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Abstract
Histograms, i.e., piece-wise constant approxima-
tions, are a popular tool used to represent data dis-
tributions. Traditionally, the difference between
the histogram and the underlying distribution (i.e.,
the approximation error) is measured using the
Lp norm, which sums the differences between the
two functions over all items in the domain. Al-
though useful in many applications, the drawback
of this error measure is that it treats approxima-
tion errors of all items in the same way, irrespec-
tive of whether the mass of an item is important
for the downstream application that uses the ap-
proximation. As a result, even relatively simple
distributions cannot be approximated by succinct
histograms without incurring large error.

In this paper, we address this issue by adapting
the definition of approximation so that only the er-
rors of the items that belong to the support of the
distribution are considered. Under this definition,
we develop efficient 1-pass and 2-pass streaming
algorithms that compute near-optimal histograms
in sub-linear space. We also present lower bounds
on the space complexity of this problem. Surpris-
ingly, under this notion of error, there is an expo-
nential gap in the space complexity of 1-pass and
2-pass streaming algorithms. Finally, we demon-
strate the utility of our algorithms on a collection
of real and synthetic data sets.

1. Introduction
The exponential growth of massive data sets over the recent
years necessitated the development of methods for comput-
ing succinct summaries of data. Such summaries should
accurately preserve the desired data properties, while being
succinct enough to be stored or communicated efficiently.
A popular approach to representing data succinctly is to
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compute their histograms. For a data set whose elements
come from the universe [n] = {1 . . . n}, a k-histogram ap-
proximation is a piece-wise constant function defined over
[n] consisting of k pieces (see Section 2 for a formal defini-
tion). Thanks to its compact representation (which requires
storing only O(k) numbers), such histograms are often used
to approximate the distribution of data attributes, and have
applications to a variety of tasks such as approximate query
processing, data visualization and density estimation.

Traditionally, the problem of finding a good histogram ap-
proximation to a given data set is formalized as follows.
The algorithm is given an empirical distribution P over [n],
i.e., a sequence p1 . . . pn ≥ 0 such that

∑
i pi = 1. The

goal is to find a k-histogram f that minimizes the approxi-
mation error ‖P − f‖, where ‖ · ‖ is some norm (typically
`1 or `2). Multiple exact and approximate algorithms for
computing such histograms given input P are known (Cor-
mode et al., 2012). The problem has been also studied
extensively in settings where the distribution P is given
implicitly. In particular, there has been a significant body
of work in the streaming setting, where the algorithm has
limited storage, and is allowed only one (or a small number
of) passes over the data. Two streaming models have been
considered: (i) the time-series model, where the probabil-
ities p1, p2, . . . , pn are given explicitly (Guha et al., 2001;
2004; Guha, 2005; Buragohain et al., 2007; Halim et al.,
2009; Terzi & Tsaparas, 2006), or (ii) the turnstile model,
where the algorithm is given a sequence of data elements
i ∈ [n], and each pi is defined implicitly as the fraction of
times i occurs in the input sequences (Gilbert et al., 2001;
2002; Guha et al., 2002; Muthukrishnan et al., 2005; Cor-
mode et al., 2006; Hegde et al., 2016). Other implicit input
models, e.g., allowing the algorithm to sample elements
from the distribution P , has been studied as well, see e.g.,
(Indyk et al., 2012; Chan et al., 2014b;a; Acharya et al.,
2015), or a recent survey (Canonne, 2020). The aforemen-
tioned streaming results typically offer multiplicative error
guarantees, while the sampling algorithms offer an additive
error guarantee.

Although useful, the histogram approximation problem as
formulated above suffers from a fundamental issue, which is
that the approximation error is measured over all elements i
in [n], regardless of whether the density of i is important for
the downstream application that uses the estimation. This
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Figure 1. Optimal support-aware (blue) and support-oblivious (red)
3-piece histograms on sparse data (black points). The support-
aware histogram achieves zero support-aware error while the
support-oblivious histogram only gives a non-trivial approximation
on a single data point.

means that even very simple distributions cannot be approx-
imated by k-histograms with sublinear values of k without
incurring essentially the maximum possible error. As an
example, consider a distribution that is uniform over all even
items i ∈ [n]. Such a distribution can be approximated by
a 1-histogram over even numbers with 0 error, but any ap-
proximation by an o(n)-histogram over the whole domain
[n] incurs error of 1 − o(1), i.e., the maximum possible
(Note that such error can be achieved by approximating all
probabilities by 0). See Figure 1 for another example of this
phenomenon.

In this paper, we propose to address this issue by making
the following small but crucial modification to the definition
of the problem: instead of measuring the approximating
error over the whole domain [n], we only measure it over
the support of the distribution P . That is, for a given the
distribution P over the domain [n], the goal is to compute a
k-histogram f over [n] that (approximately) minimizes the
error (see Section 2 for a detailed definition):

errP (f) = ‖(P − f)supp(P )‖s (1)

In the rest of the paper we will focus on the case s = 1. We
will refer to the error definition of Equation 1 as support-
aware L1 error, and to histograms minimizing such error as
support-aware histograms. By contrast, we will refer to the
classic notion of measuring error over the entire domain as
support-oblivious error.

The definition of support-aware error clearly avoids the
simple example mentioned earlier. As shown in Section 6,
it also improves the quality of histogram approximation
for real data. Thus, in this paper we focus on developing
efficient streaming algorithms for approximately computing
best support-aware histograms.

1.1. Our results

In this paper we initiate the study of low-space streaming
algorithms for support-aware histograms. Our main contri-
butions are as follows. In all cases we consider randomized
streaming algorithms with a constant probability of error,
that operate in the so-called strict turnstile model. That is,
the input stream can contain insertions as well as deletions
of elements i ∈ [n], as long as no element is deleted more
often than inserted. For the multiset S of the end of the
stream (after accounting for all insertions and deletions), the
distribution P is defined by setting pi = mi/m, where mi

is the number of occurrences of i in S, and m =
∑
imi,

where we assume that m > 0. We use Hk to denote the set
of all k-histograms over [n].

• We start from an observation that any streaming algo-
rithm that simply detects whether P can be approxi-
mated by a single line with zero error, i.e., whether
minf∈H1 errP (f) = 0, requires Ω(n) bits of space,
even if the algorithm is allowed a constant number of
passes. This stands in contrast to the aforementioned
support-oblivious streaming algorithms which provide
multiplicative error guarantees. Because of this lim-
itation, we focus on additive error guarantees in the
reminder of this paper.

• We present two streaming algorithms that compute
support-aware histograms with additive error guaran-
tees. That is, the algorithms compute histograms f
such that errP (f) ≤ minf∗∈Hk errP (f∗) + ε, for a
parameter ε > 0. The first algorithm performs a single
pass and uses

√
n · log(n) · k/ε3 · polylog(k log(n/ε))

space, while the second algorithm performs two passes
and uses log2(n) · k/ε3 · polylog(k, ε−1) space. We
note that the reported histogram f might have more
than k pieces, but the number of pieces in f does not
exceed the space bound of the algorithm, i.e., the two
algorithms have bi-criterion approximation guarantees.

• We complement these results by a lower bound show-
ing that any single pass algorithm reporting a histogram
f such that errP (f) ≤ minf∗∈Hk errP (f∗) + ε must
use Ω(

√
n) bits of space, even when k = 2 and the

algorithm is allowed to report a histogram with up to
o(
√
n) pieces. This shows that the space bound of our

2-pass algorithm cannot be achieved in a single pass.

On the empirical side, we analyze the performance of our
one-pass and two-pass streaming algorithms on several real-
world datasets, demonstrating the practical application of
support-aware histograms. In particular, both of our algo-
rithms achieve much lower (up to 3x) support-aware error
than natural baselines, for the same amount of allocated
space.
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1.2. Related work

As we mention in the introduction, streaming and sampling
algorithms for histogram estimation have been studied ex-
tensively. In addition to the works listed earlier, the survey
(Cormode et al., 2012), in particular section 3.7.1 “His-
tograms Over Streaming Data”, provides a good (if some-
what dated) overview of the field. The vast majority of past
work was focused on support-oblivious histograms. How-
ever, the following three papers are motivated by similar
considerations as this paper, even though their technical
development is quite different.

• (Muthukrishnan et al., 2005) considered streaming al-
gorithms for general “workloads”, where for each data
item i the algorithm is given a weight wi and the goal
is to minimize

∑
i(pi−fi)2wi. Unfortunately, their al-

gorithms required storing essentially the whole weight
vector w1 . . . wn, which required linear in n space (un-
less the weight vectors can be compressed losslessly
into smaller space). Our formulation can be viewed
as a special case of their definition where the weight
vector w is the characteristic vector of the support of
P . Since the support of P defined implicitly by the
input stream, there is no need to specify it or store
it explicitly, circumventing the lower bounds for the
general weights.

• (Batu & Canonne, 2017; Diakonikolas et al., 2018)
considered sampling algorithms for detecting whether
the input distribution is uniform over its support, which
essentially corresponds to checking whether it can be
approximated with a 1-histogram. In their formulation,
the optimal 1-histogram f was the minimizer of ‖(p−
fS)‖1, over all histograms f and sets S ⊂ [n], where
fS is a vector of dimension n such that (fS)i = fi
if i ∈ S and (fS)i = 0 if i /∈ S. Unfortunately,
this definition is difficult to adopt in the streaming
model, as storing the set S requires linear space in
general. Therefore, in our definition we essentially let
S = supp(P ) (note that S ⊂ supp(P ) without loss of
generality).

• (Du et al., 2021) considered density estimators with
respect to the error measure as in Equation 1, and used
them in the context of learning-augmented streaming
algorithms. However, they represented the density
function using neural networks, not histograms. (Our
paper was motivated in part by the goal of replacing
neural networks with more computationally tractable
density estimators that can be computed efficiently in
the streaming model.)

2. Preliminaries
Setting: empirical distribution of a turnstile stream.
As the input, we get a stream of insertions and deletions
of elements in [n] := {1, . . . , n}, such that at any point in
the stream, every item has been inserted at least as many
times as it has been deleted (i.e., its count is non-negative).
Let mi ≥ 0 denote the count of i ∈ [n] at the end of the
stream, and let m =

∑n
i=1mi be the total count. The em-

pirical distribution P = (p1, . . . , pn) of the stream is given
by pi = mi/m. Let supp(P ) = {i : pi > 0} denote the
support of P . For simplicity, we assume that the length
of the input stream is polynomial in n, which in particular
implies that each mi can be represented using O(log n) bits.

Goal: support-aware histogram approximation. Our
goal is to approximate P by a histogram with few pieces.
A k-piece histogram is a function f : [n] → [0, 1] with
i1 ≤ . . . ≤ ik−1 ∈ [n] and γ1, . . . , γk ∈ [0, 1], such that,
denoting i0 = 0 and ik = n, we have

f(i) = γj ∀ j ∈ [k] and i ∈ {ij−1 + 1, . . . , ij}.

In words, the delimiter indices i1 ≤ . . . ≤ ik−1 partition [n]
into k pieces, and the histogram approximates each piece
j ∈ [k] with the fixed value γj . The support-aware L1 error
of approximating P by f is given, as in eq. (1), by

errP (f) =
∑

i∈supp(P )

|pi − f(i)|.

Let Hk be the family of all k-histograms over [n]. Given
an input error parameter ε ∈ [0, 1] and number of pieces
k, our goal is to find an approximately optimal histogram
approximation for P , namely a histogram f such that

errP (f) ≤ inf
f∗∈Hk

errP (f∗) + ε.

In general, we allow a bicriteria approximation guarantee,
which means that the output histogram f is allowed to have
k′ ≥ k pieces, with k′ being as close to k as possible.

Sampling One of the subroutines that our streaming al-
gorithms use is L0 sampling, which returns an item i se-
lected uniformly at random from supp(P ), together with
the value of pi. To accomplish the first task we use the one-
pass streaming algorithm of (Jowhari et al., 2011) which
returns one such samples with probability 1 − δ using
O(log2 n log(1/δ)) space.

3. Lower bound for multiplicative
approximation

In this section we provide a simple lower bound showing
that any streaming algorithm that computes a support-aware
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histogram with multiplicative error guarantees must use a
linear amount of space, even when k = 1 (i.e., the histogram
is just a line) and even if the algorithm is allowed a constant
number of passes. In fact, the lower bound holds even if
the goal is to determine whether the support-aware error is
equal to 0 or not.
Theorem 3.1. Any streaming algorithm (in the insertions-
only model, randomized with a constant probability of error)
that determines whether minf∈H1 errP (f) = 0 requires
Ω(n) bits of space, even if the algorithm is allowed to use
O(1) passes over the data.

Proof. The proof follows via a reduction from Set Disjoint-
ness. Recall that Set Disjointness is a communication com-
plexity problems involving two parties, Alice and Bob. The
inputs of both parties are n-length bit vectors, denoted as
a1 . . . an and b1 . . . bn, respectively. The goal of the prob-
lem is for both parties to determine whether there exists
i ∈ [n] such that ai = bi = 1. It is known that this task
requires that Alice and Bob exchange Ω(n) bits (Kalyana-
sundaram & Schintger, 1992).

The reduction is as follows. For simplicity we consider one-
pass algorithms; generalization to O(1) passes is immediate.
Suppose there exists an S-space streaming algorithm A as
in the theorem statement. Then we can use it to solve Set
Disjointness in S space as follows. First, Alice creates a
stream S consisting of all elements i such that ai = 1. The
stream is input to A, and its state is transmitted to Bob.
Then, Bob creates a stream S′ consisting of elements j such
that bj = 1, which is input to the algorithm A. Let P be the
distribution induced by the concatenation of streams S and
S′. It can be seen that its non-zero coordinates are all equal
(and thus the support-aware error of a 1-histogram is 0) if
and only if the sets defined by vectors a and b are disjoint.
This implies that S must be at least linear in n.

4. One-Pass Algorithm
In this section we prove nearly matching upper and lower
bounds for the space usage of one-pass streaming algorithm
for support-aware histogram approximation, with additive
error. The space usage is proportional to

√
n, where n is the

domain size. In the next section we show that by allowing
an additional pass, the dependence on n can be improved
exponentially, to polylog(n).

We begin by presenting the one-pass algorithm. It uses
an algorithm for L1 heavy hitters computation over the
stream (Cormode & Muthukrishnan, 2005), defined as fol-
lows.
Fact 4.1 (L1-heavy hitters). Let ` ≥ 1 be an integer and
ε ∈ (0, 1). There is a one-pass streaming algorithm in
the turnstile model that uses O(ε−1` log n) words of space,
and returns Z ⊂ [n], such that |Z| = O(`), and every

Algorithm 1 One-Pass Algorithm
Input: stream S, parameters k, ε
Before the pass on the stream:

1: s← O(
√
n · log(n) · k/ε3) · polylog(k log(n/ε))

2: Draw s uniform i.i.d. samples from [n], with
replacement. Denote the set of samples S.

During the pass on the stream:
1: Run the L1 heavy hitter procedure from Fact 4.1, with
` =
√
n/ε2, and let Z be the output.

2: Concurrently, maintain the exact counts of the elements
in S.

After the pass on the stream:
1: Approximate each element in i ∈ Z with its own

histogram piece, with value zi (notation from Fact 4.1).
2: Use dynamic programming (see (Cormode et al.,

2012)) to compute the best k-piece histogram for the
elements in S \ Z.

i ∈ [n] such that pi ≥ 1/` (i.e., i is an (1/`)-heavy hitter)
is included in Z. In addition, for every i ∈ Z, it outputs
zi ∈ [0, 1] such that |zi − pi| ≤ ε/`.

The L1 heavy hitters are elements on which the histogram
approximation could accrue large error individually. Our
one-pass algorithm computes them to ensure each one is ap-
proximated with high precision, and uses uniform sampling
to approximate the non-heavy elements in the support. The
algorithm is specified in Algorithm 1, and its guarantees are
summarized in the next theorem, whose proof appears in
Appendix A.

Theorem 4.2. Algorithm 1 uses s = O(
√
n · log(n) ·k/ε3) ·

polylog(k log(n/ε)) space, and outputs a histogram f with
s pieces such that errP (f) ≤ minf∗∈Hk errP (f∗) + ε.

Remark. We remark that if we are given any upper bound n′

on the support size (i.e., such that supp(P ) ≤ n′), then the√
n term in Theorem 4.2 can be improved to

√
n′, by using

L0 sampling (Jowhari et al., 2011) instead of the uniform
samples in Algorithm 1 (with a logarthmic blowup).

Lower bound. The next theorem that the
√
n term is nec-

essary for one-pass algorithms, even for histograms with
k = 2 pieces. Its proof is given in Appendix B.

Theorem 4.3. Let ε > 0 be a sufficiently small constant.
Any one-pass streaming algorithm that outputs a histogram
f such that errP (f) ≤ minf∗∈H2

errP (f∗)+ε, where f is
allowed to have as many asO(

√
n) pieces, must use Ω(

√
n)

space.

We emphasize that the space lower bound in the above theo-
rem holds even when the output histogram f is allowed to



Streaming Algorithms for Support-Aware Histograms

use as many asO(
√
n) pieces, while only having to approxi-

mately match the performance of the best 2-piece histogram
f∗. Therefore the lower bound holds not only for proper
histogram approximation (in which f would be restricted
to using only 2 pieces), but also to the bicriteria guarantee
of the upper bound in Theorem 4.2, thus complementing it
directly up to low-order poly(k, ε−1, log n) factors.

5. Two-Pass Algorithm
While

√
n space complexity is necessary and sufficient for

streaming algorithms that take one pass over the data, given
a second pass over the data, a polylogarthmic dependence
on n suffices.

Hierarchical Heavy Hitters Our two-pass algorithm
uses prior work on hierarchical heavy hitters (Cormode
et al., 2008). For the purposes of the algorithm, hierarchi-
cal heavy hitters are defined over a full binary tree with
leaves [n] (for simplicity, assume n is a power of two) s.t.
the subtree rooted at the ith node at height ` has leaves
[i · 2` + 1, (i+ 1) · 2`] for ` ∈ [0, lg n] and i ∈ [0, n/2`− 1].

For a node h in this tree, let T (h) denote the subtree rooted
at h and let D(h) denote the set of leaves in T (h), cor-
responding to the set of domain elements covered by h.
For a given heaviness threshold φ, hierarchical heavy hit-
ters are defined in a bottom up fashion. For a node h, let
V (h) ⊆ T (h) be the set of nodes in the subtree rooted at h
(not including h) that are hierarchical heavy hitters. Then,
h is itself a hierarchical heavy hitter if the domain elements
D(h) \

(
∪v∈V (h)D(v)

)
have mass exceeding φ (e.g., the

elements contained in h are heavy even after removing all
the elements from h’s heavy descendants).

We will use the following additional notation. Let S(h) =
D(h) \

(
∪v∈V (h)D(v)

)
be the set of domain elements that

count towards whether h is a hierarchical heavy hitter. Let
l(h) and r(h) denote the left and right children of h, re-
spectively. We will refer to hierarchical heavy hitters which
are located at the leaves of the tree to be singleton heavy
hitters (corresponding to the normal single-element notion
of heavy hitters).

Theorem 5.1. There is a 2-pass streaming algorithm with
constant failure probability that uses O(k log2(n)/ε3) ·
polylog(k, ε−1) space and outputs f ∈ Hck/ε for some
constant c such that errP (f) ≤ minf ′∈Hk errP (f ′) + ε.

In essence, the algorithm calculates hierarchical heavy hit-
ters in the first pass in order to produce a partitioning of
the domain into a small number of singleton heavy hitters
and contiguous intervals s.t. each of the intervals has mass
at most ε/2k. In the second pass, the algorithm exactly
estimates each of the heavy hitters and approximates each
interval by a sample median. As none of the intervals are

Algorithm 2 Two-Pass Algorithm
Input: stream S, parameters k, ε
First pass:

1: T ← Hierarchical Heavy Hitters of S with heaviness
threshold ε/2k using full binary tree over [n] hierarchy
via (Cormode et al., 2008), Section 5.2

2: L← ∅ {Set of disjoint, maximal contiguous intervals
with less than ε/2k mass}

3: H ← ∅ {Set of singleton elements of [n] with at least
ε/2k mass}

4: for h ∈ T do
5: if |S(h)| = 1 then
6: H ← H ∪ {S(h)}
7: else
8: for each maximal contiguous interval

[a, b] ∈ S(l(h)) do
9: L← L ∪ {[a, b]}

10: end for
11: for each maximal contiguous interval

[a′, b′] ∈ S(r(h)) do
12: L← L ∪ {[a′, b′]}
13: end for
14: end if
15: L′ ← all maximal contiguous intervals of [n] not

covered by H ∪ L
16: L← L ∪ L′
17: end for
Second pass:

1: Exactly count the frequency of each element in H
2: For each interval in L, use the algorithm of (Jowhari

et al., 2011) to take O(ε−2 log(k/ε)) i.i.d. samples
selected uniformly at random from the support,
together with their masses, and calculate the median of
the sample masses

3: Output histogram approximation where each element
in H is approximated by its true mass, and each
element in an interval in L is approximated by the
approximate median of its interval

too heavy, this median approximation suffices to produce
an approximation almost as good as the optimal k-piece
histogram.

In what follows we assume that the hierarchical heavy hitter
algorithm (Cormode et al., 2008) succeeded, which occurs
with constant failure probability. Furthermore, a set of items
is called heavy if its total mass is at least ε/2k; it is called
light otherwise.

Lemma 5.2. |H| ≤
⌈

2k
ε

⌉
Proof. As no element belongs to multiple hierarchical heavy
hitters, there can be at most 2k/ε hierarchical heavy hitters,
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of which the elements of H are a subset.

Lemma 5.3. |L| = O
(
k
ε

)
Proof. By the same reasoning as the previous lemma, there
are at most 2k/ε non-singleton heavy hitters. Let h be one
such hierarchical heavy hitter. The number of intervals
added to L from h will be the number of maximal con-
tiguous intervals in S(l(h)) and in S(r(h)). Note that the
subtrees T (l(h)) and T (r(h)) are disjoint. Without loss of
generality, consider S(l(h)).

If T (l(h)) \ {h} contains no hierarchical heavy hitters, it
will contain a single maximal contiguous interval of all leaf
nodes in the subtree rooted at l(h). Let u ∈ T (l(h))\{h} be
a hierarchical heavy hitter s.t. there is no other hierarchical
heavy hitter v ∈ T (l(h)) s.t. u ∈ T (v) (i.e. u is not a
descendant of another hierarchical heavy hitter in T (l(h))).
Call such a hierarchical heavy hitter u a “direct descendant”
of l(h). The union of the leaves of the subtrees rooted at
the direct descendants of l(h) are exactly the leaves that are
in the subtree T (l(h)) but not included in S(l(h)) (by the
definition of hierarchical heavy hitters). Therefore, each
direct descendant can add at most one additional maximal
contiguous interval as each direct descendant removes a
single contiguous subinterval, creating at most one new
discontinuity.

Each hierarchical heavy hitter is the direct descendant of
at most one other hierarchical heavy hitter. For the sake of
contradiction, consider distinct hierarchical heavy hitters
u, v, w s.t. u is a direct descendant of both v and w. This
means that u ∈ T (v) and u ∈ T (w) but v /∈ T (w) and
w /∈ T (v). By the binary tree structure of the hierarchy,
this is impossible: for any two subtrees with nonempty
intersection, one subtree must contain the other. Therefore,
for each hierarchical heavy hitter, one maximal contiguous
interval is added for l(h), one for r(h), and one is added
for being a direct descendant of another hierarchical heavy
hitter for a total of at most

⌈
6k
ε

⌉
intervals.

It remains to count the number of elements added to L via
the set L′. By the argument above and Lemma 5.2, there
are O(k/ε) elements/intervals in H ∪ L in step 15 of the
algorithm. Therefore, L′ can have size at most O(k/ε)
as the elements in L ∪ H can only partition [n] into at
most |L|+ |H|+ 1 pieces. So, at the end of the first pass,
|L| = O(k/ε), as required.

Lemma 5.4. Each interval in L has mass less than ε/2k.

Proof. Consider any such non-singleton hierarchical heavy
hitter h. Note that S(l(h)) and S(r(h)) must both have
mass less than ε/2k. If both were heavy, S(h) would be
empty and if, without loss of generality, only l(h) was heavy,
then S(h) = S(r(h)) which must have mass less than ε/2k.

Every interval added to L via a non-singleton heavy hitter
is a subinterval of S(l(h)) or S(r(h)) and thus is light.
The only other intervals added to L are those that were not
included in any hierarchical heavy hitters and thus are also
light.

Lemma 5.5. Let x1 ≤ x2 ≤ . . . ≤ xn be a sorted list of
real numbers in [0, 1], and let β =

∑n
i=1 xi be the total

mass of the xi’s. Let M∗ be the median of the list and let
M̂s be the median of a random sample (w/ replacement)
of size s. Let `(M) =

∑n
i=1 |xi −M | be the `1 error of

approximating the set by M . Then, for ε ∈ [0, 1],

Pr(`(M̂s)− `(M∗) > εβ) ≤ 2e−ε
2s/8.

The proof follows standard techniques and can be found in
Appendix C. We are now ready to prove the main theorem.

Proof of Theorem 5.1. First, we will argue that the algo-
rithm is correct. Using the algorithm of (Cormode et al.,
2008), with constant failure probability, we will correctly
find all hierarchical heavy hitters. By Lemma 5.3, after the
first pass, we will have a partition of the domain [n] into the
sets H and L where each element in H is heavy and each
interval in L is light. In the second pass, as we exactly count
each element in H , our approximation has no error on these
elements.

Assume that the median approximation for each interval in
L is done exactly and call the resulting histogram approxi-
mation f ′. Consider an optimal k-piece histogram f∗ ∈ Hk

and any interval ` ∈ L. Consider the case where f∗ uses
a single piece to cover the interval `. Note that out of all
constant approximations of the interval `, the median mass
of the nonzero elements will minimize the support-aware L1
error. Therefore, limited to the interval `, the approximation
error of f ′ will be at most that of f∗.

Now, consider the case where f∗ uses multiple pieces to
cover `. Note that over any interval, f ′ will have approxi-
mation error no greater than that of the approximation that
always predicts zero mass as the median is the optimal con-
stant approximation. The zero approximation incurs error
equal to the mass of the interval, which we know is at most
ε/2k. Therefore, in this case, f ′ incurs additional error over
f∗ of at most ε/2k. As f∗ has k total pieces, at most k
distinct intervals in L can be covered by multiple pieces of
f∗. Combining the two cases, errP (f ′)− errP (f∗) ≤ ε/2.

It remains to account for the error in approximating the
medians of the intervals in L. By Lemma 5.5, for each
interval, by taking O(ε−2 log(k/ε)) samples, the excess
error on each interval due to sampling is at most ε/2 times
the mass of the interval (even after union bounding over all
O(k/ε) intervals). As the total mass of all intervals is at
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most 1, errP (f)− errP (f ′) ≤ ε/2. In total,

errP (f)− errP (f∗) ≤ ε,

the approximation has error at most ε more than the optimal.

Now, we will consider the space usage of the algorithm.
Finding all ε/2k hierarchical heavy hitters with constant
failure probability requires O(k logn

ε log k
ε ) space (while

not shown here, the dependence on the failure probability
is logarithmic). By Lemmas 5.2 and 5.3, storing H and
L from the first pass takes O(k logn

ε ) space with the log n
factor coming from the bits needed to store the indexes of
the singleton heavy hitters or boundaries of the intervals.

In the second pass, exactly counting each singleton heavy
hitter takes O(log n) bits per element in H for total space
of O(k logn

ε ) space. As we need O(ε−2 log(k/ε)) samples
per interval in L, the total number of samples needed will be
O(k log(k/ε)

ε3 ). Using the algorithm of (Jowhari et al., 2011),
we can select a uniform sample from supp(P ) with failure
probability δ in O(log2 n log(1/δ)) space. Setting δ s.t. we
can union bound over all samples, the total space due to sam-
pling is O

(
k log2(n) log(k/ε) log(k/ε3 log(k/ε))

ε3

)
, completing

the analysis.

6. Experiments

DATASET DOMAIN SUPPORT STREAM

TAXI 605K 418K 1.3M
CAIDA 17M 58K 30M

WAR & PEACE 18K 1.9K 53K
MCDONALDS 18K 2.2K 14K

Table 1. Domain size, support size, and stream length of each
dataset used in experiments.
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Figure 2. Comparison of support-aware L1 error with varying
space usage with k = 5 on the Taxi dataset. Shading indicates one
standard deviation over 10 trials.

We analyze the performance of our one-pass and two-pass
streaming algorithms on a variety of real-world datasets,
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Figure 3. Comparison of support-aware L1 error with varying
space usage with k = 5 on the CAIDA dataset. Shading indi-
cates one standard deviation over 10 trials.
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Figure 4. Comparison of support-aware L1 error with varying
space usage with k = 5 on the War & Peace dataset. Shading
indicates one standard deviation over 10 trials.

demonstrating the practical application of support-aware
histograms.

Datasets We compare histogram algorithms on four
datasets. The Taxi dataset (NYC Taxi and Limousine Com-
mission, 2021) contains pickup times of yellow cabs in New
York City in the month of January 2021. Stream elements
come from (day of week, hour, minute, second) tuples with
frequencies corresponding to the number of yellow cab pick-
ups occurring at a given time throughout the month. The
domain is in temporal order starting with midnight on Mon-
day morning.

The CAIDA dataset (CAIDA, 2016) contains internet traffic
data from a Tier1 ISP between Chicago and Seattle in 2016.
Stream elements are the three most significant bytes of the
destination IP addresses.

The War & Peace dataset (Tolstoy, 1869) contains 3-prefixes
of all words in War and Peace by Leo Tolstoy. Stream ele-
ments are three letter strings with frequencies corresponding
to the number of times the strings start words in the novel.
The domain is in lexicographic order.
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Figure 5. Comparison of support-aware L1 error with varying
space usage with k = 5 on the McDonalds dataset. Shading
indicates one standard deviation over 10 trials.

The McDonalds dataset (POI factory) contains the locations
of McDonalds restaurants in the United States and Canada.
Stream elements are the latitudes of the restaurants, rounded
to the nearest 0.01.

The domain size, support size, and stream length of each
dataset is displayed in Table 1.

Baselines and Implementation We compare our one-
pass and two-pass algorithms against two simple baselines.
For given parameters s, k, both baselines split the domain
into k equal-sized intervals. For each interval, the Fixed
(support) baseline takes s/k L0 samples from the stream
constrained to that interval and uses the median mass of
those samples to approximate the interval. The Fixed (do-
main) baseline does the same but takes s/k samples from
the domain elements constrained to the interval rather than
L0 sampling which only will sample non-zero domain ele-
ments. Hence, for sparse data, the Fixed (domain) baselines
may often approximate intervals to have zero mass. The
Fixed (support) and Fixed (domain) baselines are natural
algorithms that optimize for support-aware L1 error and
support-oblivious L1 error, respectively.

We compare these baselines to our one-pass and two-pass
algorithms (Algorithm 1 and Algorithm 2). The one-pass
algorithm uses s/2 space to compute heavy hitters with ap-
proximate counts via the Space Saving algorithm (Metwally
et al., 2005). The rest of the s/2 space is used for L0 sam-
ples that form the set S on which we will compute the best
k-piece histogram. Areas of the domain in between pieces
of this histogram (as its endpoints are L0 samples, there are
some parts of the domain not covered) are approximated by
the median mass of all of the samples.

For the two-pass algorithm, as all of the streams in our ex-
periments are insertion-only, we use the space-saving based
implementation of hierarchical heavy hitters (Mitzenmacher
et al., 2012). In the first pass, the heaviness threshold is set
to n lg(n)

s , and in the second pass, the L0 samples allowed

by the budget s are evenly distributed over all light intervals.

All of the baselines and algorithms involve storing sampled
elements from the stream along with their masses. The
parameter s is varied to compare how the number of sam-
ples affects the performance of the algorithms (as shown in
the x-axis of the figures). The k parameter determines the
number of pieces used by the baselines and by the one-pass
algorithm (after removing heavy hitters). We set k = 5 in
the experiments in this section and display the same figures
with k = 10 in Appendix E. In Appendix D, we experiment
with baselines which scale k with the space budget to dis-
ambiguate the performance of our algorithms from the fact
that they are improper and use more than k pieces. Each
algorithm is run 10 times for each parameter setting. All
figures display the mean support-aware L1 error along with
one standard deviation shown in shading.

Results We start by just comparing the baselines. For
all but the CAIDA dataset (in which neither baseline gets
non-trivial error), Fixed (support) significantly outperforms
Fixed (domain) across space usage. This is not surprising as
Fixed (support) is optimized for support-aware error while
Fixed (domain) is not. Still, these results show on real
datasets that the sparsity of the support makes support-aware
error a meaningfully different error metric to the classic
support-oblivious notion of error. In particular, in these
datasets, succinct histograms give better approximations for
the non-zero elements rather than for the entire domain.

Compared to these baselines, our one-pass and two-pass al-
gorithms achieve significantly smaller error, even with space
usage in the hundreds (this is true for both the smaller War
& Peace and McDonalds datasets as well as the large-scale
Taxi and CAIDA datasets). As space usage increases, the
algorithms tend to produce better approximations, beating
the baselines by up to 3x on the CAIDA and War & Peace
datasets.

Intriguingly, on the CAIDA and War & Peace datasets, the
one-pass algorithm outperforms the two-pass algorithm
though the two-pass algorithm has significantly smaller
space complexity as indicated by our theoretical results.
These datasets contain many heavy hitters which contribute
significantly to the error of the two-pass algorithm (or in-
deed of any histogram with few pieces). While both the
one-pass and two-pass algorithms compute heavy hitters
from the stream and separately approximate them, the one-
pass algorithm will store s/2 heavy hitters, while due to the
higher heaviness threshold in the two-pass algorithm, only a
fraction of that space will be used on singleton heavy hitters.
The two-pass algorithm will use the remaining space to fit
medians to the intervals defined by the non-singleton hierar-
chical heavy hitters, allowing it to outperform the one-pass
algorithm on the other datasets which have fewer outliers.
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A. Proof of one-pass algorithm
In this section we prove Theorem 4.2. We recall that the algorithm (Algorithm 1) identifies the L1 heavy hitters and closely
approximates them with their own histogram pieces, while approximating the rest of the elements using random sampling.
Most of the proof is dedicated to dealing with the latter elements (the non-heavy hitters, whose mass is bounded by≈ 1/

√
n).

It will therefore be convenient to encompass this part of the proof in the following auxiliary theorem.

Theorem A.1 (bounded masses). Let α ∈ (0, 1) be constant. Suppose we are promised that pi ≤ ε2/nα for all i ∈ [n].
Then, there is a 1-pass streaming algorithm that uses Õ

(
n1−α · k · log(n/ε)

)
space, and outputs f ∈ Hk such that

errP (f) ≤ minf∗∈Hk errP (f∗) + ε.

A.1. Proof of Theorem 4.2

We first show how to obtain Theorem 4.2 from Theorem A.1. Algorithm 1 finds L1 heavy hitters whose mass is at least
ε2/
√
n. More precisely, by Fact 4.1, it uses O(

√
n/ε3) space to find a subset Z ⊂ [n] of size at most O(

√
n/ε2), such that

every i ∈ [n] with pi ≥ ε2/
√
n belongs to Z. Furthermore, for each such i it also returns zi such that |zi − pi| ≤ ε3/

√
n.

Algorithm 1 allots each i ∈ Z its own histogram piece whose value is zi, and thus accrues error of at most ε3/
√
n on

each i ∈ Z, hence a total error of at most |Z| · ε3/
√
n ≤ ε on all the elements in Z. The remaining elements [n] \ Z

have masses bounded by ε2/
√
n, and can be approximated by Theorem A.1 with α = 1/2, accruing an additional total

error of ε of those elements. Theorem 4.2 follows by scaling ε by a constant. As for the space usage of Algorithm 1,
Fact 4.1 uses O(

√
n log(n)/ε3) space, and exactly counting the masses of the samples in S takes O(|S|) space, for a total

of O(
√
n log(n)/ε3 + |S|) = O(ε−3 · k ·

√
n log(n) · polylog(k log(n/ε)) space.

A.2. Proof of Theorem A.1

We now prove Theorem A.1, thus completing the proof of Theorem 4.2. The algorithm described in the theorem is as follows.
Before observing the stream, we draw s = O

(
n1−α · k · log(n/ε)

)
uniform i.i.d. samples from [n] (with replacement).

Denote the sequence of samples by S. We use our pass over the stream to count the exact mass pi of every i in S.

The space usage of the algorithm is clearly O(s). The remainder of the proof will show that it achieves the guarantee of
Theorem A.1, albeit with error O(ε ·k log(n/ε)) instead of ε. Therefore, to get the requisite error guarantee, we scale ε down
by k log(n/epsilon), bringing the total space usage to O

(
n1−α · k · (log(n/ε) + log (k log(n/ε)))

)
= Õ(ε · k log(n/ε)),

as stated in the theorem.

In order to choose our output f in the end of the pass on the stream, we need some more notation. Let h ∈ Hk be
a histogram. Recall it is defined by i1 ≤ . . . ≤ ii−1 ∈ [n] and γ1, . . . , γk ∈ [0, 1], with the convention i0 = 0 and
ik = n. We split the items in each piece in h into exponential intervals according to the masses. For j = 1, . . . , k and
z = blog1+ε(m)c, . . . , dlog1+ε(n

α/ε2)e, define:

I
(h)
j,z = {ij−1 + 1, . . . , ij} ∩ {i : pi ∈

(
( 1

1+ε )
z+1, ( 1

1+ε )
z
]
},

and
S

(h)
j,z = S ∩ I(h)

j,z .

Now define our cost estimate for h according to our samples S,

estS(h) :=
k∑
j=1

∑
z

n

s
· |S(h)

j,z | ·
∣∣∣γj − ( 1

1+ε )
z
∣∣∣ .

As a small remark, note that S here is treated as a sequence or multiset, so if the same element comes up twice in the sample,
it is counted twice toward |S(h)

j,z |.

Finally, for Γ > 0, let H [Γ]
k denote the subset of k-histograms such that each of their values γj is at most Γ, and such that

each of their values γj is an integer multiple of ε/n. We will show that the histogram f ∈ H [ε2/nα]
k that minimizes the

estimated error estS(f) is an approximately optimal solution to the original problem (i.e., it also minimizes the true error
errP (·) up to an additive error of at most ε), and can be found by dynamic programming.
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We proceed to proving correctness, i.e., the approximate optimality of the returned histogram. The idea is that the random
sample estimates the size of every sufficiently large I(h)

j,z , while the smaller ones do not contribute much error anyway. Using
those size estimates, and the fact that the histogram error on all points in a given interval is roughly the same, we can get a
good estimate for its true cost.

More formally, fix h ∈ H [ε2/nα]
k . As above, h defines I(h)

j,z , and and together with the sample it also defines S(h)
j,z . Note that

the contribution of an interval I(h)
j,z to the true error errP (h) is

∑
i∈I(h)j,z

|pi − γj |, while its contribution to the estimated

error estS(h) is n
s · |S

(h)
j,z | ·

∣∣∣( 1
1+ε )

z − γj
∣∣∣. To argue about the relation between those quantities, we classify the intervals

I
(h)
j,z into “heavy” and “light” ones, where an interval is heavy if |I(h)

j,z | ≥ 10nα, and light otherwise. Let I(h)
H denote the set

of heavy intervals, and I(h)
L the light ones.

For a heavy interval, we can show that its contributions to the true and estimated errors are both roughly the same, with
probability high enough for a union bound over all candidate solutions.

Lemma A.2 (heavy intervals). If |I(h)
j,z | ≥ 10nα, then with probability at least 1− (ε/n)O(k),∣∣∣∣∣∣∣

∑
i∈I(h)j,z

|pi − γj | −
n

s
· |S(h)

j,z | ·
∣∣∣( 1

1+ε )
z − γj

∣∣∣
∣∣∣∣∣∣∣ ≤ ε2 + ε

∑
i∈I(h)j,z

pi.

Proof. Since |I(h)
j,z | ≥ 10nα, by the Chernoff bound, our s = O(n1−α · k log(n/ε) samples suffice to have ||I(h)

j,z | −
n
s |S

(h)
j,z || ≤ nα with probability 1− (ε/n)O(k). Furthermore, since for every i ∈ I(h)

j,z we have pi ∈
[
( 1

1+ε )
z+1, ( 1

1+ε )
z
)

,
then

|pi − ( 1
1+ε )

z| ≤ |( 1
1+ε )

z − ( 1
1+ε )

z+1| = (1− 1
1+ε )(

1
1+ε )

z ≤ (1− 1
1+ε )(1 + ε)pi = ε · pi,

and therefore,
|pi − γj | = |pi − ( 1

1+ε )
z| ± |( 1

1+ε )
z − γj | = |( 1

1+ε )
z − γj | ± ε · pi.

Together, ∑
i∈I(h)j,z

|pi − γj | =
∑
i∈I(h)j,z

(
|( 1

1+ε )
z − γj | ± ε · pi

)
= |I(h)

j,z | · |( 1
1+ε )

z − γj | ± ε
∑
i∈I(h)j,z

pi

=
(
n
s |S

(h)
j,z | ± n

α
)
· |( 1

1+ε )
z − γj | ± ε

∑
i∈I(h)j,z

pi.

As a result, the quantity from the lemma statement that we are trying to upper-bound is at most

nα · |( 1
1+ε )

z − γj |+ ε
∑
i∈I(h)j,z

pi.

For the first term, we recall that γj ≤ ε2/nα and ( 1
1+ε )

z ≤ ε2/nα, thus |( 1
1+ε )

z − γj | ≤ ε2/nα and the term is at most
ε2.

This implies the following corollary, that bounds the difference between the true and estimated errors, as long as they are
measured only on the heavy intervals.

Corollary A.3. With probability at least 0.999, for all candidate solutions h ∈ H [ε2/nα]
k simultaneously, we have∣∣∣∣∣∣∣

∑
I
(h)
j,z ∈I

(h)
H

∑
i∈I(h)j,z

|pi − γj | −
∑

I
(h)
j,z ∈I

(h)
H

∑
i∈I(h)j,z

n

s
· |S(h)

j,z | ·
∣∣∣( 1

1+ε )
z − γj

∣∣∣
∣∣∣∣∣∣∣ ≤ O(ε · k log(n/ε)).
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Proof. Recall that H [ε2/nα]
k is the set of k-histograms with values γj which are multiple integers of ε/n in the range

[0, ε2/nα]. Thus,
∣∣∣H [ε2/nα]

k

∣∣∣ =
(
n
k

)
· (nε )k ≤ (n/ε)2k. So in Lemma A.2 we can take a union bound over all heavy intervals

induced by all h ∈ H [ε2/nα]
k . As a result, the absolute difference between the two terms in the statement of the corollary is

upper-bounded by
ε2|I(h)

H |+ ε
∑

I
(h)
j,z ∈I

(h)
H

∑
i∈I(h)j,z

pi.

The first term is at most O(εk log(n/ε)) since the number of intervals is O(ε−1k log(n/ε)). For the second term, note that
the sum is over all i that reside in heavy intervals, and we can upper-bound it by the sum over all items, ε

∑n
i=1 pi = ε.

Next, light intervals. Their total true contribution is small, just by being light. Their total estimated contribution is also
small, with more modest probability. Recall that I(h)

L denotes the set of light intervals.

Lemma A.4 (light intervals). Fix any single h ∈ H [ε2/nα]
k . With probability at least 0.999,

∑
I
(h)
j,z ∈I

(h)
L

∣∣∣∣∣∣∣
∑
i∈I(h)j,z

|pi − γj | −
n

s
· |S(h)

j,z | ·
∣∣∣( 1

1+ε )
z − γj

∣∣∣
∣∣∣∣∣∣∣ ≤ O(ε · k log(n/ε)).

Proof. Since a light interval I(h)
j,z ∈ I

(h)
L satisfies |I(h)

j,z | ≤ 10nα, and since |pi − γj | ≤ ε2/nα (regardless of the lightness
of the interval), then ∑

I
(h)
j,z ∈I

(h)
L

∑
i∈I(h)j,z

|pi − γj | ≤ 10ε2 · |I(h)
L |.

Furthermore, since E[ns |S
(h)
j,z |] = |I(h)

j,z | ≤ 10nα and (deterministically)
∣∣∣( 1

1+ε )
z − γj

∣∣∣ ≤ ε2/nα,

E

 ∑
I
(h)
j,z ∈I

(h)
L

n

s
· |S(h)

j,z | ·
∣∣∣( 1

1+ε )
z − γj

∣∣∣
 ≤ 10ε2 · |I(h)

L |.

By Markov’s inequality, the probability the latter random variable does not exceed 10000ε2 · |I(h)
L | is at least 0.999.

The lemma is implied by noticing that there are at most k log(1+ε)(ε
2/nα) = O(kε−1 log(n/ε)) intervals, so |I(h)

L | ≤
O(kε−1 log(n/ε)).

Now we can prove the theorem with the following two claims.

Claim A.5. With probability at least 0.999, for all candidate solutions h ∈ H [ε2/nα]
k simultaneously, we have

estS(h) ≥ errP (h)−O(ε · k log(n/ε)).

Proof. On one hand,

estS(h) =
∑
I
(h)
j,z

n

s
· |S(h)

j,z | ·
∣∣∣( 1

1+ε )
z − γj

∣∣∣
≥

∑
I
(h)
j,z ∈I

(h)
H

∑
i∈I(h)j,z

n

s
· |S(h)

j,z | ·
∣∣∣( 1

1+ε )
z − γj

∣∣∣ restricting to heavy intervals

≥
∑

I
(h)
j,z ∈I

(h)
H

∑
i∈I(h)j,z

|pi − γj | −O(ε · k log(n/ε)) Corollary A.3.
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On the other hand,
errP (h) =

∑
I
(h)
j,z ∈I

(h)
H

∑
i∈I(h)j,z

|pi − γj |+
∑

I
(h)
j,z ∈I

(h)
L

∑
i∈I(h)j,z

|pi − γj |,

and the second term (contribution of light intervals) was already upper-bounded by 10ε2|I(h)
L | = O(εk log(n/ε)) in

Lemma A.4, thus
errP (h) ≤

∑
I
(h)
j,z ∈I

(h)
H

∑
i∈I(h)j,z

|pi − γj |+O(εk log(n/ε)),

and the claim follows.

Claim A.6. For the optimal solution h∗ ∈ H [ε2/nα]
k ,

estS(h∗) ≤ errP (h∗) +O(ε · k log(n/ε)).

Proof. We break up the error contribution into heavy and light intervals as usual. Corollary A.3 tells us that the heavy
contribution is the same in the true and estimated errors up to ±O(ε · k log(n/ε)), for every h ∈ H [ε2/nα]

k . Lemma A.4 tells
us that the light contribution is also the same up to ±O(ε · k log(n/ε)) (the difference is that in the light lemma we only
have enough probability to ensure this for any single h ∈ h ∈ H [ε2/nα]

k , so we use it for the optimum h∗). Together we have

|estS(h∗)− errP (h∗)| ≤ O(ε · k log(n/ε)),

which is stronger than the claim.

The two claims together show that returning ĥ ∈ H [ε2/nα]
k that minimizes the estimated error is almost as good as returning

the one that minimizes the true error:

errP (ĥ) ≤ estS(ĥ) +O(ε · k log(n/ε)) Claim A.5

≤ estS(h∗) +O(ε · k log(n/ε)) optimality of ĥ w.r.t. estimated error
≤ errP (h∗) +O(ε · k log(n/ε)) Claim A.6.

So we return a solution with optimal value (in the discretized set of histograms H [ε2/nα]
k ) up to an additive loss of

O(ε · k log(n/ε)). We can scale ε down by O(k log(n/ε)) as mentioned in the beginning of the proof. Finally it remains to
observe that the discretization of H [ε2/nα]

k into integer multiples of ε/n doesn’t matter since we lose only ε/n per i ∈ [n]
compared to non-discretized optimum, so only an additional ε. Theorem A.1 is proven.

B. Proof of one-pass lower bound
In this section we prove Theorem 4.3. For clarity of presentation, we begin by proving the weaker version where the output
histogram f is allowed to use only 2 pieces (Theorem B.1). Afterwards, in Appendix B.1, we will show how to extend the
proof and obtain the same lower bound for f that can use as many as O(

√
n) pieces.

Theorem B.1. Let ε > 0 be a sufficiently small constant. Any one-pass streaming algorithm that outputs a 2-piece histogram
f such that errP (f) ≤ minf∗∈H2 errP (f∗) + ε, must use Ω(

√
n) space.

Proof. The proof is by reduction from the Augmented Indexing problem. We recall that Indexing is a one-way communica-
tion problem where Alice’s input is a bitstring a1, ..., at, Bob’s input is j ∈ [t], Alice sends one message to Bob, and Bob
needs to report aj with probability better than 1/2. In the Augmented Indexing variant, Bob also gets a1, . . . , aj−1 as part
of his input. Both variants are known to require Ω(t) communication. We set t =

√
n.

The reduction Our universe is 1, . . . , 3n where for simplicity n is an integer square. The counts of all items i =
2n + 1, . . . , 3n are always set to 1. We partition 1, ..., 2n into 2

√
n equal-size consecutive intervals of length

√
n, and

denote them as A1, B1, A2, B2, . . . , A√n, B
√
n. We think of the Aj’s as Alice’s cells and of the Bj’s as Bob’s cells.
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Alice’s reduction: Given her input, for every j = 1, . . . ,
√
n, Alice sets all elements in Aj to aj . So, every Aj contains

either no supported elements (if aj = 0) or
√
n mice (if aj = 1). She does it by streaming the appropriate updates into the

streaming algorithm, and then sends the memory state to Bob.

Bob’s reduction: Bob streams into the memory state the following updates:

1. He sets all elements in every A1, ..., Aj−1 to zeros (he knows where the nonzeros are by the Augmented part of
Augmented Indexing).

2. In each B1, . . . , Bj−1, he sets
√
n

j−1 of the elements to have mass
√
n (elephants).

3. In Bj , he sets γ
√
n of the elements to have mass

√
n (elephants), where γ > ε is a small constant.

This concludes the stream. Note that the total count of masses is O(n), the algorithm is guaranteed to return an optimal
2-histogram up to an additive error of εn. Now Bob lets the algorithm find an approximately best 2-histogram. Wlog, the
values of the histogram are either

√
n or 1, since these are the only frequencies in the input. If at least half of the elements in

Aj are given histogram value 1, Bob reports 1, and reports 0 otherwise.

To show the correctness of the communication protocol, first note that the algorithm has to put one piece with value
√
n on

the prefix (in order to cover the elephants in B1, . . . , Bj−1) and another piece with value 1 on the suffix (to cover the mice
in 2n+ 1 . . . , 3n), as otherwise the error is at least ≈ n, which as we will see momentarily is much larger than the optimum
in either case. So the question is where it places the breakpoint between the two pieces.

Consider the case aj = 0. In this case, the optimal solution has zero error: we can cover A1, B1, . . . , Aj , Bj with the√
n-piece, and the rest with the 1-piece. So, the algorithm must move from the

√
n-piece to the 1-piece after Bj (and in

particular Aj needs to be covered by the
√
n-piece), since otherwise, it incurs error ≈ γn on Bj , which is more than εn.

Consider the case aj = 1. In this case, the optimal solution has error ≈ γn: we can cover A1, B1, . . . , Aj−1, Bj−1 with
the
√
n-piece, and the rest with the 1-piece, so that the only error we incur is ≈ γn on Bj . So, the algorithm must move

from the
√
n-piece to the 1-piece before at least half of Aj (and in particular, at least half of Aj needs to be covered by the

1-piece), since otherwise, it incurs error ≈ 1
2n on Aj , and the gap from the optimal error ≈ γn is more than ≈ γn if γ < 1

4 .

So, as long as the algorithm succeeds with probability more than 0.5, the theorem is proven.

B.1. Proof of Theorem 4.3

Proof. The proof is patterned by the above proof of Theorem B.1, with certain modifications to accommodate the much
larger of pieces in the output histogram f .

The reduction Assume that we are given an algorithm that satisfies the guarantees in the theorem statement. Given an
instance of Augmented Indexing over

√
n bits, we will show how to solve the problem via the streaming algorithm on a

stream over domain size n.

Assume for simplicity that n is a perfect square. We will split the domain of the stream into
√
n contiguous chunks of size√

n called S1, . . . , S√n. For some constant b ∈ [0, 1] which we will later define, we will split each chunk Si into b
√
n equal

size subintervals S1
i , . . . , S

b
√
n

i . The first index of each subinterval will be reserved for Bob and the rest will be reserved for
Alice.

Alice’s reduction Alice will go through her
√
n bits of her string x and perform the following stream operations:

• If xi = 0, do nothing.

• If xi = 1, add a
√
n mice to chunk Si for some constant a ∈ [0, 1] in the following way. For each subinterval of Si,

pick a
b

√
n indices other than the first index of the subinterval. Add a singleton element to the stream corresponding to

each of these indices.

The result on the frequency distribution will be that for all of Alice’s bits which equal 1, there will be a
√
n elements with

mass 1/m if m is the total mass of the stream.
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Bob’s reduction Bob has a single index i of interest as well as knowledge of x1, . . . , xi−1. Bob will execute the following
stream updates.

• For j = 1, . . . , i − 1, Bob will use his knowledge of Alice’s bits to delete any elements Alice added in the chunks
S1, . . . Si−1.

• For each subinterval of Si, Bob will add
√
n copies of the first index of the subinterval.

The result on the frequency distribution will be that there will be zero mass on S1, . . . Si−1 and there will be b
√
n elements

with mass
√
n/m in chunk Si.

After running the streaming algorithm, we will get some histogram approximation of the frequency distribution. In order to
use this to solve the indexing problem, we will do the following post-processing step. Let c ∈ [0, 1] be some constant with
c < b and let the first indices of each of the subintervals of Si be refered to as as Bob’s indices.

• If at least c
√
n of Bob’s indices are approximated to have mass at least 1

2
√
n

, then report that xi = 1.

• If at least c
√
n of Bob’s indices are approximated to have mass less than 1

2
√
n

, then report that xi = 0.

Note that the total mass of the stream m = θ(n). We will proceed by cases to show that if the streaming algorithm has the
ε + opt2(S) error guarantee in the theorem statement, then Bob will correctly recover Alice’s ith bit. For now, we will
parameterize the number of pieces the streaming algorithm produces as k

√
n for some constant k.

Case 1: xi = 0. In this case, opt2(S) = 0 as we can simply have the first piece of the histogram predict mass 1√
n

for
chunks S1, . . . , Si and predict mass 1

n for chunks Si+1, . . . , S√n. As Alice and Bob’s elements do not overlap, two pieces
suffice to perfectly approximate the frequency distribution.

Assume that at least c
√
n of Bob’s indices are approximated to have mass less than 1

2
√
n

. we will show that this implies that
ε must be large. In this case, the error incurred by the streaming algorithm will be(

1√
n
− 1

2
√
n

)
c
√
n =

c

2
.

So, if ε < c
2 , then the reduction will correctly identify when xi = 0 as many of Bob’s indices must be predicted to have

large mass.

Case 2: xi = 1. In this case, consider the two piece histogram that simply uses 1 piece and predicts mass 1/n everywhere.
This gives an upper bound on opt2(S) (and for our setting of a, b should actually be optimal).

opt2(S) ≤
(

1√
n
− 1

n

)
b
√
n ≤ b

Assume that at least c
√
n of Bob’s indices are approximated to have mass at least 1

2
√
n

. We will show that this implies ε
must be large. Note that in this case, at least (c− k)

√
n of Bob’s indices must be covered by a histogram piece with height

at least 1
2
√
n

that also covers some other of Bob’s indices (assuming c > k). Thus, there must be (c− k)
√
n · ab of Alice’s

elements which are predicted to have mass at least 1
2
√
n

. So, the error of the streaming algorithm’s approximation is at least(
1

2
√
n
− 1

n

)(a
b

)
(c− k)

√
n =

a(c− k)

2b
− o(1).

As we are guaranteed that the stream error is at most opt2(S) + ε, the reduction will correctly identify xi = 1 as long as

ε <
a(c− k)

2b
− b.

It remains to give reasonable settings for the constants a, b, c, k ∈ [0, 1] under the following constraints
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• a+ b ≤ 1

• a/b ∈ Z

• b > c

• c > k

• ε < min{ c2 ,
a(c−k)

2b − b}

Setting a = 1
2 , b = 1

8 , c = 1
10 , k = 1

40 satisfies all of the conditions. Then, the bound on ε becomes

ε < min{ 1

20
,

1

40
} =

1

40
.

For this parameter regime, any streaming algorithm on domain size n that outputs a histogram approximation with at most√
n/40 pieces with error opt2(S) + ε for ε < 40 can be used to solve augmenting indexing on

√
n bits and thus must use

Ω(
√
n) space.

C. Proof of Lemma 5.5
Proof of Lemma 5.5. Without loss of generality, assume n is even. Let X1, . . . , Xs be random variables s.t. Xi corresponds
to the event that the ith random sample is less than xn/2−δn for some δ ∈ [0, 1/2]. Let S =

∑s
i=1Xi be the number of

samples that are less than xn/2−δn. M̂s ≤ xn/2−δn if and only if S ≥ s/2. By Hoeffding bound,

Pr(M̂s ≤ xn/2−δn) = Pr(S ≥ s/2)

= Pr(S ≥ E[S] + δs) ≤ e−2δ2s.

The same bound holds for bounding the probability that M̂s ≥ xn/2−δn. So, with probability at least 1 − 2e−2δ2s, the
sample median is within δn of the rank of the true median.

Assume that M̂s ∈ [xn/2−δn, xn/2+δn]. Then, the loss of M∗ and M̂s is equivalent for i ∈ [1, n/2− δn] ∪ [n/2 + δn, n]:

n/2−δn∑
i=1

|xi − M̂s|+
n∑

i=n/2+δn

|xi − M̂s|

=

n/2−δn∑
i=1

(M̂s − xi) +
n∑

i=n/2+δn

(xi − M̂s)

=

n/2−δn∑
i=1

(M∗ − xi −M∗ + M̂s)

+
n∑

i=n/2+δn

(xi −M∗ +M∗ − M̂s)

=(n/2− δn)(−M∗ + M̂s +M∗ − M̂s)

+

n/2−δn∑
i=1

(M∗ − xi) +
n∑

i=n/2+δn

(xi −M∗)

=

n/2−δn∑
i=1

|xi −M∗|+
n∑

i=n/2+δn

|xi −M∗|.
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The additional loss of M̂s over M∗ on i ∈ (n/2 − δn, n/2 + δn) is at most the mass of the elements in this range. The
mass of these elements is at most a 2δn

n/2+δn fraction of the total mass. Therefore,

`(M̂s)− `(M∗) ≤
2δn

n/2 + δn
β ≤ 4δβ.

Setting δ = ε/4 completes the proof.

D. Additional Experiments: Varying k with Space
Both of our algorithms are improper–while their guarantees are in terms of k-piece histograms, they in fact use more than
k pieces. While this is standard in histogram approximation, from an empirical standpoint, it is important to understand
whether the gains of our algorithms could be achieved by baselines which simply use more pieces. To that end, we present
the same experiments as in Section 6 but now with the “Fixed” baselines also using k = Space/3 or k = Space/20. Our
algorithms as well as the solid line baselines use k = 5.

For the Taxi dataset, these many-piece fixed algorithms indeed perform very well, but for the CAIDA, War & Peace, and
McDonalds datasets, our algorithms still outperform these baselines (for McDonalds, the baselines match the performance
of our one pass algorithm). The Taxi dataset has no heavy hitters and is thus an easy case for the fixed baselines. On datasets
with heavy hitters or less uniform structure, these baselines do not perform as well as our algorithms.
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Figure 6. Comparison of support-aware L1 error with varying space usage with various k on the Taxi dataset. Shading indicates one
standard deviation over 10 trials.
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Figure 7. Comparison of support-aware L1 error with varying space usage with various k on the CAIDA dataset. Shading indicates one
standard deviation over 10 trials.
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Figure 8. Comparison of support-aware L1 error with varying space usage with various k on the War and Peace dataset. Shading indicates
one standard deviation over 10 trials.
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Figure 9. Comparison of support-aware L1 error with varying space usage with various k on the McDonalds dataset. Shading indicates
one standard deviation over 10 trials.

E. Additional Experiments: k = 10

In this section, we display additional experimental results. In Section 6, we compare our algorithms against several baselines
with k = 5. Here, we present the same experiments with k = 10. There is qualitatively little difference between the
performance of any of the algorithms or baselines with k = 5 compared to k = 10.
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Figure 10. Comparison of support-aware L1 error with varying space usage with k = 5 on the Taxi dataset. Shading indicates one
standard deviation over 10 trials.
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Figure 11. Comparison of support-aware L1 error with varying space usage with k = 5 on the CAIDA dataset. Shading indicates one
standard deviation over 10 trials.
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Figure 12. Comparison of support-aware L1 error with varying space usage with k = 5 on the War and Peace dataset. Shading indicates
one standard deviation over 10 trials.
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Figure 13. Comparison of support-aware L1 error with varying space usage with k = 5 on the McDonalds dataset. Shading indicates one
standard deviation over 10 trials.


