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DISPERSION RELATIONS AND SPECTRA OF PERIODICALLY
PERFORATED STRUCTURES

PETER KUCHMENT AND JARI TASKINEN

ABSTRACT. We establish absolute continuity of the spectrum of a periodic Schrédiner
operator in R"™ with periodic perforations. We also prove analytic dependece of
the dispersion relation on the shape of the perforation.

1. INTRODUCTION

The theory of periodic partial differential equations is at least a century old
(see, e.g., [7,7,2,7,7?]), but is still widely active, mostly due to its importance
for various areas of mathematical physics, such as solid state physics, photonic
crystal theory, topological insulators theory, and nano-science, to name just a few
(see [7,2,2,2,2,2,2,2,2,7,7,7,?]. Periodicity is usually introduced by crystalline
structure of materials, or its optical analogs. Among the topics being discussed one
can mention as examples analytic structure of the corresponding dispersion relations
and spectral structure of periodic operators. Another option is to study media with
periodically modulated shapes, or multi-periodic perforations, see e.g. [?,?,?7,7] and
references therein. The latter is the topic we address here. We will be concentrating
on the following two questions: dependence of dispersion relations (and thus spectra)
on the shape of perforation and absolute continuity of the spectrum. The former
has been considered for instance for the case of circular perforations with respect to
a varying radius in R? [?]. The latter is a well known, much studied, but still not
completely finished topic (see [?] for references and discussion), when periodicity
arises due to periodic coefficients, rather periodic perforations.

The goal of this article is to show that a combination of several known for other
situations approaches and results enable one to establish with ease some very general
properties of interest for periodically perforated domains in any dimension.

The text is structured as follows: Section 7?7 briefly refers to some powerful
(and not always that well known) techniques of domain perturbations [?,?,7, 7],
following [?]. An important for the further discussions Theorem 7?7 on analytic
dependence on domain perturbations is established. The next Section 7?7 describes
the perforated geometry of interest. Theorem 7?7 of Section ??7 establishes a very
general analyticity with respect to shape variations result. Section ?7? contains

2020 Mathematics Subject Classification. 35P, 35Q40, 47F99, 81Q10.

Key words and phrases. Periodic operator, spectrum, dispersion relation, perforated domain.

P.K. acknowledges support of the NSF DMS grants # 1517938 and # 2007408. J. T. was
partially supported by a research grant from the Faculty of Science of the University of Helsinki.



2 P. KUCHMENT AND J. TASKINEN

the proof of Theorem ?? on absolute continuity of spectra of such structures (i.e.,
impossibility of creating a bound state by periodic perforations), allowing also for
presence of periodic electric potential. Section 7?7 contains some additional remarks.
It is followed by the Acknowledgments section.

2. DOMAIN PERTURBATIONS

Let © C R™ be a smooth bounded domain and I(x, z, D) be a linear elliptic partial
differential expression of order m with “sufficiently nice” coefficients® defined in a

neighborhood of the closure of €2, where we use the standard PDE notation D for
%% The coefficients are allowed to depend analytically on a parameter z in a
domain C C C! for some integer I > 1, or a complex analytic space, or even domain
in a complex Banach space E. We assume that boundary conditions Bu|r = 0
are imposed on I' := 9 that lead to an elliptic boundary value problem for the
operator L(z) acting as [(z,z, D) in Q. The coefficients of the boundary operators
are also allowed to depend analytically on z.

Let us denote by HI" the closed subspace of H™(2) consisting of all functions
satisfying the boundary conditions B(z)u|r = 0.

The following claims are standard:

Proposition 2.1.
(1) There exists, locally in z, a projector P(z) : H*(Q)) — H? analytically de-
pendent on z, and thus its range forms an analytic subbundle?
(2.1) Fi=||H"
zeC

in the trivial bundle C x H™(Q) over C.
(2) The operator L(z) produces a Fredholm morphism between bundles F and

C x L2(92).
(3) The “dispersion relation”
(2.2) D :={(\z2) € CxC|L(z)u = Au has a non-zero solution}

is an analytic subset in C x C. It is principal (i.e., is defined as the set
of zeros of a single analytic function f(X,z)) if the Fredholm index of the
operator is equal to zero.

Indeed, local existence of an analytic projector is a simple exercise (see, e.g. [?,7].
The main notions and results concerning analytic Banach bundles and Fredholm
morphisms that explain the rest of the first two claims can be found in [?]. The last
statement of the theorem follows from [?, Theorem 4.11 and its Corollary].

We now show how domain variations fit into this scheme. Since analyticity is
a local property, we will be looking at small shape variations only. A convenient

1“Suﬁ%ciently nice” means that the only property that we need is that the boundary value
problem produces a Fredholm operator from the Sobolev space H™ in Q with the corresponding
boundary conditions to L2(€2).

2If the domain C is holomorphically convex (or is an abstracts complex Stein space), then an
analytic projector exists globally in z (see [?,?]), but this is not needed for our results.
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(although over-determined and often neglected) way to parameterize domain vari-
ations is by varying its natural embedding into the ambient space, as opposed to
parameterizations by normal perturbations of the boundary. Thus, let 2 € R™ be
a bounded domain with the smooth boundary I'. We denote by Iq its natural em-

I’

FIGURE 1. A smooth domain 2 C R™ and its boundary I'.

bedding into R™ and consider the Banach space C™ (2, R™) of m times continuously
(and uniformly) differentiable mappings from € to R™. Then I € C™(Q,R").
Consider h € C™(Q2,R™) such that ||(h — Iq)|| is sufficiently small and denote the
corresponding small ball by R C C™(£2,R™). Then h is still a diffeomorphic embed-
ding of 2 into R™. The domains €, := h(2) are “small perturbations” of domain €2,
and their boundaries I'j, := h(I") are small perturbations of I'. Let us now define the
operator L(z,h) acting as l(x, z, D) on the domain 2, with elliptic boundary con-
ditions B(z, h)u|r, = 0, where the boundary operators B may depend analytically
on h.

The diffeomorphisms h enable us to pull-back the BVPs from the domains €2,
back to €2, ending up with a new family of elliptic operators, which we will call
M(h,z). A simple calculation (see, e.g., [?, bottom of page 20]) shows that the
coefficients of the operator M depend analytically® on h € R. Thus, the following
result is just a corollary of the Proposition 77:

Theorem 2.2. The “dispersion relation”
(2.3) D :={(\z,h) € CxC x R|L(z,h)u = Au has a non-zero solution}

is an analytic subset in C x C x R. It is principal (i.e., is defined as the set of zeros
of a single analytic function f(\, z,h)) if the Fredholm index of the operator is equal
to zero.

One simple consequence of this result is:

Corollary 2.3. If X is a simple eigenvalue of the operator L(zy), then it extends
analytically to a simple eigenvalue Xz, h) of L(z,h) for sufficiently small |z — 2|
and ||h — Iq]|.

3This analyticity does not have anything to do with smoothness of the coefficients of the operator
or the surface I'.
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Remark 2.4. In particular, the results of Theorem ??7 and Corollary ?? apply
to the simplest case of a spherical domain of changing radius [?], or in fact to
homothetic perturbation of a star-shaped domain.

3. PERFORATED GEOMETRY

Our main goal here is to consider a periodically perforated medium of the follow-
ing kind: The domain of consideration is the space R™ with a Z"-periodic arrange-
ment of non-overlapping smooth contractible bounded domains (“holes”) removed
(see the shaded domain W in Fig. ?7?). Consider in W a periodic elliptic oper-

® oo
COICOIC

FiGURE 2. The space R™ being periodically perforated by con-
tractible smooth holes.

ator L(z, D) of order m with elliptic conditions on the boundary of W (i.e., on
the boundaries of the holes) and with sufficiently nice coefficients for the Fredholm
property between the appropriate Sobolev spaces to hold. We are interested in its
spectrum, and thus first of all in its dispersion relation (see, e.g. [?,?] and references
therein)

(3.1) D := {(k,\) € C" x C|3Ju # 0 Z"-periodic, L(x, D + k)u = Au}.

It is well known (see [?] and references therein) that the spectrum of the operator
coincides with the projection of D on the A-plane. Also, according to Proposition
7?7, it is an analytic set.

We are interested now in dependence of this picture on variations of the shape of
the holes.

4. ANALYTICITY OF THE EXTENDED DISPERSION RELATION

Since in (??) only Z™-periodic functions are of interest, we can concentrate on a
single fundamental domain 2 folded into a torus, see Fig. 77 for such a fundamental
domain).

We consider a smooth surface I'c near to the boundary I' and inside 2. We split
the domain between I' and I'c into two nested annular domains V' C U with another
smooth surface approximating I' as a boundary of V. We can make variations of
the hole’s boundary I' by considering C"™-embeddings h from the annular domain
U into R™ that are close to Iy and coincide with Iy, on the sub-annulus V. These
extend as identity to the whole domain 2. Using these diffeomorphisms, analogously
to what was done in Section 7?7, one can rewrite the eigenvalue problem (??) on
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F1GURE 3. The unit cell of the structure.

the h-modified domain as a problem on the original domain, but with a modified
operator L(k, D,h). As it was explained in Section ??, this elliptic operator depends
analytically on h and thus Proposition 7?7 is applicable with the quasi-momenta k
playing the role of parameters z. Thus, one obtains the following result:

Theorem 4.1. The “dispersion relation”
(4.1) D :={(\k,h) € CxCx R|3u#0Z"-periodic, L(k,h)u = \u}

is an analytic subset in C x C™ x R. It is principal (i.e., is defined as the set of
zeros of a single analytic function f(\, k,h)) if the Fredholm index of the operator
18 equal to zero.

In particular, if X is a simple eigenvalue of the operator L(kg), then it extends
analytically to a simple eigenvalue A(k,h) of L(k,h) for sufficiently small ||k — ko]
and ||h — Iy ||.

5. ABSOLUTE CONTINUITY OF THE SPECTRUM

We are now interested in the structure of the spectrum of the periodic elliptic
BVP in periodically perforated R™ (see the previous sections for the exact descrip-
tion). The standard proof (see [?,?]) applies that leads to the absence of singular
continuous spectrum:

Theorem 5.1. The singular continuous part of the spectrum of the periodic operator
described above is empty.

Thus, in proving the absolute continuity of the spectrum the only hurdle is to
exclude the possibility of existence of the pure point part of the spectrum. In
the generality considered above (an arbitrary order periodic elliptic operator) the
statement that the spectrum is absolutely continuous would be incorrect, as the
well known examples of elliptic operators of higher order with compactly supported
eigenfunctions [?] (see also usage of this result in the periodic situation in [?,7]).
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So, the only realistic option is to restrict ourselves to operators of second order. So,
we consider now the Schrodinger operator

(5.1) —A+ V()

where V() is a real Z"-periodic bounded measurable potential. We also impose
zero Dirichlet conditions on the boundaries of the perforations.

Theorem 5.2. The spectrum of the periodic operator (?7) with Dirichlet conditions
in the perforated domain is absolutely continuous.

Proof. Let us write the operator as

(5.2) (18893)2 + V()

acting in the natural way in Lo(W) with the domain HZ(W). The spectral parame-
ter A can be absorbed by the potential, and thus it is sufficient to consider the case
when A = 0.

The standard Floquet theory (see [?,7?,?] and references therein) reduces this
operator to the direct integral over the Brillouin zone of the quasimomenta of the
operators

(5.3) L(k) = (16; + k> V)

acting on Z™-periodic functions on W, i.e. on functions on the sub-domain W=
W/Z"™ of the torus T" = R"/Z". Here k € R" is the quasi-momentum. As it is

standard, the family of the Fredholm operators L(k) : H3(W) — Lo(W) extends
analytically to the whole C™. Again, as the standard L. Thomas’ argument shows
(see [?7,7,7]), existence of the point A = 0 in the pure point spectrum of L is
equivalent to the following:

Pure point spectrum condition: For any k € C" there exists a non-trivial
function u € HZ(W) such that

(5.4) L(k)u = 0.

Like in most of the known proofs of absolute continuity, we will try to find a
complex value of the quasimomentum

k=a+1ib, a,b € R"

for which the equation (??) has no non-trivial (periodic) solutions.
We rewrite (?77?) as follows:

(5.5) (1,8 + k>2 W= —V(@)u

The Lo-norm of the right hand side, due to boundedness of the potential can be
estimated for any u € Lo(W) as follows:

Vulz, < Cllullz,.
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If now we find a value of k£ such that for any non-zero u one has

10 2 )
(5.6) | Tap Tk ullz, > Cllullz,,

the theorem will be proven.

So far, everything went along the standard L. Thomas’ proof. Finding a complex
value of k such that (??) holds also resembles the case of non-perforated domain,
with a little additional caveat, due to W being only a part of the torus, rather than
the whole torus.

So, let k = a + ib and rewrite the differential expression in the left hand side of
(7?) as follows:

0 0
— 2 —_— 2 —_— ; . —_—— ; . .7
(5.7) ( A+ |a|® — |b]* — 2ia 8x> + 2ib <a + Z(?:p) .

Let us denote the expression in the first parentheses by A and in the second as B,
so in the left hand side of (??) is Au+ Bu. A direct computation of inner products

in Lo(W) shows that
(5-8) | Au + Bul[7, = | AullZ, + || BullZ,.

The formal reason is that A and B commute, A is symmetric, and B is skew-
symmetric. However, the direct calculation works nicely for u € HZ(W), avoiding
composition of A and B.

So, it is sufficient for a given constant C' > 0 to choose a,b € R" in such a way

that
(5.9) |BulZ, > Cllulz,

for any non-zero u € HZ(W)).

Now let us extend u as a function @ on the whole torus T", setting it equal to
zero outside of W. The resulting function is not in H? on the torus anymore, but
is still in H', due to the Dirichlet condition imposed. Let us expand @ into Fourier
series:

(5.10) W) = Y e

mezm
Let us choose a = (,0,...,0),b=(5,0,...,0). Then
(511) Bu = Bﬁ‘W = Z 215(0& _ 27Tm1)ume”‘m.
mezn

Choosing now o« = 7 and 3 > C/6, one sees that the absolute values of all multipliers
in the Fourier series (??7) exceed C, which implies (??), and hence (??). This finishes
the proof of the theorem. O

6. REMARKS AND CONCLUSIONS

(1) The geometry considered in this article seems to be restricted by two secretly
made assumptions: the group of periods being Z" (changing variables would
lead the Laplacian to look somewhat different), as well as by the perforations
being holes in the cells of a cubic tiling of the space. This seems to be
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FI1GURE 4

excluding perforations like the one in Fig. ?7. In fact, the proof carries
out without difficulty to arbitrary Brave lattice and any “strange” shape
of the fundamental domain instead of a cube. In particular, in the main
consideration, any fundamental domain, not necessarily a cube, would fold
onto the torus and thus the proof carries through.

(2) Tt was mentioned in [?] that the “extended” dispersion relation, i.e. includ-
ing for instance potentials, is also analytic. This, however did not include
the domain shape variations. We show that these can also be included,
which in particular implies analyticity of an isolated eigenvalue. However,
the global analyticity of the dispersion relation carries more information, in-
cluding also its structure near non-smooth points as well. It is also known to
be important for other issues of spectral theory, see e.g. [?,?,7,7,7,7,7,2,7].

(3) One expects that the statement of Theorem ?7? about absolute continu-
ity of the spectrum holds for any second order periodic elliptic operator
with sufficiently “nice” coefficients, instead of just the Schrédinger operator
(??). This is known to be not a simple problem even without perforations
(see [?,7,2,2,2,2,2,7,7,7]). The famous work by Friedlander [?] proves
absolute continuity under an additional symmetry condition that the oper-
ator should be even with respect to one of the coordinates corresponding
to the periodicity axes. This proof applies without any modification to the
perforated domain case, if the symmetry condition is imposed on the shape
of the perforation as well:

Theorem 6.1. Let (x1,...,z,) be the coordinates in R", such that the natural gen-
erators of the group of periods Z™ act by shifting the appropriate coordinates.

Suppose that the periodic 2nd order elliptic operator L in the perforate space,
equipped with Dirichlet boundary conditions, as well as the shape of the perforation
are symmetric w.r.t. the transformation (x1,...,zy) — (—x1,...,2,). Then the
spectrum is absolutely continuous.

(4) In an interesting paper [?], the (more complicated) behavior when the
“holes” shrink to a point is studied, albeit for somewhat different equation.
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