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Abstract

We consider the question of speeding up classic graph algorithms with machine-learned predictions.
In this model, algorithms are furnished with extra advice learned from past or similar instances. Given
the additional information, we aim to improve upon the traditional worst-case run-time guarantees. Our
contributions are the following:

(i) We give a faster algorithm for minimum-weight bipartite matching via learned duals, improving
the recent result by Dinitz, Im, Lavastida, Moseley and Vassilvitskii (NeurIPS, 2021);

(ii) We extend the learned dual approach to the single-source shortest path problem (with negative edge
lengths), achieving an almost linear runtime given sufficiently accurate predictions which improves
upon the classic fastest algorithm due to Goldberg (SIAM J. Comput., 1995);

(iii) We provide a general reduction-based framework for learning-based graph algorithms, leading to
new algorithms for degree-constrained subgraph and minimum-cost 0-1 flow, based on reductions
to bipartite matching and the shortest path problem.

Finally, we give a set of general learnability theorems, showing that the predictions required by our
algorithms can be efficiently learned in a PAC fashion.



1 Introduction

There has been recent interest in moving beyond the traditional and often pessimistic worst-case analysis
of algorithms by using machine-learned predictions. This paradigm of learning-augmented algorithms is
inspired by the great success of machine learning (ML) and aims to utilize ML predictions to improve the
performance of classic algorithms.

The extra information assumed in learning-augmented algorithms can be supplied in a variety of settings.
For example, in data streams, the observation that underlying patterns in real-world datasets do not change
quickly over time has led to the development of an oracle capable of predicting frequently occurring stream
elements. In distribution learning, it is natural to have access to different but related distributions that can
aid our learning tasks. In many other applications, the current input can be similar to past instances that
might help us to avoid computing the solution from scratch. All these scenarios fall under the general umbrella
of a “warm start”, which enables better initialization of the algorithms to improve their performance.

This learning-based paradigm has been successfully applied in many algorithmic domains. They all share
an underlying goal to minimize some resource constraints: in online algorithms, predictions are used to
make better future decisions and reduce regret and competitive ratios [LV18]. In streaming algorithms and
data structures, predictors have been developed to optimize space usage [KBCT18, HIKV19]. In sublinear
algorithms, predictors can reduce the sample complexity of a task [EINT21].

Despite this activity, only recently have there been works on provably improving the time complexity
of algorithms under this framework. Two recent works which consider this resource include the work of
[EFST21] on the k-means clustering problem and the work of [DIL"21] on graph matching; our paper relates
to the latter. In [DIL'21], the authors give a learning-based algorithm for (min-cost) bipartite matching
and show that predictions provably result in faster algorithms. Our paper is motivated by three natural
follow-up questions:

(i) Can we derive learning-augmented algorithms which exploit warm starts and other auxilliary informa-
tion for other important graph optimization problems besides bipartite matching?

(ii) Do we need a tailor made learning-augmented algorithm for every different graph optimization problem?

(iii) Can we understand when warm starts are learnable for general problems?

1.1 Our Results

Our main contributions provide answers to the three motivating questions. We individually address these
questions and our relevant contributions.

Can we derive learning-augmented algorithms for other classic graph optimization problems be-
sides bipartite matching?

Towards answering this question, we first provide a more efficient learning-augmented algorithm for bipartite
matching than the one in [DIL*21], in Section 3. The algorithm of [DILT21] uses dual variables from the
linear programming formulation of bipartite matching as predictions. We achieve better runtime by utilizing
the interplay of this dual and another set of related dual variables, called reduced edge duals, arising from
viewing bipartite matching as a max-flow problem. This result extends to b-matching as well.

Theorem 1.1 (Informal; see Theorem 3.2). Given a weighted bipartite graph and predicted dual § , there
exists an algorithm that finds a minimum weight perfect matching in time O(m+/n+ (m+nlogn)||ly* —9llo),
where y* is an optimal dual solution.

This significantly improves upon the prior bound of O(min{m+/n|jy* — #||1, mn}) due to [DIL*21].

Beyond the problem of minimum-weight matching, we also use reduced edge duals, which allow us to
obtain the first learning-augmented algorithm for the single-source shortest-paths problem with negative
edge lengths.



Theorem 1.2 (Informal; see Theorem D.4). Given a directed graph with negative edge weights and predicted
dual § , there exists an algorithm that finds single-source shortest paths in time O(mmin{||§ — y*||1 - ||§ —
Yoo, VT log(||7 — y*|leo)}), where y* is an optimal dual solution.

To properly utilize these duals, we give an efficient rounding scheme which takes in as input a set of
predicted reduced edge duals and rounds them to a feasible instance. See Section 4 for the formal notion of
feasibility and our rounding algorithm.

Do we need a ‘tailor made’ learning-augmented algorithm for every different graph optimization
problem?

The prior work [DILT21] outlined the three challenges of “feasibility, optimization, and learnabilty”
needed to put warm start heuristics on theoretical footing. We leverage reductions to avoid addressing
these challenges from scratch for each new graph problem. Specifically, we introduce a general framework of
reductions that takes existing learning-augmented algorithms and applies them to new problems. Note that
in the context of learning-augmented algorithms, we need reductions that efficiently convert instances of a
given problem to instances of another problem which we know how to solve using predictions. Therefore, we
must judiciously choose the problems and reductions to apply in this framework. Nonetheless, the benefits of
our reduction framework include faster learning-augmented algorithms for shortest-paths and new algorithms
for other problems, such as degree-constrained subgraph and unit-capacity maximum flow.

Can we understand when warm starts are learnable for general graph problems?

Given the wide range of problems we consider, we need to understand when good hints and predictions
which generalize are learnable. (Note that [DILT21] is only concerned about learnability of duals for the
specific problem of bipartite matching.) We answer this question in Section 6 by generalizing the arguments
of [DIL*21] beyond bipartite matching.

1.2 Related Work

Learning-augmented graph algorithms. The most relevant work to ours is [DILT21]. We improve
and extend their results in several ways, as discussed earlier. For the shortest-path problem, a recent work
[EIX22] investigates the theory of learning-based labeling scheme for the A* search heuristic, whereas a few
others approach it empirically [BCS17, YTBT21, CLDS20]. Several previous papers focus on online graph
problems [AGKK20, LMRX21, XM21, APT22]. The scope of our paper differs from theirs, as we study only
offline problems.

Classic graph algorithms. There is a vast body of literature addressing graph optimization problems
considered in this paper. We only mention a few that are most relevant to this paper. Similar to [DILT21],
our matching algorithm builds upon the classic Hungarian method. There are other theoretically faster
(exact) algorithms for (bipartite) minimum-cost perfect matching, including [OA92, GK97, DS12]. However,
these procedures are fairly involved and hard to incorporate predictions. Our learning-based algorithm for
single-source negative-length shortest paths is inspired by [Gol95]. In the classic setting, a web of reductions
among graph problems were introduced by [Gab83, Gab85, GT&g9].

The learning-based algorithm paradigm has been applied to a number of other problems. See Appendix A
for more related works.

1.3 Organization

The remainder of the paper proceeds as follows. We set up some preliminary background and notations
in Section 2. In Section 3, we give an improved algorithm for learning-augmented minimum-cost bipartite
matching. We then extend the approach to shortest path in Section 4. We address the question of learnability
in Section 6. Finally, we provide numerical evaluations of our shortest-path algorithm via reductions in
Section 7.



2 Preliminaries

Notation. Let G = (V,E) be a graph of m edges and n vertices. We will specify its directedness in
different settings. For a vector z € R™, we let ||z||, to denote its pth norm, for any p > 0.

Minimum-Weight Bipartite Perfect Matching. Let G = (V, E) be a bipartite graph with non-negative
edge costs, and C be the maximum cost. The objective of this problem is to find a perfect matching M with
minimum total cost in G. In the minimum-weight b-matching problem, we are also given a demand vector
be ZK. The goal is to match each vertex u b, times, with minimum cost.

Maximum Flow. Given a directed graph G = (V, E') with capacity vector ¢ € Rf , let s and ¢ be distinct
vertices of H. A feasible s-t flow is a vector f € Rf, with each entry representing flow along an edge,
such that sum of incoming flow along edges (v,u) equals sum of outgoing flow along edges (u,v) for all
u € V\{s,t} and f,, < cyp for all edge uv. An s-t-flow f is maximum if it maximizes the outgoing flow

from s. For a feasible flow f, Gy denotes its residual graph. A classic procedure for finding maximum flow
is Ford-Fulkerson; see [CLRS09].

3 Improved Learning-Based Minimum-Weight Matching

The results from [DIL*21] on matching contain two main results: (1) that given predicted duals for a
minimum-weight matching problem, there is an efficient near-optimal algorithm to round the duals to fea-
sibility and (2) that after rounding, these feasible predicted duals can be used to quickly find a solution to
the primal. We provide a new approach to the second problem of using a feasible prediction to quickly solve
minimum-weight matching that significantly improves upon prior work.

First, we will restate the theorem from [DIL"21] which established an algorithm from using a feasible
predicted dual to quickly solve minimum-weight matching.

Theorem 3.1 (Theorem 13 in [DIL*21]). There exists an algorithm which takes as input a feasible integer
dual solution §' and finds a minimum-weight bipartite perfect matching in O(min{m/n||y* —7¢'||1, mn}) time,
where y* is an optimal dual solution.

With small modifications to the algorithm and an improved analysis, we present the following improved
time complexity.

Theorem 3.2 (Faster Matching from Predicted Duals). There exists an algorithm which takes as input a
feasible integer dual solution §' and finds a minimum-weight bipartite perfect matching in O(my/n + (m +
nlogn)|ly* — ¢'||o) time, where y* is an optimal dual solution.

If the feasible dual is within O(y/n) of an optimal dual in ¢; distance (which is the case in which the
algorithm from [DILT21] attains an improved runtime over the classical algorithm), our algorithm improves

upon the time complexity by a factor of
x _ ol
Jn (Ily J I1) _

ly* —9'llo

Note that ||y*(c) — 7' (c)]lo < |ly*(¢) — ¥’ (c)|l1 as we are considering only integral duals.

While the algorithm from [DIL"21] improves upon the classic Hungarian algorithm only when ||y*(c) —
7' (¢)|l1 = o(y/n), our algorithm improves upon the Hungarian algorithm as long as ||y*(c) — §'(¢)|lo = o(n),
a much milder condition on the predictions.

As a corollary, when combined with the linear-time rounding procedure from [DILT21], this algorithm
gives a fast framework for taking a predicted (possibly infeasible) dual and using it to speed up minimum-
weight matching.



Corollary 3.3. There exists an algorithm which takes as input a (possibly infeasible) integral dual solution
9, produces a feasible dual §' s.t. ||§' — y*|l1 < 3||§ — y*|l1, and finds a minimum-weight bipartite perfect
matching in O(my/n+ (m + nlogn)||y* — §'llo) time, where y* is an optimal dual solution.

Our algorithm is given in Algorithm 1. The main difference in the algorithm/analysis to prior work is
that they essentially consider running a O(m+/n) matching algorithm at each step and then reason that the
dual variables increase by at least one on each call to the algorithm, getting the ¢; dependence on the error.

Our improvements are based on the following observation. If the predicted duals are accurate enough
to get improvements over the normal Hungarian algorithm, then the first call to a maximum cardinality
matching algorithm will match many edges. Then, we can account for the amount of work we have to do in
subsequent iterations by the small number of edges remaining to be matched by via a flow interpretation of
the matching problem.

Algorithm 1 Faster Primal-Dual Scheme for MWPM

1: procedure MWPM-PD++(G = (LUR, E),c,y)

2: E«—{ecElyi+ty =cy}

3 G «+ (V,E)

4: M <+ Maximum cardinality matching in G’

5: Give all edges in E unit capacity and direct them from left to right > Flow representation
6 Add nodes s,t to G along with unit capacity, zero cost edges (s,%) for all i € L and (j,¢) for all j € R
7 Associate a flow f with M s.t. ¥(4,j) € M, fo = fij = fj = 1 and otherwise f. =0

8 Zi < —UY; VieL

9 Zj < Y; VieR

10: < cet+zi—z Ve=(i,j) € Est. i,j¢{s,t} and ¢, < 0 for all other edges

11: while f has flow value less than n do

12: Zy < 2y +d(s,u) Yu € LU R where d(-,-) is shortest path distance in Gy w.r.t. ¢/ > Dijkstra
13: L ce+zi—z Ve=(i,j) € Est. i,j¢{s,t}

14: E}%{GGEf‘CéZO}.

15: G« (V, EY)

16: g < Maximum flow in G'f > Ford-Fulkerson
17: Augment along g in Gy

18: end while

19:  Return {e = (i,j) € f:i€ L,j € R, fo=1}
20: end procedure

The formal analysis of the algorithm is somewhat technical and appears in Appendix B, where we prove
Theorem 3.2.

Extension to b-matching We extend the improvements for learning-based minimum-weight perfect bi-
partite matching to the more general problem of minimum-weight perfect b-matching. For two sets of dual
variables over the vertices y and z, we will use as a distance measure the weighted ¢, error:

ly = zllo.p = > bilys — zilp-
iev
We will restate a theorem from [DIL*21].

Theorem 3.4 (Theorem 31 in [DIL'21]). There exists an algorithm which takes as input a feasible integer
dual solution §' and finds a minimum-weight perfect b-matching in O(mnl||y* — §'|ls,1) time, where y* is an
optimal dual solution.

Using the same algorithm (Algorithm 4 shown in Appendix C), but with an improved analysis, we show
the following improved runtime.



Theorem 3.5. There exists an algorithm which takes as input a feasible integer dual solution 4’ and finds
a minimum-weight perfect b-matching in O(mn+ml|ly* —§'|v.0) time, where y* is an optimal dual solution.

As before, since the duals are integral, ||[y* — ¢/ |lp.0 < |ly* — ¢
prior work by a factor of
min {n”y* = 7le ly™ = 3'lls 1} .
ly* =7 llv0” ’

The full details and proof are in Appendix C.

|o,1. Note that this runtime improves upon

4 Fast Learning-Based Shortest Paths

In this section, we introduce the reduced edge length duals and how to round them efficiently given predic-
tions. Reduced edge length duals are defined as follows.

Definition 4.1 (Reduced Edge Length Duals (RE Duals)). Let G = (V, E) with |V| = n,|E| = m, denote
a directed graph and ¢ : E — 7 denote the length of the edges, which may be negative. y € ZV is a valid or
feasible reduced edge length dual (RE Dual) if

Ly(u,v) == L(u,v) + Yy — Yo >0
for all edges e = (u,v) € E.

It is natural to study these duals as they appear in many fundamental combinatorial optimization prob-
lems. For example, consider the dual linear program for the shortest paths problem on the graph G (where
we wish to compute the shortest path from vertex s to t). It is given by:

max Y
s.t. Yo = Yu S E(ua ”U)
Ys = 0.

Note that the constraints y, — y, < €(u,v) exactly encode £,(u,v) > 0 in Definition 4.1. Furthermore,
given a valid dual solution y to the dual linear program, one can quickly compute the shortest paths in near
linear time via an application of Dijkstra’s algorithm since all reduced edge lengths are non negative by
Definition 4.1. This is because the sum of the lengths of edges along any path (vy, v, -+ ,vg) is the same up
to an additive term y,,, — Y., due to telescoping. Thus, this transformation preserves the identity of shortest
paths from a starting vertex. Furthermore, many shortest paths algorithms on general graphs, such as the
Bellman-Ford algorithm, also implicitly calculate the dual y: in the Bellman-Ford algorithm, the dual can
be constructed in linear time after the algorithm terminates.

Now suppose predictions § : V' — Z for the duals y are given. The main result of this section is that
there exists an efficient algorithm, Algorithm 2, which outputs a feasible ¢/ according to Definition 4.1.

Theorem 4.1 (Fast Shortest-Path from Predicted Duals). Let § : V' — Z be predicted duals and let y* : V —
Z be a feasible set of reduced edge length duals according to Definition 4.1 such that ||§ — y*||1 is minimized.
Algorithm 2 returns a feasible §' : V. — Z in time

O(mmin{[|§ — y"[l1 - 19 = ¥ loc, Vnlog([|§ — y"[lc)})-

If we define reduced edge lengths according to the predicted dual g, it is likely that the non-negativity
constraint of some edges become violated, i.e., £3(e) < 0. The goal of Algorithm 2 is to modify some
coordinates of § to fix these negative edge weights. The algorithm uses a key subroutine of Goldberg’s
algorithm on shortest paths [Gol95]. It proceeds by mending negative edges by reducing the dual value
of one of their endpoints. At every iteration, we greedily maximize the number of dual variable which



are updated. The vertices which are updated are picked through a layering structure utilized in [Gol95].
Algorithm 2 presents the formal details.

Note that we implicitly assume the given graph G with edge lengths given by ¢ does not have a negative
weight cycle. This is a necessary assumption since otherwise, there exists no valid RE Duals for G: the
length of a cycle under any valid dual ¥ must be non-negative by definition but the cost of any cycle is the
same under ¢ and ¢, due to telescoping which leads to a contradiction if ¢ induces a negative weight cycle.

Algorithm 2 Rounding Predictions for Reduced Edge Length Duals

1: Input: Graph G = (V, E), predicted duals §: V — Z
2: procedure ROUND-RE-DUALS(G, §)

3: while there exists an edge e such that ¢;(e) < 0 do
4

5

G~ = (V, E™) « subgraph of G that have weight at most 0 under ¢;
Contract all strongly connected components in G~ > All edges connecting vertices in the same
strongly connected component are 0 [Gol95]

6: Add a vertex x to G~ and connect it with zero length edges to all of V

7: L; + {v e V|d(z,v) = —i} > d is graph distance in G~ using reduced edge lengths given by ¢;
8: i* « arg max; | L;|

9: Lower the value of g, for all vertices in Ug>;«L; by 1

10: end while

11: Return ¢

12: end procedure

The analysis of the algorithm and the proof of Theorem 4.1 appear in Appendix D. The theorem also
implies an algorithm for all-pair shortest paths; see Appendix D.2 for details.

5 A General Framework for Learning-Based Reductions

In this section, we introduce a general framework for obtaining learning-augmented algorithms via reductions.
Suppose we have an oracle which provides hints or a warm start to instances of problem P;. If we are instead
interested in solving instances of another problem P», we can hope to transform our instance at hand to an
instance of P; in order to utilize the available predictions. If there exists an efficient reduction from P» to
Py, we can indeed use this reduction to transform our instance of P, to that of Pj, use the hints available
for P; to efficiently solve our new problem, and use the solution found to solve our original instance of Ps.
This will be the basis of our framework for learning-based reductions.

Why is such a framework useful? First, hints might be easier to learn for problem P; or there may
not be a natural notion of hints for instances of P,. In addition, there might already exist a learning-based
algorithm for P; which efficiently utilizes hints. Therefore, using reductions from other problems to P; would
eliminate the need to create new algorithms and thereby increasing the power and usability of the existing
learning-based algorithms.

We formally define reductions as follows.

Definition 5.1 (Reductions). Let P; and Py be two problem instances. We say that R : P, — Py is a
reduction from Py to Py if for any instance I € P, R(I) maps to an instance I' of Py. Furthermore,
Furthermore, there exists mapping which takes a solution of I' and converts it to a solution for I.

Note that the definition of reduction by itself is not quite useful: by the Cook-Levin theorem, any problem
in the complexity class P can be reduced to 3SAT. However in this paper, we are interested in efficient
reductions which take linear or almost linear time in the size of the input. Therefore, such reductions would
be extremely fast to execute in practice and the final algorithm of solving instances of I of P, via solving
instances of P; using a learned oracle would overall be faster than solving I with no hints.



5.1 General Framework

Our framework is given in Algorithm 3. Note that there, A is an existing algorithm which solves instances
of problem P; using hints given by a predictor y : P, — R%, i.e., the hints are d dimensional vectors.

Algorithm 3 General Reduction Framework for Learning-Based Algorithms

1: Input: Problem instance I € Py. Predictor y : P; — R?, reduction R : P, — P;, Algorithm A(Py,y(P;))
2: procedure REDUCTION-SOLVE(P, Ps,y, R, A)

3: I' + R(I) > Use reduction R to get an instance of Pj
4 g« y(I") > Get hints for instance I’ using predictor y
5 Execute A(I', §) > Solve instance I’ using hints and learning-based algorithm A.
6: Return solution to I using solution for I’ given by A(I', ).

7: end procedure

Note that Step 6 in Algorithm 3 would depend on the instances P;, P> and the reduction R. In some
cases, some post-processing the solution A(I’, ) could be required. In the examples we study in this paper,
both this step and the reduction R are efficient. We give concrete instantiations of Algorithm 3 in Section 5.2.

Note that we still need to understand the learnability of the hints ¢ in Step 4 of Algorithm 3: even if
there exists an efficient algorithm A for problem P;, we might not have a predictor y at hand. Note that in
[DILT21], the question of learnability of predictors was tackled by assuming access to multiple instances of
a particular problem class drawn from some distribution. In our case, we might have lots of training data
on instances of problem P, but our goal is to train a predictor y for P; in hopes of utilizing A. To do so,
we can just go through the reduction R to get samples of problem instances drawn from P;. Note that the
distribution on these problems will be different than that on P». We introduce general learnability results
which imply one can learn a good predictor y. For details, see Section 6.

5.2 Reductions and Their Implications

We now present one application of the reduction framework outlined in the previous section. We demonstrate
three more reductions, for degree constrained subgraph, minimum-cost 0-1 flow, and graph diameter, in
Appendix E.

Shortest Path from Matching. We leverage the following reduction from shortest path (with negative
edge lengths) to maximum-weight perfect matching on bipartite graphs, due to [Gab85]. Given a directed
graph G with edge lengths given by ¢, construct a weighted bipartite graph H = (L, R, E).

e For each vertex u € G, make two copies u; € L and us € R.
e For each arc (u,v) € G, create an edge e = (u1,v2) of weight —£(e) in H.
e Finally, create an edge (u1,us) of weight 0 for each vertex u € G.

Now suppose we find the maximum weight perfect matching of H and its corresponding dual variables y,,
for all w € G and ¢ € {1,2}. By the construction, we immediately have:

Lemma 5.1. The mazimum weight perfect matching of H has positive weight if and only if the graph G has
negative cycles.

Otherwise, we can let m, = y,, for each u € G. Then by feasibility of y, we have
_E(e) S yu1 + yvg S Ty — Ty,

for any e = (u,v) € G. It follows that = is a feasible dual for the shortest path problem on G, i.e., it satisfies
Definition 4.1.

Observe that the graph H contains m+n edges. By using the run-times for faster matching from [DILT21]
as well as our runtime of Section Section 3, we have the following corollary due to Algorithm 3.



Theorem 5.2. Given a shortest path problem on input graph G = (V, E) with n vertices and m edges, there
exists an algorithm which takes takes as input a predicted dual solution g to an instance of maximum weight
perfect matching derived from G, mear-optimally rounds the dual to a feasible solution ¢, and finds feasible
reduced edge length duals for G in time O(m+/n + (m + nlogn)||ly* — 7'||o)-

Remark 5.1. Recall that in Section j we derived an alternative runtime of

O(mmin{[|g — y*[l1 - 17 = 4" llo, vnlog (15 — 5™ [l0)) }

for the problem of rounding a predicted dual § to a feasible dual §' to satisfy the reduced edge property of
Definition J.1. These results are incomparable since Theorem 5.2 uses dual predictions for matchings on a
transformed graph whereas Theorem 4.1 uses predictions for shortest path duals (RE duals) on the original
graph.

6 General Learnability of Hints

We now present two general learnability theorems on vector-valued hints for graph optimization problems.
We consider the model where the edge weights (or capacities) are drawn from a distribution, while the
vertex set is the same. The goal is to learn a hint vector in R? that is close to the optimal hint on average
(in ¢; or ¢, norm), given i.i.d. samples of the edge weights. We require no assumption either on the edge
weights distribution or on the notion of optimality of a hint. Indeed, the latter needs to depend on particular
problems. For a variety of graph problems, though, the optimal hint could be taken as the optimal dual
solution of certain LP relaxation.

Throughout the section, we assume that the edge weights ¢ are drawn from an unknown distribution of
D. We search for a hint within a range H C R4,

6.1 Learnability from Bounded Pseudo-Dimension

For a fixed problem, given edge weight ¢ € R™, and graph G, let h*(c) denote an optimal hint with respect
to the instance (G, ¢). We consider ¢; and ¢ loss:

d
ti(h,c) = [[n"(¢) = hlly :Z\hf(C)*hily (1)
loo (s ) = |[P7(c) = oo = max[hi(c) — hi - (2)

The goal of the algorithm is to find a hint h € H such that the expected loss Eoop £(h, ¢) is minimized, for
0=/l or ls. Let h* € argming,cqy Ecup £(h, c).

L; Loss. Our first result is a straightforward abstraction of the main learnability theorem of [DIL"21], for

the ¢; loss. In particular, we show that one can find a hint vector h € RY that approximately minimizes the
population loss E..p ¢1(h, ¢), under the following conditions:

Theorem 6.1 (¢;-learnability; see also Theorem 14 of [DIL"21]). For any graph problem with optimal hint
h*(c) € H for ¢ ~ D, assume that

e (bounded range) for any h € H we have h; € [—M, M] for all i, for some M; and

o (efficient optimization) there exists a polynomial time algorithm that finds a hint vector h € H that
minimizes Y ._, ||h*(c;) — hl|1, given i.i.d. samples cy,ca,...,cs ~ D.

Then there is a polynomial-time algorithm that given s = O ((%)2 (dlogd + log(l/é))) samples returns a
hint h € H such that Ecp l1(h,c) < Ecup l1(h*(c), ¢) + € with probability at least 1 — 4.



L., Loss. We now give a learnability result for the £, loss.
Theorem 6.2 ({-learnability). For any graph problem with optimal hint h*(c) € H for ¢ ~ D, assume that
o (bounded range) for any h € H we have h; € [—-M, M] for all i, for some M; and

o (cfficient optimization) there exists a polynomial time algorithm that finds a hint vector h € H that
minimizes Y ._, |h*(¢;) — b, given i.i.d. samples c1,ca, ..., cs ~ D.

Then there is a polynomial-time algorithm that given s = O ((%)2 (d+ log(l/é))) samples returns a hint
h € H such that Ecop loo(h, ¢) < Eeop loo(h*(€), ¢) + € with probability at least 1 — 4.

The proofs of the two theorems appear in Appendix F.

6.2 Learnability from Arithmetic Complexity

We give an alternative argument for learning predictions. Informally, we show that good predictions can be
learned efficiently if the loss function can be ‘computed efficiently’. This provides a more general framework
that goes beyond /1 or £, norm error. See Appendix F.3 for formal details.

7 Empirical Simulations

We demonstrate the applicability of our learning-based reductions framework with a real world case study
on foreign exchange markets. The reduction we focus on is the general shortest paths to bipartite matching
reduction outlined in Section 7. We focus our evaluation on this task since prior work in [DILT21] has
already demonstrated the empirical advantage of learning-based methods for bipartite matching.

Our graph dataset is constructed as follows. We have a weighted directed graph where nodes represent
countries and all possible directed edges between all pairs are present. The weight of the directed edge from
country ¢ and j represents the average monthly exchange rate between the currencies of the two countries, i.e.,
the amount of currency j we can obtain starting from one unit of currency ¢, as set by the foreign exchange
rate market'. We transform these weights by taking the natural logarithm and negating the weight. This
implies that the shortest path from country i to country j on the transformed graph represents the optimal
way to convert one unit of currency ¢ to the currency of j, i.e., the set of conversions which maximize the
amount of currency j.

Experimental Setup. We first describe our training dataset. We construct the graph described above
for each month of the year 2019 where we use the average monthly exchange rates as edge weights before
performing the transformation. Our testing dataset are similarly constructed graphs for each month of 2020
and 2021. For each graph, we construct the reduction from shortest paths to matching outlined in Section 5.2.
By Lemma 5.1, the output of the maximum weight perfect matching on the bipartite graph obtained via
the reduction gives us feasible reduced edge length duals which we can be subsequently use to solve shortest
paths in nearly linear time. The resulting bipartite graphs have ~ 500 vertices each and ~ 5 - 10* edges.

We use the code from [DILT21] ? for the maximum weight bipartite matching algorithm. As in [DIL*21],
we measure the runtime in terms of the number of steps used by the Hungarian algorithm to solve the
matching instances derived from our training and test graph datasets when we initialize the algorithm with
predicted duals versus when we start the algorithm “from scratch.”

We instantiate predictions in two distinct ways, similar to the methodology of [DILT21]: (a) first, we
consider the batch version where we compute the optimal dual variables in the training set, take their median,
and use these as the predicted dual variables for each of the graphs in the test set. (b) The second method
is the online version where we use the optimal dual variables from the graph for the prior month in the test
set as initialization for the current month.

1Dataset scraped from https://fxtop.com/en/historical-exchange-rates.php
2 Available at https://github.com/tlavastida/LearnedDuals
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Figure 1: Comparison of the classical Hungarian Figure 2: Excess dual objective versus the number
algorithm (blue) versus learning-augmented of saved Hungarian iterations in the batch version.
algorithms. Predictions lead to up to an order There is a negative correlation between the
magnitude reduction in number of iterations. excess dual and the # of saved iterations

Results. Our results are shown in Figures 1 and 2. Figure 1 shows up to an order of magnitude reduction
in the number of iterations taken by the learning-augmented algorithm versus the classical and widely used
Hungarian algorithm. As expected, the online method performs slightly better than the batch version as it
is able to offer more accurate predictions for the next graph instance. This is very intuitive: it is rare for the
foreign exchange market to experience drastic shifts over the span of one month since such a shift implies a
major global event.

Our results also validate the dependence of prediction error derived in our theoretical bounds. In Figure
2, we plot the excess dual objective, defined as >, ys — > _ J. where recall that y* represents the optimal
dual variables and ¢ denotes the predictions, versus the number of steps saved in the Hungarian algorithm
in our batch setting; we obtained a qualitatively similar result for the online setting. We see there is a
direct linear relationship between the excess dual objective, which represents the prediction error, and the
decrease in runtime, measured by the number of Hungarian iterations saved. Note that we removed three
outlier points from Figure 2 which represent data from October 2021 to December 2021. The outlier points
showed a large excess dual as well as large savings in runtime (which can be inferred from Figure 1). We
hypothesize that this is because of a distribution shift which occurred during these months in the foreign
exchange markets. Indeed, examining the conversion rate from the Euro to US Dollars for example, we see
a 3% decrease in the exchange rate which represents the biggest decrease in the time frame of our training
and test dataset. This can be explained by global events such as the rise of the Omicron strain or concerns
about increased inflation.

In addition to extending and complementing the experimental results of [DIL'21], we summarize our
results in the following points: (a) Our theory is predictive of experimental performance. Both figures demon-
strates that better predictions imply better empirical runtime. In addition, Figure 2 demonstrates a direct
relationship between prediction error and runtime, as implied by our theoretical bounds. (b) The reduction
framework is efficient to carry out and execute in practice. (c) Learning augmented graph algorithms can be
applied to real world datasets varying over time such as in the analysis of graphs derived from the foreign
exchange rates market.
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A More Related work

Learning-augmented approaches have found success in a wide array of algorithmic tasks. This includes
improving classic space complexity in streaming algorithms [HIKV19, IVY19, CGP20, JLL"20, EINT21,
DWM21], and achieving better competitive ratios in online algorithms [MNS12, EKM15, LV18, PSK18,
GP19, Roh20, Wei20, LLMV20, BMS20, ACI22, AGP20, WZ20, DKT*21, AGKP21, BCK™22]. Other appli-
cation domains include data structures [KBC*18, FLV20, Mit18, RBL19, VKKM21], similarity search [WLKC16,
DIRW20], and machine scheduling [Mit20, AEMP22, LLMV20, IKMQP21].

A number of works study deep and reinforcement learning for combinatorial optimization and integer
programming [BPLT16, KLBST16, KDN*17, KDZ"17, BDSV18a, NOST18, LCK18, KvHW19, SLB*19,
MSV*19, AMW19, AKLT19, ZGA ™21, AMK21]. Most of the work in this direction are empirical in nature.
See [MSIB21, BLP21] for two recent surveys.

There are also recent works on a related area of data driven algorithm design whose focus is to learn a
generalizable algorithm from a family using a small number of samples rather than study how a predictor can
aid in an algorithmic task [GR17, BDD 21, BDV18, BDSV18b, BDW18, CGT"20]. See the article [MV20]
for a recent survey.

B Omitted Details from Section 3
B.1 Proof of Theorem 3.2

Correctness of Algorithm 1. We now prove the correctness of Algorithm 1. The following three claims
are well known facts about the minimum-weight perfect matching problem (see, for instance [AMO93]).

Claim B.1. There exists a flow of value n if and only if there exists a perfect matching.

Claim B.2. If the flow f at the end of the algorithm is a minimum-cost flow of value n, then the returned
set of edges is a minimum-cost perfect matching.

Claim B.3. A flow f is a minimum-cost flow if and only if Gy contains no negative cost cycles.

Lemma B.4. The residual graph Gy at the end of Algorithm 1 contains no cycles which include nodes s or
t.

Proof. At the end of the algorithm, f will have value n and will saturate all edges leaving s as well as all
edges entering t. Therefore, all edges containing s will be incoming edges and all edges containing ¢ will
be outgoing edges. For both nodes, as all of their edges are oriented in the same direction, they cannot be
included in any cycles. O

Lemma B.5. From their initialization in step 10 of Algorithm 1, all reduced edge costs ¢’ in the residual
graph Gy are non-negative.

Proof. Note that any edges containing s or ¢ always have reduced cost 0. Starting from the costs set at step
10 of the algorithm, we will prove inductively that for all edges (i, 7) in the residual graph s.t. 4,5 ¢ {s,t},
c;; > 0. From the feasibility of the dual variables y, for all (i,j) € E's.t. i € L,j € R,

Yi T Yj < Cij-
Therefore, for all left to right edges in the residual graph,
C; =Cij T2 — 2§ =Cij —Yi —Yj > 0.

J
It remains to consider edges (j,i) € Ef s.t. j € R, € L. These backwards edges exist if and only if f;; = 1.
By step 7, fi;; = 1 only if the matching M derived in step 4 contains (¢, j). This implies that y; +y; = ;.
Therefore, for such edges (j,7) € Ey,

c;i:—cij—l—zj—ziz—cij—kyj—&—yi:O.
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This completes the base case: all edges in the residual graph have non-negative reduced cost at step 10.

For the inductive step, assume going into the while loop that all ¢, for e = (i,5) € Gy such that
i,j ¢ {s,t} are non-negative. Consider the new reduced costs for any such edge (4, j) at step 13, noting that
d(s,j) < d(s,i) + c;;. Let ¢ denote the updated costs and ¢’ denote the previous reduced costs:

/!

iy = cij + 2 — zj = ¢y + d(s,i) — d(s, j)
> i +d(s,1) = (d(s,i) + ¢j;) = 0.

So, the new costs are also non-negative.

Now, consider the augmentation in step 17 which will change the edges in the residual graph Gy. In
particular, some edges (7, j) will disappear and be replaced by edges (j,) with reduced costs c; = —cj;. As
we only augment along edges with reduced costs c;; = 0, the reverse edges we create in the residual graph
will also have reduced cost 0. Therefore, the invariant holds that costs remain non-negative, completing the

proof. O

Lemma B.6. Assume that there exists a perfect matching. If f has flow value less than n, then the flow g
computed in step 16 of Algorithm 1 will have value at least 1.

Proof. First, note that the flow f maintained by the algorithm will always have capacity in {0,1} as the
graph G has unit capacities and we always augment by a maximum flow which will have value either 0 or
1 along each edge. If f has value less than n, as the max flow value is n (due to the existence of a perfect
matching), there must exist some path of flow value 1 from s to ¢ in Gy. This implies that d(s,t) > 0. Let
P be the a shortest path from s to ¢ in Gy as measured by the reduced costs ¢’. Note that for any edge
(4,7) € P, d(s,j) = d(s,i) + c}; (or else, P is not a shortest path). So, after updating the reduced costs in
step 13, every edge in P must have reduced cost 0. Therefore, P C E} and the maximum flow computed in
step 16 must have flow value 1. O

Lemma B.7. Algorithm 1 returns a minimum-cost perfect matching, if one exists.

Proof. Assume that a perfect matching exists. By Lemmas B.1 and B.6, the algorithm will terminate with
a flow of value n. By Lemmas B.2 and B.3, it suffices to show that there are no negative cycles in the
final residual graph Gy. By Lemma B.4, any cycles in Gy must only contain edges (4, j) where 4,5 ¢ {s,t}.
By Lemma B.5, all reduced costs c;j of edges (7,j) € Ey are non-negative. Let C C Ef be any cycle in Gy.

The value of C is
Z Cij = Z C;j—zi—‘ij > Z —zi + 25.
(i,5)eC (i,9)eC (i,5)eC
As C is a cycle, each vertex incident on C' has equally many incoming and outgoing edges, cancelling out
the contributions of each z, so that
Z —2z; +2; = 0.
(i,9)eC

Hence, there are no negative cycles in Gy, completing the proof of the correctness of Algorithm 1. O

Runtime of Algorithm 1 We now analyze the runtime of Algorithm 1.

Lemma B.8. After the first call to mazximum cardinality matching in step 4, the partial matching M will
contain at least n — ||y* — §'||o edges.

Proof. Consider the minimum-weight perfect matching M* corresponding to the optimal duals y*. Note
that the edges in M* are vertex disjoint since they constitute a matching. Let M” be the set of edges in M*
that are tight under §':

M"={e=1ij e M":9; +7; = ce}.
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As y* is tight for all edges in M™, if the predicted and optimal duals agree on both endpoints of an edge in
M*, that edge is also tight under ¢’. Therefore, out of the n edges in M*, at most ||y* — ¢'||o of them do
not have tight constraints under y’. Equivalently, |[M”| > n — |jy* — 7|0

Consider the call to maximum cardinality matching in step 4. As M* is a valid matching and M" C M*,
M’ is a valid matching as well. In addition, all of M""’s edges are contained in E’ (the set of tight edges
under §). Therefore, M" is a valid matching for step 4. So, the maximum cardinality matching returned
by step 4 must have size at least |M"| > n — ||y* — §’||o, completing the proof. O

Lemma B.9. The total number of iterations of the while loop in step 11 will be at most ||y* — 7' ||o-

Proof. By Lemma B.6, we will increase the flow value of f by at least 1 each iteration of the while loop.
By Lemma B.8, f enters the while loop with value n— ||y* — §’||o. Therefore, there can be at most ||y* —§'||o
iterations. O

Lemma B.10. The total amount of work done by calls to Ford-Fulkerson in step 16 is O(m||y* — ¢'|lo)

Proof. The runtime of Ford-Fulkerson is O(mf) where f is the value of the max flow. By Lemma B.8, the
flow value can increase by at most ||y* — 9’||p over all calls to Ford-Fulkerson before we reach a flow of value
n. So, Ford-Fulkerson does a total of O(m|ly* — §'|lo) work, as required. O

We are now ready to prove the main theorem.

Proof of Theorem 3.2. By Lemma B.7, the algorithm returns a minimum-cost perfect matching, if one exists.
It remains to prove the runtime. The first call to matching takes O(m+/n) time. Constructing the initial flow
and residual graph as well as the corresponding costs takes O(m) time. By Lemma B.9, there are at most
[ly* = 9'||o iterations of the while loop. In each iteration, calculating the shortest path distances can be done
via Dijkstra’s algorithm in O(m +mnlogn) time as the reduced costs are always non-negative by Lemma B.5.
Updating the costs and constructing the subgraph G} takes O(m) time. Augmenting along the flow g takes
O(m) time. So, ignoring calls to Ford-Fulkerson, the total running time of work done in the while loop is
O((m + nlogn)|ly* — §'llo). By Lemma B.10, all calls to Ford-Fulkerson takes a total of O(m/|ly* — ¢'||o)-
So, the total runtime of the algorithm is O(m+/n + (m + nlogn)||y* — §'||o), as required. O

C Improved Learning-Based Minimum-Weight 6-Matching

As a corollary to Theorem 3.5, when combined with the near-linear time rounding procedure from [DILT21],
this algorithm gives a fast framework for taking a predicted (possibly infeasible) dual and using it to speed
up minimum-weight b-matching.

Corollary C.1. There exists an algorithm which takes as input a (possibly infeasible) integral dual solution
g, produces a feasible dual §' s.t. ||§ —y*||p.1 < 5|9 —y*||p.,1, and finds a minimum-weight perfect b-matching
in O(mn + m|ly* —§'llv0) time, where y* is an optimal dual solution.

The runtime of O(mn||y* — ¢'[/p,1) from [DIL'21] is derived from the fact that each time a maximum
flow is found in step 13, the flow value is increased by at least 1 (due to the integrality of the problem), and
each maximum flow can be found in O(nm) time.

To get the improved runtime in Theorem 3.5, we can follow essentially the same analysis to that for
minimum-weight perfect matching, showing that first call to maximum flow will push a significant amount
of flow and then bounding the rest of the work in terms of the remaining flow to be pushed.

Proof of Theorem 3.5. The correctness of Algorithm 4 comes from prior work, so it suffices to prove the time
complexity. After the first call to max flow in step 6, the flow value will be at least >, b; — ||y* —4'[|s,0 by the
same argument as Lemma B.8. In particular, consider an optimal flow (corresponding to a minimum-weight
b-matching) f*. Consider the flow g where g. = min{f*, u,} where u/ is the capacity of edge e in G’ in step
6 of the algorithm (g is the subset of f that satisfies the capacities in G’). For each edge ¢ = (u,v) where
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Algorithm 4 Primal-Dual Scheme for MWBM from [DIL*21]

1: procedure MWBM-PD(G = (V, E), ¢,y)

2: E —{ijeE|lyi+y =cj} > Set of tight edges in the dual
3 G < (LURU{s,t},E'U{si|ie LYU{jt|je R}) > Network of tight edges
4: Ve € E(G') s.t. e = si or e = it, Ue < b;

5: ue — 0o for all other edges of G’
6
7
8
9

f + Maximum s — ¢ flow in G’ with capacities u

while Value of fis <>, ; b; do
Find a set S C L such that }-,c g b > > crs)b; > Can be found in O(m + n) time
: € < mineg jemr(s)icii — ¥i — Yj
10 VieS, y <y +e
11: VjEF(S),yj%yj—é“
12: Update E',G',u
13: f + Maximum s — ¢ flow in G’ with capacities u

14: end while

15: x < f restricted to edges of G
16: Return x

17: end procedure

y¥ =9l and y* = y., go = fe. Conversely, if there is some vertex u where y* # y!, at worst this vertex can
invalidate b, edges as u can be incident on at most b, edges in f*. So, the value of g is at most ||y* — 7'||v.0
less than that of f*. As f* is optimal, it has value ), b;, and the first call to max flow must push at least
> bi — ||y — 9 ||p,0 units of flow.

Subsequently, over all calls to maximum flow in step 13, the total amount of flow pushed is at most
ly* — 9'|ls,0 and the total number of iterations of the while loop is at most ||y* — 3'||s.0. By implementing
max flow in step 13 by the Ford-Fulkerson algorithm, the total amount of work done in the while loop will
be O(m|ly* —4'||s,0) as Ford-Fulkerson takes linear time per unit of flow and all other work done in the while
loop takes linear time per iteration. As the first call to max flow in step 6 can take time O(mn), we get a
total runtime of O(mn + m||y* — §’||v,0), as required. O

D Omitted Details from Section 4

D.1 Proof of Main Theorem: Theorem 4.1

The goal of the section is to prove the correctness and runtime of Algorithm 2. We first need the following
auxiliary lemmas, starting from an observation from [Gol95].

Lemma D.1. The graph G~ (after contracting all strongly connected components) is acyclic.

Lemma D.2. Consider any edge e such that {z(e) > 0 at any stage of Algorithm 2. Then e will always
continue to satisfy {y(e) > 0.

Proof. Let e = (u,v). We prove the lemma by showing that ¢;(e) > 0 continues to hold after every iteration
of the while loop in step 3. The only way for £;(e) to change is if one of y,, or y, is updated in step 9 of
Algorithm 2. If both w,v € Ug>+L; or both u,v & Us>i+ L; then the edge is unchanged. Now if v € Us>i+ L;
but not u, then ¢4(e) increases by 1 so £3(e) > 0 continues to hold for this iteration. Now suppose that
u € Ui+ L; but not v. In this case, if £;(e) was strictly greater than zero, i.e., £;(e) > 1, then £, — ¢, only
decreases by 1 so ¢;(e) > 0 is maintained. Lastly we need to consider the possibility that ¢;(e) = 0. In this
case, it must be that v € Ug>4+L; since we can go from x to v via £ — u — v which means v is either in
the same layer as u or possibly a higher layer. Both of these scenarios were addressed previously so we are
done. O
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Lemma D.3. At any iteration of the while loop, i* < 2||§ — y*||1 where the quantity ||§ — y*||1 denotes the
initial predictor error.

Proof. We first provide a bound for the very first iteration of the while loop on Line 3 of Algorithm 2. Note
that G~ is acyclic due to Lemma D.1. All paths in G~ must use non-negative edges. Any negative edge
e = (u,v) has reduced length at least —(|y;: — .| +|y) —¥s|). This is because we know that ¢(u, v)+yk—y > 0.
Thus, the absolute value of the length of ¢;(e) is at most

by (e) = Ly(e)] < |y — Gul + |y5 — ol

Now consider the max 4 for which L; exists. This means there is a path © = uq,--- ,u; = v of total length
—i. We have

k-1 k-1
i = 1w uie)| <) lyi, = Gl + 195, — Guga| < 20" =3l
j=1 j=1

since every vertex u can appear at most twice in the middle summation above.

We now claim that the maximum ¢ is always at most 2||y* — g|l;. Lemma D.2 implies that non-negative
edges (under ¢;) always stay non-negative. Furthermore, the proof of Lemma D.2 tells us that the length
of any negative edge is monotonically increasing until the edge becomes non-negative. Therefore any path
from z to v in G~ in any iteration of the while loop must have also existed in the very first iteration. It
follows that most negative distances in G~ are monotonically decreasing every iteration, i.e., becoming less
negative. Therefore, the same bound on the number of layers L; also continues to hold for all instances of
G~. O

Proof of Theorem 4.1. The correctness of Theorem 4.1 follows from the fact that the while loop only stops
when all reduced edge lengths are non-negative. Therefore, the main challenge is to bound the number of
iterations. From the standard analysis of Goldberg’s algorithm [Gol95], we know that each iteration of the
while loop takes O(m) time. This is because G~ is an acyclic graph and thus, finding the layers L; and all
subsequent computations can be done in O(m) time. Thus, it remains to bound the number of while loop
iterations.

Now call a vertex v touched if v € L;« for i* defined in step 8 of Algorithm 2. Note that for a vertex
to be touched, it must exist in some layer and therefore has a negative incoming edge. We now claim that
every time a vertex is touched, its most negative incoming edge increases in length by +1.

Indeed, let (u,v) be the most negative incoming edge to v and suppose that v € L;,. Vertex u cannot
exist in layer L; for some t > i* since we can consider the path x — v — v which implies v must exist in a
larger layer than u. Thus when v is touched, the edge length (u,v) must increase by 1. From Lemma D.3,
we know that layer L;, has at least n/(2]|§ — y*||1) many vertices since there are at most 2||§ — y*||; layers
which partition all n vertices. Therefore, at least n/(2||§ —y*||1) many vertices get touched in every iteration
of the while loop. Each vertex can only get touched at most O(||y* — §||) times since the most negative
edge length in the very beginning of Algorithm 2 has absolute value at most O(]|y* — ¥||s). This implies
that the number of while loop iterations is at most O(||§ — y*||1 - ||y* — §lloc). Since every while loop
iteration takes O(m) time, the bound of O(m||g — y*|l1 - ||y* — §llco) follows. Note that we could have also
used Goldberg’s algorithm after getting the reduced edge lengths from ¢; with no further modifications to
get time O(m+/nlog(|ly* — §llcc). Therefore, running these two algorithms in parallel implies the claimed
running time. O

D.2 All-Pair Shortest Paths

We observe that Theorem 4.1 implies the following runtime for finding all pairs shortest paths on a graph.

Theorem D.4. There exists an algorithm which takes as input predicted reduced edge duals § : V — Z and
outputs all pair shortest paths in O(mmin{||g —y* |1 - |7 — ¥* | cos vV 10g(||7 — ¥*||00)) } +mn +n?logn) time
where y* : V. — Z denotes a feasible set of reduced edge length duals.
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Proof. Consider Algorithm 2. It applies Algorithm 2 to round  into a feasible RE dual . Then we can
run Dijkstra’s algorithm starting from all vertices in time O(mn + n?logn). The running time follows from
Theorem 4.1. O

Algorithm 5 Learning-based Shortest Paths

1: Input: Graph G = (V, E), predicted duals §: V — Z

2: procedure FASTER-SHORTEST-PATHS(G, )

3: 9 +Round-RE-Duals(G, §) > ¢’ is a feasible RE Dual
4 for allv € V do

5: Run Dijkstra’s algorithm starting from v
6: end for
7
8

Return all shortest paths found from all vertices
: end procedure

E Additional Reductions for Learning-Based Graph Algorithms

E.1 Degree-Constrained Subgraph from Matching

The degree constrained subgraph (DCS) problem is defined as follows. We are given an undirected multigraph
G = (V, E) (we will only be considering bipartite graphs) as well as a set of desired upper and lower bound
on each vertex’s degree: I; < d; < u; for all i € V. A DCS is an edge-induced subgraph of G where the
degree conditions are satisfied. A DCS is called complete if each degree achieves its upper bound: d; = u;
forallz e V.

The maximum perfect DCS and maximum weights DCS problems correspond to maximum perfect match-
ing and maximum weight matching, respectively. Note that the DCS versions of these problems generalize
the matching versions by setting I; = 0 and u; = 1 for all vertices. Next, we will show that DCS can also be
reduced to matching following the reduction given in [Gab85].

First consider the maximum perfect DCS problem. Let G = (L, R, FE) be the corresponding multigraph
with degree bounds [;, u; for i € V. We will build a corresponding bipartite graph H = (L', R', E’) as follows.

e For each vertex ¢ in G, create a complete bipartite graph K 4 where d = d; is the degree of ¢ in G and
0 = d; — u; is how many edges need to be removed from i to meet the upper bound. We will call the
0 side of K 4 internal nodes and the d side external nodes. Without loss of generality, assume ¢ € L.
Then, the external side of K4 is in L’ and the internal side is in R'.

e Associate each of i’s edges in G with one of its external nodes in H. Specifically, for each (i,7) € E,
there will be an edge between one of i’s and one of j’s external nodes in H and both of those nodes
will not be neighbors with any other external nodes. Note that as G is bipartite, with these added
edges, H will still be bipartite.

e For each of these external-external edges, give them costs in H corresponding to their costs in G.

First, note that a perfect matching in H corresponds to a perfect DCS in GG. For each node i in G, all of
its ¢ internal nodes in H will be matched, meaning that exactly u; of its external nodes are matched with
other external nodes. As each of these external-external edges correspond to edges in the original edgeset F,
this means that ¢ will have degree u; in the subgraph induced by the external-external edges in the perfect
matching, as required.

Similarly, it is easy to see that every perfect DCS in G corresponds to a perfect matching in H, so
optimizing over perfect matchings/DCS’s are equivalent, completing the reduction.

Assume that G had n vertices and m edges (counting copies). In H, we will have O(m) total vertices
and O(m - dpnaz) total edges where dy,q, is the maximum degree of any vertex in G. Algorithm 3 gives us
the following corollary.
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Theorem E.1. Given a mazimum weight perfect DCS problem on input graph G = (V, E) with n vertices,
m edges, and mazimum degree dpq., there exists an algorithm which takes takes as input a predicted dual
solution y to an instance of maximum weight perfect matching derived from G, near-optimally rounds the
dual to a feasible solution 9, and solves the DCS in time O(m®/?dyap + (Mdpmaz +mlogm)|ly* —7'|]o)-

E.2 Minimum-Cost 0-1 Flow from Degree-Constrained Subgraph

The reduction bares resemblance to the reduction from shortest path from matching and is also due
to [Gab85]. We are given a directed graph G with unit capacities and integral edge costs a;;. We want
to find a minimum cost flow of flow value v. We will construct a bipartite multigraph H = (L, R, E) for the
DCS problem as follows.

e For each vertex i € (7, make two copies i1 € L and iy € R.

e Add mindegree(i) copies of the edge (i1,i2) to H each with weight 0. Where mindegree(i) is the
minimum of ¢’s indegree and outdegree.

e For each edge (¢,7) in G, add an edge (j1,k2) to H with weight —a;.

e Set the degree constrains u;, = wu;, = mindegree(i) for all i # s,t. Set us, = mindegree(s), us, =
Us, + v, Uy, = mindegree(t), uy, = ug, + v.

Note that the number of vertices and edges in H are at most twice those in G.

Theorem E.2. Given a minimum-cost 0-1 flow problem on input graph G = (V, E) with n vertices, m edges,
and mazximum degree dp,q., there exists an algorithm which takes takes as input a predicted dual solution
7 to an instance of maximum weight perfect matching derived from G, near-optimally rounds the dual to a
feasible solution 7', and solves the DCS in time O(m3/?dpqas + (Mdmaz +mlogm)||y* — 9'|lo)-

E.3 Diameter to Shortest Paths

The diameter of a graph is defined as the largest distance between any pair of vertices. All exact algorithms for
calculating the diameter on general weighted graphs all rely on computing all pairs shortest paths (and there
is evidence that this approach is unavoidable [DW21]). Our learning-augmented algorithm for computing
shortest-paths of Section 4 gives us the following corollary for computing the diameter of an input graph
which follows by first rounding to a valid reduced edge length dual of Definition 4.1 and running all pairs
shortest paths using Dijkstra’s algorithm on the resulting graph with non-negative weights.

Theorem E.3. Given an input graph G with n vertices and m edges with possibly negative integer edge
lengths given by £, there exists an algorithm which takes takes as input a predicted dual solution § to the
reduced edge length dual on G and computes the diameter of G in time

O(mmin{[|§ — y*[l1 - |4 — ¥"[loos VR log(||§ — y*[|oo)}) + O(mn).

Remark E.1. Note that the an algorithm which doesn’t use any learned predictions for computing shortest
paths on a graph with negative weights, such as the Bellman-Ford algorithm, would have taken time O(mn?)
to compute the diameter. Note that we could have also reduced the diameter problem to matching by using
the reduction from shortest paths to matching. However the reduction used in Theorem E.3 is simpler as we
don’t need to compute any new graphs.

F Omitted Details from Section 6

Our results generally follow from bounding the pseudo-dimension of the loss function and applying standard
uniform convergence for PAC learning.
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Definition F.1 (pseudo-dimension). Let F be a class of functions f : X — R. Let S = {x1,22,...,2s} C X
We say that that S is shattered by F if there exist real numbers r1,...,7rs so that for all 8" C S, there is a
function f € F such that f(x;) < r; if and only if x; € S" for all i € [s]. The pseudo-dimension of F is the
largest s such that there exists an S C X with |S| = s that is shattered by F.

For a class of loss functions with bounded range and pseudo-dimension, the following lemma provides a
PAC learning guarantee.

Lemma F.1 (uniform convergence; e.g., [ABB99]). Let D be a distribution over a domain X and F be a
class of functions f : X — [0, H| with pseudo-dimension dg. Consider s i.i.d. samples x1,xa,...,2s from
D. There is a universal constant co, such that for any € > 0 and p € (0,1), if s > ¢g (%)2 (dr +1n(1/9)),
then we have

1 S
=D f(@) ~Eeepf(x)| <€
i=1
for all f € F with probability at least 1 — 9.

F.1 Proof of Theorem 6.1

To prove Theorem 6.1 Let fy ,(c) = £1(h,c) for h € H. The following lemma provides a bound on the
pseudo-dimension of the family 71 = {f1 »(c) : h € H}.

Lemma F.2 ([DIL"21]). The pseudo-dimension of Fi is bounded above by O(dlogd).
Now we are ready to prove our learnability result Theorem 6.1.

Proof of Theorem 6.1. Given s samples c1,ca - -, cs, the algorithm performs empirical risk minimization on
the loss /(h) = i1 IIh*(ci) — h||1. The algorithm runs in polynomial time by the efficient optimization
assumption.

Moreover, since H C R? and H has bounded range, we have that any function in F; is bounded by dM.
Therefore, the sample complexity and error bound follows from Lemma F.1 and Lemma F.2. O]

F.2 Proof of Theorem 6.2

Proof of Theorem 6.2. Similar to the ¢; learnability theorem, the algorithm simply finds the empirical min-
imizer of /() = i 1 Ih*(¢i) — hlloo. The algorithm runs in polynomial time by the efficient optimization
assumption.

Let foo,n(c) = Loo(h,c) for h € H. It now suffices to bound the pseudo-dimension of the family Foo =
{fso,n(c) : h € H} and then apply the uniform convergence lemma (Lemma F.1). Now observe that the
pseudo-dimension of Fo, can be in turn bounded by the VC dimension of axis-aligned hyperrectangles in
R, which is known to be 2d [MRT18]. O

F.3 Details on Learnability Via Arithmetic Complexity

Suppose we have any loss function L(h,G) € R which represents how well a hint vector performs on some
input G. For notational simplicity, we define A as the class of functions in h composed with L:

A:={Loh:heH}

We also assume that the range of L is equal to [0, H] and that all graphs G can be represented as a feature
vector in R™.
Again, we aim to learn the best function h € H which minimizes the following objective:

E [L(h, G)]. (3)

c~D
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Towards this end, we let h* be such the optimal h € H. We also assume that for each instance G and each
h € H, Loh(G) can be computed in time T(m,d). For example, suppose graphs drawn from D possess edge
features in R? for some d and our family # is parameterized by a single vector § € R¢ and represents linear
functions which report the dot product of each edge feature with 6. Then it is clear that T'(m, d) is a (small)
polynomial in the relevant parameters.

The result of this section is to bound the pseudo-dimension of A. After obtaining a bound, we can readily
apply Lemma F.1 as we did in the proof of Theorem 6.1 in Section 6.1.

Theorem F.3 (Learnability via computational complexity). Suppose that any a € A takes T'(m,d) time to
compute given any graph H drawn from D. Then the pseudo-dimension of A is O(poly(T(m,d)).

To prove Theorem F.3, we first relate the pseudo-dimension to the VC dimension of a related class of
threshold functions. This relationship has been fruitful in obtaining learning bounds in a variety of works
such as [LFKF18, ISZ21].

Lemma F.4 (Pseudo-dimension to VC dimension, Lemma 10 in [LFKF18]). For any a € A, let B, be the
indicator function of the region on or below the graph of a, i.e., By(x,y) = sgn(a(xz) — y). The pseudo-
dimension of A is equivalent to the VC-dimension of the subgraph class By = {B, | a € A}.

The following theorem then relates the VC dimension of a given function class to its computational
complexity, i.e., the complexity of computing a function in the class in terms of the number of operations
needed.

Lemma F.5 (Theorem 8.14 in [ABB99]). Let w : R* x R? — {0, 1}, determining the class
W={z—wd,z):0ecR}.

Suppose that any w can be computed by an algorithm that takes as input the pair (,r) € R* x R? and
returns w(0,x) after no more than r of the following operations:

e arithmetic operations +, —, X, and / on real numbers,
e jumps conditioned on >,>, <, <, =, and = comparisons of real numbers, and
e output 0,1,

then the VC dimension of W is O(a*r? 4+ r?aloga).

Combining the previous results allows us prove Theorem F.3. At a high level, we are instantiating
Lemma F.5 with the complexity of computing any function in the function class A.
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