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Abstract

Data-driven algorithms can adapt their internal structure or parameters to inputs from unknown
application-specific distributions, by learning from a training sample of inputs. Several recent works
have applied this approach to problems in numerical linear algebra, obtaining significant empirical gains
in performance. However, no theoretical explanation for their success was known.

In this work we prove generalization bounds for those algorithms, within the PAC-learning frame-
work for data-driven algorithm selection proposed by Gupta and Roughgarden (SICOMP 2017). Our
main results are closely matching upper and lower bounds on the fat shattering dimension of the learning-
based low rank approximation algorithm of Indyk et al. (NeurIPS 2019). Our techniques are general, and
provide generalization bounds for many other recently proposed data-driven algorithms in numerical lin-
ear algebra, covering both sketching-based and multigrid-based methods. This considerably broadens the
class of data-driven algorithms for which a PAC-learning analysis is available.

1 Introduction

Traditionally, algorithms are formally designed to handle a single unknown input. In reality, however,
computational problems are often solved on multiple different yet related inputs over time. It is therefore
natural to tailor the algorithm to the inputs it encounters, and leverage — or learn from — past inputs, in
order to improve performance on future ones.

This paradigm addresses common scenarios in which we need to make design choices about the algo-
rithm, such as setting parameters or selecting algorithmic components. It advocates making those design
choices in an automated way, based on past inputs viewed as a training set, premised to share underlying
similarities with future inputs. Rather than trying to model or gauge these similarities explicitly, the idea is
to let a learning mechanism detect and exploit them implicitly. This is often referred to as self-improving,
data-driven or learning-based algorithm design, and by now has been applied successfully to a host of
computational problems in various domains [ACC+11, GR17, Bal20, MV20].

In particular, this approach has recently become popular in efficient algorithms for computational prob-
lems in linear algebra. Matrix computations are very widely used and are often hard to scale, leading to an
enormous body of work on developing fast approximate algorithms for them. These algorithms often rely
on internal auxiliary matrices, like the sketching matrix in sketch-based methods [Woo14] or the prolonga-
tion matrix in algebraic multigrid methods [BHM00], and the choice of auxiliary matrix is crucial for good
performance. Classically, these auxiliary matrices are chosen either at random (from carefully designed dis-
tributions which are oblivious to the input) or handcrafted via elaborate heuristic methods. However, a recent
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surge of work on learning-based linear algebra shows they can be successfully learned in an automated way
from past inputs [IVY19, ALN20, LLV+20, LGM+20, IWW21].

The empirical success of learning-based algorithms has naturally led to seeking theoretical frameworks
for reasoning about them. [GR17] suggested modeling the problem in terms of statistical learning, and
initiated a PAC-learning theory for algorithm selection. In their formulation, the inputs are drawn indepen-
dently from an unknown distribution D, and the goal is to choose an algorithm from a given class L, so as
to approximately optimize the expected performance on D. One then proves upper bounds on the pseudo-
dimension or the fat shattering dimension of L, which are analogs of the VC-dimension for real-valued
function classes. By classical VC theory, such bounds imply generalization, i.e., that an approximately
optimal algorithm for D can be chosen from a bounded number of samples (proportional to either notion
of dimension). Building on this framework, subsequent works have developed sets of tools for proving
pseudo-dimension bounds for learning-based algorithms for various problems, focusing on combinatorial
optimization and mechanism design [BNVW17, BDSV18, BSV18, BSV20, BDD+21, BPSV21].

However, existing techniques do not yield generalization bounds for the learning-based linear algebraic
algorithms mentioned above, and so far, no generalization bounds were known for them.

Our contribution. We develop a new approach for proving PAC-learning generalization bounds for learning-
based algorithms, which is applicable to linear algebraic problems. For concreteness, we mostly focus on
the learning-based low rank approximation algorithm of [IVY19], called IVY. Operating on input matrices
of order n × n, IVY learns an auxiliary sketching matrix specified by n real parameters. Our main results
is, loosely speaking, that the fat shattering dimension of IVY is Θ̃(n), which yields a similar bound on its
sample complexity.1 The precise bound we prove also depends on the fatness parameter ε, the target low
rank k, and the row-dimension m and sparsity s of the learned sketching matrix; for now, it is instructive to
think of all of them as constants. See Section 2.3 for the full result.

We proceed to show that the tools we develop also lead to pseudo-dimension or fat shattering dimension
bounds for various other learning-based linear algebraic algorithms known in the literature, which in addition
to IVY include the learned low rank approximation algorithms of [ALN20], [LLV+20] and [IWW21], and
the learned regression algorithm of [LGM+20]. These algorithms represent both the sketch-based and the
multigrid-based approaches in numerical linear algebra.

Our work significantly advances the line of research on the statistical foundations of learning-based
algorithms, by extending the PAC-learning framework to a prominent and well-studied area of algorithms
not previously covered by it, through developing a novel set of techniques.

2 Background and Main Results

2.1 Generalization Framework for Learning-Based Algorithms

The following is the PAC-learning framework for algorithm selection, due to [GR17]. Let X be a domain of
inputs for a given computational problem, and let D be a distribution over X . Let L be a class of algorithms
that operate on inputs from X . We identify each algorithm L ∈ L with a function L : X → [0, 1] that
maps the result of running L on x to a loss L(x), where we shift and normalize the loss to be in [0, 1] for
convenience. Let L∗ ∈ L be an optimal algorithm in expectation on D, i.e., L∗ = argminL∈L Ex∼D[L(x)].

We wish to find an algorithm in L that approximately matches the performance of L∗. To this end, we
draw ` samples X̃ = {x1, . . . , x`} from D, and apply a learning procedure that maps X̃ to an algorithm
L ∈ L. We say that L is (ε, δ)-learnable with ` samples if there is a learning procedure that maps X̃ to

1Throughout, we use Õ(f) for O(f · polylog(f)).
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L ∈ L such that
Pr
X̃

[Ex∼D[L(x)] ≤ Ex∼D[L∗(x)] + ε] ≥ 1− δ.

A canonical learning procedure is Empirical Risk Minimization (ERM), which maps X̃ to an algorithm
that minimizes the average loss over the samples, i.e., to argminL∈L

1
`

∑`
i=1 L(xi). We say that L admits

(ε, δ)-uniform convergence with ` samples if

Pr
X̃

[
∀L ∈ L

∣∣∣∣∣1` ∑̀
i=1

L(xi)− Ex∼D[L(x)]

∣∣∣∣∣ ≤ ε
]
≥ 1− δ.

It is straightforward that (ε, δ)-uniform convergence implies (2ε, δ)-learnability with ERM with the same
number of samples. To bound the number of samples, we have the following notions.

Definition 2.1 (pseudo-dimension and fat shattering dimension). Let X = {x1, . . . , xN} ⊂ X . We say that
X is pseudo-shattered by L if there are thresholds r1, . . . , rN ∈ R such that,

∀I ⊂ {1, . . . , N} ∃L ⊂ L s.t. L(xi) > ri ⇔ i ∈ I.

For γ > 0, we say that X is γ-fat shattered by L if there are thresholds r1, . . . , rN ∈ R such that,

∀I ⊂ {1, . . . , N} ∃L ⊂ L s.t. i ∈ I ⇒ L(xi) > ri + γ and i /∈ I ⇒ L(xi) < ri − γ.

The pseudo-dimension of L, denoted pdim(L), is the maximum size of a pseudo-shattered set. The γ-fat
shattering dimension of L, denoted fatdimγ(L), is the maximum size of a γ-fat shattered set.

Note that the pseudo-dimension is an upper bound on the γ-fat shattering dimension for every γ > 0.
Classical results in PAC-learning theory show that these quantities govern the number of samples needed
for (ε, δ)-uniform convergence, and thus for (ε, δ)-learning with ERM.2 Therefore, a typical goal is to prove
upper and lower bounds on them.

2.2 Learning-Based Low Rank Approximation (LRA)

Let A ∈ Rn×d be an input matrix, with n ≥ d. By normalization, we assume throughout the paper that
‖A‖2F = 1. Let [A]k denote the optimal rank-k approximation of A in the Frobenius norm, i.e.,

[A]k = argminA′∈Rn×d of rank k‖A−A′‖2F .

It is well-known that [A]k can be computed using the singular value decomposition (SVD), in time O(nd2).
Since this running time does not scale well for large matrices, a very large body of work has been dedicated
to developing fast approximate LRA algorithms, which output an matrix A′ of rank k that attains error close
to [A]k, see surveys by [Mah11, Woo14, MT20].

SCW. The SCW algorithm for LRA is due to [CW13], building on [Sar06, CW09]. It uses an auxiliary
sketching matrix S ∈ Rm×n, where its row-dimension m is called the sketching dimension, and is chosen to
be slightly larger than k and much smaller than n. The algorithm is specified in Algorithm 1.

In [CW13], S is chosen at random from an data-oblivious distribution as follows. Let s ∈ {1, . . . ,m} be
a sparsity parameter. One chooses s uniformly random entries in each column of S, and chooses the value
of each of them uniformly at random from {1,−1}. The rest of the entries in S are zero. [CW13] show that
given ε > 0, by setting the sketching dimension to m = Õ(k2/ε2), even with sparsity s = 1, SCW returns
A′ of rank k that satisfies ‖A−A′‖2F ≤ (1 + ε)‖A− [A]k‖2F with high probability (over the random choice
of S), while running in time nearly linear in the size of A.

2For example, a standard result is thatO(ε−2 ·(pdim(L)+log(δ−1))) samples suffice for (ε, δ)-uniform convergence, and thus
also for (ε, δ)-learning with ERM. The pseudo-dimension yields somewhat tighter upper bounds for learning than the fat shattering
dimension, while the latter also yields lower bounds. See, for example, Theorems 19.1, 19.2, 19.5 in [AB09].
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Input: A ∈ Rn×d, target rank k, auxiliary matrix S ∈ Rm×n. Output: A′ ∈ Rn×d of rank k.

1: Compute the product SA.
2: If SA is a zero matrix, return the zero matrix of order n× d.
3: Compute the SVD U,Σ, V T of SA.
4: Compute the product AV .
5: Compute and return [AV ]kV

T .

Algorithm 1: The SCW low rank approximation algorithm

IVY. The IVY algorithm due to [IVY19] is a learning-based variant of SCW. The sparsity pattern of S is
chosen similarly to SCW (s non-zero entries per column, chosen uniformly at random) and remains fixed.
However, the values of the non-zero entries in S are now trainable parameters, learned from a training set of
input matrices. In particular, S is chosen by minimizing the empirical loss

∑
A∈Atrain‖A−SCWk(S,A)‖2F ,

where SCWk(S,A) denotes the output matrix of Algorithm 1, using stochastic gradient descent (SGD) on
a training set Atrain ⊂ Rn×d.

To cast IVY in the statistical learning framework from Section 2.1, let A denote the set of possible
input matrices (i.e., all A ∈ Rn×d with ‖A‖2F = 1), and let S denote the set of possible sketching matrices
(i.e., all S ∈ Rm×n with the fixed sparsity pattern specified above). Every S ∈ S gives rise to an LRA
algorithm, whose output rank-k approximation of A is A′ = SCWk(S,A), and whose associated loss
function LSCW

k (S, ·) : A → [0, 1] is given by3

LSCW
k (S,A) = ‖A− SCWk(S,A)‖2F .

Given samples from an unknown distribution D over A, the learning problem is to choose S ∈ S which
has approximately optimal loss in expectation over D. Our objective is to prove generalization bounds
for learning a sketching matrix S ∈ S , or equivalently, for learning the class of loss functions LIVY =
{LSCW

k (S, ·)}S∈S .

2.3 Our Main Results

We prove closely matching upper and lower bounds on the fat shattering dimension of IVY.

Theorem 2.2. For every ε > 0 smaller than a sufficiently small constant, the ε-fat shattering dimension of
IVY, fatdimε(LIVY), satisfies

fatdimε(LIVY) ≤ O(ns · (m+ k log(d/k) + log(1/ε))).

Furthermore, if ε < 1/(2
√
k), then fatdimε(LIVY) ≥ Ω(ns).

These results translate to sample complexity bounds on its uniform convergence and learnability:

Theorem 2.3. Let ε, δ > 0 be smaller than sufficiently small constants. The number of samples needed for
(ε, δ)-uniform convergence for IVY, and thus for (ε, δ)-learning the sketching matrix of IVY with ERM, is

O(ε−2 · (ns · (m+ k log(d/k) + log(1/ε)) + log(1/δ))).

Furthermore, if ε ≤ 1/(256
√
k), then (ε, ε)-uniform convergence for IVY requires Ω(ε−2 · ns/k) samples,

and if ε < 1/(2
√
k), then (ε, δ)-learning IVY with any learning procedure requires Ω(ε−1 + ns) samples.

3It can be shown that the loss never exceeds ‖A‖2F for any A and S, and recalling that we assume that all input matrices are
normalized so that ‖A‖2F = 1, the loss is contained in [0, 1].
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For the sake of intuition, let us comment on typical settings for the various sizes in these results. The
input matrix is of order n × d, where we think of n, d as being arbitrarily large.4 The target rank k can
be thought of as a small integer constant, and the sketching dimension m as only slightly larger (the larger
m is, the slower but more accurate the LRA algorithm would be). Both are generally independent of n, d.
Concretely, the empirical evaluations in [IVY19, IVWW19, IWW21, ALN20, LLV+20] use k up to 40,
and m up to 4k, for matrices with thousands of rows and columns. The sparsity s is often chosen to
be the smallest possible, s = 1, while some have found it beneficial to make it slightly larger, up to 8
[TYUC19, MT20]. The upshot is that the upper and lower bounds in Theorem 2.2 are essentially matching
up to a factor of log(d/ε). Furthermore, both are essentially proportional to ns, which is the number of
non-zero entries in the sketching matrix, i.e., the number of trainable parameters that IVY learns.

Other learning-based algorithms. While we focus on IVY for concreteness, our techniques also yield
bounds for many other learning-based linear algebraic algorithms. See Section 6.

Remark 2.4 (on computational efficiency). Like most prior work on PAC-learning, our results focus on the
sample complexity of the learning problem, rather than the computational efficiency of learning (see, e.g.,
Remark 3.5 in [GR17]). It is currently unknown whether there exist efficient ERM learners for the data-
driven algorithms considered in this work. In particular, while in practice IVY uses SGD to minimize the
empirial loss, it is not known to provably converge to a global minimum. The computational efficiency of
ERM for backpropagation-based algorithms (like IVY) remains a challenging open problem.

Remark 2.5 (on the precision of real number representation). We prove Theorem 2.2 without any restriction
on the numerical precision of real numbers in the computational model, that is, even when they may have
unbounded precision. If one considers only bounded precision models, say where real numbers are repre-
sented by b-bit machine words, then the total number of possible sketching matrices is 2nsb, leading trivially
to a bound of O(nsb) on the pseudo-dimension of IVY. On the other hand, the lower bound in Theorem 2.2
holds even with 1-bit machine words. In summary, both our upper and lower bounds are proven in the most
general computational model.

2.4 Technical Overview

Our starting point is a general framework of [GJ95] for bounding the VC-dimension or the pseudo-dimension.
They showed that if the functions in a class (which in our case are the losses of candidate algorithms) can
be computed by a certain type of algorithm, which we call a GJ algorithm, then the pseudo-dimension of
the function class can be bounded in terms of the running time of that algorithm. We employ a simple yet
crucial refinement of this framework, relying on more refined complexity measures of GJ algorithms than
the running time.

Under this framework, ideally we would have liked to compute the SCW loss with a GJ algorithm which
is efficient in these refined complexity measures, thus obtaining a bound on the pseudo-dimension of IVY.
Unfortunately, it is not clear how to compute the SCW loss at all with a GJ algorithm, since the GJ framework
only allows a narrow set of operations. Nonetheless, we show it can be approximated by a GJ algorithm,
by relying on recent advances in numerical linear algebra, and specifically on “gap-independent” analyses
of power method iterations for LRA, that do not depend on numerical properties of the input matrix (like
eigenvalue gaps) [RST10, HMT11, BDMI14, Woo14, WC15, MM15]. We thus obtain a pseudo-dimension
bound for the approximate loss, which translates to a fat shattering dimension bound for the true SCW
loss, yielding generalization results for IVY, as well as for other learning-based numerical linear algebra
algorithms.

4Recall we assume that d ≤ n by convention. For all conceptual purposes it suffices to consider the square case n = d.
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Proof roadmap. Section 3 presents the [GJ95] framework. In Section 4, as a warm-up, we prove tight
bounds for IVY in the simple case m = k = 1. Section 5 contains the main proof of this paper, establishing
the upper bound from Theorem 2.2. The lower bound is proven in Appendix C, together completing the
proof of Theorem 2.2. Theorem 2.3 follows from Theorem 2.2 using mostly standard arguments, given in
Appendix D.

2.5 Related Work

[IVY19] gave a “safeguarding” technique for IVY, showing it can be easily modified to guarantee that the
learned algorithm never performs worse than the oblivious SCW algorithm on future matrices. The mod-
ification is simply to concatenate an oblivious sketching matrix vertically to the learned sketching matrix.
While this result guarantees that learning does not hurt, it does not show that learning can help, and provides
no generalization guarantees.

[IWW21] prove “consistency” results for their learning-based algorithms, showing that the learned
sketching matrix performs well on the training input matrices from which it was learned. These results
have no bearing on future matrices, and again provide no generalization guarantees.

[BDD+21] recently gave a general technique for proving generalization bounds for learning-based al-
gorithm in the statistical learning framework of Section 2.1, based on piecewise decompositions of dual
function classes. While there are some formal connections between their techniques and ours, their ap-
proach does not yield useful bounds for the linear algebraic algorithms that we study, since these algorithms
do not exhibit a sufficiently simple piecewise dual structure as the technique of [BDD+21] requires. We
discuss this in more detail in Appendix E.

3 The Goldberg-Jerrum Framework

Our upper bounds are based on a general framework due to [GJ95] for bounding the VC-dimension. We
instantiate a refined version of it, which still follows immediately from their proofs. For completeness and
self-containedness, Appendix A reproduces the proof of the variant we state below.

Definition 3.1. A GJ algorithm Γ operates on real-valued inputs, and can perform two types of operations:

• Arithmetic operations of the form v′′ = v � v′, where � ∈ {+,−,×,÷}.

• Conditional statements of the form “if v ≥ 0 ... else ...”.

In both cases, v, v′ are either inputs or values previously computed by the algorithm.

Every intermediate value computed by Γ is a multivariate rational function (i.e., the ratio of two polyno-
mials) of its inputs. The degree of a rational function is the maximum of the degrees of the two polynomials
in its numerator and denominator, when written as a reduced fraction. We now define two complexity
measures of GJ algorithms.

Definition 3.2. The degree of a GJ algorithm is the maximum degree of any rational function it computes
of the inputs. The predicate complexity of a GJ algorithm is the number of distinct rational functions that
appear in its conditional statements.

Theorem 3.3. Using the notation of Section 2.1, suppose that each algorithm L ∈ L is specified by n real
parameters. Suppose that for every x ∈ X and r ∈ R there is a GJ algorithm Γx,r that given L ∈ L, returns
“true” if L(x) > r and “false” otherwise. Suppose Γx,r has degree ∆ and predicate complexity p. Then,
the pseudo-dimension of L is at most O(n log(∆p)).

6



Let us comment on the relation between this statement and the original theorem from [GJ95]. Their
statement is that if Γx,r has running time t then the pseudo-dimension of L is O(nt). They prove it by
implcitly proving Theorem 3.3, as it is not hard to see that if the running time is t then both the degree and
the predicate complexity are at most 2t.

To illustrate why the refinement stated in Theorem 3.3 could be useful, let us first consider the degree.
Consider computing q power method iterations for a matrix M ∈ Rn×n, i.e., computing M qπ with some
initial vector π ∈ Rn. The running time is t = O(n2q), so the pseudo-dimension upper bound we get
based on the running time alone is O(nt) = O(n3q). However, the degree of every entry in M qπ (when
considered as a rational function of the entries of M and π) is just q + 1, and hence Theorem 3.3 yields the
better upper bound O(n log q).

As for the predicate complexity, consider for example a GJ algorithm for choosing the minimum of r
numbers (this operation will be useful for us in derandomizing the power method). The running time is
t = O(r), and this is tight since GJ algorithms adhere to the comparison model, so the pseudo-dimension
upper bound we get based on the running time alone is O(nt) = O(nr). However, the predicate complexity
is
(
r
2

)
, and the degree is just 1, since choosing the minimum among v1, . . . , vr ∈ R involves only the

polynomials vi − vj for every i < j. Hence, Theorem 3.3 yields the better upper bound O(n log r). The
same reasoning applies to sorting r numbers (see Appendix E.1 for an example that uses this operation), and
to other useful subroutines.

Remark 3.4 (oracle access to optimal solution). It is also worth observing that Γx,r has free access to all
information about x — and in particular, to the optimal solution of the computational problem addressed
by L with x as the input— without any computational cost. For example, in LRA, Γx,r has free access
to the exact SVD factorization of the input matrix A. (Note that the difficulty for Γx,r lies in computing
the losses of other than optimal solutions, namely the SCW loss induced by the given sketching matrix S).
Similarly, in a regression problem miny‖Ay − b‖, the input x is the pair A, b, and Γx,r has free access to
the optimal solution y∗ = argminy‖Ay − b‖. These observations are useful in proving bounds for some of
the algorithms we consider in Section 6.

4 Warm-up: The Case m = k = 1

As a warm-up, we consider the simple case where both the target rank k and the sketching dimension is
m are 1. We show an upper bound of O(n) on the pseudo-dimension and a lower bound of Ω(n) on the
ε-fat shattering dimension for every ε ∈ (0, 0.5) (this immediately implies that both are Θ(n)). This case is
particularly simple because the SCW loss admits a closed-form expression, given next (the proof appears in
Appendix B.1). Note that the sketching matrix in this case is just a vector, denoted w ∈ Rn for the rest of
this section, and it is specified by n real parameters.

Fact 4.1. The loss of SCW with input matrix A ∈ Rn×d, sketching vector w ∈ Rn and target rank k = 1
is ‖A− 1

‖ATw‖2AA
TwwTA‖2F .

Theorem 4.2. The pseudo-dimension of IVY in the m = k = 1 case is Θ(n), and the ε-fat shattering
dimension is Θ(n) for every ε ∈ (0, 0.5)

Proof. Since the pseudo-dimension is an upper bound on the fat shattering dimension, it suffices to prove the
upper bound for the former and the lower bound for the latter. For a fixed matrix A and threshold r ∈ R, a
GJ algorithm ΓA,r can evaluate the loss formula from Fact 4.1 on a given w with degree O(1), and compare
the loss to r with predicate complexity 1. Therefore, by Theorem 3.3, the pseudo-dimension is O(n).

For the lower bound, we first argue that if A is a rank-1 matrix, then SCW with sketching vector w
attains zero loss if and only if wTA 6= 0. Indeed, by Fact 4.1, if wTA = 0 then the loss is ‖A‖2F , which

7



is non-zero for a rank-1 matrix. If wTA 6= 0, we write A in SVD form A = σuvT with σ ∈ R, u ∈ Rn,
v ∈ Rd, and ‖u‖ = ‖v‖ = 1, and by plugging this into Fact 4.1, the loss is 0.

Now, consider the set of matrices A1, . . . , An ∈ Rn×d, where Ai is all zeros except for a single 1-entry
in row i, column 1. For every I ⊂ {1, . . . , n}, let wI ∈ Rn be its indicator vector. By the above, SCW with
sketching vector wI attains zero loss on the matrices {Ai : i ∈ I}, and loss ‖A‖2F = 1 on the rest. Therefore
this set of n matrices is ε-fat shattered for every ε ∈ (0, 0.5).

5 Proof of the Upper Bound

In this section we prove the upper bound in Theorem 2.2 on the fat shattering dimension of IVY. We start by
stating a formula for the output rank-k matrix of SCW (Algorithm 1). For a matrix M , we use M † to denote
its Moore-Penrose pseudo-inverse, and recall that we use [M ]k to denote its best rank-k approximation. All
of the proofs omitted from this section are collected in Appendix B.

Lemma 5.1. The output matrix of the SCW algorithm equals [A(SA)†(SA)]k.

5.1 Computing Projection Matrices

Next, we give a GJ algorithm for computing orthogonal projection matrices. Recall that the orthogonal
projection matrix on the row-space of a matrix Z is given by Z†Z.

Lemma 5.2. There is a GJ algorithm that given an input matrix Z with k rows, computes Z†Z. The
algorithm has degree O(k) and predicate complexity at most 2k. Furthermore, if Z is promised to have full
rank k, then the predicate complexity is zero.

Proof. We start by proving the “furthermore” part, supposing Z has full rank k. Since Z has full rank k, by
a known identity for the pseudo-inverse we can write Z†Z = ZT (ZZT )−1Z. We use the matrix inversion
algorithm from [Csa76] (similar/identical algorithms have appeared in other places as well), to invert an
invertible k × k matrix M . Define the following matrices,

B1 = I, Bi = MBi−1 −
tr(MBi−1)

k − 1
· I.

The inverse is then given by,

M−1 =
k

tr(MBk)
·Bk.

Note that each entry of Bi is a polynomial of degree i − 1 in the entries of M , and therefore each entry of
M−1 is a rational function of degree k − 1 in the entries of M . In our case M = ZZT , and the desired
output is ZT (ZZT )−1Z, and therefore it has degreeO(k). This finishes the proof of the “furthermore” part.

We proceed to showing the lemma without the full rank assumption. Suppose M has rank r ≤ k which
could be strictly smaller than k (and r need not be known to the algorithm). If we find a matrix Y ∈ Rr×d
whose rows form a basis for the row-space of M , then we could write the desired projection matrix as
Z†Z = Y †Y = Y T (Y Y T )−1Y , and compute it with a GJ-algorithm of degree O(r) ≤ O(k) in the entries
of Y , as above.

So, it remains to compute such a matrix Y . To this end we use another result from [Csa76]: if M is a
k×k matrix with characteristic polynomial fM (λ) = det(λI−M) =

∑k
i=0 ciλ

k−i, then ci = −1
i tr(MBi),

with Bi defined as above. In particular, the free coefficient ck can be computed by a GJ algorithm of degree
O(k). This yields a GJ algorithm for determining whether a k × k matrix has full rank, since this holds if
and only if ck 6= 0.

8



Now, to compute Y from Z, we can simply go over the rows of Z one by one, tentatively add each row
to our (partial) Y , and keep or remove it depending on whether Y still has full row rank. To check this, we
compute Y Y T (which is a square matrix of order at most r ≤ k) and check whether it has full rank as above.
Overall, Y and therefore the output Y T (Y Y T )−1Y are computed using a GJ algorithm with degree O(k).
Choosing Y involves conditional statements with up to 2k rational functions, which are the free coefficients
of the characteristic polynomials of every subset of the k rows of Z, so the predicate complexity is at most
2k.

We remark that this lemma already yields an upper bound on the pseudo-dimension of IVY in the case
m = k. The full regime m ≥ k is more involved and will occupy the rest of this section.

Corollary 5.3. The pseudo-dimension of IVY with m = k is O(nsk).

Proof. S has m = k rows, hence SA has rank at most k, hence [A(SA)†(SA)]k = A(SA)†(SA). By
Lemma 5.1, the SCW loss is ‖A−A(SA)†(SA)‖2F . By Lemma 5.2, it can be computed with a GJ algorithm
of degree O(k) and predicate complexity 2k. Recalling that the learned sketching matrix in IVY is specified
by ns real parameters, the corollary follows from Theorem 3.3.

5.2 Derandomized Power Method Iterations

For the rest of this section we denote B = A(SA)†(SA) for brevity. Note that B is of order n × d. By
Lemma 5.1 the SCW loss equals ‖A − [B]k‖2F , while Lemma 5.2 shows how to compute B with a GJ
algorithm. Our next goal is to approximately compute [B]k with a GJ algorithm.

To this end we use a result on iterative methods for LRA, due to [MM15], building on ideas from
[RST10, HMT11, WC15, BDMI14, Woo14]. It states that given B, an initial crude approximation for [B]k
can be refined into a good approximation with a small number of powering iterations. The next theorem is
somewhat implicit in [MM15]; see Appendix B.3 for details.

Theorem 5.4 ([MM15]). Suppose we have a matrix P ∈ Rd×k that satisfies

‖B − (BP )(BP )†B‖2F ≤ O(kd) · ‖B − [B]k‖2F . (1)

Then, Z = (BBT )qBP with q = O(ε−1 log(d/ε)) satisfies ‖B − ZZ†B‖2F ≤ (1 + ε) · ‖B − [B]k‖2F .

Normally, P is chosen at random as a matrix of independent gaussians, which satisfies Equation (1) with
high probability. Since GJ algorithms are deterministic, we derandomize this approach using subsets of the
standard basis.

Lemma 5.5. Suppose k < d. For every B ∈ Rn×d, there is a subset of size k of the standard basis in Rd,
such that if we organize its elements into a matrix P ∈ Rd×k, it satisfies Equation (1).

5.3 The Proxy Loss

Let LSCW
k (S,A) denote the loss of SCW with input matrix A, sketching matrix S and target rank k. By

Lemma 5.1, LSCW
k (S,A) = ‖A−A(SA)†(SA)‖2F . We now approximate this quantity with a GJ algorithm.

Formally, given ε > 0, we define a proxy loss L̂k,ε(S,A) as the output of the following GJ algorithm, which
operates on an input S with a fixed A. Recall that d is the column dimension of A.

1. Compute B = A(SA)†(SA) using the GJ algorithm from Lemma 5.2.

2. Let {Pi : i = 1 . . .
(
d
k

)
} be the set of matrices in Rd×k whose columns form all of the possible

k-subsets of the standard basis in Rd.
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3. For every Pi, compute Zi = (BBT )qBPi, where q = O(ε−1 log(d/ε)).

4. Choose Z as the Zi that minimizes ‖B − ZiZ†iB‖2F , using Lemma 5.2 to compute ZiZ
†
i .

5. Compute and return the proxy loss, L̂k,ε(S,A) = ‖A− ZZ†B‖2F .

Given r ∈ R, we can return “true” if L̂k,ε(S,A) > r and “false” otherwise, obtaining a GJ algorithm that
fits the assumptions of Theorem 3.3.

Lemma 5.6. This GJ algorithm has degree ∆ = O(mkε−1 log(d/ε)) and predicate complexity p ≤ 2m ·
2O(k) · (d/k)3k.

Proof. Since SA has m rows, computing (SA)†(SA) with Lemma 5.2 in step 1 has degree O(m) and
predicate complexity 2m. For each Pi, the q powering iterations in step 3 blow up the degree by q. Since
Zi has k columns, computing ZiZ

†
i with (the transposed version of) Lemma 5.2 blows up the degree by

O(k) and the predicate complexity by 2k. Choosing Z in step 4 entails pairwise comparisons between(
d
k

)
values, blowing up the predicate complexity by

((dk)
2

)
≤ e2(ed/k)2k. Step 5 blows up the degree

by only O(1) and does not change the predicate complexity (note that ZZ† has already been computed).
The final check whether L̂k,ε(S,A) > r is one of

(
d
k

)
≤ (ed/k)k polynomials (one per possible value of

Z). Overall, the algorithm has degree O(mkq) = O(mkε−1 log(d/ε)), and predicate complexity at most
2m · 2O(k) · (d/k)3k.

Next we show that the proxy loss approximates the true SCW loss.

Lemma 5.7. For every S,A, it holds that 0 ≤ L̂k,ε(S,A)− LSCW
k (S,A) ≤ ε.

Proof. Given S,A, let B = A(SA)†(SA), and let U ∈ Rn×k a matrix whose columns are the top k left-
singular vectors of B. This means [B]k = UUTB. Therefore, by Lemma 5.1, we have LSCW

k (S,A) =

‖A − UUTB‖2F . Let Z be the matrix computed in step 4 of the GJ algorithm for L̂k,ε(S,A), and recall
we have L̂k,ε(S,A) = ‖A − ZZ†B‖2F . On one hand, since Z has k columns, ZZ†B has rank at most k.
Therefore, the optimality of [B]k = UUTB as a rank-k approximation of B implies,

‖B − UUTB‖2F ≤ ‖B − ZZ†B‖2F . (2)

On the other hand, by Lemma 5.5, some Pi considered in step 2 of the GJ algorithm satisfies Equation (1).
By Theorem 5.4, this implies that its corresponding Zi (computed in step 3) satisfies ‖B − ZiZ†iB‖2F ≤
(1 + ε) · ‖B − UUTB‖2F , and consequently, Z satisfies

‖B − ZZ†B‖2F ≤ (1 + ε) · ‖B − UUTB‖2F . (3)

Since (SA)†(SA) is a projection matrix, we have by the Pythagorean identity,

L̂k,ε(S,A) = ‖A− ZZ†B‖2F
= ‖A− ZZ†A(SA)†(SA)‖2F
= ‖A(SA)†(SA)− ZZ†A(SA)†(SA)‖2F + ‖A(I − (SA)†(SA))‖2F
= ‖B − ZZ†B‖2F + ‖A−B‖2F ,

and similarly, LSCW
k (S,A) = ‖A − UUTB‖2F = ‖B − UUTB‖2F + ‖A − B‖2F . Putting these together,

L̂k,ε(S,A) − LSCW
k (S,A) = ‖B − ZZ†B‖2F − ‖B − UUTB‖2F . From Equations (2) and (3) we now
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get, 0 ≤ L̂(S,A) − LSCW
k (S,A) ≤ ε · ‖B − UUTB‖2F . The lemma follows since both (I − UUT ) and

(SA)†(SA) are projection matrices, implying that

‖(I − UUT )B‖2F ≤ ‖B‖2F = ‖A(SA)†(SA)‖2F ≤ ‖A‖2F ,

and we recall that we assume throughout that ‖A‖2F = 1.

We can now complete the proof of the upper bound in Theorem 2.2. Let us recall notation: Let A be
set possible input matrices to the LRA problem (i.e., all matrices A ∈ Rn×d with ‖A‖2F = 1), and let S be
the set of all possible sketching matrices that IVY can learn (which are all matrices of order m× n with the
fixed sparsity pattern used by SCW and IVY). The class of IVY losses (whose fat shattering dimension we
aim to bound) is LIVY = {LSCW

k (S, ·) : A → [0, 1]}S∈S , and the class of proxy losses is L̂ε = {L̂k,ε(S, ·) :
A → [0, 1]}S∈S .

By Lemma 5.6, given A ∈ A and S ∈ S , the proxy loss L̂k,ε(S,A) can be computed by a GJ algorithm
with degree ∆ = O(mkε−1 log(d/ε)) and predicate complexity p ≤ 2m ·2O(k) · (d/k)3k. Since each S ∈ S
is defined by ns real parameters, Theorem 3.3 yields that

pdim(L̂ε) = O(ns log(∆p)) = O(ns · (m+ k log(d/k) + log(1/ε))). (4)

Let A1, . . . , AN ∈ A be a subset of matrices of size N which is ε-fat shattered by LIVY. Recall that
by Definition 2.1, this means that there are thresholds r1, . . . , rN ∈ R, such that for every I ⊂ {1, . . . , N}
there exists S ∈ S such that LSCW

k (S,Ai) > ri + ε if i ∈ I and LSCW
k (S,Ai) < ri − ε if i /∈ I . By

Lemma 5.7, this implies that L̂k,ε(S,Ai) > ri if and only if i ∈ I . Thus, A1, . . . , AN is pseudo-shattered by
L̂ε, implying thatN ≤ pdim(L̂ε). Since this holds for any subset of sizeN which is ε-fat shattered byLIVY,
we have fatdimε(LIVY) ≤ pdim(L̂ε). The upper bound in Theorem 2.2 now follows from Equation (4).

6 Other Learning-Based Algorithms in Numerical Linear Algebra

Generally, our approach is applicable whenever the loss incurred by a given algorithm (or equivalently, by a
given setting of parameters) on a fixed input can be computed by an efficient GJ algorithm (in the efficiency
measures of Definition 3.2), when given “oracle access” to the optimal solution for that fixed input.5 In this
section, we show that in addition to IVY, our method also yields generalization bounds for various other
data-driven and learning-based algorithms for problems in numerical linear algebra (specifically, LRA and
regression) that have appeared in the literature. The first two algorithms discussed below (Butterfly LRA and
Multi-sketch LRA) are variants of IVY, and the bounds for them essentially follow from Theorem 2.2. For
the other two algorithms (Few-shot LRA and Learned Multigrid) we describe the requisite GJ algorithms
below.

Butterfly learned LRA. [ALN20] suggested a learned LRA algorithm similar to IVY, except that the
learned sparse sketching matrix is replaced by a dense but implicitly-sparse butterfly gadget matrix (a known
and useful gadget that arises in fast Fourier transforms). This gadget induces a sketching matrix S ∈ Rm×n
specified by O(m log n) learned parameters, where each entry is a product of log n of those parameters.
Since they use the IVY loss to learn the matrix, our results give the same upper bound as Theorem 2.2 on
the fat shattering dimension of their algorithm, times log n to account for the initial degree (in the GJ sense
of Definition 3.1) of the entries in S.

5See Remark 3.4 regarding oracle access to the optimal solution. This oracle access was not needed for proving our bounds for
IVY, but t will be needed for two of the algorithms discussed in this section: Few-shot LRA and Learned Multigrid.
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Multi-sketch learned LRA. [LLV+20] propose a more involved learned LRA algorithm, which uses two
learned sketching matrices. Still, they train each of them using the IVY loss, and therefore the upper bound
from Theorem 2.2 holds for their algorithm as well, up to constants.

Few-shot learned LRA. [IWW21] use a different loss than IVY for learned LRA: loss(S,A) = ‖UTk STSU−
I0‖2F , where U is the left-factor in the SVD of A, Uk is its restriction to the top-k columns, and I0 is the
identity of order k concatenated on the right with zero columns to match the number of columns in U . Recall
that in the GJ framework, the GJ algorithm has free “oracle access” to U (see Remark 3.4). Therefore, this
loss can be computed by GJ algorithm of degree 4 and predicate complexity 1, yielding an upper bounded
of O(ns) on its pseudo-dimension by Theorem 3.3.

Learned multigrid regression. [LGM+20] presented a learning-based algorithm for linear regression,
which is based on the well-studied multigrid paradigm for solving numerical problems. The specific al-
gorithm they build on is known as 2-level algebraic multigrid (AMG). It approximates the solution to a
regression problem minx‖Ax− b‖22, where A is a square matrix of order n× n, by iterative improvements
that use a sparse auxiliary matrix P ∈ Rm×n called a prolongation matrix. While there is a large body of
literature on heuristic methods for choosing P , [LGM+20] suggest to instead learn it using a graph neural
network. Similarly to IVY, they keep the sparsity pattern of P fixed, and learn the values of its non-zero
entries as trainable parameters.

Let x(i) denote the approximate solution produced by 2-level AMG in iteration i, starting from some
fixed initial guess x(0). For details of how x(i) is computed in practice, we refer to [LGM+20]. For our
purposes, it suffices to note that there is a closed-form formula for obtaining x(i) from the true optimal
solution x∗, described next. Let s1, s2 ≥ 1 be two fixed (non-learned) integer parameters of the algorithm.
Let L be the lower-triangular part of the input matrix A (including the diagonal). [LGM+20] restrict their
algorithm for input matrices A and prolongation matrices P such that both L and P TAP are invertible. We
then have the identity,

x(i) = x∗ + (I − L−1A)s2 · (I − P (P TAP )−1P TA) · (I − L−1A)s1 · (x(i−1) − x∗). (5)

Let ‖P‖0 denote the number of non-zeros in the fixed sparsity pattern of P , and recall that m is the row-
dimension of P . We show that the pseudo-dimension of 2-level AMG with q iterations isO(‖P‖0 ·q logm),
by describing a GJ algorithm Γ for computing its loss ‖Ax(q) − b‖22. To this end, note that Γ has “oracle
access” to any information about A (see Remark 3.4). In particular, (I − L−1A)s1 , (I − L−1A)s2 and x∗

are all available to it. Furthermore, as shown in the proof of Lemma 5.2, Γ can compute (P TAP )−1 using
degree O(m) and predicate complexity zero. Using Equation (5), it can compute x(i) from x(i−1) while
increasing the degree by only 2 (from multiplying (P TAP )−1 by P on the left and by P T on the right).
Iterating this, Γ can compute x(q) and ‖Ax(q) − b‖22 from the initial guess x(0) using degree O(mq) and
predicate complexity zero. Comparing the loss ‖Ax(q) − b‖22 to a given threshold r increases the predicate
complexity to 1. The upper bound O(‖P‖0 · q logm) now follows from Theorem 3.3.
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A Proof of the Goldberg-Jerrum Framework (Theorem 3.3)

In this section we prove Theorem 3.3, the main theorem of the GJ framework presented in Section 3. The
proof is taken from [GJ95] with slight modifications, and we include it here for completeness.

We start with an intermediate result about polynomial formulas.

Definition A.1. A polynomial formula f : Rn → {True,False} is a DNF formula over boolean predicates
of the form P (x1, . . . , xn) ≥ 0, where P is a polynomial in the real-valued inputs to f .

Theorem A.2. Using the notation of Section 2.1, suppose that each algorithm L ∈ L is specified by n real
parameters. Suppose that for every x ∈ X and r ∈ R there is a polynomial formula fx,r over n variables,
that given L ∈ L checks whether L(x) > r. Suppose further that fx,r has p distinct polynomials in its
predicates, and each them has degree at most ∆. Then, the pseudo-dimension of L is O(n log(∆p)).

Proof. Let x1, . . . , xN be a shattered set of instances, and r1, . . . , rN the corresponding loss thresholds. We
need to show N = O(n log(∆p)).

For every i = 1, . . . , N , let us denote fi = fxi,ri for brevity. Then, for a given L ∈ L, fi checks whether
L(xi) > ri. Thus, x1, . . . , xN being a shattered set means that the family of N -dimensional boolean strings
{f1(L), . . . , fN (L) : L ∈ L} has size 2N .

The truth value of each fi is determined by the signs of p different polynomials in n variables, each of
degree at most ∆. Therefore, a boolean string f1(L), . . . , fN (L) is determined by the signs of at most pN
different polynomials in n variables, each of degree at most ∆. We now use the following classical theorem,

Theorem A.3 ([War68]). Suppose N ≥ n. Then N polynomials in n variables, each of degree at most ∆,
take at most O(N∆/n)n different sign patterns.

In our case, if N ≤ n then the conclusion N = O(n log(∆p)) is trivial, thus we may assume N > n
and hence pN ≥ n. Now by Warren’s theorem, 2N = {f1(L), . . . , fN (L) : L ∈ L} = O(pN∆/n)n, and
by solving for N we get N = O(n log(∆p)) as desired.

Now we can prove Theorem 3.3. We can describe Γx,r by a computation tree, where arithmetic opera-
tions correspond to nodes with one child, conditional statements correspond to nodes with two children, and
leaves correspond to output values. We can transform the tree into a polynomial DNF formula (as defined
in the previous section) that checks whether L(x) > r, by ORing the ANDs of the conditional statements
along each root-to-leaf computation path that ends with a “true” leaf.

Each branching node in the tree (i.e., a node with two children) corresponds to a conditional statement
in Γx,r, which has the form of a rational predicate, meaning it determines whether R ≥ 0 for some rational
function R of the inputs of Γx,r. It can be easily checked that we can replace each such rational predicate
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withO(1) polynomials predicates (that determine whether P ≥ 0 for some polynomial in the inputs of Γx,r)
of degree no larger than that of R. Since Γx,r has predicate complexity p, the obtained formula has at most
O(p) distinct polynomials in its predicates. Since Γx,r has degree ∆, each of these polynomials has degree
at most ∆. Theorem 3.3 now follows from Theorem A.2.

B Omitted Proofs from Sections 4 and 5

B.1 Proof of Fact 4.1

If wTA = 0 then SCW returns a zero matrix, whose loss is ‖A‖2F , and the statement holds. Now assume
wTA 6= 0. We go over the steps of SCW (Algorithm 1):

• Compute the row vector wTA.

• Compute the SVD of wTA. Note that for any row vector zT , its SVD UΣV T is given by U being a
1× 1 matrix whose only entry is 1, Σ being a 1× 1 matrix whose only entry is ‖z‖, and V T being the
row vector 1

‖z‖z
T . So for zT = wTA we have V T = 1

‖ATw‖w
TA.

• Compute [AV ]1, the best rank-1 approximation of AV . But in our case AV equals 1
‖ATw‖AA

Tw,

which is already rank 1, so its best rank-1 approximation is itself, [AV ]1 = 1
‖ATw‖AA

Tw.

• Return [AV ]1V
T , which in our case equals 1

‖ATw‖2AA
TwwTA.

So, the output rank-1 matrix of SCW is 1
‖ATw‖2AA

TwwTA, and its loss is as stated.

B.2 Proof of Lemma 5.1

Write the SVD of A(SA)†(SA) as UΣV T . Note that (SA)†(SA) is the orthogonal projection on the row-
space of SA, in which every vector is a linear combination of the rows of A. Therefore, projecting the
rows of A onto the row-space of SA spans all of the row-space of SA, or in other words, the row-spans
of A(SA)†(SA) and of SA are the same. Consequently, the rows of V T form an orthonormal basis for
the row-space of SA. This means in particular that V V T is the orthogonal projection on the row-space of
SA, thus (SA)†(SA) = V V T , so we can write the matrix from the lemma statement as [A(SA)†(SA)]k =
[AV V T ]k.

We recall that SCW returns the best rank-k approximation of A in the row-space of SA (see [Woo14]),
meaning it returns ZV T where Z is a rank-k matrix that minimizes ‖A−ZV T ‖2F . So, we need to show that

∀ Z of rank k, ‖A− [AV V T ]k‖2F ≤ ‖A− ZV T ‖2F . (6)

We use the following observation.

Claim B.1. [AV V T ]kV V
T = [AV V T ]k.

Proof. Recall thatA(SA)†(SA) = AV V T , thus the SVD ofAV V T isUΣV T , thus [AV V T ]k = UkΣkV
T
k .

Since V T
k V V

T = V T
k (projecting a subset of k rows of V T onto the row-space of V T does not change

anything), we have [AV V T ]kV V
T = UkΣkV

T
k V V

T = UkΣkV
T
k = [AV V T ]k.
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Proceeding with the proof of Lemma 5.1, we now have for every Z of rank k,

‖A− [AV V T ]k‖2F = ‖AV V T − [AV V T ]kV V
T ‖2F + ‖A(I − V V T )− [AV V T ]k(I − V V T )‖2F

= ‖AV V T − [AV V T ]k‖2F + ‖A−AV V T ‖2F
≤ ‖AV V T − ZV T ‖2F + ‖A−AV V T ‖2F
= ‖A− ZV T ‖2F ,

where the first and last equalities are the Pythagorean identity (orthogonally projecting onto and against
V V T ), the second equality is by Claim B.1, and the inequality is by the optimality of [AV V T ]k as a rank-k
approximation of AV V T (since Z has rank k). This proves Equation (6), proving the lemma.

B.3 Proof of Theorem 5.4

In this section we explain how to read the statement of Theorem 5.4 from [MM15]. All section, theorem
and page numbers refer to the arXiv version of their paper.6

The relevant result in [MM15] is the Frobenius-norm analysis of their Algorithm 1 (which they call
“Simultaneous Iteration”), stated in their Theorem 11. As they state in their Section 5.1, for the purpose
of low-rank approximation in the Frobenius norm, it suffices to return Q instead of Z (in the notation of
their Algorithm 1). Thus, steps 4–6 of Algorithm 1 can be skipped. Since (again in the notation of their
Algorithm 1) Q is the result of orthonormalizing the columns of K, we clearly have KK† = QQ† (this is
because MM† is the projection matrix on the column space of any matrix M, and K and Q have the same
column spaces). Since for our purpose we only need the projection matrix QQ† (rather than the orthonormal
basis Q), we can also skip step 3, and simply use the matrix K as the output of their Algorithm 1, while
maintaining the guarantee of their Theorem 11 (with ZZT replaced by KK†).

Next, while their Algorithm 1 chooses the initial matrix Π as a random gaussian matrix, they state in
their Section 5.1 that their analysis (and in particular, their Theorem 11) holds for every initial matrix Π that
satisfies the guarantee of their Lemma 4, which is equivalent to satisfying our Equation (1).

Finally, note that they set the number of iterations in step 1 of their Algorithm 1 to q = O(ε−1 log(d)),
while we set it in Theorem 5.4 to q = O(ε−1 log(d/ε)). This is because in their setting they may assume
w.l.o.g. that ε−1 = poly(d) (see bottom of their page 10), while in our setting this is not the case.

Altogether, the statement of Theorem 5.4 follows.

B.4 Proof of Lemma 5.5

For completeness, we discuss two ways to prove the lemma.

Proof 1. We start by noting that a significantly stronger version of Lemma 5.5 follows from Theorem 1.3 of
[DRVW06]. Slightly rephrasing (and transposing) their theorem, it states that for every matrix B ∈ Rn×d,
there is a distribution (that depends on B) over matrices P ∈ Rd×k whose columns are standard basis
vectors, such that if we let B̃k be the projection of the columns of B onto the columns-space of BP , namely
B̃k = (BP )(BP )†B, then we have

EP ‖B − B̃k‖2F ≤ (k + 1) · ‖B − [B]k‖2F .

In particular, there exists a supported P that satisfies this equation without the expectation, yielding
Lemma 5.5.

6https://arxiv.org/abs/1504.05477v4.
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Remark. Note that this is in fact a quantitatively stronger version of Lemma 5.5, since the O(kd) term in
Equation (1) is replaced here by (k+1), which [DRVW06] furthermore show is the best possible. However,
this improvement does not strengthen the final bounds we obtain in our theorems. This is because the
analysis of the power method (Theorem 5.4) requires the log d term in the number of iterations q even if the
initial approximation (Equation (1)) is up to a factor of (k + 1) instead of O(kd). Technically, this stems
from the analysis in [MM15]: In the equation immediately after their eq. (4) on page 11, the log d term is
needed not just to eliminate d from the numerator, but also to gain a dO(1) term in the denominator.

Proof 2. Since the aforementioned result of [DRVW06] is difficult and stronger than we require, we now
also give a more basic proof of Lemma 5.5, for completeness.

Let B ∈ Rn×d be written in SVD form as B = UΣV T . Let V T
k be the matrix with the top k rows of

V T , and V T
−k the matrix with the remaining rows. We use the following fact from [Woo14], which originates

in [BDMI14] and is also used in [MM15] (see their Lemma 14).

Lemma B.2. Let P ∈ Rd×k be any matrix such that the k × k matrix V T
k P has rank k. Then,

‖B − (BP )(BP )†B‖2F ≤ ‖B − [B]k‖2F ·
(

1 + ‖V T
−kP‖22 · ‖(V T

k P )†‖22
)
.

We will construct a matrix P ∈ Rd×k whose columns are distinct standard basis vectors of Rd. Since
it would thus have orthonomal columns, as does V−k, we would have ‖V T

−kP‖22 ≤ ‖V T
−k‖22 · ‖P‖22 = 1.

Therefore, using Lemma B.2, for P to satisfy Equation (1) and thus prove Lemma 5.5, it suffices to construct
it such that V T

k P has rank k and satisfies ‖(V T
k P )†‖22 ≤ d. This is equivalent to showing that the smallest

of the k singular values of V T
k P is at least 1/

√
d, which is what we do in the rest of the current proof.

We construct P by the following process. Initialize Z1 ∈ Rk×d as Z1 ← V T
k , and a zero matrix

P ∈ Rd×k. For i = 1, . . . , k:

1. Let zi1, . . . , z
i
d denote the columns of Zi.

2. Let ji ← argmaxj∈[d]‖zij‖22.

3. Set column i of P to be eji .

4. Let Πi be the orthogonal projection matrix against span(vj1 , . . . , vji).

5. Zi+1 ← ΠiV
T
k .

Let v1, . . . , vd denote the columns of V T
k . Observe that the columns of V T

k P are vj1 , . . . , vjk .

Claim B.3. For every i = 1, . . . , k we have ‖ziji‖
2
2 ≥ k−i+1

d .

Proof. Let i ∈ [k]. Since V T
k has orthonormal rows, each of its k singular values equals 1, and any best

rank-(i − 1) approximation of it, [V T
k ]i−1, satisfies ‖V T

k − [V T
k ]i−1‖2F = k − (i − 1). Since Πi−1 is a

projection against i − 1 directions, (I − Πi−1)V T
k can be viewed as a rank-(i − 1) approximation of V T

k ,
and therefore

‖Zi‖2F = ‖Πi−1V
T
k ‖2F = ‖V T

k − (I −Πi−1)V T
k ‖2F ≥ ‖V T

k − [V T
k ]i−1‖2F = k − i+ 1.

Hence the average squared-`2 mass of columns in Zi is at least k−i+1
d , and hence the column with maximal

`2-norm — which we recall is defined to be ziji — has squared `2-norm at least k−i+1
d .

Claim B.4. For every i = 1, . . . , k, ziji is spanned by vj1 , . . . , vji .
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Proof. Observe that ziji = Πi−1vji (with the convention that Π0 is the identity). Therefore, ziji = vji −
(I −Πi−1)vji , and the claim follows by noting that I −Πi−1 is the orthogonal projection onto the subspace
spanned by vj1 , . . . , vji−1 .

Claim B.5. z1
j1
, . . . , zkjk are pairwise orthogonal.

Proof. Let i < i′. By Claim B.4 ziji is spanned by vj1 , . . . , vji . At the same time, zi
′
ji′

is a column of
the matrix Zi′ , whose columns have been orthogonally projected against vj1 , . . . , vji′−1

, a set that contains
vj1 , . . . , vji . Thus zi

′
ji′

is orthogonal to ziji .

Claim B.6. Let i ∈ [k]. Then vji can be written uniquely as a linear combination of z1
j1
, . . . , ziji , such that

the coefficient of ziji is 1.

Proof. We have shown in Claim B.5 that z1
j1
, . . . , zkjk are orthogonal and in Claim B.3 that each is non-zero,

so they form a basis of Rk. Thus vji is written uniquely as a linear combination of them. As noted in the
proof of Claim B.4, we have ziji = Πi−1vji = vji−(I−Πi−1)vji , or equivalently vji = ziji +(I−Πi−1)vji .

We recall that (I − Πi−1) is the orthogonal projection onto the subspace W = span(vj1 , . . . , vji−1),
whose dimension is at most i − 1. By Claim B.4, W contains zj1 , . . . , zji−1 . Since zj1 , . . . , zjk form a
basis of Rk, we now get that W is spanned by zj1 , . . . , zji−1 , and cannot contain any zji′ with i′ ≥ i.
In particular, (I − Πi−1)vji is written uniquely as a linear combination of zj1 , . . . , zji−1 . Recalling that
vji = ziji + (I −Πi−1)vji , the claim follows.

We can finally complete the proof of Lemma 5.5. For every i ∈ [k], let qi denote the unit-length vector in
the direction of ziji , i.e., qi = 1

‖ziji‖
ziji . LetQ ∈ Rk×k be the matrix whose columns are q1, . . . , qk. Claim B.6

means that we can write V T
k P (since its columns, we recall, are vj1 , . . . , vjk ) as V T

k P = QR, where R is
an upper triangular matrix, whose diagonal entries are ‖ziji‖ for i = 1, . . . , k. Since Q has orthonormal
columns (from Claim B.5 and the fact that we normalized its columns), this is a QR-decomposition of
V T
k P . Hence, V T

k P and R have the same singular values. The diagonal entries of R are its eigenvalues,
which are also its singular values as all are non-negative. By Claim B.3, each diagonal entry of R is at least
1/
√
d. This implies the same lower bound on the smallest singular value of R and thus of V T

k P , which as
explained earlier, implies Lemma 5.5.

C Proof of the Lower Bound

In this section we prove the lower bound in Theorem 2.2, restated next.

Theorem C.1. For every s ≤ k ≤ m and ε ∈ (0, 1
2
√
k
), the ε-fat shattering dimension of IVY with target

low rank k, sketching dimension m and sparsity s is Ω(ns).

Proof. We may assume w.l.o.g. that m = k, since we can always augment a sketching matrix with k rows
with m− k additional zero rows, without changing the result of SCW.

We start with the special case s = k, where the sketching matrix S is allowed to be fully dense, and
the desired lower bound is Ω(nk). Let A0 be the n × k matrix whose i-th column is ei (the standard basis
vector) for all i = 1 . . . k. For every i ∈ {1 . . . k} and t ∈ {k + 1 . . . n}, Let A(i,t) be given by replacing
the i-th column of A0 with et. Observe that each A(i,t) has rank k, and each of its singular values equals 1.
We will show that the set of matrices Z = {A(i,t) : i = 1 . . . k, t = k + 1 . . . n} is shattered, which would
imply the lower bound since its size is k(n− k) = Ω(nk).

Let Z ′ ⊂ Z. It suffices to exhibit a sketching matrix S ∈ Rk×n (with unbounded sparsity, since s = k)
such that for every A(i,t), the SCW loss of using S for a rank-k approximation of A is 0 if A(i,t) ∈ Z ′,
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and at least 1 otherwise. We set the first k columns of S to be the order-k identity matrix. Then, for every
t = k + 1, . . . , n, let Jt = {i ∈ 1 . . . k : A(i,t) ∈ Z ′}. In the t-th column of S, we put 1’s in rows Jt and 0’s
in the remaining rows.

Fix A(i,t). Recall that SCW returns the best rank-k approximation of A in the row-space of SA(i,t),
which is a k × k matrix.

• Suppose A(i,t) /∈ Z ′. In this case, we argue that the i-th row of SA(i,t) is zero. This implies that the
row-space of SA(i,t) has dimension at most k − 1, so SCW incurs loss at least 1.

Indeed, row i of SA(i,t) equals the sum of rows j of A(i,t) for which S(i, j) = 1. The only non-zero
rows in A(i,t), by construction, are rows {1...k} \ {i} and row t. Since the first k columns of S are
the identity, S(i, j) = 0 for every j ∈ {1...k} \ {i}. Since i /∈ Jt, then by construction of S we have
S(i, t) = 0. Overall, the i-th row of SA(i,t) is zero.

• Suppose A(i,t) ∈ Z ′. In this case, we argue that the row-space of SA(i,t) has dimension k. Since the
ambient row-dimension is also k, this means SCW returns a perfect rank-k approximation, i.e., zero
loss.

Indeed, again, the only non-zero rows of A(i,t) are rows {1...k} \ {i} and row t. But in this case
i ∈ Jt, thus S(i, t) = 1 and thus row i of SA(i,t) equals ei. For every j ∈ {1...k} \ {i}, row j of
SA(i,t) equals either ej + ei (if j ∈ Jt) or just ej (if j /∈ Jt). It is thus clear that the rows of SA(i,t)

span all of Rk.

In conclusion, the SCW loss is 0 on matrices in Z ′ at least 1 on matrices in Z \ Z ′.
Next we extend it to an Ω(ns) lower bound for any s = 1, . . . , k. We assume for simplicity that s is an

integer divisor of k and that k is an integer divisor of ns.
We partition an input matrix A ∈ Rn×k into k/s diagonal blocks of order (ns/k)× s each (everything

outside the diagonal blocks is zero). To construct the shattered set, we first set each diagonal block in A
to A0 ∈ R(ns/k)×s (as defined above), then choose one “critical” block b ∈ {1, . . . , k} and replace its A0

with A(i,t) as defined above, with i ∈ {1, . . . , s} and t ∈ {s + 1, . . . , ns/k}. Denote the resulting matrix
by A(b,i,t). The total size of the shattered set {A(b,i,t)} is k

s · s · (
ns
k − s) = (n − k)s = Ω(ns). The

corresponding sketching matrix, arising from the dense construction above, has block-diagonal structure
with blocks of order s× (ns/k) each, and in particular has at most s nonzeros per column, as needed.

The correctness of the construction follow immediately from the dense case. In more detail, let Z ′′ be
a subset of the shattered set {A(b,i,t)}. Fix A(b,i,t) (not necessarily in Z ′′). The k × k matrix SA(b,i,t) has
block-diagonal structure with blocks of order s × s. Each non-critical block equals the order-s identity,
while the critical block, by the proof of the dense case above, equals the order-s identity if A(b,i,t) ∈ Z ′′

and has rank at most s− 1 otherwise. Therefore, if A(b,i,t) ∈ Z ′′ then SCW with sketching matrix S finds a
zero-loss rank-k approximation of every A(b,i,t) ∈ Z ′′, and incurs loss at least 1 for every A(b,i,t) /∈ Z ′′.

Finally, recall that we need to normalize our matrices to have squared Frobenius norm 1. In the above
construction it is instead k, so we need to divide each entry by 1/

√
k. This means that the loss is zero for

matrices in the shattered set, and is at least 1/
√
k for matrices outside the shattered set. Thus, the set is ε-fat

shattered for every ε ∈ (0, 1
2
√
k
).

D Proof of Theorem 2.3

D.1 Uniform Convergence and ERM Upper Bound

By classical results in learning theory, the fat shattering dimension can be used to obtain an upper bound on
the number of samples needed for uniform convergence and for ERM learning (see for example Theorem
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19.1 in [AB09]), and we could simply plug Theorem 2.2 into these results. However, we can get a sharper
bound by exploiting the proxy loss from Section 5.3, since for the latter we have an upper bound on the
pseudo-dimension, which yields sharper bounds for ERM learning than the fat shattering dimension.

Let `IVY = `IVY(ε, δ) be the number of samples required for (ε, δ)-uniform convergence for the family
IVY losses, LIVY = {LSCW

k (S, ·) : A → [0, 1]}S∈S . Let ˆ̀ = ˆ̀(ε, δ) be the number of samples required
for (ε, δ)-uniform convergence for the family of proxy losses, L̂ε = {L̂k,ε(S, ·) : A → [0, 1]}S∈S . Fix ˆ̀

matrices A1, . . . , Aˆ̀ ∈ A. Lemma 5.7 implies

∀ S ∈ S,

∣∣∣∣∣∣1ˆ̀
ˆ̀∑

i=1

L̂k,ε(S,Ai)−
1

ˆ̀

ˆ̀∑
i=1

LSCW
k (S,Ai)

∣∣∣∣∣∣ ≤ ε
and

∀ S ∈ S,
∣∣∣EA∼D[L̂k,ε(S,A)]− EA∼D[LSCW

k (S,A)]
∣∣∣ ≤ ε.

Let D be a distribution over A. By definition of ˆ̀, with probability at least 1− δ over sampling A1, . . . , Aˆ̀

independently from D, we have

∀ S ∈ S,

∣∣∣∣∣∣1ˆ̀
ˆ̀∑

i=1

L̂k,ε(S,Ai)− EA∼D[L̂k,ε(S,A)]

∣∣∣∣∣∣ ≤ ε,
which combined with the above, implies

∀ S ∈ S,

∣∣∣∣∣∣1ˆ̀
ˆ̀∑

i=1

LSCW
k (S,Ai)− EA∼D[LSCW

k (S,A)]

∣∣∣∣∣∣ ≤ 3ε.

Consequently, `IVY(3ε, δ) ≤ ˆ̀(ε, δ). By classical results in learning theory (see, e.g., Theorem 3.2 in
[GR17]), the sample complexity can be upper bounded using the pseudo-dimension, and in particular,
ˆ̀(ε, δ) = O(ε−2 · (pdim(L̂ε) + log(1/δ))). By Equation (4) in Section 5.3, pdim(L̂ε) = O(ns · (m +
k log(d/k) + log(1/ε))). Putting everything together,

`IVY(3ε, δ) = O(ε−2 · (ns · (m+ k log(d/k) + log(1/ε)) + log(1/δ))).

As a consequence, that many samples suffice for (6ε, δ)-learning IVY with ERM. The upper bound in
Theorem 2.3 follows by scaling ε down by a constant.

D.2 Uniform Convergence Lower Bound

We proceed to the lower bound on the number of samples needed for IVY to admit (ε, ε)-uniform con-
vergence. It relies on some known results about the connection between uniform convergence and the fat
shattering dimension, which we now detail.

We introduce some notation. Let L be a class of functions L : X → [0, 1], and let D be a distribution
over X . For every L ∈ L, denote its expected loss over D by

z(L) := Ex∼D[L(x)].

Given ` i.i.d. samples (x1, . . . , x`) ∼ D`, denote the empirical loss over the samples by

ẑ`(L) :=
1

`

∑̀
i=1

L(xi).
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Suppose L admits (ε, ε)-uniform convergence with ` samples. This can now be written as

Pr
D`

[
sup
L∈L
|ẑ`(L)− z(L)| ≤ ε

]
≥ 1− ε. (7)

Our goal for this section is to prove a lower bound on `. We begin the proof. Equation (7) implies

ED`
[

sup
L∈L
|ẑ`(L)− z(L)|

]
≤ 2ε. (8)

This expectation can be bounded using Rademacher averages. Define the centered class Lc of L as

Lc := {L− z(L) : L ∈ L}.

For the given sample (x1, . . . , x`), define the Rademacher average of Lc as

Rad`(Lc) := Eσ1,...,σ`

[
sup
L′∈Lc

∣∣∣∣∣1` ∑̀
i=1

σiL
′(xi)

∣∣∣∣∣
]

= Eσ1,...,σ`

[
sup
L∈L

∣∣∣∣∣1` ∑̀
i=1

σi (L(xi)− z(L))

∣∣∣∣∣
]
,

where each of σ1, . . . , σ` is independently uniform in {1,−1}. The desymmetrization inequality for Rademacher
processes (see [Kol06]) states that

ED`
[

sup
L∈L
|ẑ`(L)− z(L)|

]
≥ 1

2
ED` [Rad`(Lc)] . (9)

A version of Sudakov’s minorization inequality for Rademacher processes (Equation (26) in [Ste15], based
on Corollary 4.14 in [LT13]) states that

Rad`(Lc) ≥
α1√
`
·
(

ln

(
2 +

α2

Ψ`(Lc)

))−1/2

· sup
γ>0

γ
√

lnN2(γ,L, `), (10)

where α1, α2 > 0 are absolute constants, N2(ε,L, `) is the covering number, and

Ψ`(Lc) := sup
L′∈Lc

√√√√1

`

∑̀
i=1

(L′(xi))2.

We forgo the definition of the covering number, since we only need the standard fact that it can be lower-
bounded in terms of the fat shattering dimension. It is encompassed in the following claim.

Claim D.1. Let γ ∈ [4ε, 1) and δ ∈ (0, 1
100). Suppose L admits (ε, δ)-uniform convergence with ` samples,

and fatdim16γ(L) > 1. Then lnN2(γ,L, `) ≥ 1
8 · fatdim16γ(L).

Proof. Let `′ be the number of samples required for (1
2γ, δ)-learning L (see Section 2.1 for the definition of

(ε, δ)-learning). Theorem 19.5 in [AB09] gives the lower bound `′ ≥ 1
16α(fatdimγ/(2α)(L)−1) for any 0 <

α < 1/4. Setting α = 1/32 and using fatdim16γ(L) > 1 yields `′ ≥ 2 · fatdim16γ(L)−2 ≥ fatdim16γ(L).
Since (ε, δ)-uniform convergence implies (2ε, δ)-learning and thus (1

2γ, δ)-learning (as γ ≥ 4ε), we have
` ≥ `′ ≥ fatdim16γ(L). Now we can apply Lemma 10.5 and Theorem 12.10 from [AB09], which yield
lnN2(γ,L, `) ≥ lnN1(γ,L, `) ≥ 1

8 · fatdim16γ(L).
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Putting together everything so far (i.e., combining Equations (8) to (10) and claim D.1), we get

2ε ≥ 1

2
ED`

[
α1

8
√
`
·
(

ln

(
2 +

α2

Ψ`(Lc)

))−1/2

· sup
γ∈[4ε,1)

γ
√

fatdim16γ(L)

]
,

provided that fatdim16γ(L) > 1 (as needed for Claim D.1).
The derivations so far have been for any L that admits (ε, ε)-uniform convergence with ` samples. Now

we begin specializing the arguments for IVY, that is, for L = LIVY. We choose γ = 1/(64
√
k). Note

that the assumption in Theorem 2.3 is that ε ≤ 1/(256
√
k), ensuring that γ ≥ 4ε. By the lower bound in

Theorem 2.2, fatdim16γ(L) = Ω(ns). Plugging these above, we get

ε ≥ Ω(1) · ED`

√ns

`k
·
(

ln

(
2 +

α2

Ψ`(Lc)

))−1
 . (11)

It remains to bound Ψ`(Lc) from below. We show it is lower-bounded by a constant even for very simple
input distributions for IVY, supported on only two matrices (and indeed, for any distribution such that there
is a loss function L ∈ L with loss 0 on half the distribution mass and loss 1 on the other half). Recall that

Ψ`(Lc) := sup
L′∈Lc

√√√√1

`

∑̀
i=1

(L′(xi))2 = sup
L∈L

√√√√1

`

∑̀
i=1

(L(xi)− z(L))2.

Let e1, . . . , en ∈ Rn be the standard basis in Rn. Let A0, A
′
0, A1, A

′
1 ∈ Rn×d be defined as follows: the first

k columns ofA′0 are e1, . . . , ek, and the rest are zero; the first k columns ofA′1 are ek+1, . . . , e2k, and the rest
are zero; A0 = 1√

k
A′0; and A1 = 1√

k
A′1. Note that ‖A0‖2F = ‖A1‖2F = 1. LetD be the uniform distribution

over {A0, A1}. Let L0 ∈ L be the IVY loss function induced by the sketching matrix S0 ∈ Rk×n whose
rows are eT1 , . . . , e

T
k . (In the notation of the previous sections, L0 = LSCW

k (S0, ·) ∈ LIVY.) It is not hard to
see that L0(A0) = 0 and L0(A1) = 1. In particular, z(L0) = 1

2 . Therefore, for any sample x1, . . . , x` from
D,

Ψ`(Lc) ≥

√√√√1

`

∑̀
i=1

(L0(xi)− z(L0))2 =

√√√√1

`

∑̀
i=1

(
1

2

)2

=
1

2
.

The proof is now easily completed. Plugging the above bound on Ψ`(Lc) into Equation (11) yields ε ≥
Ω(1) · ED`

[√
ns/(`k)

]
. Since n, s, `, k are constants w.r.t. the sample from D`, we can dispense with the

expecation and write ε ≥ Ω(
√
ns/(`k)). Rearranging yields ` ≥ Ω(ε−2ns/k).

D.3 General Learning Lower Bound

The lower bound Ω(ε−1 + ns) on the number of samples needed for (ε, δ)-learning IVY with any learning
procedure follows by plugging the lower bound on the fat shattering dimension from Theorem 2.2 into
Theorem 19.5 in [AB09].

E Connection to Prior Work

In this section we discuss the connection of our techniques to prior techniques for proving statistical gener-
alization bounds for data-driven algorithms, and specifically to [GR17] and [BDD+21]. The goal is to place
our work in the context of related work, and also to explain why previous techniques do not give useful
generalization bounds for the linear algebraic algorithms considered in this paper.
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E.1 Illustrative Example 1: Learning Greedy Heuristics for Knapsack

[GR17] discuss learned heuristics for the Knapsack problem as an illustrative example for their statistical
learning framework. Recall that in the Knapsack problem, the input is n items with values v1, . . . , vn > 0,
respective costs c1, . . . , cn > 0, and a cost limit C > 0. The goal is to return I ⊂ {1, . . . , n} that maximizes
the total value

∑
i∈I vi under the cost constraint

∑
i∈I ci < C. This problem is well-known to be NP-hard.

[GR17] consider the following family of greedy heurstics for Knapcask. Given a parameter ρ ∈ R,
define the rank of item i as vi/c

ρ
i , and let Lρ be the greedy heuristic that adds the highest ranked items to

I as long as the cost limit is not exceeded. They then let ρ be a learnable parameter, and prove that the
pseudo-dimension of the class of heuristics L = {Lρ}ρ∈R is O(log n).

The crux of the proof is the observation that for a given instance, the “loss” (or in this case the utility,
since this is a combinatorial maximization problem) of a solution I is fully determined by the result of the(
n
2

)
comparison vi/c

ρ
i ≥? vj/c

ρ
j , or equivalently ρ ≥? log(vj/vi)/ log(cj/ci). This means that the parameter

space R is partitioned into
(
n
2

)
intervals such that the “loss” (utility) of the given instance is constant on each

interval. The pseudo-dimension can be then bounded by the log of the number of intervals. The duality-
based framework developed by [BDD+21] is a vast generalization of this argument, and recovers the same
bound for Knapsack.

The GJ framework presented in Section 3 recovers it as well, for the same underlying reason. Since
the “loss” (utility) of a given instance is determined by the

(
n
2

)
comparisons ρ ≥? log(vj/vi)/ log(cj/ci),

which are polynomial predicates of degree 1 in the variable ρ, it can be computed by a GJ algorithm with
degree 1 and predicate complexity

(
n
2

)
. The upper bound O(log n) on the pseudo-dimension thus follows

from Theorem 3.3.7

E.2 Illustrative Example 2: IVY in the Case m = k = 1

In order to compare our techniques with the duality-based framework of [BDD+21], it is instructive to
consider the simple case m = k = 1 of IVY. In Section 4, we proved a tight bound of O(n) on the pseudo-
dimension of IVY in this case.

Our proof showed that for a given input matrix A ∈ Rn×d, the loss equals ‖A‖2F if the sketching vector
w ∈ Rn satisfies wTA = 0, and equals 0 otherwise. By the main definition of [BDD+21], this means
that the dual class of losses is (F ,G, d)-piecewise decomposable, where F is the class of constant-valued
functions, G is the class of n-dimensional linear threshold functions, and d is the column-dimension of A
(note that d is the number of functions from G involved in the condition wTA = 0). Denoting the dual
classes of F and G by F∗ and G∗ respectively (see [BDD+21] for the definition of dual classes), we have
pdim(F∗) = 0 and VCdim(G∗) = n + 1. Therefore, the main theorem of [BDD+21] gives a bound of
O(n log n) on the pseudo-dimension of IVY withm = k = 1, which is looser than the tight bound by log n.

We remark that since the condition wTA = 0 is equivalent to ‖wTA‖2 = 0, the dual class is also
(F ,G2, 1)-piecewise decomposable where G2 is a class of quadratic threshold functions in n variables. It
can be checked that VCdim(G∗2) = 1

2(n+ 1)(n+ 2), leading to an even looser bound of O(n2 log n) on the
pseudo-dimension.

E.3 The General Case

Finally, let us point out a formal connection between the GJ framework and the duality framework of
[BDD+21]. The proof of Theorem 3.3 in fact shows that if a class of algorithms admits a GJ algorithm with
degree ∆ and predicate complexity p for computing the loss, then the dual class as defined by [BDD+21] is
(F ,G, p)-piecewise decomposable, where F is the class of constant-valued functions, and G is the class of

7Note that each heuristic Lρ is specified by the single real parameter ρ, so n in the notation of Theorem 3.3 is 1.
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polynomial threshold functions of degree ∆′ = O(∆) in n variables (where n is the number of parameters
that specify an algorithm, as in Theorem 3.3). The VC-dimension of the dual class G∗ can be upper-bounded
by the number of monomials in n variables of degree at most ∆′, which is

(
n+∆′

n

)
.8 Therefore, the main

theorem of [BDD+21] implies an upper bound of O
((

n+∆
n

)
log
((

n+∆
n

)
· p
))

on the pseudo-dimension.
Unfortunately, this is typically much looser than the bound O(n log(∆p)) in Theorem 3.3. On the other
hand, the result of [BDD+21] is much more general, and can handle decomposability beyond constant
functions F and polynomial thresholds G.

Specifically for IVY, the main component in our proof of Theorem 2.2 was a GJ algorithm of degree
∆ = O(mk(d/ε)O(1/ε)) and predicate complexity p ≤ 2m · 2k · (ed/k)3k for computing the proxy loss
(Lemma 5.6). While the main result of [BDD+21] can technically be applied here as described above, the
pseudo-dimension upper bound it gives is super-polynomial in n (as opposed to the linear dependence on n
in Theorem 2.2), so it does not seem to be useful in our setting.

8The VC-dimension of the dual class could in principle be even smaller, if the primal class has a simpler structure than the dual
class. However, in typical scenarios the primal class is less nicely structured than the dual class, which is the motivation for the
work of [BDD+21]. Furthermore, if the primal class is indeed simpler, then there is no reason to go through duality at all.
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