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Abstract
Given input–output pairs of an elliptic partial differential equation (PDE) in three
dimensions, we derive the first theoretically rigorous scheme for learning the asso-
ciated Green’s function G. By exploiting the hierarchical low-rank structure of G,
we show that one can construct an approximant to G that converges almost surely
and achieves a relative error ofO(Γ

−1/2
ε log3(1/ε)ε) using at mostO(ε−6 log4(1/ε))

input–output training pairs with high probability, for any 0 < ε < 1. The quantity
0 < Γε ≤ 1 characterizes the quality of the training dataset. Along the way, we
extend the randomized singular value decomposition algorithm for learning matrices
to Hilbert–Schmidt operators and characterize the quality of covariance kernels for
PDE learning.
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1 Introduction

Can one learn a differential operator from pairs of solutions and righthand sides?
If so, how many pairs are required? These two questions have received significant
research attention [17,31,34,43]. From data, one hopes to eventually learn physical
laws of nature or conservation laws that elude scientists in the biological sciences [63],
computational fluid dynamics [49], and computational physics [45]. The literature
contains many highly successful practical schemes based on deep learning techniques
[38,48]. However, the challenge remains to understand when and why deep learning
is effective theoretically. This paper describes the first theoretically justified scheme
for discovering scalar-valued elliptic partial differential equations (PDEs) in three
variables from input–output data and provides a rigorous learning rate. While our
novelties are mainly theoretical, we hope to motivate future practical choices in PDE
learning.

We suppose that there is an unknown second-order uniformly elliptic linear PDE
operator1 L : H2(D) ∩ H1

0(D) → L2(D) with a bounded domain D ⊂ R
3 with

Lipschitz smooth boundary [16], which takes the form

(Lu(x) = −∇ · (A(x)∇u) + c(x) · ∇u + d(x)u, x ∈ D, u|∂D = 0. (1)

Here, for every x ∈ D, we have that A(x) ∈ R
3×3 is a symmetric positive definite

matrix with bounded coefficient functions so that2 Ai j ∈ L∞(D), c ∈ Lr (D) with
r ≥ 3, d ∈ Ls(D) for s ≥ 3/2, and d(x) ≥ 0 [28]. We emphasize that the regularity
requirements on the variable coefficients are quite weak.

The goal of PDE learning is to discover the operator L from N ≥ 1 input–output
pairs, i.e., {( f j , u j )}Nj=1, where Lu j = f j and u j |∂D = 0 for 1 ≤ j ≤ N . There
are two main types of PDE learning tasks: (1) Experimentally determined input–
output pairs, where one must do the best one can with the predetermined information
and (2) algorithmically determined input–output pairs, where the data-driven learning
algorithm can select f1, . . . , fN for itself. In this paper, we focus on the PDE learning
task where we have algorithmically determined input–output pairs. In particular, we
suppose that the functions f1, . . . , fN are generated at random and are drawn from a
Gaussian process (GP) (see Sect. 2.3). To keep our theoretical statements manageable,
we restrict our attention to PDEs of the form:

Lu = −∇ · (A(x)∇u) , x ∈ D, u|∂D = 0. (2)

Lower-order terms in Eq. (1) should cause few theoretical problems [3], though our
algorithm and our bounds get far more complicated.

1 Here, L2(D) is the space of square-integrable functions defined on D, Hk (D) is the space of k times
weakly differentiable functions in the L2-sense, and H1

0(D) is the closure of C∞
c (D) in H1(D). Here,

C∞
c (D) is the space of infinitely differentiable compactly supported functions on D. Roughly speaking,

H1
0(D) are the functions in H1(D) that are zero on the boundary of D.

2 For 1 ≤ r ≤ ∞, we denote by Lr (D) the space of functions defined on the domain D with finite Lr norm,
where ‖ f ‖r = (

∫
D | f |rdx)1/r if r < ∞, and ‖ f ‖∞ = inf{C > 0 : | f (x)| ≤ C for almost every x ∈ D}.
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The approach that dominates the PDE learning literature is to directly learn L
by either (1) learning parameters in the PDE [4,64], (2) using neural networks to
approximate the action of the PDE on functions [45–49], or (3) deriving a model
by composing a library of operators with sparsity considerations [9,35,52,53,59,60].
Insteadof trying to learn theunbounded, closedoperatorLdirectly,we follow [6,17,18]
and discover the Green’s function associated with L. That is, we attempt to learn the
function G : D × D → R

+ ∪ {∞} such that [16]

u j (x) =
∫

D
G(x, y) f j (y)dy, x ∈ D, 1 ≤ j ≤ N . (3)

Seeking G, as opposed to L, has several theoretical benefits:
1. The integral operator in Eq. (3) is compact [15], while L is only closed [14]. This

allows G to be rigorously learned by input–output pairs {( f j , u j )}Nj=1, as its range
can be approximated by finite-dimensional spaces (see Theorem 3).

2. It is known that G has a hierarchical low-rank structure [3, Theorem 2.8]: for
0 < ε < 1, there exists a function Gk(x, y) = ∑k

j=1 g j (x)h j (y) with k =
O(log4(1/ε)) such that [3, Theorem 2.8]

‖G − Gk‖L2(X×Y ) ≤ ε ‖G‖L2(X×Ŷ )
,

where X ,Y ⊆ D are sufficiently separated domains, and Y ⊆ Ŷ ⊆ D denotes a
larger domain than Y (see Theorem 4 for the definition). The further apart X and
Y , the faster the singular values of G decay. Moreover, G also has an off-diagonal
decay property [19,25]:

G(x, y) ≤ c

‖x − y‖2 ‖G‖L2(D×D), x 
= y ∈ D,

where c is a constant independent of x and y. Exploiting these structures of G
leads to a rigorous algorithm for constructing a global approximant to G (see Sect.
4).

3. The function G is smooth away from its diagonal, allowing one to efficiently
approximate it [19].

Once a global approximation G̃ has been constructed for G using input–output pairs,
given a new righthand side f one can directly compute the integral in Eq. (3) to obtain
the corresponding solution u to Eq. (1). Usually, numerically computing the integral
in Eq. (3) must be done with sufficient care as G possesses a singularity when x = y.
However, our global approximation G̃ has an hierarchical structure and is constructed
as 0 near the diagonal. Therefore, for each fixed x ∈ D, we simply recommend that∫
D G̃(x, y) f j (y)dy is partitioned into the panels that corresponds to the hierarchical

decomposition, and then discretized each panel with a quadrature rule.
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1.1 Main Contributions

There are twomain contributions in this paper: (1) the generalization of the randomized
singular value decomposition (SVD) algorithm for learning matrices from matrix-
vector products to Hilbert–Schmidt (HS) operators and (2) a theoretical learning rate
for discovering Green’s functions associated with PDEs of the form Eq. (2). These
contributions are summarized in Theorem 1 and 3.

Theorem 1 says that, with high probability, one can recover a near-best rank k HS
operator using k + p operator-function products, for a small integer p. In the bound
of the theorem, a quantity, denoted by 0 < γk ≤ 1, measures the quality of the input–
output training pairs (see Sects. 3.1 and 3.4). We then combine Theorem 1 with the
theory of Green’s functions for elliptic PDEs to derive a theoretical learning rate for
PDEs.

In Theorem 3, we show that Green’s functions associated with uniformly elliptic
PDEs in three dimensions can be recovered using N = O(ε−6 log4(1/ε)) input–
output pairs ( f j , u j )

N
j=1 to within an accuracy of O(Γ

−1/2
ε log3(1/ε)ε) with high

probability, for 0 < ε < 1. Our learning rate associated with uniformly elliptic PDEs
in three variables is therefore O(ε−6 log4(1/ε)). The quantity 0 < Γε ≤ 1 (defined
in Sect. 4.4.2) measures the quality of the GP used to generate the random functions
{ f j }Nj=1 for learning G. We emphasize that the number of training pairs is small
only if the GP’s quality is high. The probability bound in Theorem 3 implies that the
constructed approximation is close to G with high probability and converges almost
surely to the Green’s function as ε → 0.

1.2 Organization of Paper

The paper is structured as follows. In Sect. 2, we briefly review HS operators and
GPs. We then generalize the randomized SVD algorithm to HS operators in Sect. 3.
Next, in Sect. 4, we characterize the learning rate for PDEs of the form of Eq. (2) (see
Theorem 3). Finally, we conclude and discuss potential further directions in Sect. 5.

2 BackgroundMaterial

We begin by reviewing quasimatrices (see Sect. 2.1), HS operators (see Sect. 2.2), and
GPs (see Sect. 2.3).

2.1 Quasimatrices

Quasimatrices are an infinite-dimensional analogue of tall-skinny matrices [57]. Let
D1, D2 ⊆ R

d be two domains with d ≥ 1 and denote by L2(D1) the space of square-
integrable functions defined on D1. Many of results in this paper are easier to state
using quasimatrices. We say that � is a D1 × k quasimatrix, if � is a matrix with k

123



Foundations of Computational Mathematics

columns where each column is a function in L2(D1). That is,

� = [
ω1 | · · · |ωk

]
, ω j ∈ L2(D1).

Quasimatrices are useful to define analogues of matrix operations for HS operators
[11,56–58]. For example, if F : L2(D1) → L2(D2) is a HS operator, then we write
F� to denote the quasimatrix obtained by applyingF to each columnof�.Moreover,
we write �∗� and ��∗ to mean the following:

�∗� =
⎡

⎢
⎣

〈ω1, ω1〉 · · · 〈ω1, ωk〉
...

. . .
...

〈ωk, ω1〉 · · · 〈ωk, ωk〉

⎤

⎥
⎦ , ��∗ =

k∑

j=1

ω j (x)ω j (y),

where 〈·, ·〉 is the L2(D1) inner-product. Many operations for rectangular matrices in
linear algebra can be generalized to quasimatrices [57].

2.2 Hilbert–Schmidt Operators

HS operators are an infinite-dimensional analogue of matrices acting on vectors. Since
L2(D1) is a separable Hilbert space, there is a complete orthonormal basis {e j }∞j=1

for L2(D1). We callF : L2(D1) → L2(D2) a HS operator [23, Ch. 4] with HS norm
‖F‖HS ifF is linear and

‖F‖HS :=
⎛

⎝
∞∑

j=1

‖F e j‖2L2(D2)

⎞

⎠

1/2

< ∞.

The archetypical example of anHS operator is anHS integral operatorF : L2(D1) →
L2(D2) defined by

(F f )(x) =
∫

D1

G(x, y) f (y)dy, f ∈ L2(D1), x ∈ D2,

where G ∈ L2(D2 × D1) is the kernel ofF and ‖F‖HS = ‖G‖L2(D2×D1)
. Since HS

operators are compact operators, they have an SVD [23, Theorem 4.3.1]. That is, there
exists a nonnegative sequence σ1 ≥ σ2 ≥ · · · ≥ 0 and an orthonormal basis {q j }∞j=1

for L2(D2) such that for any f ∈ L2(D1) we have

F f =
∞∑

j=1
σ j>0

σ j 〈e j , f 〉q j , (4)

where the equality holds in the L2(D2) sense. Note that we use the complete SVD,
which includes singular functions associatedwith the kernel ofF .Moreover, one finds
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that ‖F‖2HS = ∑∞
j=1 σ 2

j , which shows that the HS norm is an infinite-dimensional
analogue of the Frobenius matrix norm ‖·‖F. In the same way that truncating the SVD
after k terms gives a best rank k matrix approximation, truncating Eq. (4) gives a best
approximation in the HS norm. That is, [23, Theorem 4.4.7]

‖F − Fk‖2HS =
∞∑

j=k+1

σ 2
j , Fk f =

k∑

j=1

σ j 〈e j , f 〉q j , f ∈ L2(D1).

In this paper, we are interested in constructing an approximation to G in Eq. (3) from
input–output pairs {( f j , u j )}Nj=1 such that u j = F f j .

Throughout this paper, the HS operator denoted by ��∗F : L2(D1) → L2(D2)

is given by ��∗F f = ∑k
j=1〈ω j ,F f 〉ω j . If we consider the operator �∗F :

L2(D1) → R
k , then ‖�∗F‖2HS = ∑∞

j=1 ‖F e j‖22. Similarly, for F� : R
k →

L2(D2) we have ‖F�‖2HS = ∑k
j=1 ‖F ẽ j‖2L2(D2)

, where {ẽ j }kj=1 is an orthonormal

basis of Rk . Moreover, if � has full column rank then P�F = �(�∗�)†�∗F is the
orthogonal projection of the range of F onto the column space of �. Here, (�∗�)†

is the pseudo-inverse of �∗�.

2.3 Gaussian Processes

AGP is an infinite-dimensional analogue of a multivariate Gaussian distribution and a
functiondrawn fromaGP is analogous to a randomlygeneratedvector. If K : D×D →
R is a continuous symmetric positive semidefinite kernel, where D ⊆ R

d is a domain,
then a GP is a stochastic process {Xt , t ≥ 0} such that for every finite set of indices
t1, . . . , tn ≥ 0 the vector of random variables (Xt1 , . . . , Xtn ) is amultivariate Gaussian
distribution with mean (0, . . . , 0) and covariance Ki j = K (ti , t j ) for 1 ≤ i, j ≤ n.
We denote a GP with mean (0, . . . , 0) and covariance K by GP(0, K ).

Since K is a continuous symmetric positive semidefinite kernel, it has nonnegative
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0 and there is an orthonormal basis of eigenfunctions
{ψ j }∞j=1 of L

2(D) such that [23, Theorem 4.6.5]:

K (x, y) =
∞∑

j=1

λ jψ j (x)ψ j (y),
∫

D
K (x, y)ψ j (y)dy = λ jψ j (x), x, y ∈ D, (5)

where the infinite sum is absolutely and uniformly convergent [39]. In addition, we
define the trace of the covariance kernel K by Tr(K ) := ∑∞

j=1 λ j < ∞. The eigen-
decomposition of K gives an algorithm for generating functions from GP(0, K ). In
particular, if ω ∼ ∑∞

j=1

√
λ j c jψ j , where the coefficients {c j }∞j=1 are independent

and identically distributed standard Gaussian random variables, then ω ∼ GP(0, K )

[26,33]. We also have
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Fig. 1 Squared-exponential covariance kernel KSE with parameter 
 = 1, 0.1, 0.01 (top row) and five
functions sampled from GP(0, KSE) (bottom row)

E

[
‖ω‖2L2(D)

]
=

∞∑

j=1

λ jE
[
c2j

]
‖ψ j‖2L2(D)

=
∞∑

j=1

λ j =
∫

D
K (y, y) dy < ∞,

where the last equality is analogous to the fact that the trace of a matrix is equal to
the sum of its eigenvalues. In this paper, we restrict our attention to GPs with positive
definite covariance kernels so that the eigenvalues of K are strictly positive.

In Fig. 1, we display the squared-exponential kernel defined as KSE(x, y) =
exp(−|x − y|2/(2
2)) for x, y ∈ [−1, 1] [50, Chapt. 4] with parameters 
 =
1, 0.1, 0.01 together with sampled functions from GP(0, KSE). We observe that the
functions becomemore oscillatory as the length-scale parameter 
 decreases and hence
the numerical rank of the kernel increases or, equivalently, the associated eigenvalues
{λ j } decay more slowly to zero.

3 Low-Rank Approximation of Hilbert–Schmidt Operators

In a landmark paper, Halko, Martinsson, and Tropp proved that one could learn the
column space of a finite matrix—to high accuracy and with a high probability of
success—by using matrix-vector products with standard Gaussian random vectors
[22]. We now set out to generalize this frommatrices to HS operators. Alternative ran-
domized low-rank approximation techniques such as the generalized Nyströmmethod
[42] might also be generalized in a similar manner. Since the proof is relatively long,
we state our final generalization now.

Theorem 1 Let D1, D2 ⊆ R
d be domains with d ≥ 1 and F : L2(D1) → L2(D2)

be a HS operator. Select a target rank k ≥ 1, an oversampling parameter p ≥ 2, and
a D1 × (k + p) quasimatrix � such that each column is drawn from GP(0, K ), where
K : D1×D1 → R is a continuous symmetric positive definite kernel with eigenvalues
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λ1 ≥ λ2 ≥ · · · > 0. If Y = F�, then

E[‖F − PYF‖HS] ≤
(

1 +
√

1

γk

k(k + p)

p − 1

)⎛

⎝
∞∑

j=k+1

σ 2
j

⎞

⎠

1/2

, (6)

where γk = k/(λ1 Tr(C−1)) with Ci j = ∫
D1×D1

vi (x)K (x, y)v j (y)dxdy for 1 ≤
i, j ≤ k. Here, PY is the orthogonal projection onto the vector space spanned by the
columns ofY, σ j is the j th singular value ofF , and v j is the j th right singular vector
of F .

Assume further that p ≥ 4, then for any s, t ≥ 1, we have

‖F − PYF‖HS ≤
√√
√
√1 + t2s2

3

γk

k(k + p)

p + 1

∞∑

j=1

λ j

λ1

⎛

⎝
∞∑

j=k+1

σ 2
j

⎞

⎠

1/2

, (7)

with probability ≥ 1 − t−p − [se−(s2−1)/2]k+p.

We remark that the term [se−(s2−1)/2]k+p in the statement of Theorem 1 is bounded
by e−s2 for s ≥ 2 and k + p ≥ 5. In the rest of the section, we prove this theorem.

3.1 Three Caveats that Make the Generalization Non-Trivial

One might imagine that the generalization of the randomized SVD algorithm from
matrices to HS operators is trivial, but this is not the case due to three caveats:

1. The randomized SVD on finite matrices always uses matrix-vector products with
standard Gaussian random vectors [22]. However, for GPs, onemust always have a
continuous kernel K inGP(0, K ), which discretizes to a non-standardmultivariate
Gaussian distribution. Therefore, we must extend [22, Theorem 10.5] to allow
for non-standard multivariate Gaussian distributions. The discrete version of our
extension is the following:

Corollary 1 LetA be a real n2×n1 matrix with singular values σ1 ≥ · · · ≥ σmin{n1,n2}.
Choose a target rank k ≥ 1 and an oversampling parameter p ≥ 2. Draw an
n1 × (k + p) Gaussian matrix, �, with independent columns where each column
is from a multivariate Gaussian distribution with mean (0, . . . , 0)� and positive def-
inite covariance matrix K. If Y = A�, then the expected approximation error is
bounded by

E [‖A − PYA‖F] ≤
⎛

⎝1 +
√√
√
√k + p

p − 1

n1∑

j=n1−k+1

λ1

λ j

⎞

⎠

⎛

⎝
∞∑

j=k+1

σ 2
j

⎞

⎠

1/2

, (8)

where λ1 ≥ · · · ≥ λn1 > 0 are the eigenvalues of K and PY is the orthogonal
projection onto the vector space spanned by the columns of Y. Assume further that
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p ≥ 4, then for any s, t ≥ 1, we have

‖A − PYA‖F ≤
⎛

⎜
⎝1 + ts ·

√√
√
√
√

3(k + p)

p + 1

⎛

⎝
n1∑

j=1

λ j

⎞

⎠
n1∑

j=n1−k+1

1

λ j

⎞

⎟
⎠

⎛

⎝
∞∑

j=k+1

σ 2
j

⎞

⎠

1/2

,

with probability ≥ 1 − t−p − [se−(s2−1)/2]k+p.

Choosing a covariance matrix K with sufficient eigenvalue decay so that
limn1→∞

∑n1
j=1 λ j < ∞ allows E[‖�‖2F] to remain bounded as n1 → ∞. This is

of interest when applying the randomized SVD algorithm to extremely large matrices
and is critical for HS operators. A stronger statement of this result [8, Theorem 2]
shows that prior information on A can be incorporated into the covariance matrix to
achieve lower approximation error than the randomized SVD with standard Gaussian
vectors.

2. We need an additional essential assumption. The kernel in GP(0, K ) is “reason-
able” for learning F , where reasonableness is measured by the quantity γk in
Theorem 1. If the first k right singular functions of the HS operator v1, . . . , vk are
spanned by the first k + m eigenfunctions of K ψ1, . . . , ψk+m , for some m ∈ N,
then (see Eq. (11) and Lemma 2)

1

k

k∑

j=1

λ1

λ j
≤ 1

γk
≤ 1

k

k+m∑

j=m+1

λ1

λ j
.

In the matrix setting, this assumption always holds with m = n1 − k (see Corol-
lary 1) and one can have γk = 1 when λ1 = · · · = λn1 [22, Theorem 10.5].

3. Probabilistic error bounds for the randomized SVD in [22] are derived using tail
bounds for functions of standard Gaussian matrices [30, Sect. 5.1]. Unfortunately,
we are not aware of tail bounds for non-standard Gaussian quasimatrices. This
results in a slightly weaker probability bound than [22, Theorem 10.7].

3.2 Deterministic Error Bound

Apart from the three caveats, the proof ofTheorem1 follows the outline of the argument
in [22, Theorem 10.5]. We define two quasimatrices U and V containing the left and
right singular functions ofF so that the j th column of V is v j . We also denote by �

the infinite diagonal matrix with the singular values of F , i.e., σ1 ≥ σ2 ≥ · · · ≥ 0,
on the diagonal. Finally, for a fixed k ≥ 1, we define the D1 × k quasimatrix as the
truncation of V after the first k columns and V2 as the remainder. Similarly, we split
� into two parts:

k ∞
� =

(
�1
0

0
�2

)
k
∞

.
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We are ready to prove an infinite-dimensional analogue of [22, Theorem 9.1] for HS
operators.

Theorem 2 (Deterministic error bound) LetF : L2(D1) → L2(D2) be aHSoperator
with SVD given in Eq. (4). Let� be a D1×
 quasimatrix andY = F�. If�1 = V∗

1�

and �2 = V∗
2�, then assuming �1 has full rank, we have

‖F − PYF‖2HS ≤ ‖�2‖2HS + ‖�2�2�
†
1‖2HS,

where PY = Y(Y∗Y)†Y∗ is the orthogonal projection onto the space spanned by the
columns of Y and �

†
1 = (�∗

1�1)
−1�∗

1.

Proof First, note that because UU∗ is the orthonormal projection onto the range ofF
and U is a basis for the range, we have

‖F − PYF‖HS = ‖UU∗F − PYUU∗F‖HS.

By Parseval’s theorem [51, Theorem 4.18], we have

‖UU∗F − PYUU∗F‖HS = ‖U∗UU∗F − U∗PYUU∗FV‖HS.

Moreover, we have the equality ‖F−PYF‖HS = ‖(I−PU∗Y)U∗FV‖HS because the
inner product 〈∑∞

j=1 α j u j ,
∑∞

j=1 βu j 〉 = 0 if and only if
∑∞

j=1 α jβ j = 0. We now
takeA = U∗FV, which is a bounded infinite matrix such that ‖A‖F = ‖F‖HS < ∞.
The statement of the theorem immediately follows from the proof of [22, Theorem9.1].

��
This theorem shows that the bound on the approximation error ‖F − PYF‖HS

depends on the singular values of the HS operator and the test matrix �.

3.3 Probability Distribution ofÄ1

If the columns of � are independent and identically distributed as GP(0, K ), then the
matrix�1 in Theorem 2 is of size k×
with entries that follow aGaussian distribution.
To see this, note that

�1 = V∗
1� =

⎛

⎜
⎝

〈v1, ω1〉 · · · 〈v1, ω
〉
...

. . .
...

〈vk, ω1〉 · · · 〈vk, ω
〉

⎞

⎟
⎠ , ω j ∼ GP(0, K ).

If ω ∼ GP(0, K ) with K given in Eq. (5), then we find that 〈v, ω〉 ∼
N (0,

∑∞
j=1 λ j 〈v,ψ j 〉2) so we conclude that�1 has Gaussian entries with zero mean.

Finding the covariances between the entries is more involved.

Lemma 1 With the same setup as Theorem 2, suppose that the columns of � are
independent and identically distributed as GP(0, K ). Then, the matrix �1 = V∗

1� in
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Theorem 2 has independent columns and each column is identically distributed as a
multivariate Gaussian with positive definite covariance matrix C given by

Ci j =
∫

D1×D1

vi (x)K (x, y)v j (y)dxdy, 1 ≤ i, j ≤ k, (9)

where vi is the i th column of V1.

Proof We already know that the entries are Gaussian with mean 0. Moreover, the
columns are independent because ω1, . . . , ω
 are independent. Therefore, we focus
on the covariance matrix. Let 1 ≤ i, i ′ ≤ k, 1 ≤ j, j ′ ≤ 
, then since E

[〈vi , ω j 〉
] = 0

we have

cov(〈vi , ω j 〉, 〈vi ′ , ω j ′ 〉) = E
[〈vi , ω j 〉 〈vi ′ , ω j ′ 〉

] = E
[
Xi j Xi ′ j ′

]
,

where Xi j = 〈vi , ω j 〉. Since 〈vi , ω j 〉 ∼ ∑∞
n=1

√
λnc

( j)
n 〈vi , ψn〉, where c( j)

n ∼
N (0, 1), we have

cov(〈vi , ω j 〉, 〈vi ′ , ω j ′ 〉) = E

[

lim
m1,m2→∞ Xm1

i j Xm2
i ′ j ′

]

, Xm1
i j :=

m1∑

n=1

√
λnc

( j)
n 〈vi , ψn〉.

We first show that limm1,m2→∞
∣
∣
∣E
[
Xm1
i j Xm2

i ′ j ′
]

− E
[
Xi j Xi ′ j ′

]∣∣
∣ = 0. For anym1,m2 ≥

1, we have by the triangle inequality,

∣
∣
∣E
[
Xm1
i j Xm2

i ′ j ′
]

− E
[
Xi j Xi ′ j ′

]∣∣
∣

≤ E

[∣∣
∣Xm1

i j Xm2
i ′ j ′ − Xi j Xi ′ j ′

∣
∣
∣
]

≤ E

[∣∣
∣(Xm1

i j − Xi j )X
m2
i ′ j ′

∣
∣
∣
]
+ E

[∣∣
∣Xi j (X

m2
i ′ j ′ − Xi ′ j ′)

∣
∣
∣
]

≤ E

[∣
∣
∣Xm1

i j − Xi j

∣
∣
∣
2
] 1
2
E

[∣
∣
∣Xm2

i ′ j ′
∣
∣
∣
2
] 1
2+ E

[∣
∣
∣Xi ′ j ′ − Xm2

i ′ j ′
∣
∣
∣
2
] 1
2
E

[∣
∣Xi j

∣
∣2
] 1
2
,

where the last inequality follows from the Cauchy–Schwarz inequality.We now set out
to show that both terms in the last inequality converge to zero as m1,m2 → ∞. The
terms E[|Xm2

i ′ j ′ |2] and E[|Xi j |2] are bounded by
∑∞

n=1 λn < ∞, using the Cauchy–
Schwarz inequality. Moreover, we have

E

[∣
∣
∣Xm1

i j − Xi j

∣
∣
∣
2
]

= E

⎡

⎢
⎣

∣
∣
∣
∣
∣
∣

∞∑

n=m1+1

√
λnc

( j)
n 〈vi , ψn〉

∣
∣
∣
∣
∣
∣

2
⎤

⎥
⎦ ≤

∞∑

n=m1+1

λn −−−−→
m1→∞ 0,
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because Xi j − Xm1
i j ∼ N (0,

∑∞
n=m1+1 λn〈vi , ψn〉2). Therefore, we find that

cov(Xi j , Xi ′ j ′) = limm1,m2→∞ E[Xm1
i j Xm2

i ′ j ′ ] and we obtain

cov(Xi j , Xi ′ j ′) = lim
m1,m2→∞E

[
m1∑

n=1

m2∑

n′=1

√
λnλn′c( j)

n c( j ′)
n′ 〈vi , ψn〉〈vi ′ , ψn′ 〉

]

= lim
m1,m2→∞

m1∑

n=1

m2∑

n′=1

√
λnλn′E[c( j)

n c( j ′)
n′ ]〈vi , ψn〉〈vi ′ , ψn′ 〉.

The latter expression is zero if n 
= n′ or j 
= j ′ because then c( j)
n and c( j ′)

n′ are

independent random variables with mean 0. Since E[(c( j)
n )2] = 1, we have

cov(Xi j , Xi ′ j ′) =
{∑∞

n=1 λn〈vi , ψn〉〈vi ′ , ψn〉, j = j ′,
0, otherwise.

The result follows as the infinite sum is equal to the integral in Eq. (9). To see
that C is positive definite, let a ∈ R

k , then a∗Ca = E[Z2
a] ≥ 0, where Za ∼

N (0,
∑∞

n=1 λn〈a1v1 + · · · + akvk, ψn〉2). Moreover, a∗Ca = 0 implies that a = 0
because v1, . . . , vk are orthonormal and {ψn} is an orthonormal basis of L2(D1). ��

Lemma1gives the distributionof thematrix�1,which is essential to proveTheorem
1 in Sect. 3.6. In particular, �1 has independent columns that are each distributed as
a multivariate Gaussian with covariance matrix given in Eq. (9).

3.4 Quality of the Covariance Kernel

To investigate the quality of the kernel, we introduce theWishart distribution, which is
a family of probability distributions over symmetric and nonnegative-definite matri-
ces that often appear in the context of covariance matrices [61]. If �1 is a k × 


random matrix with independent columns, where each column is a multivariate
Gaussian distribution with mean (0, . . . , 0)� and covariance C, then A = �1�

∗
1

has a Wishart distribution [61]. We write A ∼ Wk(
,C). We note that ‖�†
1‖2F =

Tr[(�†
1)

∗�†
1] = Tr(A−1), where the second equality holds with probability one

because the matrix A = �1�
∗
1 is invertible with probability one (see [41, Theo-

rem 3.1.4]). By [41, Theorem 3.2.12] for 
 − k ≥ 2, we have E[A−1] = 1

−k−1C

−1,
E[Tr(A−1)] = Tr(C−1)/(
 − k − 1), and conclude that

E

[
‖�†

1‖2F
]

= 1

γkλ1

k


 − k − 1
, γk := k

λ1 Tr(C−1)
. (10)

The quantity γk can be viewed as measuring the quality of the covariance kernel
K for learning the HS operator F (see Theorem 1). First, 1 ≤ γk < ∞ as C is
symmetric positive definite. Moreover, for 1 ≤ j ≤ k, the j th largest eigenvalue of C
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is bounded by the j th largest eigenvalue of K as C is a principal submatrix of V∗KV
[27, Sect. III.5]. Therefore, the following inequality holds,

1

k

k∑

j=1

λ1

λ j
≤ 1

γk
< ∞, (11)

and the harmonic mean of the first k scaled eigenvalues of K is a lower bound for 1/γk .
In the ideal situation, the eigenfunctions of K are the right singular functions ofF , i.e.,
ψn = vn , C is a diagonal matrix with entries λ1, . . . , λk , and γk = k/(

∑k
j=1 λ1/λ j )

is as small as possible.
We now provide a useful upper bound on γk in a more general setting.

Lemma 2 Let V1 be a D1 × k quasimatrix with orthonormal columns and assume
that there exists m ∈ N such that the columns of V1 are spanned by the first k + m
eigenvectors of the continuous positive definite kernel K : D1 × D1 → R. Then

1

γk
≤ 1

k

k+m∑

j=m+1

λ1

λ j
,

where λ1 ≥ λ2 ≥ · · · > 0 are the eigenvalues of K . This bound is tight in the sense
that the inequality can be attained as an equality.

Proof Let Q = [
v1 | · · · | vk | qk+1 | · · · | qk+m

]
be a quasimatrix with orthonormal

columns whose columns form an orthonormal basis for Span(ψ1, . . . , ψk+m). Then,
Q is an invariant space of K and C is a principal submatrix of Q∗KQ, which has
eigenvalues λ1 ≥ · · · ≥ λk+m . By [27, Theorem 6.46] the k eigenvalues ofC, denoted
by μ1, . . . , μk , are greater than the first k + m eigenvalues of K : μ j ≥ λm+ j for
1 ≤ j ≤ k, and the result follows as the trace of a matrix is the sum of its eigenvalues.

��

3.5 Probabilistic Error Bounds

As discussed in Sect. 3.1, we need to extend the probability bounds of the randomized
SVD to allow for non-standard Gaussian random vectors. The following lemma is a
generalization of [22, Theorem A.7].

Lemma 3 Let k, 
 ≥ 1 such that 
 − k ≥ 4 and �1 be a k × 
 random matrix
with independent columns such that each column has mean (0, . . . , 0)� and positive
definite covariance C. For all t ≥ 1, we have

P

{

‖�†
1‖2F >

3Tr(C−1)


 − k + 1
· t2

}

≤ t−(
−k).
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Proof Since �1�
∗
1 ∼ Wk(
,C), the reciprocals of its diagonal elements follow a

scaled chi-square distribution [41, Theorem 3.2.12], i.e.,

(
(�1�

∗
1)

−1
)
j j(

C−1
)
j j

∼ X−1
j , X j ∼ χ2


−k+1, 1 ≤ j ≤ k.

Let Z = ‖�†
1‖2F = Tr[(�1�

∗
1)

−1] and q = (
 − k)/2. Following the proof of [22,
Theorem A.7], we have the inequality

P

{

|Z | ≥ 3Tr(C−1)


 − k + 1
· t2

}

≤
[
3Tr(C−1)


 − k + 1
· t2

]−q

E
[|Z |q] , t ≥ 1.

Moreover, by the Minkowski inequality, we have

(
E
[|Zq |])1/q =

⎛

⎝E

⎡

⎣

∣
∣
∣
∣
∣
∣

k∑

j=1

[C−1] j j X−1
j

∣
∣
∣
∣
∣
∣

q⎤

⎦

⎞

⎠

1/q

≤
k∑

j=1

[C−1] j jE
[
|X−1

j |q
]1/q ≤ 3Tr(C−1)


 − k + 1
,

where the last inequality is from [22, Lemma A.9]. The result follows from the
argument in the proof of [22, Theorem A.7]. ��

Under the assumption of Lemma 2, we find that Lemma 3 gives the following
bound:

P

⎧
⎨

⎩
‖�†

1‖F > t ·
√√
√
√ 3


 − k + 1

k+m∑

j=m+1

λ−1
j

⎫
⎬

⎭
≤ t−(
−k).

In particular, in the finite-dimensional case when λ1 = · · · = λn = 1, we recover the
probabilistic bound found in [22, Theorem A.7].

To obtain the probability statement found in Eq. (13), we require control of the tail
of the distribution of a Gaussian quasimatrix with non-standard covariance kernel (see
Sect. 3.6). In the theory of the randomized SVD, one relies on the concentration of
measure results [22, Prop. 10.3]. However, we need to employ a different strategy and
instead directly bound the HS norm of�2. One difficulty is that the norm of this matrix
must be controlled for large dimensions n, which leads to a weaker probability bound
than [22].While it is possible to applyMarkov’s inequality to obtain deviation bounds,
we highlight that Lemma 4 provides a Chernoff-type bound, i.e., exponential decay
of the tail distribution of ‖�2‖HS, which is crucial to approximate Green’s functions
(see Sect. 4.4.3).

Lemma 4 With the same notation as in Theorem 2, let 
 ≥ k ≥ 1. For all s ≥ 1, we
have

P

{
‖�2‖2HS > 
s2 Tr(K )

}
≤
[
se−(s2−1)/2

]


.
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Proof We first remark that

‖�2‖2HS ≤ ‖�‖2HS =

∑

j=1

Z j , Z j := ‖ω j‖2L2(D1)
, (12)

where the Z j are independent and identically distributed (i.i.d) because ω j ∼
GP(0, K ) are i.i.d. For 1 ≤ j ≤ 
, we have (c.f. Sect. 2.3),

ω j =
∞∑

m=1

c( j)
m

√
λmψm,

where c( j)
m ∼ N (0, 1) are i.i.d for m ≥ 1 and 1 ≤ j ≤ 
. First, since the series in Eq.

(12) converges absolutely, we have

Z j =
∞∑

m=1

(c( j)
m )2λm = lim

N→∞

N∑

m=1

Xm, Xm = (c( j)
m )2λm,

where the Xm are independent random variables and Xm ∼ λmχ2 for 1 ≤ m ≤ N .
Here, χ2 denotes the chi-squared distribution [40, Chapt. 4.3].

Let N ≥ 1 and 0 < θ < 1/(2 Tr(K )), we can bound the moment generating
function of

∑N
m=1 Xm as

E

[
eθ

∑N
m=1 Xm

]
=

N∏

m=1

E

[
eθXm

]
=

N∏

m=1

(1 − 2θλm)−1/2 ≤
(

1 − 2θ
N∑

m=1

λm

)−1/2

≤ (1 − 2θ Tr(K ))−1/2 ,

because Xm/λm are independent random variables that follow a chi-squared distribu-
tion. Using the monotone convergence theorem, we have

E

[
eθ Z j

]
≤ (1 − 2θ Tr(K ))−1/2.

Let s̃ ≥ 0 and 0 < θ < 1/(2 Tr(K )), by the Chernoff bound [10, Theorem 1], we
obtain

P

{
‖�2‖2HS > 
(1 + s̃)Tr(K )

}
≤ e−(1+s̃)Tr(K )
θ

E

[
eθ Z j

]


= e−(1+s̃)Tr(K )
θ (1 − 2θ Tr(K ))−
/2.

We can minimize this upper bound over 0 < θ < 1/(2 Tr(K )) by choosing θ =
s̃/(2(1 + s̃)Tr(K )), which gives

P

{
‖�2‖2HS > 
(1 + s̃)Tr(K )

}
≤ (1 + s̃)
/2e−
s̃/2.
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Choosing s = √
1 + s̃ ≥ 1 concludes the proof. ��

Lemma 4 can be refined further to take into account the interaction between the
Hilbert–Schmidt operator F and the covariance kernel K (see [8, Lemma 7]).

3.6 Randomized SVD Algorithm for HS Operators

We first prove an intermediary result, which generalizes [22, Prop. 10.1] to HS oper-
ators. Note that one may obtain sharper bounds using a suitably chosen covariance
kernels that yields a lower approximation error [8].

Lemma 5 Let �2, V2, and � be defined as in Theorem 2, and T be an 
 × k matrix,
where 
 ≥ k ≥ 1. Then,

E

[
‖�2V∗

2�T‖2HS
]

≤ λ1‖�2‖2HS‖T‖2F,

where λ1 is the first eigenvalue of K .

Proof Let T = UTDTV∗
T be the SVD of T. If {vT,i }ki=1 are the columns of VT, then

E

[
‖�2V∗

2�T‖2HS
]

=
k∑

i=1

E

[
‖�2�2UTDTV∗

TvT,i‖22
]
,

where �2 = V∗
2�. Therefore, we have

E

[
‖�2�2T‖2HS

]
=

k∑

i=1

((DT)i i )
2
E

[
‖�2�2UT(:, i)‖22

]
.

Moreover, using the monotone convergence theorem for non-negative random vari-
ables, we have

E

[
‖�2�2UT(:, i)‖22

]
= E

⎡

⎣
∞∑

n=1


∑

j=1

σ 2
k+n |�2(n, j)|2 UT( j, i)2

⎤

⎦

=
∞∑

n=1


∑

j=1

σ 2
k+nUT( j, i)2E

[
|�2(n, j)|2

]
,

where σk+1, σk+2, . . . are the diagonal elements of �2. Then, the quasimatrix �2 has
independent columns and, using Lemma 1, we have

E

[
|�2(n, j)|2

]
=
∫

D1×D1

vk+n(x)K (x, y)vk+n(y)dxdy,
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where vk+n is the nth column of V2. Then, E
[|�2(n, j)|2] ≤ λ1, as E

[|�2(n, j)|2]
is written as a Rayleigh quotient. Finally, we have

E

[
‖�2V∗

2�T‖2HS
]

≤ λ1

k∑

i=1

((DT)i i )
2


∑

j=1

UT( j, i)2
∞∑

n=1

σ 2
k+n = λ1‖T‖2F‖�2‖2HS,

by orthonormality of the columns on UT. ��

We are now ready to prove Theorem 1, which shows that the randomized SVD can
be generalized to HS operators.

Proof of Theorem 1 Let �1,�2 be the quasimatrices defined in Theorem 2. The k ×
(k + p) matrix �1 has full rank with probability one and by Theorem 2, we have

E [‖(I − PY)F‖HS]≤E

[(
‖�2‖2HS+‖�2�2�

†
1‖2HS

)1/2] ≤ ‖�2‖HS + E‖�2�2�
†
1‖HS

≤ ‖�2‖HS + E
[‖�2�2‖2HS

]1/2
E

[
‖�†

1‖2F
]1/2

,

where the last inequality follows from Cauchy–Schwarz inequality. Then, using
Lemma 5 and Eq. (10), we have

E

[
‖�2�2‖2HS

]
≤ λ1(k + p)‖�2‖2HS, and E

[
‖�1‖2F

]
≤ 1

γkλ1

k

p − 1
.

whereγk is defined inSect. 3.4. The observation that‖�2‖2HS = ∑∞
j=k+1 σ 2

j concludes
the proof of Eq. (6).

For the probabilistic bound in Eq. (7), we note that by Theorem 2 we have,

‖F − PYF‖2HS ≤ ‖�2‖2HS + ‖�2�2�
†
1‖2HS ≤ (1 + ‖�2‖2HS‖�†

1‖2F)‖�2‖2HS,

where the second inequality uses the submultiplicativity of the HS norm. The bound
follows from bounding ‖�†

1‖2F and ‖�2‖2HS using Lemma 3 and 4, respectively. ��

4 Recovering the Green’s Function from Input–Output Pairs

It is known that the Green’s function associated with Eq. (2) always exists, is unique,
is a nonnegative function G : D × D → R

+ ∪ {∞} such that

u(x) =
∫

D
G(x, y) f (y)dy, f ∈ C∞

c (D),
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and for each y ∈ � and any r > 0, we have G(·, y) ∈ H1(D \ Br (y)) ∩ W1,1
0 (D)

[19].3 Since the PDE in Eq. (2) is self-adjoint, we also know that for almost every
x, y ∈ D, we have G(x, y) = G(y, x) [19].

We now state Theorem 3, which shows that if N = O(ε−6 log4(1/ε)) and one
has N input–output pairs {( f j , u j )}Nj=1 with algorithmically selected f j , then the
Green’s function associated withL in Eq. (2) can be recovered to within an accuracy of
O(Γ

−1/2
ε log3(1/ε)ε) with high probability. Here, the quantity 0 < Γε ≤ 1 measures

the quality of the random input functions { f j }Nj=1 (see Sect. 4.4.2).

Theorem 3 Let 0 < ε < 1, D ⊂ R
3 be a bounded Lipschitz domain, and L given

in Eq. (2). If G is the Green’s function associated with L, then there is a randomized
algorithm that constructs an approximation G̃ of G using O(ε−6 log4(1/ε)) input–
output pairs such that, as ε → 0, we have

‖G − G̃‖L2(D×D) = O
(
Γ −1/2

ε log3(1/ε)ε
)

‖G‖L2(D×D), (13)

with probability ≥ 1 − O(εlog(1/ε)−6). The term Γε is defined by Eq. (25).

Our algorithm that leads to the proof of Theorem 3 relies on the extension of the
randomized SVD toHS operator (see Sect. 3) and a hierarchical partition of the domain
of G into “well-separated” domains.

4.1 Recovering the Green’s Function on Admissible Domains

Roughly speaking, as ‖x − y‖2 increases G becomes smoother about (x, y), which
can be made precise using so-called admissible domains [1,2,21]. Let diam X :=
supx,y∈X ‖x − y‖2 be the diameter of X , dist(X ,Y ) := infx∈X ,y∈Y ‖x − y‖2 be the
shortest distance between X and Y , and ρ > 0 be a fixed constant. If X ,Y ⊂ R

3 are
bounded domains, then we say that X × Y is an admissible domain if dist(X ,Y ) ≥
ρ max{diam X , diam Y }; otherwise, we say that X × Y is non-admissible. There is
a weaker definition of admissible domains as dist(X ,Y ) ≥ ρ min{diam X , diam Y }
[21, p. 59], but we do not consider it.

4.1.1 Approximation Theory on Admissible Domains

It turns out that the Green’s function associated with Eq. (2) has rapidly decaying
singular valueswhen restricted to admissible domains.Roughly speaking, if X ,Y ⊂ D
are such that X×Y is an admissible domain, thenG is well-approximated by a function
of the form [3]

Gk(x, y) =
k∑

j=1

g j (x)h j (y), (x, y) ∈ X × Y , (14)

3 Here, Br (y) = {z ∈ R
3 : ‖z − y‖2 < r},W1,1(D) is the space of weakly differentiable functions in the

L1-sense, and W1,1
0 (D) is the closure of C∞

c (D) in W1,1(D).
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for some functions g1, . . . , gk ∈ L2(X) and h1, . . . , hk ∈ L2(Y ). This is summarized
in Theorem 4, which is a corollary of [3, Theorem 2.8].

Theorem 4 Let G be the Green’s function associated with Eq. (2) and ρ > 0. Let
X ,Y ⊂ D such that dist(X ,Y ) ≥ ρ max{diam X , diam Y }. Then, for any 0 < ε < 1,
there exists k ≤ kε := �c(ρ, diam D, κC )��log(1/ε)�4 + �log(1/ε)� and an approxi-
mant, Gk, of G in the form given in Eq. (14) such that

‖G − Gk‖L2(X×Y ) ≤ ε‖G‖L2(X×Ŷ )
, Ŷ := {y ∈ D, dist(y,Y ) ≤ ρ

2
diam Y },

where κC = λmax/λmin is the spectral condition number of the coefficient matrix A(x)
in Eq. (2)4 and c is a constant that only depends on ρ, diam D, κC .

Proof In [3, Theorem 2.8], it is shown that if Y = Ỹ ∩ D and Ỹ is convex, then there
exists k ≤ c3ρ/2�log(1/ε)�4 + �log(1/ε)� and an approximant, Gk , of G such that

‖G(x, ·) − Gk(x, ·)‖L2(Y ) ≤ ε‖G(x, ·)‖L2(Ŷ )
, x ∈ X , (15)

where Ŷ := {y ∈ D, dist(y,Y ) ≤ ρ
2 diam Y } and cρ/2 is a constant that only depends

on ρ, diam Y , and κC . As remarked by [3], Ỹ can be included in a convex of diameter
diam D that includes D to obtain the constant c(ρ, diam D, κC ). The statement follows
by integrating the error bound in Eq. (15) over X . ��

Since the truncated SVD of G on X × Y gives the best rank kε ≥ k approximation
to G, Theorem 4 also gives bounds on singular values:

(∑∞
j=kε+1

σ 2
j,X×Y

)1/2 ≤ ‖G − Gk‖L2(X×Y ) ≤ ε‖G‖L2(X×Ŷ )
, (16)

where σ j,X×Y is the j th singular value of G restricted to X × Y . Since kε =
O(log4(1/ε)), we conclude that the singular values of G restricted to admissible
domains X × Y rapidly decay to zero.

4.1.2 Randomized SVD for Admissible Domains

Since G has rapidly decaying singular values on admissible domains X × Y , we use
the randomized SVD for HS operators to learn G on X ×Y with high probability (see
Sect. 3).

We start by defining a GP on the domain Y . Let RY×Y K be the restriction5 of the
covariance kernel K to the domain Y × Y , which is a continuous symmetric positive
definite kernel so that GP(0,RY×Y K ) defines a GP on Y . We choose a target rank k ≥
1, an oversampling parameter p ≥ 2, and form a quasimatrix � = [

f1 | · · · | fk+p
]

such that f j ∈ L2(Y ) and f j ∼ GP(0,RY×Y K ) are identically distributed and

4 Here, λmax is defined as supx∈D λmax(A(x)) and λmin = infx∈D λmin(A(x)) > 0.
5 We denote the restriction operator byRY×Y : L2(D × D) → L2(Y × Y ).
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independent. We then extend by zero each column of � from L2(Y ) to L2(D) by
R∗

Y� = [R∗
Y f1 | · · · |R∗

Y fk+p
]
, where R∗

Y f j ∼ GP(0,R∗
Y×YRY×Y K ). The zero

extension operator R∗
Y : L2(Y ) → L2(D) is the adjoint of RY : L2(D) → L2(Y ).

Given the training data,Y = [
u1 | · · · | uk+p

]
such thatLu j = R∗

Y f j and u j |∂D =
0, we now construct an approximation to G on X ×Y using the randomized SVD (see
Sect. 3). Following Theorem 1, we have the following approximation error for t ≥ 1
and s ≥ 2:

‖G − G̃X×Y ‖2L2(X×Y )
≤
⎛

⎝1 + t2s2
3

γk,X×Y

k(k + p)

p + 1

∞∑

j=1

λ j

λ1

⎞

⎠
(∑∞

j=k+1
σ 2
j,X×Y

)1/2
,

(17)

with probability greater than 1 − t−p − e−s2(k+p). Here, λ1 ≥ λ2 ≥ · · · > 0 are the
eigenvalues of K , G̃X×Y = PRXYRXFR∗

Y and PRXY = RXY((RXY)∗RXY)†

(RXY)∗ is the orthogonal projection onto the space spanned by the columns of
RXY. Moreover, γk,X×Y is a measure of the quality of the covariance kernel of
GP(0,R∗

Y×YRY×Y K ) (see Sect. 3.4) and, for 1 ≤ i, j ≤ k, defined as γk,X×Y =
k/(λ1 Tr(C

−1
X×Y )), where

[CX×Y ]i j =
∫

D×D
R∗

Y vi,X×Y (x)K (x, y)R∗
Y v j,X×Y (y)dxdy,

and v1,X×Y , . . . , vk,X×Y ∈ L2(Y ) are the first k right singular functions ofG restricted
to X × Y .

Unfortunately, there is a big problem with the formula G̃X×Y = PRXYRXFR∗
Y .

It cannot be formed because we only have access to input–output data, so we have
no mechanism for composing PRXY on the left of RXFR∗

Y . Instead, we note that
since the partial differential operator in Eq. (2) is self-adjoint, F is self-adjoint, and
G is itself symmetric. That means we can use this to write down a formula for G̃Y×X

instead. That is,

G̃Y×X = G̃∗
X×Y = RYFR∗

XPRXY,

where we used the fact that PRXY is also self-adjoint. This means we can construct
G̃Y×X by asking for more input–output data to assess the quasimatrixF (R∗

XRXY).
Of course, to compute G̃X×Y , we can swap the roles of X and Y in the above argument.

With a target rank of k = kε = �c(ρ, diam D, κC )��log(1/ε)�4 + �log(1/ε)� and
an oversampling parameter of p = kε , we can combine Theorem 4 and Eq. (16) and
(17) to obtain the bound

‖G − G̃X×Y ‖2L2(X×Y )
≤
⎛

⎝1 + t2s2
6kε

γkε ,X×Y

∞∑

j=1

λ j

λ1

⎞

⎠ ε2‖G‖2
L2(X×Ŷ )

,

with probability greater than 1−t−kε −e−2s2kε . A similar approximation error holds for
G̃Y×X without additional evaluations ofF . We conclude that our algorithm requires
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Nε,X×Y = 2(kε + p) = O(
log4(1/ε)

)
input–output pairs to learn an approximant to

G on X × Y and Y × X .

4.2 Ignoring the Green’s Function on Non-Admissible Domains

When the Green’s function is restricted to non-admissible domains, its singular values
maynot decay. Instead, to learnGwe take advantage of the off-diagonal decay property
of G. It is known that for almost every x 
= y ∈ D then

G(x, y) ≤ cκC

‖x − y‖2 ‖G‖L2(D×D), (18)

where cκC is an implicit constant that only depends on κC (see [19, Theorem 1.1]).6

If X × Y is a non-admissible domain, then for any (x, y) ∈ X × Y , we find that

‖x − y‖2 ≤ dist(X ,Y ) + diam(X) + diam(Y ) < (2 + ρ)max{diam X , diam Y },

because dist(X ,Y ) < ρ max{diam X , diam Y }. Thismeans that x ∈ Br (y)∩D, where
r = (2 + ρ)max{diam X , diam Y }. Using Eq. (18), we have
∫

X
G(x, y)2dx ≤

∫

Br (y)∩D
G(x, y)2dx ≤ c2κC ‖G‖2L2(D×D)

∫

Br (y)
‖x − y‖−2

2 dx

≤ 4πc2κC r‖G‖2L2(D×D)
.

Noting that diam(Y ) ≤ r/(2 + ρ) and
∫
Y 1dy ≤ 4π(diam(Y )/2)3/3, we have the

following inequality for non-admissible domains X × Y :

‖G‖2L2(X×Y )
≤ 2π2

3(2 + ρ)3
c2κC r

4‖G‖2L2(D×D)
, (19)

where r = (2 + ρ)max{diam X , diam Y }. We conclude that the Green’s function
restricted to a non-admissible domain has a relatively small norm when the domain
itself is small. Therefore, in our approximant G̃ forG, we ignoreG on non-admissible
domains by setting G̃ to be zero.

4.3 Hierarchical Admissible Partition of Domain

We now describe a hierarchical partitioning of D × D so that many subdomains are
admissible domains, and the non-admissible domains are all small. For ease of notion,
we may assume—without loss of generality—that diam D = 1 and D ⊂ [0, 1]3;
otherwise, one should shift and scale D. Moreover, partitioning [0, 1]3 and restricting
the partition to D is easier than partitioning D directly (Fig. 2). For the definition of
admissible domains, we find it convenient to select ρ = 1/

√
3.

6 Note that we have normalized [19, Eq. 1.8] to highlight the dependence on ‖G‖L2(D×D).
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Fig. 2 Two levels of hierarchical partitioning of [0, 1]3. The blue and green domains are admissible, while
the blue and red domains are non-admissible (Color figure online)

Let I = [0, 1]3. The hierarchical partitioning for n levels is defined recursively as:

– I1×1×1 := I1 × I1 × I1 = [0, 1]3 is the root for level L = 0.
– At a given level 0 ≤ L ≤ n − 1, if I j1× j2× j3 := I j1 × I j2 × I j3 is a node of the
tree, then it has 8 children defined as

{I2 j1+n j (1) × I2 j2+n j (2) × I2 j3+n j (3) | n j ∈ {0, 1}3}.

Here, if I j = [a, b], 0 ≤ a < b ≤ 1, then I2 j = [
a, a+b

2

]
and I2 j+1 = [ a+b

2 , b
]
.

The set of non-admissible domains can be given by this unwieldy expression

Pnon-adm =
⋃

∧3
i=1 | ji− j̃i |≤1

2n≤ j1, j2, j3≤2n+1−1
2n≤ j̃1, j̃2, j̃3≤2n+1−1

I j1× j2× j3 × I j̃1× j̃2× j̃3
, (20)

where ∧ is the logical “and” operator. The set of admissible domains is given by

Padm =
n⋃

L=1

�(Pnon-adm(L − 1))\Pnon-adm(L)), (21)

where Pnon-adm(L) is the set of non-admissible domain for a hierarchical level of L
and

�(Pnon-adm(L − 1)) =
⋃

I j1× j2× j3×I j̃1× j̃2× j̃3∈Pnon-adm(L−1)

⋃

n j ,n j̃∈{0,1}3
IŚ3

i=1 2 ji+n j (i)
× IŚ3

i=1 2 j̃i+n j̃ (i)
.

Using Eqs. (20)–(21), the number of admissible and non-admissible domains are
precisely |Pnon-adm| = (3 × 2n − 2)3 and |Padm| = ∑n


=1 2
6(3 × 2L−1 − 2)3 − (3 ×

2L − 2)3. In particular, the size of the partition at the hierarchical level 0 ≤ L ≤ n is
equal to 8L and the tree has a total of (8n+1 − 1)/7 nodes (see Fig. 3).

Finally, the hierarchical partition of D × D can be defined via the partition P =
Padm ∪ Pnon-adm of [0, 1]3 by doing the following:

D × D =
⋃

τ×σ∈P

(τ ∩ D) × (σ ∩ D).
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1D 3D

Fig. 3 For illustration purposes, we include the hierarchical structure of the Green’s functions in 1D after
4 levels (left) and in 3D after 2 levels (right). The hierarchical structure in 3D is complicated as this is
physically a 6-dimensional tensor that has been rearranged so it can be visualized (Color figure online)

The sets of admissible and non-admissible domains of D × D are denoted by Padm
and Pnon-adm in the next sections.

4.4 Recovering the Green’s Function on the Entire Domain

We now show that we can recover G on the entire domain D × D.

4.4.1 Global Approximation on the Non-Admissible Set

Let nε be the number of levels in the hierarchical partition D × D (see Sect. 4.3). We
want tomake sure that the norm of the Green’s function on all non-admissible domains
is small so that we can safely ignore that part of G (see Sect. 4.2). As one increases the
hierarchical partitioning levels, the volume of the non-admissible domains get smaller
(see Fig. 4).

Let X ×Y ∈ Pnon-adm be a non-admissible domain, the two domains X and Y have
diameter bounded by

√
3/2nε because they are included in cubes of side length 1/2nε

(see Sect. 4.3). Combining this with Eq. (19) yields

‖G‖2L2(X×Y )
≤ 2π2(6 + √

3)c2κC 2
−4nε‖G‖2L2(D×D)

.

Therefore, the L2-norm of G on the non-admissible domain Pnon-adm satisfies

‖G‖2L2(Pnon-adm)
=

∑

X×Y∈Pnon-adm

‖G‖2L2(X×Y )
≤ 54π2(6 + √

3)c2κC 2
−nε‖G‖2L2(D×D)

,
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Level 2 Level 3 Level 4

Fig. 4 For illustration purposes, we include the hierarchical structure of the Green function in 1D. The
green blocks are admissible domains at that level, the gray blocks are admissible at a higher level, and the
red blocks are the non-admissible domains at that level. The area of the non-admissible domains decreases
at deeper levels (Color figure online)

where we used |Pnon-adm| = (3 × 2nε − 2)3 ≤ 27(23nε ). This means that if we select
nε to be

nε =
⌈
log2(54π

2(6 + √
3)c2κC ) + 2 log2(1/ε)

⌉
∼ 2 log2(1/ε), (22)

then we guarantee that ‖G‖L2(Pnon-adm) ≤ ε‖G‖L2(D×D). We can safely ignore G on
non-admissible domains—by taking the zero approximant—while approximating G
to within ε.

4.4.2 Learning Rate of the Green’s Function

Following Sect. 4.1.2, we can construct an approximant G̃X×Y to the Green’s function
on an admissible domain X ×Y of the hierarchical partitioning using the HS random-
ized SVD algorithm, which requires Nε,X×Y = O(log4(1/ε)) input–output training
pairs (see Sect. 4.1.2). Therefore, the number of training input–output pairs needed to
construct an approximant to G on all admissible domains is given by

Nε =
∑

X×Y∈Padm

Nε,X×Y = O
(
|Padm| log4(1/ε)

)
,

where |Padm| denotes the total number of admissible domains at the hierarchical level
nε , which is given by Eq. (22). Then, we have (see Sect. 4.3):

|Padm| =
nε∑


=1

26(3 × 2
−1 − 2)3 − (3 × 2
 − 2)3 ≤ 6323nε , (23)

and, using Eq. (22), we obtain |Padm| = O(1/ε6). This means that the total number of
required input–output training pairs to learn G with high probability is bounded by

Nε = O
(
ε−6 log4(1/ε)

)
.
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4.4.3 Global Approximation Error

We know that with Nε = O(ε−6 log4(1/ε)) input–output training pairs, we can con-
struct an accurate approximant to G on each admissible and non-admissible domain.
Since the number of admissible and non-admissible domains depends on ε, we now
check that this implies a globally accurate approximant that we denote by G̃.

Since G̃ is zero on non-admissible domains and Padm ∩ Pnon-adm has measure zero,
we have

‖G − G̃‖2L2(D×D)
≤ ε2‖G‖2L2(D×D)

+
∑

X×Y∈Padm

‖G − G̃‖2L2(X×Y )
. (24)

Following Sect. 4.4.2, if X × Y is admissible then the approximation error satisfies

‖G − G̃X×Y ‖2L2(X×Y )
≤ 12t2s2

kε

γkε ,X×Y

∞∑

j=1

λ j

λ1
ε2‖G‖2

L2(X×Ŷ )
,

with probability greater than 1 − t−kε − e−2s2kε . Here, Ŷ = {y ∈ D, dist(y,Y ) ≤
diam Y/2

√
3} (see Theorem 4 with ρ = 1/

√
3). To measure the worst γkε ,X×Y , we

define

Γε = min{γkε ,X×Y : X × Y ∈ Padm}. (25)

From Eq. (11), we know that 0 < Γε ≤ 1 and that 1/Γε is greater than the harmonic
mean of the first kε scaled eigenvalues of the covariance kernel K , i.e.,

1

Γε

≥ 1

kε

kε∑

j=1

λ1

λ j
, (26)

Now, one can see that X × Ŷ is included in at most 53 = 125 neighbors including
itself. Assuming that all the probability bounds hold on the admissible domains, this
implies that

∑

X×Y∈Padm

‖G − G̃‖2L2(X×Y )
≤

∑

X×Y∈Padm

‖G − G̃‖2L2(X×Y )
≤ 12t2s2

kε

λ1Γε

Tr(K )ε2
∑

X×Y∈Padm

‖G‖2
L2(X×Ŷ )

≤ 1500t2s2
kε

λ1Γε

Tr(K )ε2‖G‖2L2(D×D)
.

We then choose t = e and s = k1/4ε so that the approximation bound on each
admissible domain holds with probability of failure less than 2e−√

kε . Finally, using
Eq. (24) we conclude that as ε → 0, the approximation error on D × D satisfies

‖G − G̃‖L2(D×D) = O
(
Γ −1/2

ε log3(1/ε)ε
)

‖G‖L2(D×D),
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with probability ≥ (1−2e−√
kε )6

323nε = 1−O(εlog(1/ε)−6), where nε is given by Eq.
(22). We conclude that the approximant G̃ is a good approximation to G with very
high probability.

5 Conclusions and Discussion

This paper rigorously learns theGreen’s function associatedwith a PDE rather than the
partial differential operator (PDO).Byextending the randomizedSVD toHSoperators,
we can identify a learning rate associated with elliptic PDOs in three dimensions and
bound the number of input–output training pairs required to recover a Green’s function
approximately. One practical outcome of this work is a measure for the quality of
covariance kernels, which may be used to design efficient kernels for PDE learning
tasks.

There are several possible future extensions of these results related to the recovery
of hierarchical matrices, the study of other partial differential operators, and practical
deep learning applications, which we discuss further in this section.

5.1 Fast and Stable Reconstruction of Hierarchical Matrices

We described an algorithm for reconstructing Green’s function on admissible domains
of a hierarchical partition of D× D that requires performing the HS randomized SVD
O(ε−6) times. We want to reduce it to a factor that is O(polylog(1/ε)).

For n × n hierarchical matrices, there are several existing algorithms for recov-
ering the matrix based on matrix-vector products [5,32,36,37]. There are two main
approaches: (1) The “bottom-up” approach: one begins at the lowest level of the hier-
archy and moves up and (2) The “top-down” approach: one updates the approximant
by peeling off the off-diagonal blocks and going down the hierarchy. The bottom-up
approach requires O(n) applications of the randomized SVD algorithm [36]. There
are lower complexity alternatives that only require O(log(n)) matrix-vector products
with random vectors [32]. However, the algorithm in [32] is not yet proven to be
theoretically stable as errors from low-rank approximations potentially accumulate
exponentially, though this is not observed in practice. For symmetric positive semi-
definitematrices, it may be possible to employ a sparse Cholesky factorization [54,55].
This leads us to formulate the following challenge:

Algorithmic challenge: Design a provably stable algorithm that can
recover an n × n hierarchical matrix using O(log(n)) matrix-vector

products with high probability?

If one can design such an algorithm and it can be extended to HS operators, then the
O(ε−6 log4(1/ε)) term in Theorem 3 may improve to O(polylog(1/ε)). This means
that the learning rate of partial differential operators of the form of Eq. (2) will be a
polynomial in log(1/ε) and grow sublinearly with respect to 1/ε.
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5.2 Extension to Other Partial Differential Operators

Our learning rate for elliptic PDOs in three variables (see Sect. 4) depends on the
decay of the singular values of the Green’s function on admissible domains [3]. We
expect that one can also find the learning rate for other PDOs.

It is known that the Green’s functions associated to elliptic PDOs in two dimensions
exist and satisfy the following pointwise estimate [12]:

|G(x, y)| ≤ C

(
1

γ R2 + log

(
R

‖x − y‖2
))

, ‖x − y‖2 ≤ R := 1

2
max(dx , dy),

(27)

where dx = dist(x, ∂D), γ is a constant depending on the size of the domain D, and
C is an implicit constant. One can conclude that G(x, ·) is locally integrable for all
x ∈ D with ‖G(x, ·)‖L p(Br (x)∩D) < ∞ for r > 0 and 1 ≤ p < ∞. We believe that
the pointwise estimate in Eq. (27) implies the off-diagonal low-rank structure of G
here, as suggested in [3]. Therefore, we expect that the results in this paper can be
extended to elliptic PDOs in two variables.

PDOs in four or more variables are far more challenging since we rely on the
following bound on the Green’s function on non-admissible domains [19]:

G(x, y) ≤ c(d, κC )

λmin
‖x − y‖2−d

2 , x 
= y ∈ D,

where D ⊂ R
d , d ≥ 3 is the dimension, and c is a constant depending only on d

and κC . This inequality implies that the L p-norm of G on non-admissible domains is
finite when 0 ≤ p < d/(d − 2). However, for a dimension d ≥ 4, we have p < 2
and one cannot ensure that the L2 norm of G is finite. Therefore, the Green’s function
may not be compatible with the HS randomized SVD.

It should also be possible to characterize the learning rate for elliptic PDOs with
lower order terms (under reasonable conditions) [13,24,28] and many parabolic oper-
ators [29] as the associated Green’s functions have similar regularity and pointwise
estimates. The main task is to extend [3, Theorem 2.8] to construct separable approx-
imations of the Green’s functions on admissible domains. In contrast, we believe that
deriving a theoretical learning rate for hyperbolic PDOs remains a significant research
challenge for many reasons. The first roadblock is that the Green’s function associated
with hyperbolic PDOs do not necessarily lie in L2(D × D). For example, the Green’s
function associated with the wave equation in three variables, i.e., Ł = ∂2t − ∇2, is
not square-integrable as

G(x, t, y, s) = δ(t − s − ‖x − y‖2)
4π‖x − y‖2 , (x, t), (y, s) ∈ R

3 × [0,∞),

where δ(·) is the Dirac delta function.
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5.3 Connection with Neural Networks

There are many possible connections between this work and neural networks (NNs)
from practical and theoretical viewpoints. The proof of Theorem 3 relies on the con-
struction of a hierarchical partition of the domain D×D and the HS randomized SVD
algorithm applied on each admissible domain. This gives an algorithm for approx-
imating Green’s functions with high probability. However, there are more practical
approaches that currently do not have theoretical guarantees [17,18].

A promising opportunity is to design a NN that can learn and approximate Green’s
functions using input–output training pairs {( f j , u j )}Nj=1 [6]. Once a neural network
N has been trained such that ‖N − G‖L2 ≤ ε‖G‖L2 , the solution to Łu = f can be
obtained by computing the following integral:

u(x) =
∫

D
N (x, y) f (y)dy.

Therefore, thismay give an efficient computational approach for discovering operators
since a NN is only trained once. Incorporating a priori knowledge of the Green’s
function into the network architecture design could be particularly beneficial. One
could also wrap the selection of the kernel in the GP for generating random functions
and training data into a Bayesian framework.

Finally, we wonder how many parameters in a NN are needed to approximate a
Green’s function associated with elliptic PDOs within a tolerance of 0 < ε < 1.
Can one exploit the off-diagonal low-rank structure of Green’s functions to reduce
the number of parameters? We expect the recent work on the characterization of
ReLU NNs’ approximation power is useful [20,44,62]. The use of NNs with high
approximation power such as rational NNs might also be of interest to approximate
the singularities of the Green’s function near the diagonal [7].
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