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Abstract

The emerging field of learning-augmented online algorithms uses ML techniques
to predict future input parameters and thereby improve the performance of online
algorithms. Since these parameters are, in general, real-valued functions, a natural
approach is to use regression techniques to make these predictions. We introduce
this approach in this paper, and explore it in the context of a general online search
framework that captures classic problems like (generalized) ski rental, bin packing,
minimum makespan scheduling, etc. We show nearly tight bounds on the sample
complexity of this regression problem, and extend our results to the agnostic
setting. From a technical standpoint, we show that the key is to incorporate online
optimization benchmarks in the design of the loss function for the regression
problem, thereby diverging from the use of off-the-shelf regression tools with
standard bounds on statistical error.

1 Introduction

A recent trend in online algorithms has seen the use of future predictions generated by ML techniques
to bypass pessimistic worst-case lower bounds. A growing body of work has started to emerge in this
area in the last few years addressing a broad variety of problems in online algorithms such as rent
or buy, caching, metrical task systems, matching, scheduling, experts learning, stopping problems,
and others (see related work for references). The vast majority of this literature is focused on using
ML predictions in online algorithms, but does not address the question of how these predictions are
generated. This raises the question: what can we learn from data that will improve the performance
of online algorithms? Abstractly, this question comes in two inter-dependent parts: the first part
is a learning problem where we seek to learn a function that maps the feature domain to predicted
parameters, and the second part is to re-design the online algorithm to use these predictions. In this
paper, we focus on the first part of this design pipeline, namely we develop a regression approach to
generating ML predictions for online algorithms.
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Before delving into this question further, we note that there has been some recent research that
focuses on the learnability of predicted parameters in online algorithms. Recently, Lavastida et
al. [33], building on the work of Lattanzi et al. [32], took a data-driven algorithms approach to design
online algorithms for scheduling and matching problems via learned weights. In this line of work,
the goal is to observe sample inputs in order to learn a set of weights that facilitate better algorithms
for instances from a fixed distribution. In contrast, Anand et al. [4] relied on a classification learning
approach for the Ski Rental problem, where they aimed to learn a function that maps the feature
set to a binary label characterizing the optimal solution. But, in general, the value of the optimal
solution is a real-valued function, which motivates a regression approach to learning-augmented
online algorithms that we develop in this paper.

To formalize the notion of an unknown optimal solution that we seek to learn via regression, we use
the online search (ONLINESEARCH) framework. In this framework, there is as an input sequence
3 = 01,09,... available offline, and the actual online input is a prefix of this sequence ¥ =
01,02, ...,0r, where the length of the prefix T is revealed online. Namely, in each online step
t > 0, there are two possibilities: either the sequence ends, i.e., T' = t, or the sequence continues, i.e.,
T > t. The algorithm must maintain, at all times ¢, a solution that is feasible for the current sequence,
i.e., for the prefix ¥y = 01, ..., 0. The goal is to obtain a solution that is of minimum cost among
all the feasible solutions for the actual input sequence 7.

We will discuss applicability of the ONLINESEARCH framework in more detail in Section 1.2, but for
a quick illustration now, consider the ski rental problem in this framework. In this problem, if the
sequence continues on day ¢, then the algorithm must rent skis if it has not already bought them. In
generalizations of the ski rental problem to multiple rental options, the requirement is that one of the
rental options availed by the algorithm must cover day . We will show in Section 1.2 that we can
similarly model several other classic online problems in the ONLINESEARCH framework.

We use the standard notion of competitive ratio, defined as the worst case ratio between the algorithm’s
cost and the optimal cost, to quantify the performance of an online algorithm. For online algorithms
with predictions, we follow the terminology in [41] that is now standard: we say that the consistency
and robustness of an algorithm are its competitive ratios for correct predictions and for arbitrarily
incorrect predictions respectively. Typically, we fix consistency at 1 + € for a hyper-parameter € and
aim to minimize robustness as a function of e.

We make some mild assumptions on the problem. First, we assume that solutions are composable, i.e.,
that adding feasible solutions for subsequences ensures feasibility over the entire sequence; second,
that cost is monotone, i.e., the optimal cost for a subsequence is at most that for the entire sequence;
and third, that the offline problem is (approximately or exactly) solvable. These assumptions hold for
essentially all online problems we care for.

1.1 Our Contributions

As a warm up, we first give an algorithm called DOUBLE for the ONLINESEARCH problem without
predictions in Section 2. The DOUBLE algorithm has a competitive ratio of 4. We build on the
DOUBLE algorithm in Section 3, where we give an algorithm called PREDICT-AND-DOUBLE for the
ONLINESEARCH problem with predictions. We show that the PREDICT-AND-DOUBLE algorithm
has a consistency of 1 + € and robustness of O(1/¢), for any hyper-parameter € > 0. We also show
that this tradeoff between consistency and robustness is asymptotically tight.

Our main contributions are in Section 4. In this section, we model the question of obtaining a learning-
augmented algorithm for the ONLINESEARCH problem in a regression framework. Specifically, we
assume that the input comprises a feature vector x that is mapped by an unknown real-valued function
f to an input for the ONLINESEARCH problem z. In the training phase, we are given a set of labeled
samples of the form (z, z) from some (unknown to the algorithm) data distribution D. The goal of
the learning algorithm is to produce a mapping from the feature space to algorithmic strategies for
the ONLINESEARCH problem, such that when it gets an unlabeled (test) sample x from the same
distribution D, the algorithmic strategy corresponding to x obtains a competitive solution for the
actual input z in the test sample (that is unknown to the algorithm).

The learning algorithm employs a regression approach in the following manner. It assumes that the
function f is from a hypothesis class F, and obtains an empirical minimizer in F for a carefully
crafted loss function on the training samples. The design of this loss function is crucial since a bound



on this loss function is then shown to translate to a bound on the competitive ratio of the algorithmic
strategy. (Indeed, we will show later that because of this reason, standard loss functions used in
regression are inadequate for our purpose.) Finally, we use statistical learning theory for real-valued
functions to bound the sample complexity of the learner that we designed.

Using the above framework, we show a sample complexity bound of O ( %) for obtaining a
competitive ratio of 1 + €, where H and d respectively represent the log-range of the optimal cost
and a measure of the expressiveness of the function class F called its pseudo-dimension.! We also
extend this result to the so-called agnostic setting, where the function class F is no longer guaranteed
to contain an exact function f that maps x to z, rather the competitive ratio is now in terms of the
best function in this class that approximates f. We also prove nearly matching lower bounds for our
sample complexity bounds in the two models.

Our framework can also be extended to the setting where the offline optimal solution is hard to
compute, but there exists an algorithm with competitive ratio ¢ given the cost of optimal solution.
In that case our algorithms gives a competitive ratio ¢(1 + ¢), which can still be better than the
competitive ratio without predictions (see examples in next subsection).

1.2 Applicability of the ONLINESEARCH framework

The ONLINESEARCH framework is applicable whenever an online algorithm benefits from knowing
the optimal value of the solution. Many online problems benefit from this knowledge, which is
sometimes called advice in the online algorithms literature. For concreteness, we give three examples
of classic problems — ski rental with multiple options, online scheduling, and online bin packing — to
illustrate the applicability of our framework. Our algorithm PREDICT-AND-DOUBLE (explained
in more detail in section 3) successively predicts the optimal value of the solution and appends the
corresponding solution to its output.

Ski Rental with Multiple Options. Generalizations of the ski rental problem with multiple options
have been widely studied (e.g., [1, 34, 37, 19]), recently with ML predictions [44]. Suppose there are
V' options (say coupons) at our disposal, where coupon ¢ costs us C; and is valid for d; number of
days. Given such a setup, we need to come up with a schedule: {(¢x, %),k = 1,2...} that instructs
us to buy coupon 7, at time . (The classic ski rental problem corresponds to having only two
coupons C; = 1,d; = 1 and Cy = B,dy — 00.) Our ONLINESEARCH framework is applicable
here: a solution that allows us to buy coupons valid time ¢ is also a valid solution for all times s < ¢.
Further, PREDICT-AND-DOUBLE can be implemented efficiently as we can compute OPT(¢), for
any time ¢ using a dynamic program.

Online Scheduling. Next, we consider the classic online scheduling problem where the goal is to
assign jobs arriving online to a set of identical machines so as to minimize the maximum load on any
machine (called the makespan). For this algorithm, the classic list scheduling algorithm [26] has a
competitive ratio of 2. A series of works [23, 14, 29, 2] improved the competitive ratio to 1.924, and
currently the best known result has competitive ratio of (approx) 1.92 [20]; in fact, there are nearly
matching lower bounds [25]. However, if the optimal make-span (OPT) is known, then these lower
bounds can be overcome, and a significantly better competitive ratio of 1.5 can be obtained in this
setting [17] (see also [10, 31, 21, 22]). The ONLINESEARCH framework is applicable here with a
slight modification: whenever PREDICT-AND-DOUBLE tries to buy a solution corresponding to a
predicted value of OPT, we execute the 1.5-approximation algorithm based on this value. The problem
still satisfies the property that a solution for ¢ jobs is valid for any prefix. We get a competitive ratio
of 1.5 4+ O(e) that significantly outperforms the competitive ratio of 1.92 without predictions.

Online Bin Packing. As a third example, we consider the online bin packing problem. In this
problem, items arrive online and must be packed into fixed-sized bins, the goal being to minimize
the number of bins. (We can assume w.l.0.g., by scaling, that the bins are of unit size.) Here, it
is known that the critical parameter that one needs to know/predict is not OPT but the number of
items of moderate size, namely those sized between 1/2 and 2/3. If this is known, then there is a
simple 1.5-competitive algorithm [5], which is not achievable without this additional knowledge.
Again, our ONLINESEARCH framework can be used to take advantage of this result. In this case, the
application is not as direct, because predicting OPT does not yield the better algorithm. Nevertheless,

'Intuitively, the notion of pseudo-dimension extends that of the well-known VC dimension from binary to
real-valued functions.



an inspection of the algorithm in [5] reveals the following strategy: The items are partitioned into
three groups. The items of size > 2/3 are assigned individual bins, items of size between 1/3 and 1/2
are assigned separate bins where at least two of them are assigned to each bin, and the remaining items
are assigned a set of common bins. Clearly, the first two categories can be handled online without any
additional information; this means that we can define a surrogate OPT (call it OPT’) that only captures
the optimal number of bins for the common category. Note that the of prediction of OPT” serves as a
substitute for knowing the numbers of items of moderate size. Now, if OPT’ is known, then we can
recover the competitive ratio of 3/2 by using a simple greedy strategy. This now allows us to use the
ONLINESEARCH framework where we predict OPT’. As earlier, the ONLINESEARCH framework
can be applied with slight modification: whenever PREDICT-AND-DOUBLE tries to buy a solution
corresponding to a predicted value of OPT’, we execute the 1.5-competitive algorithm based on this
value. The problem still satisfies the property that a solution for ¢ items is valid for any prefix.

1.3 Motivation for a cognizant loss function

In this work, we explore the idea of a carefully crafted loss function that can help in making better
predictions for the online decision task. To illustrate this, consider the problem of balancing the
load between machines/clusters in a data center where remote users are submitting jobs. The goal is
to minimize the maximum load on any machine, also called the makespan of the assignment. The
optimal makespan, which we would like to predict, depends on the workload submitted by individual
users who are currently active in the system. Therefore, we would like to use the user features to
predict their behavior in terms of the workload submitted to the server. A typical feature vector would
then be a binary vector encoding of the set of users currently active in the system, and based on this
information, a learning model trained on historical behavior of the users can predict (say) a histogram
of loads that these users are expected to submit, and therefore, the value of the optimal makespan.
The feature space can be richer, e.g., including contextual information like the time of the day, day of
the week, etc. that are useful to more accurately predict user behavior. Irrespective of the precise
learning model, the main idea in this paper is that the learner should try to optimize for competitive
loss instead of standard loss functions. This is because the goal of the learner is not to accurately
predict the workload of each user, but to eventually obtain the best possible makespan. For instance,
a user who submits few jobs that are inconsequential to the eventual makespan need not be accurately
predicted. Our technique automatically makes this adjustment in the loss function, thereby obtaining
better performance on the competitive ratio.

1.4 Related Work

There has been considerable recent work in incorporating ML predictions in online algorithms. Some
of the problems include: auction pricing [36], ski rental [41, 24, 4, 13, 44, 6], caching [35, 42, 28, 45],
scheduling [41, 32, 39], frequency estimation [27], Bloom filters [38], online linear optimization [16],
speed scaling [11], set cover [12], bipartite and secretary problems [9], etc. While most of these
papers focus on designing online algorithms for ML predictions but not on the generation of these
predictions, there has also been some work on the design of predictors using a binary classification
approach [4]), and on the formal learnability of the predicted parameters [32, 33]. In contrast, we use
a regression approach to the problem in this paper.

The PAC learning framework was first introduced by [43] in the context of learning binary classifica-
tion functions, and related the sample complexity to the VC dimension of the hypothesis class. This
was later extended to real-valued functions by [40], who introduced the concept of pseudo-dimension,
and [30] (see also [15]), who introduced the fat shattering dimension, as generalizations of VC
dimension to real-valued functions. For a comprehensive discussion of the extension of VC theory to
learning real-valued functions, the reader is referred to the excellent text by [8]. A different approach
was proposed by [3] (see also [7]) who analysed a model of learning in which the error of a hypothesis
is taken to be the expected squared loss, and gave uniform convergence results for this setting. In this
paper, we use pseudo-dimension and corresponding sampling complexity bounds in quantifying the
complexity of the regression learning problem of predicting input length.



2 ONLINESEARCH without Predictions

As a warm up, we first describe a simple algorithm called DOUBLE (Algorithm 1) for the ONLI-
NESEARCH problem without predictions. This algorithm places milestones on the input sequence
corresponding to inputs at which the cost of the optimal solution doubles. When the input sequence
crosses such a milestone, the algorithm buys the corresponding optimal solution and adds it to the
existing online solution. This simple algorithm will form a building block for the algorithms that we
will develop later in the paper; hence, we describe it and prove its properties below.

First, we introduce some notation.

Definition 1. We use OPT(¢) to denote an optimal (offline) solution for the input prefix of length t;
we overload notation to denote the cost of this solution by OPT(t) as well.

Definition 2. Given an input length T and any o > 0, we use MIN-LENGTH(«, T) fo denote the

smallest length t such that OPT(t) > « - OPT(T). The monotonicity property of OPT ensures that
MIN-LENGTH(a, 7) > 7 if & > 1, and MIN-LENGTH(«, 7) < T otherwise.

Algorithm 1 DOUBLE

Input: The input sequence Z.
Qutput: The online solution SOL.

Seti:=0, 7 :=1, SOL := (.
fort=1,2,...,T
ift = Ti
Set 7,41 = MIN-LENGTH(2, 7;).
Add oPT(7;41 — 1) to SOL.
Increment 7.

Theorem 1. The DOUBLE algorithm is 4-competitive for the ONLINESEARCH problem.

3 ONLINESEARCH with Predictions

In the previous section, we described a simple online algorithm for the ONLINESEARCH problem.
Now, we build on this algorithm to take advantage of ML predictions. For now, we do not concern
ourselves with how these predictions are generated; we will address this question in the next section.

Suppose we have a prediction T for the input length T of an ONLINESEARCH problem instance.

Naively, we might trust this prediction completely and buy the solution OPT(7"). While this algorithm
is perfect if the prediction is accurate, it can fail in two ways if the prediction is inaccurate: (a) if

T < T and therefore OPT(T') < 0PT(T"), then the algorithm has a large competitive ratio, and (b)

if 7 > T, then OPT(T) may not even be feasible for T". A natural idea is to then progressively add
OPT(t) solutions for small values of ¢ (similar to DOUBLE) until a certain threshold is reached, before

buying the predicted optimal solution OPT (T) Next, if T > T, the algorithm can resume buying
solution OPT(t) for ¢t > T, again using DOUBLE, until the actual input T is reached.

One problem with this strategy, however, is that the algorithm does not degrade gracefully around the
prediction, a property that we will need later in the paper. In particular, if 7" is only slighter larger

than 7', then the algorithm adds a solution that has cost 2 - OPT(T), thereby realizing the worst case
scenario in Theorem 1 that was achieved without any prediction. Our work-around for this issue
is to buy OPT(t) for a t slightly larger than 7", instead of oPT(T") itself, which secures us against
the possibility of the actual input being slightly longer than the prediction. We call this algorithm
PREDICT-AND-DOUBLE (Algorithm 2). Here, we use a hyper-parameter e that offers a tradeoff
between the consistency and robustness of the algorithm. We also use the following definition:

Definition 3. Given an input length T and any o > 0, we use MAX-LENGTH(«v, T) to denote the
largest length t such that OPT(t) < o - OPT(T).

As described in the introduction, the desiderata for an online algorithm with predictions are its
consistency and robustness; we establish the tradeoff between these parameters for the PREDICT-
AND-DOUBLE algorithm below.



Algorithm 2 PREDICT-AND-DOUBLE

Input: The input sequence 7 and prediction T.
Output: The online solution SOL.

Set SOL := (), t; := MIN-LENGTH(e/5,T), and t5 := MAX-LENGTH(1 + €¢/5,T).
Phase 1: Execute DOUBLE while t < t7.
Phase 2: Att = t1, add OPT(¢2) to SOL.
Phase 3: If ¢t > ¢5, resume DOUBLE as follows:
Sett:=0,79:=t2 + 1.
fort:t2+1,t2+2,...,T
ift = T
Set 7,11 = MIN-LENGTH(2, 7).
Add OPT(7;41 — 1) to SOL.
Increment 7.

Theorem 2. The PREDICT-AND-DOUBLE algorithm has a consistency of 1 + € and robustness of
5(1+1).

We also show that this tradeoff between (1 + ¢)-consistency and O(1/e)-robustness bounds is
essentially tight.

Theorem 3. Any algorithm for the ONLINESEARCH problem with predictions that has a consistency
bound of 1 + € must have a robustness bound of {2 (%)

Having shown the consistency and robustness of the PREDICT-AND-DOUBLE algorithm, we now
analyze how its competitive ratio varies with error in the prediction T.1In particular, the next lemma
shows that the competitive ratio gracefully degrades with prediction error for small error, and is
capped at 4 for large error.

Lemma 4. Given a prediction T for the input length, the competitive ratio of PREDICT-AND-DOUBLE
is given by:
4, T<t

RS (1+e) 2D 1y <T <ty

4,1 >ty

where ty represents the minimum value of t that satisfies OPT(t) > £ - OPT(T') and to represents the

maximum value of t that satisfies OPT(t) < (1 + £) - opT(T)).

4 LEARN TO SEARCH: A Regression Approach

In the previous section, we designed an algorithm for the ONLINESEARCH problem that utilizes
ML predictions. Now, we delve deeper into how we can generate these predictions. More generally,
we develop a regression-based approach to learn to solve an ONLINESEARCH problem. For this
purpose, we first introduce some standard terminology for our learning framework, which we call the
LEARNTOSEARCH problem.

4.1 Preliminaries

An instance (x, z) of the LEARNTOSEARCH problem is given by a feature x € X, and the (unknown)
cost of the optimal offline solution z € [1, M]. The two quantities  and z are assumed to be drawn
from a joint distribution on X x [1, M]. A prediction strategy works with a hypothesis class F that
is a subset of functions X +— [1, M] and tries to obtain the best function f € F that predicts the
target variable z accurately. For notational convenience, we set our target y = In z, i.e., we try to
predict the log-cost of the optimal solution. Note that predicting the log-cost of OPT(T) is equivalent
to predicting the input length 7.2 Furthermore, let D denote the input distribution on X x Y, where
Y = [0, H] and H = In M i.e., we assume that (z,y) ~ D.

2When multiple input lengths might have the same optimal cost, we can just pick the longest one.



We define a LEARNTOSEARCH algorithm A4 as a strategy that receives a set of m samples .S ~ D™ for
training, and later, when given the feature set x of a test instance (x, y) ~ D (where y is not revealed
to the algorithm), it defines an online algorithm for the ONLINESEARCH problem with input y. Recall
that an online algorithm constitutes a sequence of solutions that the algorithm buys at different times
of the input sequence (see Algorithm 3 for a generic description of an LEARNTOSEARCH algorithm).

Algorithm 3 A general LEARNTOSEARCH algorithm

Training: Given a Sample Set .S, the training phase outputs a mapping M from every feature vector
z € X to an increasing sequence of positive integers
Testing: Given unknown sample x € X, define thresholds M (z) = (79,71 . ..)
Set i := 0,SOL := OPT(1p — 1).
while (Input has not ended)
if (SOL is infeasible)
SOL := OPT(7;11 — 1).
Increment ¢.

We will use the notation CR 4(z, y) to denote the competitive ratio obtained by an algorithm .4 on
the instance (x,y). For a given set of thresholds (79,7 .. .), define iz = min,, > 9. Then, A pays a

total cost of ;"  OPT(;), and thus the competitive ratio is

T OPT(T;
cra,y) = 22 0T
We define the “efficiency” of a LEARNTOSEARCH algorithm by comparing its performance with
the best achievable competitive ratio. The optimal competitive ratio for a given distribution may
be strictly greater than 1. For example, consider the distribution where z is fixed (say x() and z
is uniformly distributed over the set {2,4}. One can verify that the best strategy for the above
distribution is to buy the solution costing 2, and then if the input has not ended, then buy the solution
costing 4. The competitive ratio for this strategy (in expectation) is 1.25.

Definition 4. A LEARNTOSEARCH algorithm A is said to be e-efficient if
E(m,y)wDCR.A(:E7 y) < /)* +¢

where p* = E, ,y.pCR4-(z,y) and A* is an optimal solution that has full knowledge of D and no
computational limitations.

The “expressiveness” of a function family is captured by the following standard definition:

Definition 5. A set S = {x1,22,...%m} is said to be “shattered” by a class F of real-valued
functions S — [0, H] if there exists “witnesses” R = {r1,ra...rm} € [0, H|™ such that the
following condition holds: For all subsets T C S, there exists an | € F such that f(x;) > r; if and
only if x; € T. The “pseudo-dimension” of F (denoted as Pdim/(JF)) is the cardinality of the largest
subset S C X that is shattered by F.

4.2 The Sample Complexity of LEARNTOSEARCH

Our overall strategy is to learn a suitable predictor function f € F and use f(x) as a prediction
in the PREDICT-AND-DOUBLE algorithm. Note that prediction errors on the two sides (over- and
under-estimation) affect the competitive ratio of PREDICT-AND-DOUBLE (given by Lemma 4) in
different ways. If we underestimate OPT(T") by a factor less than 1 + £, the competitive ratio remains
1+ O(e), but a larger underestimate causes the competitive ratio to climb up to 4. On the other hand,
if we overestimate OPT(T'), then the competitive ratio grows steadily by the ratio of over-estimation,
until it reaches 5 - (1 + %) This asymmetric dependence is illustrated in Figure 1.

At a high level, our goal is to use regression to obtain the best function f € F. But, the asymmetric
behavior of the competitive ratio suggests that we should not use a standard loss function in the
regression analysis. Let e be the accuracy parameter for the PREDICT-AND-DOUBLE algorithm, and

let § = InopT(T’) and y = In OPT(T') be the predicted and actual log-cost of the optimal solution
respectively. Then we define the following loss function that follows the asymmetric behaviour of the
competitive ratio for PREDICT-AND-DOUBLE:
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Figure 1: Competitive ratio of the PREDICT-AND-DOUBLE algorithm for a fixed prediction Tasa
function of the input 7', where the prediction is T’

Definition 6. The e-parameterized competitive error is defined as:

%—1wheny§gj—ln§

vy N 5 N
eV —1wheny—In2 <y <y
Lo(y—g)whenj<y<g+hn(l+%)
Lwheny >g+In(1+ ).

l(y,9) =

We give more justification for using this loss function in the supplementary material, and show that
standard loss functions do not suffice for our purposes. Using this loss function, we can measure the
error of a function for an input distribution or for a fixed input set:

Definition 7. Given a distribution D on the set X x Y and function f : X — Y, we define

ERD,e(f) = E(m,y)ND[ée(yv f(ZC))]
Alternatively, for a set of samples, S ~ D™, we define,

ERg (f) = L Zfe(yi,f(:vi)).
=1

m

Our high-level goal is to use samples to optimize for the loss function called e-parameterized
competitive error that we defined above over the function class F, and then use an algorithm that
translates the empirical error bound to a competitive ratio bound. This requires, in the training phase,
that we optimize the empirical loss on the training samples. We define such a minimizer below:

Definition 8. For a given set of samples S ~ D and a function family F, we denote an optimization
scheme O : S +— F as e—Sample Error Minimizing (SEM) if it returns a function f € F satisfying:

ERg . (f) < jnf. [ERs.(f)] + e

For the rest of this paper, we will assume that we are given an e— SEM routine for arbitrary € > 0.

We are now ready to present our LEARNTOSEARCH algorithm (Algorithm 4), which basically uses
the predictor with minimum expected loss to make predictions for PREDICT-AND-DOUBLE.

Algorithm 4 A LEARNTOSEARCH algorithm with accuracy parameter e
Training:

Input: Sample Set S, Function Family F

Output: f output by an e-SEM algorithm O, i.e., ERg (f) < inf 7 7 ERg, (f) + e
Testing:

Given new sample z, set §j = f(z).

Predicted prefix length: T= maXopr(¢)<ed t-

Call PREDICT-AND-DOUBLE with 7" and e.

We relate the competitive ratio of Algorithm 4 to the error of function f obtained during training:

Lemma 5. Algorithm 4 has a competitive ratio upper bounded by (1 +e+3- ERD,e(fA)).



Standard and Agnostic Models. We consider two different settings. First, we assume that the
function class F contains the function f* that maps the feature set = to y — we call this the standard
model. We relax this assumption in the more general agnostic model, where the function class
F is arbitrary. In terms of the error function, in the standard model, we have inf ;c 7 ERp ((f) =
inf e 7 ERg (f) = 0, while no such guarantee holds in the agnostic model.

4.3 Analysis in the Standard Model

Next, we analyze the competitive ratio of Algorithm 4 in the standard model, i.e., when
infrer ERp(f) = inf e 7 ERg () = 0.

Theorem 6. In the standard model, Algorithm 4 obtains a competitive ratio of 1 + O(¢) with
probability at least 1 — 0, when using O (%) samples, where d = Pdim(F).

€

When the cost of the optimal solution OPT(7) is hard to compute, we can replace the offline optimal
with an online algorithm that achieves competitive ratio ¢ given the value of 7 to get the following:

Corollary 7. In the standard model, if there exists a c-competitive algorithm for OPT(T) given the
value of prefix-length T, Algorithm 4 obtains a competitive ratio of c¢(1 + O(¢)) with probability at

least 1 — 0, when using O (%) samples, where d = Pdim(F).

€

We also show that the result in Theorem 6 is tight up to a factor of H log 1/e:

Theorem 8. Let F be a family of real valued functions such that there exists a function f* : X — Y

that f*(x) = y and let d = Pdim(F). There exists an instance of the LEARNTOSEARCH problem
1

that enforces any algorithm to query ) <%) samples in order to have an expected competitive

€
ratio of 1 + € with probability > 1 — 4.

4.4 Extension to the Agnostic Model

In the agnostic model, we no longer assume a function f € F that predicts the log-cost y perfectly. It
is possible that the true predictor is outside F, or in more difficult scenarios for any feature z, the
behaviour of the log-cost y may be entirely arbitrary.

We first show that the loss function e-parameterized competitive error defined earlier is still a
reasonable proxy for the competitive ratio. Specifically, we show that any algorithm that hopes to

achieve a competitive ratio of 1+ O(e) must use a prediction f € F whose error ERp . (f) is bounded
by O(e). We formally state this below:

Lemma 9. Letr A be an algorithm for LEARNTOSEARCH that has access to a predictor f X =
[0, H] for the log-cost y. Then, there exists a distribution D and a function f o with the property
ERp ((fa) = € such that B, ) .p [CR4(z,y)] > 1+ 5.

Unlike in the standard model, we no longer have that for any € > 0, min ¢ » ERp ((f) = 0. Therefore,
we need to first quantify the performance of an ideal algorithm that uses predictors from F.
Definition 9. Let x(¢) = minyc r ERp (f). Then, Ax is the solution to the equation: € = x/(e).

A r measures the best competitive ratio that we can hope to get when we use a predictor from F.

Note that e appears in two places in this definition, since the loss function in Definition 6 depends on
€. We first show that this is a reasonable definition in that the solution to the equation is unique:

Lemma 10. For a given function family F and distribution D, the value of A x is unique.
We also give an algorithm that can approximate A (Algorithm 5).

Lemma 11. If|S| > C - ( )for suitable constants C' > 0,0 < % and € < Ar, then
with probability at least 1 — 8§, we have €/6 < Ap < 5e/3, where € is as returned by Algorithm 5.

H-dlog X log +
c

We are now ready to define our LEARNTOSEARCH algorithm for the agnostic model. This algorithm
is simply Algorithm 4 where the accuracy parameter € is set to the value of ¢ returned by Algorithm 5.



Algorithm 5 Procedure to estimate A

Input: Sample Set S, and function family F
Let € be an accuracy parameter given by the size of the sample set S.
Choose € := ¢ .
Compute: f such t}lat ER5 . (f) < minfer ERsc(f) + 5.
while ¢ < ERg.(f)
€ 4 2e. ) A
Recompute f s.t. ER5 - (f) < minfe 7 ERsc(f) + 3.
Return e.

Theorem 12. In the agnostic model for a function family F, Algorithm 4 with accuracy parameter £
Sfrom Algorithm 5 obtains a competitive ratio of 1 + O (A x) with probability at least 1 — §, when

H-dlog( += )-log +
using O (%) samples, where d = Pdim(F).

We also lower bound the sample complexity of a LEARNTOSEARCH algorithm:
Theorem 13. Any LEARNTOSEARCH algorithm that is e-efficient with probability at least 1 — 0

log %
must query () | —*> | samples.

4.5 Robustness of Algorithm 4

So far, we have established the competitive ratio of Algorithm 4 in the PAC model. Now, we show
the robustness of this algorithm, i.e., bound its competitive ratio for any input. Even for adversarial
inputs, we show that this algorithm has a competitive ratio of O(1/¢), which matches the robustness
guarantees in Theorem 2 for the PREDICT-AND-DOUBLE algorithm.

Theorem 14. Algorithm 4 is 5(1+ 1) = O (1)-robust.

5 Conclusion, Limitations, and Future Work

In this paper, we studied the role of regression in making predictions for learning-augmented online
algorithms. In particular, we used the ONLINESEARCH framework that includes a variety of online
problems such as ski rental and its generalizations, online scheduling, online bin packing, etc. and
showed that by using a carefully crafted loss function, we can obtain predictions that yield near-
optimal algorithms for this problem. One assumption that holds for the above problems, but not for
other problems such as online matching, is the composability of solutions, i.e., that the union of two
feasible solutions is also a feasible solution. Extending our work to such “packing” problems is an
interesting direction for future research. Another interesting direction would be to give a general
recipe for converting competitive ratios to loss functions, minimizing which over a collection of
training samples generates better ML predictions for online problems.
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