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ABSTRACT

This paper proposes GuardNN, a secure DNN accelerator that pro-
vides hardware-based protection for user data and model parame-
ters even in an untrusted environment. GuardNN shows that the
architecture and protection can be customized for a specific appli-
cation to provide strong confidentiality and integrity guarantees
with negligible overhead. The design of the GuardNN instruction
set reduces the TCB to just the accelerator and allows confidential-
ity protection even when the instructions from a host cannot be
trusted. GuardNN minimizes the overhead of memory encryption
and integrity verification by customizing the off-chip memory pro-
tection for the known memory access patterns of a DNN accelerator.
GuardNN is prototyped on an FPGA, demonstrating effective confi-
dentiality protection with ~3% performance overhead for inference.

1 INTRODUCTION

The past decade has seen unprecedented growth in the use of ma-
chine learning (ML). However, the data-intensive nature of ML
raises serious concerns for security and privacy. Deep neural net-
works (DNNs) require collecting, storing, and processing a large
amount of personal and private user data. Moreover, DNN compu-
tations are often performed in mobile or cloud environments where
private data may be exposed or misused. For large-scale deploy-
ment of DNNs in privacy-sensitive applications, we need a way
to perform DNN computations even in an untrusted environment,
with both high performance and strong privacy protection.

A promising approach for providing strong confidentiality and
integrity guarantees under untrusted environments is to create
a hardware-protected trusted execution environment (TEE), also
called an enclave as in Intel SGX [20]. So far TEEs have primarily
been studied in the context of general-purpose processors, which
cannot provide enough performance and energy efficiency for large-
scale ML workloads. This paper proposes to leverage application-
specific accelerators to enable high-performance TEEs for ML, and
presents a secure DNN accelerator architecture, named GuardNN.

To protect sensitive data, GuardNN keeps all confidential in-
formation including inputs, outputs, training data, and network
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parameters (weights) in an encrypted form outside of the trusted
hardware boundary, such as an ASIC accelerator chip or an accel-
erator IP in an SoC. Each accelerator contains a unique private key
that can only be used by the accelerator itself. Users can remotely
authenticate the accelerator using the corresponding public key and
the certificate, and send private inputs and weights encrypted to
the accelerator. In this way, GuardNN can ensure that an adversary
cannot access private user data and weights even if he/she con-
trols software or has physical access to the accelerator. The secure
accelerator can also protect the integrity of ML computation by
incorporating remote attestation and off-chip integrity verification.

While GuardNN adopts the high-level approach of today’s TEEs,
an accelerator TEE needs to address the challenge of providing
protection while allowing both a CPU and an accelerator to work
together. The accelerator TEE also presents an opportunity to cus-
tomize protection for a specific application domain to improve both
security and performance. For example, while processors can per-
form arbitrary operations and memory accesses, accelerators only
need to support a relatively small set of operations and often have
a memory access pattern that is specific to the target application.
This application-specific nature of accelerators enables GuardNN
to customize its architecture and protection mechanisms for ML,
and provide strong security with almost no performance overhead.

The following summarizes the key benefits and insights that
GuardNN provides compared to today’s general-purpose TEE: 1)
GuardNN carefully designs its architecture and instructions to en-
able confidentiality and integrity protection even when a host CPU
that controls scheduling and resource allocation cannot be trusted.
This design reduces the trusted computing base (TCB) to just the
accelerator. 2) The GuardNN instruction set allows confidentiality-
only protection, which is sufficient for privacy-preserving ML, with-
out the complexity and overhead of integrity protection. Regardless
of the sequence of instructions, private data are always encrypted
outside the accelerator. 3) The accelerator TEE has the potential to
provide stronger security compared to CPU TEESs; an accelerator
is physically separated from general-purpose cores and has much
simpler hardware and software. The memory access pattern and
the timing of a DNN accelerator without dynamic pruning is also
independent of input and weight values, making GuardNN secure
against memory and timing side channels.

We implemented a prototype system based on CHaiDNN [32], an
open-source DNN accelerator from AMD Xilinx. The experiments
on an AMD Xilinx FPGA demonstrate functional correctness and
show that the overhead of memory encryption is negligible. For
more detailed analyses, we performed experiments using cycle-
level simulations. The simulation results show that GuardNN can
guarantee both confidentiality and integrity with small overhead.
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2 SECURE ACCELERATOR ARCHITECTURE
2.1 Threat Model

We assume that a DNN accelerator can run both inference and
training. A scheduler runs on a host CPU and coordinates compute
and data movement by communicating with a remote user and
issuing commands to the DNN accelerator. The remote user sends
inputs and a DNN model, and receives final results.

The goal of a secure DNN accelerator is to protect the confi-
dentiality and the integrity of DNN data and computation in an
environment where only the accelerator itself can be trusted. For
confidentiality, the secure DNN accelerator aims to protect inputs
(inference inputs or training data), prediction results, network pa-
rameters, and all intermediate results. On the other hand, we con-
sider the DNN structure as public information and do not hide the
structure. For integrity, the secure DNN accelerator aims to detect
any unauthorized changes to its state and execution so that a user
can verify that the output is the outcome of the given model/input.

The DNN accelerator is trusted and authenticated by the remote
user using a unique private key that is only known by the accelera-
tor hardware. The accelerator needs to be designed and fabricated
by a trusted manufacturer. The manufacturer also needs to securely
embed a private key specific to each accelerator instance, and pro-
vide a certificate. We assume that the internal operations and state
of the DNN accelerator cannot be directly observed or changed by
an adversary whereas anything outside of the accelerator including
off-chip memory and a host processor are assumed untrusted.

A typical DNN model has a fixed memory access pattern, and
the timing for a given model is agnostic to inputs and weights. In
that sense, the GuardNN accelerator is secure against memory and
timing side-channel attacks. We do not consider other physical
side-channel attacks such as the power and EM side channels.

2.2 Key Insights and Features

Small TCB: DNN accelerators rely on a complex ML software stack
for optimizations, scheduling, and resource allocation decisions.
Most accelerators cannot efficiently run complex code and need
to rely on a CPU for commands. A straightforward design is to
protect both CPU and a DNN accelerator in a TCB, where trusted
software runs inside a TEE on the host CPU and controls TEE
on the accelerator. This design requires not only TEEs on both
the CPU and the accelerator, but also a secure communication
channel between the two (possibly from multiple vendors), and
a remote attestation mechanism that allows users to verify the
trustworthiness of a combination of multiple hardware components.
In that sense, directly extending today’s CPU TEE will lead to a
large TCB with complex mechanisms.

Although the ML software stack is complex, the instruction set
architecture (ISA) of a DNN accelerator remains simple because
the DNN operations can be boiled down to scalar, vector, matrix
additions and multiplications and a limited number of non-linear
functions. For example, TPU-v1 [12] only has a dozen instructions
with five important ones. Based on this observation, we propose to
run the ML software on an untrusted host, while restricting the host
interface to a limited set that does not leak sensitive information.

GuardNN can ensure confidentiality without trusting a host pro-
cessor by designing its ISA so that sensitive information is always
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Figure 1: GuardNN architecture overview — The green and red
boxes represent trusted and untrusted components, respectively.

Table 1: The security features provided by GuardNN.

Security Function Mechanism Threat

Key Generation  True random number generator Replay/key guessing

Key Exchange DHE key-exchange protocol Untrusted host/network
Off-chip Mem. DNN-optimized memory Untrusted host/
Protection encryption and integrity verification physical attacks
Restricted No instruction allows outputting

Untrusted host

Instruction Set secrets in plaintext

Remote
Attestation

Hashes of input, output, weights,

and instructions; Sign the hashes Untrusted host

The memory access pattern and the ~ Memory and timing
timing are independent of secrets side-channels

Side-channel
Protection

encrypted no matter which instruction is executed. The outputs
are encrypted and can be decrypted only by the remote user who
owns the input and the model. Leveraging the typical nature of
DNN computations, GuardNN also ensures that the latency of each
instruction is independent of secret values. The untrusted host
chooses which DNN operations to be performed, but cannot make
the accelerator produce outputs in plaintext. The GuardNN design
significantly reduces the size of the TCB while allowing the flexibil-
ity and performance optimizations provided by the ML software.
Confidentiality-Only Protection: GuardNN can decouple con-
fidentiality and integrity protection, and protect the confidentiality
of private data without paying the cost of integrity protection. Re-
gardless of the sequence of instructions, private data are always
encrypted outside the accelerator. In addition, the memory access
patterns and execution times of DNN accelerators without dynamic
pruning [1, 7, 8] are independent of input data values. Hence, the
confidentiality guarantees of GuardNN do not depend on the in-
tegrity of the instruction sequences and data values. In contrast,
the CPU TEEs require integrity protection even for confidentiality;
because the trusted software inside the TEE is allowed to output
confidential information unencrypted, the integrity of the program
must be protected even when only confidentiality is needed.
DNN-Specific Memory Protection: Leveraging the regular
and coarse-grained data movement patterns of DNNs, GuardNN
removes the need to store version numbers for memory encryption
and integrity verification in off-chip memory. This DNN-specific
optimizations enable protection with negligible overhead.

2.3 GuardNN Architecture

Here we introduce the GuardNN architecture and its protection
mechanisms. Figure 1 shows the high-level block diagram, and
Table 1 summarizes the protection mechanisms.

The accelerator needs to be able to establish a secure commu-
nication channel with a remote user. For this purpose, a GuardNN
accelerator includes a unique private key (SKccel), @ true random
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Figure 2: DNN data-flow subgraphs.

number generator, and and a microcontroller. We assume that the
user obtains the corresponding public key using a public key in-
frastructure as in Intel SGX or Trusted Platform Modules (TPMs).
GuardNN also introduces an instruction that allows the accelera-
tor to securely exchange a symmetric key (Ksegsion) and establish
a secure communication channel with the remote user. The user
sends DNN model weights, inputs, and outputs through the secure
communication channel. GuardNN provides instructions to import
encrypted inputs and weights, and produce an encrypted output.

During the execution, GuardNN protects data in external mem-
ory using a memory encryption (Enc) engine that encrypts data
in DRAM, and an integrity verification (IV) engine that detects
unauthorized changes on a read from DRAM. To minimize the
performance overhead of memory protection, GuardNN uses a
DNN-specific memory protection.

The computation on a DNN accelerator is typically controlled by
a software scheduler on a host CPU. While both CPU and accelera-
tors can be protected by a TEE as in a recent GPU TEE design [28],
GuardNN enables protection even when the host CPU cannot be
trusted. The instruction set is carefully designed to ensure that
confidential information is always encrypted outside the accelera-
tor no matter which instruction runs. For side-channel protection,
GuardNN requires that the timing and memory access pattern of the
accelerator are independent of secret data. This design ensures that
confidentiality is protected independent of an instruction sequence.
For integrity, GuardNN computes the hashes of inputs and weights
when they are imported, and keeps the hash of the sequence of exe-
cuted instructions and their input arguments, similar to how remote
attestation maintains the hash for software state. Then, GuardNN
provides an instruction that signs the hashes of each output with
the DNN data and instructions using the accelerator’s private key
so that a user can verify the initial state and the execution.

2.4 Off-chip Memory Protection

2.4.1 Memory Protection Basics. The counter-mode encryption
(AES-CTR) is widely used in secure processors [5] to hide AES
latency. AES-CTR requires a non-repeating counter value for each
encryption, which consists of the physical memory address (PA)
of the data block that will be encrypted and a (per-block) version
number (VN) that is incremented on each memory write. To prevent
data being tampered with by an attacker, integrity verification
calculates and stores the MAC of the data value, PA and VN for
each data block and checks that MAC on the following read. In
addition, to defeat the replay attack, a Merkle tree (i.e., hash tree)
[4] is used to verify the MACs hierarchically in a way that the root
of the tree is stored on-chip.

2.4.2 DNN-specific Protection. The main overhead of memory pro-
tection comes from accessing the off-chip VNs and MACs. Because
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DNN accelerators are often memory-intensive, the additional meta-
data accesses can lead to a non-trivial slowdown. Popular ML frame-
works often represent the network as a static data-flow graph (DFG)
as illustrated in Figure 2 and optimize the graph before execution.
Unlike CPUs, DNN accelerators have the same access pattern to a
large chunk of memory. A DNN accelerator typically reads/writes
the output features of a layer (e.g., fi, f2, f3 in Figure 2a) from/to
DRAM the same number of times. This regular memory access
pattern allows using only one VN for all output features of a layer.
For example, if DNN accelerator only writes the features to DRAM
once per layer, the layer number can be used as part of the VN.

In GuardNN, each counter value for memory encryption includes
the address of the 128-bit memory block being encrypted/decrypted
and a 64-bit VN, and is used as the input to AES-CTR encryption.
The VN are constructed using a few on-chip counters to ensure
that the counter values are unique for each encryption. For writing
new features, we introduce CTRyy and CTRgw in the accelerator
state to keep track of the number of inputs and the number of times
that features are written for the current input. CTRyy is incremented
for each new input (SetInput). CTREw is reset on a new input and
incremented after each DNN computation instruction (Forward)
that writes output features. The VN for writing features includes
both CTRyy and CTRgw.

As the host CPU owns the DFG and controls the scheduling of
instructions, the host CPU can easily reconstruct the VN used to
write features. For reading the features, GuardNN uses CTRg R from
the CPU to form the VN, and thus avoids tracking the status of
the DNN tasks. CTRgr corresponds to the value of CTRgy used
to write the features. As CTRgR is only used in decryption, the
confidentiality is not broken even if the CTRgR value is incorrect.

The weights are read-only during inference. Therefore, we can
use a constant as the VN for the weights. To allow updating weights
during training, GuardNN keeps CTRyy in the accelerator state and
keeps track of the number of updates to the weights (SetWeight).
During training, each gradient edge in the DFG has a corresponding
feature edge (e.g., fi and g; in Figure 2b). As the gradients and the
features are stored in different memory locations, the gradients can
use the VN for the corresponding features.

For integrity protection, MACs still need to be stored in memory.
We customize the size of a memory block that each MAC protects
to match the data movement granularity of the accelerator. For
example, the DNN accelerator that we use for a prototype writes a
512-B chunk to memory at a time.

2.5 GuardNN Instructions

The GuardNN instruction set is designed to be an extension to a
DNN accelerator without changing the base instructions. A user can
choose if integrity protection is needed when initiating a session.
GetPK: Returns the public key (PK) and the certificate (Cert).
InitSession: Given a public key from a remote user, the accelera-
tor runs a key exchange protocol to agree on a symmetric session
key and establish a secure communication channel with the user.
The accelerator also clears all states (keys, data, and hashes), sets a
new memory encryption key (Kyignc), resets all counters to zero,
and enables memory protection. If integrity protection is enabled,
memory integrity verification and hashing of instructions and their
operands are also enabled.
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SetWeight and SetInput: On SetWeight, the accelerator imports
encrypted weights; these weights are decrypted with the session
key (Ksession) and protected by the accelerator’s memory protection
in DRAM. Then, the weight counter (CTRw) is incremented (see
Section 2.4). Similarly, on SetInput, the accelerator imports the
encrypted input into its protected memory, and increments the
input counter (CTRy) . For integrity protection, the accelerator
also computes the hash of the input/weights for remote attestation.
ExportOutput: The accelerator reads an encrypted output from
DRAM, and re-encrypts the output with Kgegsion for the user.
SignOutput: The accelerator computes a digital signature of the
hashes of the input, output, weights, and the sequence of instruc-
tions/operands using its private key (SKaccel). By verifying this
signature using the corresponding public key, the user can verify
that the output was produced by the particular accelerator using
the correct initial state and the correct sequence of instructions.
SetReadCTR: To reduce overhead and allow complex compiler opti-
mizations, GuardNN relies on the host CPU to determine the VN
for reading features. This number is determined based on the net-
work structure and scheduling and does not need to be trusted for
confidentiality, as it only affects decryption. Specifically, host CPU
sets the CTRgR value for an address range.

In addition to the instructions listed above, the DNN may require
additional preprocessing of the input data. Those preprocessing
steps can be handled by the user before sending to the accelerator.
Alternatively, GuardNN can also handle most standard image data
preprocessing, such as scaling, cropping, clipping, and reflection, by
performing the data preprocessing steps as matrix multiplication.
Nvidia DALI also proposes to address the problem of the CPU
bottleneck by offloading data preprocessing to the GPU.

3 EVALUATION

3.1 Methodology

FPGA Prototype — We implemented a prototype of GuardNN with
confidentiality-only protection (GuardNN() by adding the VN gen-
erator, encryption engines (AES-128), and a microcontroller to the
CHaiDNN accelerator [32]. We use four different DSP configura-
tions (128, 256, 512 and 1024) with two different precisions (6-bit
and 8-bit fixed point) for weights and features. The AES engines
are pipelined with a 12-cycle latency. Because AMD Xilinx FPGAs
do not currently support secure remote attestation of the bitstream,
this prototype is primarily used as a functional demonstration.
Cycle-level Simulation — We use cycle-level simulations to (1)
compare the overhead of multiple memory protection schemes,
(2) study the overhead for a larger class of DNN models, and (3)
evaluate the overhead for DNN training. DNN accelerators are
simulated using SCALE-Sim [25], an open-source DNN accelerator
simulator from ARM research. The memory accesses are simulated
using Ramulator [14] for 16GB DDR4. GuardNN is modeled based
on Google TPU-v1 [12], where it contains 64k processing elements
(i.e., MAC units) and 24MB on-chip memory.

Benchmarks — We evaluate GuardNN on a variety of DNN archi-
tectures — AlexNet, VGG, GoogleNet, ResNet, MobileNet, Vision
Transformer (ViT) for image classification, BERT for pretraining
language models, DLRM for personalized recommendation, and
wav2vec2 for learning speech representation.
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Table 2: Throughput and overhead of GuardNN FPGA proto-
types — Throughput is reported in frames per second (fps) and overhead
(%) is calculated over CHaiDNN baseline.

T(;lrouhgh};ut # of DSPs Network Architecture

(Overhead) AlexNet  GoogleNet  ResNet VGG
128 51.5(+0.6) 22.1(+0.4) 8.1(+1.2) 2.5(+0.8)
256 94.5(+0.5) 39.4 (+0.5) 14.6(+1.6) 4.8 (+0.9)

G‘zgf]‘iil)\lc 512 163.6 (+0.3) 64.7 (+1.5) 23.7 (+1.9) 9.0 (+0.6)
1024 2494 (+0.2) 93.7 (+0.7) 353 (+2.4) 15.9 (+0.6)
128 952 (+0.6) 40.4(+05) 14.9 (+1.6) 4.8 (+0.9)
256 1663 (+0.5) 67.2 (+0.6) 24.6(+2.2) 9.1 (+0.9)

G‘zzfiil)\lc 512 258.1(+0.3) 100.2 (+0.8) 37.6 (+2.7) 16.5 (+0.7)

1024 349.7 (+0.3) 128.8 (+1.0) 48.5 (+3.1) 27.6 (+0.6)

3.2 FPGA Prototype Results

Performance — Table 2 shows the throughput and overhead for
various DNN models across several different configurations on
an FPGA board. The performance overhead of GuardNN is less
than 3.1% for all eight different configurations on ImageNet. It is
worth noting that the overhead comes mainly from the limited
throughput of the AES engines. The maximum overhead among
the four networks can be further reduced to 1.9% by increasing the
number of AES engines from three (as in Table 2) to four.

We also studied the latency of GuardNN instructions using VGG
as an example. GuardNN needs to perform a key exchange and
load weights once per session. On the MicroBlaze, the GetPK and
InitSession (specifically, the ECDHE-ECDSA key-exchange) take
23.1 ms. The key-exchange latency is independent of a network.
Importing (decrypting and re-encrypting) weights on SetWeight
takes 19.5ms, 2.2ms, 8.0ms and 43.3ms for AlexNet, GoogleNet,
ResNet, and VGG, respectively. For each input, GuardNN adds over-
head to import an input and export/sign an output. SetInput for a
single input image only takes 0.1 ms. For the 1000-class output, the
ExportOutput and SignOutput take 0.01 ms and 4.8 ms, respec-
tively. Thus, the GuardNN instructions incur negligible overhead.
Resource Overhead — In our FPGA prototype with 512 DSPs and
8-bit weights/features, we use an open-source AES-128 IP core that
uses 9.0K LUTs and 3.0K FFs. The area overhead of one AES core
is 8.2% and 2.6% in LUTs and FFs, respectively. Because the FPGA
clock (200 MHz) is much slower than the memory bus clock, three
AES engines are needed to match the memory bandwidth used by
CHaiDNN. We implemented the microcontroller as a Xilinx MicroB-
laze, for which the program can fit within 256KB local memory. The
microcontroller’s resource usage (overhead) is 2.7K LUTs (2.5%),
2.2K FFs (1.9%), 64 BRAMs (11.0%) & 6 DSPs (0.9%).

3.3 ASIC Simulation Results

Performance — We study the accelerator performance for four pro-
tection schemes: no protection (NP), today’s baseline memory pro-
tection (BP), and GuardNN with confidentiality-only (GuardNN()
and both confidentiality and integrity protection (GuardNNgy).
GuardNN¢ only performs memory encryption while GuardNN(
perfoms both encryption and integrity verification. For the baseline
memory encryption, we implement the recent memory encryption
engine (MEE) design from Intel [5] as the state-of-the-art.

As the throughput of a DNN accelerator is often limited by the
memory bandwidth, we first compare the memory traffic increase of
BP and GuardNN. The memory traffic increase is defined as the ratio
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Figure 3: The normalized execution time of the DNN infer-
ence and training on different networks models.

between the total number of memory accesses with and without
memory protection. BP increases memory accesses by 35.3% on
average for inference and by 37.8% for training. The memory traffic
increase is larger for training because the training process accesses
more data and has more frequent cache evictions in the VN/MAC
cache. GuardNN(y increases the memory traffic by 2.4% and 2.3%
on average for inference and training, respectively.

Figure 3 shows the performance of the baseline protection and

the DNN-specific memory protection. BP is 1.25x and 1.29% slower
than no protection on average for inference and training. For in-
ference and training, both GuardNN¢ and GuardNN¢ show much
lower performance overhead than BP. The average overhead of
GuardNN(y is 1.05% for inference and 1.07% for training. GuardNN¢
further reduces the overhead to 1.04% for inference and 1.05% for
training. The results demonstrate that GuardNN can support se-
cure DNN processing with negligible overhead over the baseline
accelerator with no protection.
ASIC Power/Area Overhead — The power and area overhead of
GuardNN is expected to be low for an ASIC design. The additional
area mainly comes from the AES engines, which are used for en-
cryption and integrity verification. A previous study [26] shows
that a low-power AES engine only consumes 0.0031 mm? in area
and 3.85 mW in power, while achieving a 991 Mbps throughput
at 875 MHz in 28nm ASIC. In contrast, the area and power con-
sumption of TPU-v1 [12] (also in 28nm) are 331 mm? and 75 W,
respectively. Notably, TPU-v1 runs at 700 MHz and has a peak
memory bandwidth of 272 Gbps. In order to match the memory
bandwidth of TPU-v1, we can instantiate 344 AES engines, which
only result in 0.3% area and 1.8% power overhead. We can also use
a smaller number of high-performance AES engines, which will
likely have similar overall overhead.

3.4 Comparison with Alternatives

Table 3 compares GuardNN with other approaches for privacy-
preserving deep learning. For a CPU TEE, the table shows the
performance for a simulated CPU TEE with unlimited protected
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memory to represent the ideal case of CPU TEEs. Today’s Intel
SGX limits its protected memory to 128 MBs, which leads to 5-20x
performance overhead for DNNs [13].

GuardNNgy provides confidentiality and integrity guarantees
for VGG with only 5% overhead, while the simulated CPU TEE
adds more than 60% overhead on the same benchmark. By leverag-
ing hardware-based protection and high performance accelerators,
GuardNN achieves three orders of magnitude higher performance
and energy efficiency compared to alternatives. As discussed in
Section 2, GuardNN also has a small TCB thanks to the simplicity
of DNN accelerator design and protection mechanisms. The lines of
code (LoC) for GuardNN prototype is 21.8k in total — 9k LoC for the
baseline accelerator, 8.3k LoC for the customized protection, and
4.5k LoC for new instructions (firmware on a microcontroller). MPC-
based approaches also have a relatively small size of TCB and can
be implementation with tens of thousands of LoC. However, their
performance overhead is significantly higher than GuardNN. While
MPC-based approaches offer secure and easy-to-deploy options for
less performance-demanding use cases, secure accelerators appear
to be the most promising solution for large-scale, high-throughput
use cases.

4 RELATED WORK

Privacy-Preserving Deep Learning — GuardNN provides hardware-
based protection for DNN inference and training in an untrusted
environment. Alternatively, homomorphic encryption (HE) and
secure multi-party computation (MPC) can provide stronger pro-
tection on today’s hardware by performing all computations in
an encrypted format. While HE and MPC provide strong crypto-
graphic guarantees without trusting remote hardware or software,
they come with significant overhead compared to the baseline with
no protection [3, 15, 19, 21, 24, 29]. A recent work [23] proposes
to reduce the latency of HE-based DNN inference to hundreds of
milliseconds using specialized hardware. GuardNN provides a de-
sign point that provides hardware-based security with much higher
performance compared to the HE/MPC-based solutions.

TEEs provide hardware-protected execution environments where
confidentiality and integrity are ensured even under an untrusted
OS or physical attacks. Recent studies showed that DNN compu-
tations can be protected using Intel SGX [13, 18, 27] but with non-
trivial overhead of memory protection in SGX. Today’s processor-
based TEEs are also limited by the performance of a general-purpose
processor. Recent studies [11, 28] proposes to extend today’s TEE by
including a GPU. The GPU-based TEEs enable much higher DNN
performance compared to general-purpose processors, but require
both a CPU and a GPU to be protected inside a TEE. Telekine [10]
further improves the security of GPU TEEs by translating the ap-
plication’s GPU API calls into data-oblivious commands.

Recent work [30, 33, 34] proposes to build FPGA/ASIC TEEs
as accelerators are often far more energy-efficient than GPUs and
widely used for high-throughput tasks such as inference. TNPU [17]
concurrently proposes a tree-less off-chip memory protection for
DNN accelerators, similar to our DNN-specific memory protection.
GuardNN allows a smaller TCB and lower overhead by carefully
desining its instruction set for an untrusted host and an option for
confidentiality-only protection.
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Table 3: Comparison between different privacy-preserving ML approaches — The throughput is measured in giga operations per second
(GOPs) and the energy efficiency is reported in giga operations per second per Watt (GOPs/W). For GuardNN accelerators, we show the number of PEs, the
size of on-chip SRAM, and the clock frequency. The power of the GuardNN is estimated based on TPU-v1.

. Methods
Metrics
CPU TEE DELPHI CrypTFLOW?2 GuardNN(y GuardNNc
(Simulated) MPC [21] MPC [22] (Simulated) (FPGA)
Hardwar CPU Intel Xeon Intel Xeon 64k PEs/24 MBs 512 PEs/3 MBs
ardware 1 core@3.0 GHz 4 cores@3.7 GHz 4 cores@3.7 GHz @0.7 GHz @0.2 GHz
Network VGG-16 ResNet-32 ResNet-32 VGG-16 VGG-16
Workloads ————
Dataset ImageNet CIFAR-100 CIFAR-100 ImageNet ImageNet
Perf Throughput 0.81 0.02 0.18 3221.57 139.23
Overhead (X) 1.61 ~1000 ~100 1.05 1.01
Power (W) ~60 130 130 ~40 ~15
Energy —— —~ °
Efficiency 0.01 0.002 0.0001 80.5 9.3
TCB Components CPU MPC protocol MPC protocol Accelerator Accelerator
Lines of code Millions [16] 35.1k 53.7k 10-100s of thousands 21.8k

GuardNN proposes a new approach to enable secure DNN com-
putation using accelerators and shows that secure accelerators have
a potential to provide higher security with a negligible performance
and area overhead compared to the general-purpose platforms by
customizing its architecture and protection for DNNs.

Side-channel Attacks and Protection — A variety of side-
channel attacks have been shown to work against DNN acceler-
ators. Memory and timing side-channels have been used to infer
the network structure of an accelerator with encrypted weights
[6, 9]. GuardNN has a fixed memory access pattern and execution
time, and is secure against memory and timing side-channels. Phys-
ical side-channel attacks such as power and electromagnetic side-
channel attacks have been used to retrieve the input image [31]
or recover the network topology and weights [2]. If strong pro-
tection against power and EM side-channel attacks is necessary,
GuardNN needs to be extended with additional countermeasures.

5 CONCLUSION

This paper proposes a secure DNN accelerator, named GuardNN.
Application-specific accelerators provide strong isolation from a
CPU with complex software stack and also enable protection to be
customized for DNNs to improve both security and performance.
An FPGA prototype shows that the GuardNN can protect common
DNN models with minimal (~3%) performance overhead.
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