 7 with n amount of resources. For the purposes of this formalism, we consider
the training set to be part of the algorithm, and make no assumptions on how it is chosen or sampled. Generally, the
expected performance of 7 (n) w.r.t. a global test distribution D will be a monotonically increasing function of n, and
there are many works on “scaling laws” for quantifying this dependence (Rosenfeld, Rosenfeld, Belinkov, and Shavit,
2019; Henighan, Kaplan, Katz, Chen, Hesse, Jackson, Jun, Brown, Dhariwal, Gray, Hallacy, Mann, Radford, Ramesh,
Ryder, Ziegler, Schulman, Amodei, and McCandlish, 2020; Kaplan, McCandlish, Henighan, Brown, Chess, Child, Gray,
Radford, Wu, and Amodei, 2020; Bahri et al., 2021). For reasons of computational efficiency, we use training time
as our resource measure in our experimental results. However, an increasing body of works suggests that different
resource measures such as time, sample size, and model size, have qualitatively similar impacts (Nakkiran, Kaplun,
Bansal, Yang, Barak, and Sutskever, 2019a; Nakkiran, Neyshabur, and Sedghi, 2020; Ghosh, Mei, and Yu, 2021; Kaplan
et al., 2020).

The pointwise accuracy Acc, 7(n) of T on a point z = (, y) is the probability that the output classifier f = 7 (n)
makes a correct prediction, i.e., f(z) = y. The global accuracy Accp 7(n) of T(n) with respect to a distribution
D over Z := X x Y is the expected accuracy of points sampled from D, i.e., E,.p [Acc, 7(n)]. Throughout this
paper, we will omit the test distribution D from subscripts when it is clear from the context. We will assume that our
family is globally monotonic in the sense that Accp 7(n) > Accp 7(n') for n > n'. This assumption is merely for
convenience, and can be ensured e.g., by early stopping.

The accuracy profile of a parameterized algorithm 7 and point z is the curve that maps global accuracy p € [0, 1]
to the expected pointwise accuracy of 7 (n) at z, that is n is set so the global accuracy is p. For example, the third
panel of Figure 2 represents an accuracy profile of a particular point. Formally:

Definition 2.1 (Accuracy profile). Let 7, D be as above. The accuracy profile of a point z = (z, y) is the (possibly
partial) function A, 7 p : [0,1] — [0, 1] that maps a global accuracy p € [0,1] to Acc, 7(n), where n = n(p) is
chosen such that Accr p(n(p)) = p.

As we will see, to get more insight on model performance we sometimes need to go beyond the accuracy and observe
the full softmax probabilities induced by the model at a particular point. This motivates the following definition
of softmax profiles, which are visually represented as stackplots in both the fourth panel of Figure 2 and bottom of
Figure 1:

Definition 2.2 (Softmax profile). Let 7, D be as above. The softmax learning profile of a point z = (x, y) is the function
S..7.p :[0,1] = A(Y) that maps a global accuracy p € [0, 1] to the averaged softmax distribution of predictions at z,
among classifiers with global accuracy p. Specifically, with n = n(p) as above, we define S, 7 p(p) := E[T (n)(z)].

We use the general name learning profile of a point z to describe any map from p € [0, 1] to some statistics of the
distribution 7 (n(p))(2). Defining learning profiles as a function of the global accuracy p (as opposed to n), allows
us to compare different resource measures on the same axis.

3 Structure and Diversity of Data and Models

We now conduct a systematic study of the structure of profiles, exploring what they can teach us about data samples
and training algorithms. Profiles are joint functions of an input point and a training procedure. Below, we will first
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Figure 3: Taxonomy of Samples. Different qualitative profiles for ResNet-50 trained on ImageNet, roughly classified
into 4 categories: ‘Compatible’ samples where sample performance traces global performance; ‘Easy’ samples which
are classified correctly even by poor models; ‘Hard’ samples that even the best models fail on and; Non-monotone
ones where performance behaves unpredictably w.r.t. global performance. Top row is ImageNet’s validation dataset
and bottom row is OOD examples. Remarkably, similar profiles emerge for both in-dist and OOD examples.

fix a training procedure and vary the choice of input points: this reveals structure in data sets, through the lens of a
given model. Afterwards, we will fix an input point and vary the training procedure: this reveals structure in training
procedures, through the lens of a test point.

3.1 Structure in Data

We first fix a training procedure and use the resulting profiles to study both in and out-of-distribution samples. From
this analysis we broadly sketch the landscape of the various profile types. Note that the type of a point is dependent on
the training procedure. Figure 3 shows several “prototypical” profiles encountered in real data and the corresponding
samples. We highlight the following qualitative types:

1. Easy points for which even low global accuracy classifiers succeed with high probability. Note that there are
out-of-distribution points which are “easy” for ResNet-50, such as the shed painted as a school-bus in Figure 3.
Further, not all easy points are alike: some samples are “harder-than-average” for weak models, that become
“easier-than-average” for strong models (e.g. Figure 6).

2. Hard points for which even high-accuracy classifiers fail. By looking at the softmax probabilities, we can
disentangle the causes for the difficulty. Some points are simply ambiguous or mislabeled. For other points
the softmax entropy remains high even at high global accuracies, and even the top-5 accuracy is low.

3. Compatible points for which the accuracy profile is close to the identity (y = z) function, i.e., pointwise
accuracy closely tracks the average performance. It is not a priori clear that compatible points should exist.
For example, one might expect the accuracy profile to always be a step function, with the individual accuracy
of a sample jumping from 0 to 1 when global accuracy crosses some threshold. That is, the model could have
“grokked” the sample at some global accuracy level, but performed trivially before this level (in the terminology
of (Power, Burda, Edwards, Babuschkin, and Misra, 2022)).

4. Non-monotone points for which the pointwise accuracy is anti-correlated with the global accuracy in some
intervals. Again, we can use the softmax profile to better understand the potential underlying reasons for the
non-monotonicity of such points. Some are mislabeled or have an ambiguous label then the classifier struggles
with choosing the correct label. Other points even have non-monotone softmax entropy which implies that
higher global accuracy classifiers are actually less certain about this point than lower global accuracy classifiers
(aka the DNN Dunning-Kruger effect). As an example, while the image in the top right corner of Figure 3
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Figure 4: Each pie-chart gives a pointwise decomposition of a dataset according to profile types. Each point is classified
based on the accuracy profile of an ImageNet trained classifier (see the end of Section 3.1). The decompositions are
similar for both ResNet-50 and DenseNet-121 architectures.

clearly contains corn cobs, at lower resolution it could be confused for a honeycomb, and indeed this is what
lower-accuracy classifiers believe it is. There seems to be an interval of accuracy in which classifiers are strong
enough to know it is not a honeycomb, but are not yet strong enough to be sure it is corn.

To try to get a better quantitative understanding of dataset structure through the lens of our taxonomy on learning
profiles, we use the following procedure to classify a profile as either easy, hard, compatible, or non-monotone.
To evaluate if a point is non-monotone, we compute the non-monotonicity score of its profile, which measures the
cumulative drop in pointwise performance as global performance increases (see Appendix B). If the point has a
non-monotonicity score greater than 0.1, which indicates noticeable non-monotonicity, then we classify it as non-
monotone. Otherwise, we classify the profile as easy, hard, or compatible based on the Lo distance of the profile to
a corresponding “template” profile. Easy points are represented by the profile f(p) = 1, hard points by f(p) = 0,
and compatible points by f(p) = p. In Figure 4, we plot the decompositions of various datasets according to the
described classification of their accuracy profiles. Each profile is computed from the predictions of an ImageNet
trained architecture. We see that as expected ImageNet and ImageNet-v2 contain significantly many compatible
points, although there are still many points that are not most accurately described as compatible. The datasets
ImageNet-R, ImageNet-Sketch, and ImageNet-A are significantly less compatible with ImageNet and are progressively
harder.

The examples above are meant to illustrate the potential of the learning profiles as means of better understanding
data and learning—in particular, considering entire profiles can often reveal more insight than just the final pointwise
accuracy. Although the choice of profile types in our taxonomy may not be the optimal classification, we can
nevertheless see that it allows us to gain insight into the structure of datasets. We hope our initial investigation can
inspire future work in this area.

3.2 Structure in Training Procedures

Just as we can understand different samples by fixing a training procedure, we can also understand different training
procedures by their behaviors on a fixed sample.Taking this viewpoint, we investigate standard architectures (ResNet-
18 and DenseNet-121) on CIFAR-10, considering both models trained from scratch and those pre-trained on ImageNet.
(See full experimental protocol in Appendix A). In Figure 5 we decompose the CIFAR-10 test set similarly to Figure
4, but now with the perspective of understanding model differences through the dataset. We can see that the models
trained from scratch and the pre-trained models exhibit very different decompositions, but are very similar between
architectures. In particular, we see that with pre-training the number of non-monotone examples decreases and
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Figure 6: Scratch vs. Pretrained. A study of model similarity on CIFAR-10. Left panel: Averaged over CIFAR-10 test
dataset, profiles cluster together based on pretraining and not architecture. For example, ResNet-18 profiles are much
closer to DenseNet-121 ones than to ResNet-18 pretrained ones. Middle panel: Illustration of the effect of pretraining
on a single image. Right panel: Pretraining reduces accuracy non-monotonicity across many points in the CIFAR-10
test set.

points become overwhelmingly compatible. We now further probe the observed model similarity and monotonicity
induced by pre-training.

Model Similarity We start by introducing a distance measure to compare two training procedures. Given two
softmax profiles, we define the profile distance to be the average over all test points and accuracies p € [0, 1] of the
L, distance between the softmax distributions at accuracy p (see Appendix B). The rightmost panel of Figure 6 shows
the pairwise profiles distances between several architectures and their pretrained variants. We find that profiles of
pretrained models significantly differ from non-pretrained ones. However, controlling for the presence of pretraining,
model architecture does not seem to significantly affect profiles.

Pretraining Induces Monotonicity We also show a specific way in which pretraining affects profiles: it drasti-
cally reduces the number of points which are non-monotonic. To quantify this effect, we use the non-monotonicity score
of a profile which is the negative variation of the profile and is large when negative-slope regions exist (see Appendix
B). The right panel of Figure 6 compares the CDFs of the accuracy profile non-monotonicity scores for both from
scratch training and fine-tuning (see also a specific example in the middle panel). We observe that models trained
from scratch are prone to significant amounts of non-monotonicity, while pretraining eliminates non-monotonicity
almost completely. Further, this “elimination of non-monotonicity” by pretrained models applies for both the accuracy
and entropy profiles (see Appendix Figure 10), suggesting that pretrained models display an inductive bias similar
to “idealized” Bayesian inference, which always displays monotonicity (see Theorem 5.1).
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Figure 7: CIFAR-10-NEG. (a) We construct CIFAR-10-NEG, a clean dataset that has negative correlation with
CIFAR-10 for standard models (e.g., ResNet-18 and DenseNet-121): improving test accuracy on CIFAR-10 hurts test
accuracy on CIFAR-10-NEG. (b) Pretraining restores monotonicity: pretrained models (e.g., CLIP and ResNet-18 and
DenseNet-121 pre-trained on Imagenet) have strong positive correlation with CIFAR-10-NEG. (c) A learning profile
of one CIFAR-10-NEG example, showing how profiles reveal more about the evolution of predictions across learning.
(d) Samples from CIFAR-10-NEG. We contrast CIFAR-10 samples with CIFAR-10-NEG samples in Appendix E.

4 Pointwise Perspective on Distribution Shifts

We now show that the pointwise perspective can shed light on distribution shifts. An important open question in this
area is to understand the relationship between in- and out-of-distribution (OOD) performance, and how it depends
on different factors such as pre-training. To probe this relationship, it is a common practice to evaluate methods on
many OOD test sets, and measure in-dist vs. OOD performance (Recht et al., 2019; Radford et al., 2021). In several
cases, these metrics are linearly correlated (after probit scaling), a phenomenon known as “accuracy-on-the-line”
(Recht et al., 2019; Miller et al., 2021). However, this phenomenon does not hold universally, and we do not yet have
a good understanding of when a distribution pair is linearly-correlated.

In the previous section, our pointwise analysis demonstrated the existence of non-monotone instances where pointwise
and global performance are anti-correlated. Interestingly, such examples occur often enough for us to construct
a non-degenerate out-of-distribution test set which break “the line” in much stronger ways than were previously
known (see Figure 7).

Using our pointwise perspective, we construct CIFAR-10-NEG? (see Figure 7), a CIFAR-10-like, class balanced and
correctly labeled® dataset of 1000 samples, which is anti-correlated with CIFAR-10 accuracy. Specifically, improving
test accuracy by 20% (from 60% to 80%) on CIFAR-10 hurts test accuracy by ~ 20% on CIFAR-10-NEg, for many
standard models.

To identify a dataset of points with negative correlation, we start with the CINIC-10 test set (Darlow, Crowley, An-
toniou, and Storkey, 2018). To avoid ambiguous and mislabeled points in our new dataset, we perform CLIP-filtering:
we restrict the CINIC-10 test set to points correctly predicted by a CLIP model fine-tuned on the CIFAR-10 train
set. We train several ResNet-18 models on CIFAR-10 dataset and obtain per-sample monotonicity scores (defined
in Appendix B) for the CINIC-10 test set. After sorting points with non-monotonicity score, we select a perfectly
balanced dataset of 1000 points consisting of the top 100 most non-monotonic samples from each class. While
by design, CIFAR-10-NEG is anti-correlated with CIFAR-10 performance with respect to ResNet-18, we show that
the same behavior also holds for DenseNet-121. In contrast, CLIP fine-tuned models on CIFAR-10-NEG are linearly
correlated with CIFAR-10 performance.*

Previous works observed weak correlation under distribution shift, but we are the first to observe anti-correlation
between in-distribution and out-of-distribution performance for natural (non-adversarial) and correctly labeled
images. Figure 7(b) shows a sample from this dataset. We juxtapose CIFAR-10 test set examples with more examples
from CIFAR-10-NEG in Appendix E.

’Dataset: https://anonymous. 4open.science/r/CIFAR-10-NEG-F697/

3Correct labeling is essential; incorrectly labeled examples will naturally be negatively correlated with global performance. As a heuristic, we
use CLIP to filter such samples.

4Fully fined-tuned CLIP achieves 100% accuracy on CIFAR-10-NEG by design.
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5 Monotonicity in Models of Learning

We proceed to show that accuracy and softmax profiles of several models of learning obey natural monotonicity
properties. This in contrast with our experimental results of Section 3 that demonstrate the existence of points with non-
monotone accuracy and softmax entropy, in particular when training models from scratch (as opposed to fine-tuning).
This mismatch between theory and practice can be interpreted in two (non-mutually exclusive) ways. One is that we
need better models to capture realistic learning methods. The second is that non-monotonicity suggests sub-optimal
behavior in practical methods, and as they improve we might expect profiles to become monotone. In particular, the
fact that the accuracy and softmax entropies of Bayesian inference with a correct prior are monotone (see below),
suggests that practical non-monotonicity might arise due to “mismatched priors”. We start by defining the following
three natural monotonicity properties with respect to a set of possible instances Z and a set of algorithms ALG:

1. Accuracy monotonicity: We say that a parameterized learning algorithm 7 satisfies accuracy monotonocity
ifvze Z:n>n'" = Accr.(n) > Accr .(n'). That is, improving global accuracy cannot hurt on any
specific instance. We also consider a weaker version which we call a pointwise scaling law, whereby there are
constants C, & > O such thatfor all z € Z, Accy ,(n) >1—C-n"%foralln >n'.

2. Universality of instance difficulty: We say that AL G satisfies universality of sample difficulty w.r.t. Z if for
all z, 2" € Z and all pairs of algorithms 7, 7": Acc,(T) < Acc./(T) = Acc.(T') < Acc./(T"). That is, if
z is harder than 2’ w.r.t. one algorithm in ALG, then it is harder than 2’ w.r.t. all algorithms in ALG, implying
an inherent “difficulty ordering” of a point.

3. Entropy monotonicity: We say that a parameterized learning algorithm 7 (that produces distributions over
labels) satisfies entropy monotonicity if for every (z,y) € Z:n >n' = EH(T (n)(z)) <EH(T (n')(x)).
That is, for f drawn from 7 (n), the expected entropy of f(x) is non-increasing as a function of the resource n.

All three properties are incomparable with one another, in the sense that there exist learning methods that satisfy any
subset of these. The main result of this section is that several natural models of learning satisfy the above monotonicity
properties. These include standard Bayesian inference (with correct priors) as well as certain “toy models” that were
proposed in the literature to explain some puzzling global features of deep learning. The latter are highly simplified
models designed to match certain global behaviors of DNNs such as scaling laws and accuracy on the line. While these
models were designed to capture global phenomena, we show they also satisfy certain pointwise properties as well:

Theorem 5.1 (Properties of abstract learning models). 1. The “skills vs difficulty” model of (Recht et al., 2019) satisfies
the universality of instance difficulty and accuracy monotonicity properties. 2. The “manifold partition” model of
(Sharma & Kaplan, 2020; Bahri et al., 2021) satisfies the pointwise scaling law property. 3. Bayesian inference models,
such as Bayesian Gaussian Processes, satisfy accuracy monotonicity and entropy monotonicity, assuming the Bayesian
probabilistic model itself is correct.

We defer the full definitions of the models, as well as the proof of Theorem 5.1 to Appendix D. We remark that
Theorem 5.1 is “tight”, in the sense that there are instantiations of the models violating any of the monotonicity
properties covered by the theorem.

6 Discussion and Conclusions

We conclude by discussing why we believe the pointwise perspective in general and learning profiles in particular are
central to understanding both on- and off-distribution learning.

Out-of-Distribution Inputs When deploying ML systems, inputs are rarely drawn from exactly the same distri-
bution as the train set. Many existing frameworks try to model this as a distribution shift: they assume test inputs are
drawn from a distribution 7', that is related to the train distribution D in some way (e.g. covariate shift (Heckman,
1977; Shimodaira, 2000), label shift (Lipton, Wang, and Smola, 2018; Garg, Wu, Balakrishnan, and Lipton, 2020), or
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closeness in some divergence (Ben-David, Blitzer, Crammer, Kulesza, Pereira, and Vaughan, 2010)). However, in
practice the distribution is often not well-specified or indeed, a distribution at all. We often care about performance
on particular instances: e.g., on correctly recognizing a pedestrian in this specific image. Furthermore, the inputs
to our system may change in arbitrary and unmodeled ways (with weather, country, wildfires, etc). An instance-wise
perspective is crucial in these settings.

Lessons for Theory We outline several concrete lessons for theory, and some speculative ones. Concretely, our
experiments have identified arguably unexpected behaviors of real models and real datasets, which any potential
theory of deep learning must be consistent with. For example, in Section 3 we found a significant number of real in-
distribution samples on which DNNs are accuracy non-monotone: where networks with higher average accuracy (e.g.,
trained on more samples, or for more time) actually perform much worse. This behavior is impossible in many existing
models of learning, as we proved in Section 5. Thus, our experiments serve as guidelines for future theory work.

Lessons for Practice We expect that pointwise profiles are an interesting new measurement in many settings,
which may reveal effects obscured by coarser metrics. For example, studying the softmax profile of a point can reveal
not only a model’s final accuracy on this point, but how its predictions evolved as it learnt, and potential causes of
confusion along the way (e.g., texture bias or ambiguous objects). Our finding of non-monotone samples also suggests
that current learning techniques are suboptimal in certain ways, but gives hope they can be improved. Specifically,
non-monotone samples are those for which weaker models perform well (and thus, we know learning is possible),
but stronger models for some reason regress. It may be possible to fix this “irrational” behavior in practice, since
we know such samples are not fundamentally difficult. Indeed, we find that some techniques such as pretraining
also eliminate most non-monotonicity—understanding why is an important question for future work.
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A Experimental Details

CIFAR-10 Experiments In the experiments of Section 3.2, models trained from scratch on CIFAR-10 were trained
from a random initialization using SGD with a Cosine Annealing learning rate schedule with initial learning rate
n = 0.01, batch size 128, and weight decay 5 x 10~4, for 30 epochs. The pre-trained models were first trained
from scratch on the full ImageNet 32 x 32 (Chrabaszcz, Loshchilov, and Hutter, 2017) training set using those same
hyperparameters but for 100 epochs. For fine-tuning pre-trained models on CIFAR-10, the linear classification layer
was initialized randomly and then trained using SGD with a learning rate of 7 = 0.001 and batch size of 128 for
3 epochs with no weight-decay. For all training, we used standard data augmentation (i.e., random horizontal flip,
random crop of size 32 x 32 with padding size 4, and mean/std normalization). For each CIFAR-10 training run a
single model was trained on a random subset of the training set (50,000 total samples) of size 10,000 for models trained
from scratch and size 5,000 for pre-trained models. Profiles were evaluated on the CIFAR-10 test set (10,000 total
samples) twice per epoch for scratch models and 10 times per epoch for pre-trained models. We computed profiles
based on the evaluations of 50 independent runs. The final profiles were computed by performing Gaussian filter
smoothing with ¢ = 2 and linear interpolation on an equally spaced grid of length 50. The architectures used were
ResNet-18 and DenseNet-121.

ImageNet Experiments For ImageNet, we train 10 randomly initialized seeds for three standard architectures:
ResNet-50, DenseNet121 and DenseNet-169 for 90 epochs with SGD with momentum 0.9, weight decay of 0.0001
and learning rate schedule of [0.1, 0.01, 0.001] for 30 epochs each and batch size of 256 (128 for DenseNet-169). We
use standard data augmentations (i.e., flip and random crop to 224x224 images). To produce softmax-profiles we
use 30 equally spaced checkpoints (adding 10 checkpoints around learning-rates drops to increase plot resolution)
evaluated both on and off distribution (ImageNet-A, ImageNet-R, ImageNet-sketch, ImageNet-v2 (Hendrycks, Basart,
Mu, Kadavath, Wang, Dorundo, Desai, Zhu, Parajuli, Guo, Song, Steinhardt, and Gilmer, 2021b; Hendrycks, Zhao,
Basart, Steinhardt, and Song, 2021d; Wang, Ge, Lipton, and Xing, 2019; Recht et al., 2019)).

B Additional Details

Profile Distance We define the distance between the P-profiles (e.g. accuracy-profiles, softmax-profiles, etc.) of
training procedures 7; and 75 to be E f01 d(Pz1,(p), Pz7;(p)) dp, where d is some distance measure on A()) and

[ denotes averaging over points Z in the CIFAR-10 test set. In the left panel of Figure 6 we take d to be total variation
(TV) distance, defined as d(p, q) = % Zyey |py — gy|. Plots for other choices of d are shown in Figure 11.

Non-Monotonicity Score Given a profile P, : [0, 1] — [a, b], we can measure how much the curve p — P, (p)
deviates from being monotonically increasing by computing the non-monotonicity score,

1 d
nmono(P,) = / max {0, -—P. (p)} dp.
0 dp

Note that the non-monotonicity score is always non-negative. It is zero if and only if P, is always increasing and is
bounded by b — a. In the right panel of Figure 6, we plot the 1 — CDF of the non-monotonicity scores of the accuracy
profiles A on the CIFAR-10 test set. In Figure 10 we show the respective plots for the negative entropy profiles
p — —EH(T(n)(x)) where n = n(p) such that Accr p(n(p)) = p and the soft-accuracy profiles p — [S.(p)],
where for 7 € A(Y), my is the probability assigned to y € Y under 7.

Pointwise Accuracy-on-the-Curve The plots in Figure 2 suggest the conjecture that families of algorithms {7;}
which have the same global accuracy curve, also have approximately similar pointwise accuracy profile: the pointwise
accuracy A, 7 (p) on z is well approximated by a function g, (p) that only depends on the point z (and not the
algorithm 7;). One way to test such a conjecture is to look at two algorithms 7 and 7' and measure the average
absolute difference of their pointwise accuracies at a given global accuracy (i.e., d(p) = E, | A, 7(p) — A7 (p)]).
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In Figure 12 we plot d(p) when evaluating on z from CIFAR-10.2 when training ResNet-18 and DenseNet-121 on
CIFAR-10. We see that d(p) is non-negligible, but still much smaller than we would expect if pointwise performance
between T and 7’ was completely uncorrelated giving some weak evidence in support of the conjecture.

C Extra Figures
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Figure 8: Example plots of softmax profiles obtained from ResNet-50 training on ImageNet, displaying a variety of
interesting behaviors.
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Figure 9: Global shape vs. local features. Lower accuracy models tend to be more sensitive to local features than
the global shape of an image. For example, in this coffee mug, lower accuracy classifiers are thrown off by the
illustration of a Dalmatian dog. Similar results can be seen with other images whose local texture or features conflicts
with the global shape. In this sense, higher-accuracy classifiers behave more closely to humans, for whom global
structure dominates local one (Navon, 1977).
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just as for accuracy.

18



Softmax KL Divergence Softmax Cosine Distance

Resnetl8

0 0.0041 FNOH0LY: 0.072 Resnet18
0.053 0.071
Resnet18-pt Resnet18-pt

Densenetl21-pt Densenetl21-pt

>
6‘\8)&
g\e

Figure 11: Heatmaps of profile distances similar to the left panel of 6 for the KL-Divergence (left panel) and the
Cosine Distance (right panel). For both distances from-scratch models display higher similarity to each other than to
pre-trained models.
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Resnet-18 model and a Densenet-121 model on the CIFAR-10.2 dataset. The values are fairly small, especially for
higher accuracies.
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D Omitted proofs from Section 5

We restate Theorem 5.1, provide the definitions of the models, and sketch its proof.

Theorem D.1 (Theorem 5.1, restated).

1. The “skills vs difficulty” model of (Recht et al., 2019) satisfies the universality of instance difficulty and accuracy
monotonicity properties.

2. The “manifold partition” model of (Sharma & Kaplan, 2020; Bahri et al., 2021) satisfies the pointwise scaling law
property.

3. Any general Bayesian inference model satisfies accuracy monotonicity and entropy monotonicity. Specific models,
such as Bayesian Gaussian Process with a fixed kernel, also satisfy universality of instance difficulty with respect to
a fixed training set.

The skill vs. difficulties model. Recht et al. present a highly simplified model for explaining distribution shift
phenomena (Recht et al., 2019, Appendix B). In this model, each point z has a “difficulty level” d, € R. Each classifier
f has an accuracy function, A; : R — [0, 1] which is a monotonically non-increasing function mapping the difficulty
(of some point z) the probability that the classifier is successful (on z). Note that A; only depends on the “skill” of f
so if f and g have the same skill the accuracy function will be the same. Now, for any two points z, z’, we have that
for every f output by some procedure 7, Af(d.) > Af(d./) if and only if d, < d,. Then, by definition, every model
of this type satisfies universal instance difficulty. In their paper, they specifically considered a restricted version where
the accuracy function of a classifier f has the form Af(d) = ®(sy — d) where ® is the CDF of a standard normal
and sy € R is a parameter measuring the “skill” of a model. In such a case, the global accuracy is a monotonically
increasing function of the skill s¢(n) (since increasing skill improves accuracy on every point and vice-versa), and
hence for every collection 7 (n), the skill will be an non-decreasing function of 7, meaning that it satisfies accuracy
monotonicity as well. In other words,

n>n'" = sp(n) > s(n') = Accr.(n) = ®(sf(n) —d,) > ®(sp(n') — d,) > Acer .(n).

The partitioned manifold model. This proof follows directly from the proof of (Sharma & Kaplan, 2020). For
completeness, we sketch their argument here, simply observing that the existing proof continues to apply in the
pointwise setting.

(Sharma & Kaplan, 2020) and (Bahri et al., 2021) propose tractable theoretical models to explain the ubiquity of scaling
laws. In the notation of this paper, this is the observation that for many natural data distribution D and learning
methods 7T, the global accuracy Accp 7(n) scales as 1 — C - n~* for some exponent « that depends on the data
distribution rather than particular features of the learning methods. Specifically, (Sharma & Kaplan, 2020) present a
simple toy model, in which the concept learned is some Lipschitz function f : [0, 1] — R, and they assume that 7 (n)
corresponds to a piecewise linear approximation on n = C? cubes of side length 1/C'. They prove that such models
satisfy a global scaling law with regression error scaling as n~/¢. However, because of the symmetry between points
in this model, their proof (as well as the proofs in (Bahri et al., 2021)) implies also the stronger notion of a pointwise
scaling law.

Bayesian inference model. In a general Bayesian inference model where we are performing inference with respect
to the true distribution, Pr. For any fixed instance x, the label is a random variable Y and we have a sequence of
correlated random variables Z;, Z5, Zs, . . .. For every n € N, the n'" posterior distribution p,, is a random element in
A(Y) obtained by sampling z1, . . ., z, and letting p,, (v | 21, . . ., 2n) be the distribution of Y | Zy = 2z1,..., Zp = 2p.
The prediction algorithm after observing z1, ..., 2y, is then arbitrarily choosing from the set arg max,cy pn1. Since
different inference methods could correspond to completely different random variables, in general such models do
not satisfy universal instance difficulty. However, they do satisfy entropy monotonicity and accuracy monotonicity.
This is shown by the following lemma:
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Lemma D.2 (Entropy and accuracy monotonicity of Bayesian inference). Let Y, Z1, Zs, ... be defined as above,
and consider the process of sampling z = (21, 22,...). Then for every n, defining the posterior distribution p, as
above, E H(p,) > E H (pp41) and E||py|| . < E||pn+1llo,, where the expectations are over the sampling of z and for
7€ A, ll9lloe = maxyey q(y)-

Lemma D.2 clearly implies the Bayesian inference satisfies entropy monotonicity. The reason it also implies accuracy
monotonicity is the following: If ||p,, ||o.c = « and there are k labels y1, . . ., yx for which p, (y;) = «, then given this
posterior p,,, WLOG we will predict that the label is y; with probability 1/k. But since we are in the Bayesian setting,
we assume that the posterior correctly models the world, that is for each i € {1, ..., k} the probability the true label
was in fact y; is o, and hence the probability for correct prediction is 3, ) Pr[Y = y;and Y = y] = Zle o=
a = [[pnlloc-

Proof of Lemma D.2. When p,, 1 is obtained by conditioning p,, on the value z of Z,, 11, then we can write p,, =
ZzESupp(Zn_H) a,p, where p, is obtained by conditioning p, on Z,1 = z and a, = Pr[Z,11 = z|Z; =
21y ooy Zn = 2zn|. Hence p,+1 = p, with probability .. But now the result follows from the concavity of entropy
and convexity of the infinity norm: EH (p,,) > E> a.H(p.) = EH(ppy1) and E||pnlcc < ED. ay|pzllee =
Ellpnt1lloo O

Bayesian Gaussian Process. For the special case of Bayesian Gaussian Process, the difficulty of a sample (z,y)
can be computed as an explicit function of 2’s proximity to the training set. This is the case where f ~ GP(0, K) is
a Gaussian process, with mean-0 (for simplicity) and known symmetric covariance function K (z1, z2). In this model,
given a train set X, Y, the posterior distribution on a given test point x is

F@M)IS =N, 0%
pt =K@ X)K(X,X)" 'Y (posterior mean)
0? = K(z*,2*) — K(z*, X)K(X, X) 'K (X, z*) (posterior variance)

We can see that the posterior mean ;* weights train-labels Y by their proximity to the test point: K (x*, X). Moreover,
the posterior variance is also modulated by this vector of proximities: points closer to the train set X w.r.t. the metric
K have smaller variance. The pointwise posterior variance o can be thought of the difficulty of the point 2. We can
see that in this model, the difficulty of a point x is a function of its relation to the training set.
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E Samples from CIFAR-10 and CIFAR-10-NEG
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Figure 13: Random samples from CIFAR-10-NEG set.
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Figure 14: Random samples from CIFAR-10 test set.
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