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ABSTRACT  
Massive data center (DC) energy demands lead to water consumption concerns. This study quantifies on-site and off-site DC 
water consumption and its holistic impact on regional water availability. This study proposes a new DC sustainability 
metrics, Water Scarcity Usage Effectiveness (WSUE), that captures the holistic impacts of water consumption on regional 
water availability by considering electricity and water source locations and their associated water scarcity. We examine the 
water consumption of various DC cooling systems by tracking on-site water consumption along with the direct and indirect 
water transfers associated with electricity transmission at the contiguous U.S. balancing authority (BA) level. This study then 
applies the WSUE metric for different DC cooling systems and locations to compare the holistic water stress impact by large 
on-site water consuming systems (e.g., via cooling towers) versus systems with higher electrical consumption and lower on-
site water consumption such as the conventional use of computer room air conditioner (CRAC) units. Results suggest that 
WSUE is strongly dependent on location, and a water-intensive cooling solution could result in a lower WSUE than a 
solution requiring no or less on-site water consumption. The use of the WSUE metric aids in DC siting decisions and DC 
cooling system design from a sustainability point of view. 

INTRODUCTION 

The growth in the size and quantity of data centers (DCs) increases concerns about the sector’s growing energy usage 
and environmental impact. Jones (Jones, 2018) reported that DCs consume more than 200 TWh of electricity annually, which 
accounts for 1% of global electricity demand, and Bashroush and Lawrence (Bashroush and Lawrence, 2020) suggested that 
DCs may consume up to 500 TWh of electricity annually. 

Numerous studies have focused on understanding and reducing DC carbon footprint (Belady, 2010; Qu et al., 2017; 
Marriott and Matthews, 2005; Yang and Agarwal, 2017; de Chalendar et al., 2019; Chen and Wemhoff, 2021a). However, 
carbon emissions are only one factor that contributes to DC environmental sustainability. Hadian and Madani (Hadian and 
Madani, 2015) affirmed that achieving a low carbon footprint is not enough to claim that an energy system is “green” until 
water and land footprints are also considered. Ristic et al. (Ristic et al., 2015) stated that “reporting will have to increase and 
be communicated more widely for a better understanding of not just DC energy efficiency, but their overall environmental 
footprint and sustainability.” 

Evaluating the embodied water consumption from purchased electricity in the U.S. is challenging due to the complexity 
of electricity transmission within interconnected power grids. Nonetheless, carbon emissions and water consumption are both 
embedded in electricity generation. The methods and models of tracking carbon emissions within power grids can also be 
applied to tracing water consumption. Ryan et al. (Ryan et al., 2016) compared models and methods to predict carbon 
emissions from electricity. Siddik et al. (Siddik et al., 2020) concluded that, generally, two types of data-driven attribution 
methods are used: (1) those based on grid infrastructure and (2) those based on geographical boundaries. The authors also 
recognized that methods based on grid infrastructure are difficult to implement because of data limitations. Kodra et al. 
(Kodra et al., 2015) employed an iterative method based on a network approach to track electricity interchanges and 



associated emissions transfers in the U.S. At each time step, each region transmits a portion of its available electricity to other 
regions. The iterations stop when the available electricity of each region diminishes. Following Kodra’s work, Qu et al. (Qu 
et al., 2017) developed the quasi-input-output (QIO) model that improves the accuracy of the iterative method by utilizing 
input-output theory from economics. Chen and Wemhoff (Chen and Wemhoff, 2021a) extended the QIO model by proposing 
an emission factor translation approach that enables emission quantification at the U.S. county level. 

This study applies results from the QIO model (Chen and Wemhoff, 2021b) to examine the impact of DC water usage 
on ecosystems, specifically how DC water consumption affects local and regional water availability. This study therefore 
proposes a Water Scarcity Usage Effectiveness (WSUE) metric that assesses the impacts of DC on-site and indirect water 
usage on regional water availability. This study applies computational models of various DC cooling systems and locations to 
demonstrate the significant variation in water usage effectiveness (WUE) and WSUE values due to regional water availability.  

MATERIALS AND METHODS 

Assessing DC water usage and its associated efficiency are complicated (Belady and Pouchet, 2011). Just as carbon 
emissions are embedded in the electricity that DCs consume (Belady, 2010), DCs consume enormous amount of water 
indirectly through off-site electricity generation processes. To better understand DC water consumption, one must consider 
both “site-based” and “source-based” water consumption. The Green Grid (Belady and Pouchet, 2011) defined the WUE as 
the volume of water in liters consumed on-site annually per kWh of IT load. The WUE is a site-based metric that measures 
the direct water consumed on-site for DC operation: 

WUE =
𝑊𝑠𝑖𝑡𝑒  

𝑃𝐼𝑇  
 1  (1) 

where Wsite is the annual site water consumption, and PIT is the annual IT equipment energy consumption. A variant of WUE 
is WUEsource, which includes water consumed on-site as well as water consumed off-site through the production of energy 
consumed on-site: 

WUEsource =
𝑊𝑠𝑖𝑡𝑒 + 𝑊𝑜𝑓𝑓−𝑠𝑖𝑡𝑒

𝑃𝐼𝑇
  (2) 

where Woff-site is the annual source energy water usage. By its definition, Eqn. (2) can be reformulated as: 
WUEsource =  EWIF ⋅ PUE + WUE 1  (3) 

where EWIF is the energy water intensity factor, which measures the amount of water used to produce the energy consumed 
by the DC; and PUE is power usage effectiveness, which is a widely used DC energy efficiency metric defined as the ratio of 
total DC energy consumption (Ptot) to IT equipment energy consumption (PIT). In Eqn. (3), the product of EWIF and PUE can 
be referred as the “off-site WUE” that focuses on measuring the water consumption in power generation processes. 
Practically, WUE is relatively easy to measure compared to WUEsource (Belady and Pouchet, 2011), and the site-based WUE 
is also more easily reduced than off-site WUE through adjusting on-site operations. On the other hand, WUEsource, which 
provides a more holistic view of the environmental burden of the DC and its IT equipment, is designed for DC decision 
making regarding site selection and planning. 

The site-based metric WUE along with source-based metric WUEsource are principal environmental indicators in the DC 
industry. Shehabi et al. (Shehabi et al., 2016) estimated that over 660 million cubic meters of water was required by U.S. 
DCs’ onsite operations in 2020. Nevertheless, Heslin (Heslin, 2016) reported that water conservation is ranked as a low 
priority among most DC operators. In fact, less than one-third of DC operators measure the water consumption or use the 
WUE metric (Heslin, 2016). Facebook is one of the few businesses who report WUE of their DCs. However, since WUE is a 
relatively new measure compared to PUE, there are currently no industry standards or baselines. Pegus et al. (Pegus et al., 
2016) analyzed the computing load of the Massachusetts Green High-Performance Computing Center (MGHPCC) and its 
impact on multiple DC performance metrics, including WUE. However, only on-site water usage was documented and 
analyzed. The first preliminary DC water footprint accounting was performed by Ristic et al. (Ristic et al., 2015), who 
revealed that their DC water footprint, defined as the summation of direct water footprint (cooling systems) and indirect 
water footprint (energy source), ranges from 1,047 to 151,061 m3/TJ. Their indirect water footprint was calculated using 
nationally averaged EWIF values for each power generation technology weighted with the fraction of regional energy 



generation from that technology. The authors acknowledged the existence of a large uncertainty in its water footprint 
accounting since EWIF varies geographically. In any case, the water transmission embedded in electricity transfers was not 
included in their water footprint calculations. 

Assessing DC water usage and its impacts on water availability requires three steps: 
1. Determine the EWIF for different power generation technologies in various regions and find the DC PUE since off-

site WUE can be obtained once EWIF and PUE are known. Previous studies have proved that water footprint of 
electricity primarily depends on energy source and varies greatly by region (Mekonnen et al., 2015; Peer et al., 
2019). It is worth noting that EWIF should account for the entire life cycle of power generation, so the water 
consumption in upstream electricity production (e.g., fuel extraction, processing, and transportation) should be 
included.  

2. Consider the electricity interregional transmission and its associated water relocation because some electricity 
transfers occur between regions that have completely different power generation portfolios, which significantly 
alters regional EWIF. 

3. Incorporate water scarcity metrics to investigate the impacts of DC water use on water availability. 
Related work (Chen and Wemhoff, 2021a) derives the life cycle EWIF for different locations by following power 

generation from each source in each region’s electricity generation portfolio. The QIO model is used to trace the electricity 
interregional transfers and their associated water relocation, enabling the definition and calculation of the scarce water index 
(SWI) metric that relates water scarcity to electricity consumption. Here, the WSUE metric is defined and calculated using 
SWI, PUE and WUE to analyze the impacts of DC water draws on regional water availability.  

Assessing the Impacts of DC Water Consumption  

The water scarcity footprint (WSF), recommended in ISO 14046 (ISO 14046:2014, 2014), is the metric that quantifies 
the potential environmental impacts related to water. By its definition, regional WSF can be calculated using: 

WSF = Water Consumption[m3] × Water Scarcity Indicator 1 (4) 

WSF represents the volume of water consumption that also accounts for water availability. It also enables comparison of 
water consumption in different regions. Recently, Lee et al. (Lee et al., 2019) developed an Available Water Remaining for 
the United States (AWARE-US) model at a refined spatial scale (i.e., the county-level) to quantify the water scarcity and 
impacts of water consumption in different regions within the contiguous U.S. Their AWARE characterization factor 
(AWARE CF) compares regional available water to a reference value: 

AWARE CF =
𝐴𝑀𝐷𝑟𝑒𝑓

𝐴𝑀𝐷
 1   (5) 

where AMD indicates water availability minus demand, and AMDref is the reference value of AMD that is estimated as the 
weighted average of all regions. Note that AMD is relative to land area and must be positive since human water consumption 
plus environmental water required to sustain a riverine ecosystem cannot exceed natural runoff. AWARE CF is bounded 
between 0.1 to 100, and high AWARE CF values represent water scarce regions. Therefore, large WSF values, indicating 
more intense relationship between water consumption and regional water availability, can either be caused by high water 
consumption or high AWARE CF values. 

Several regions in the U.S. are experiencing more frequent and longer durations of droughts due to climate change 
(Jones and van Vliet, 2018). For heavy water consuming facilities like DCs, it is necessary to quantify the impacts of its huge 
water consumption on regional water availability. WSUE, which is a metric that incorporates DC source-based water 
consumption and regional water availability, is designed for DC owners and operators to examine the impacts of DC water 
consumption on regional water scarcity. It is also a useful tool for identifying the most water friendly regions that are suitable 
for future DC construction. Per Eqn. (4), WSF quantification requires accurate measurement of water consumption. However, 
water consumed off-site through the production of energy is often ignored. This quantification of WSF that considers both 
on-site and off-site water consumption of any building is 

WSF =  AWARE CF  𝑊𝑠𝑖𝑡𝑒  +  WSI  𝑃𝑡𝑜𝑡   1  (6) 

where the AWARE CF value here is specific to the building location, and SWI quantifies the impact of electricity 



consumption on water availability. It follows that the WSF for a data center can be found using this equation in conjunction 
with the definition of PUE as 

WSF =  AWARE CF  𝑊𝑠𝑖𝑡𝑒  +  SWI  𝑃𝑠𝑖𝑡𝑒    (7) 

Dividing both sides results in a definition for the water scarcity usage effectiveness: 

WSUE =
WSF

𝑃𝐼𝑇
=  AWARE CF  WUE +  SWI  PUE   (8) 

Therefore, the scarce water usage of a DC with known PUE and WUE values can easily be calculated based on the 
location-specific factors AWARE CF and SWI. Equation (8) shows that theoretically a water-intensive cooling solution (e.g., 
evaporative cooling) with a large WUE could result in a lower WSUE than a solution requiring no on-site water consumption 
if PUE and SWI are large. Here, AWARE CF and SWI are specific at the county and balancing authority (BA) levels, 
respectively, since AWARE CF is highly location dependent and SWI is based on regional electricity flows. 

Measuring Water Consumption Impact of DC Cooling Systems 

In this study, a generic DC with three individual cooling systems is computationally modeled at four different U.S. 
locations: Boston, Miami, Denver, and Phoenix. The three chosen cooling systems are (1) Computer Room Air Handling 
(CRAH)-based cooling, (2) Computer Room Air Conditioning (CRAC)-based cooling, and (3) pure evaporative cooling with 
airside economization. The computational modeling work in this study was performed using the Villanova Thermodynamic 
Analysis of Systems (VTAS) software, which is a flow network modeling tool for the thermodynamics, fluid mechanics, and 
heat transfer inherent to an entire DC system, including contributions by individual servers, the DC airspace, and the heating, 
ventilating, and air conditioning (HVAC) components (Wemhoff et al., 2013). VTAS provides a framework and component 
models where thermodynamics, fluid mechanics, and heat transfer physical equations are coupled and solved in a MATLAB 
based mathematical/computational scheme. Some validation of VTAS models of DC cooling systems has been achieved 
(Khalid and Wemhoff, 2019). 

Figure 1 shows the schematic diagram of a DC with CRAH-based cooling system. The total heat output in the DC is 
modeled as 400 kW, and the cooling system contains four CRAHs, four chillers and four cooling towers in a parallel 
configuration. Further, the air supply temperature of CRAHs and water supply temperature from chillers are fixed at 20°C 
and 15°C, respectively. The air properties of the external environment is location-dependent, and the weather data is retrieved 
from TMY3 database (Wilcox and Marion, 2008, p. 3). The annualized PUE and WUE are calculated based on modeling the 
yearly weather data through ten equivalent days, which has been verified as sufficient for estimating these metrics. 

 

 

Figure 1 VTAS model of a DC containing a CRAH-based cooling system. A pump/fan is provided in the supply 
stream for each CRAH, chiller, and cooling tower, and for the outside air leaving the cooling tower. The 
make-up water lines for the cooling towers are not shown. 



Figure 2 shows the schematic diagram of DCs with (a) CRAC-based cooling system and (b) evaporative cooling system. 
Similarly, the total heat output in the two DCs are designed to be 400 kW. In Fig. 2(a), the CRAC-based cooling system 
contains four CRAC units in a parallel configuration and the supply air temperature to the DC is set to be 20°C. In Fig. 2(b), 
the evaporative cooling system uses an adiabatic evaporative cooler, which has an efficiency h of 0.9. Note that the 
evaporatively-cooled system modeled here does not include any return air stream; all air leaving the DC is expunged to the 
external environment. 

 

 

Figure 2 (a) Schematic diagram of a DC with CRAC-based cooling system and (b) schematic diagram of a DC with 
evaporative cooling system. A fan is provided in each airstream leaving the CRACs and in the supply air 
leaving the evaporative cooler. 

The key to the PUE estimate for CRAC and CRAH cooling system configurations in different climate zones is the 
temperature dependence of the coefficient of performance (COP) of direct expansion units (CRACs and chillers). This 
dependence was determined through separate, secondary system models where single, more complex CRAC and chiller 
component models were adjusted to determine the COP under various conditions. In these separate system models, the 
CRAC and chiller are modeled via an ideal refrigeration cycle with a varying condenser saturation temperature. In the case of 
the CRAC unit, the cooling load (100 kW), indoor supply air temperature (20°C), indoor supply air flowrate (2.0 m3/s), and 
outdoor air flowrate (4.0 m3/s) are fixed and equivalent to the primary cooling system models in this study. For the CRAC 
secondary model, the outdoor air temperature is varied between -10°C and 40°C, and the condenser saturation temperature is 
calibrated to achieve a fixed condenser conductance (UA = 10,100 W/K) that satisfies the Second Law of Thermodynamics. 
The resultant data are used as a curve to approximate the COP variation with temperature under the above fixed conditions 
but with varying external air temperature. The chiller COP dependence on condenser water supply temperature was also 
determined using the same approach, where chilled and condenser water loop flowrates (0.001 m3/s and 0.01 m3/s, 
respectively), chilled water supply temperature (15°C), and chiller condenser conductance (UA = 160,000 W/K) are fixed 
and equivalent to those in the primary cooling system models in this study, and the condenser water supply temperature is 
varied. Figure 3 provides the resultant predicted variation in CRAC and chiller COP values under these conditions. 

 



 

Figure 3 (a) CRAC unit COP T-dependence curve and (b) chiller COP T-dependence curve 

For a system cooled by a single evaporative cooler, the mass flow rate of the external air through the evaporative cooler 
and into the DC is fixed at 8 m3/s for consistency with the other systems, although this allows for an elevated supply air 
temperature. Table 1 provides the modeled maximum (worst case weather conditions) supply air temperature of the 
evaporatively-cooled system, which should be considered when comparing the metrics of the pure evaporatively-cooled 
system and the other two systems (Table 2). In fact, the only two locations that appears viable for evaporative cooling are 
Denver and San Francisco; the other entries are in red in Table 2 to signify that this cooling solution is not viable. 

 
Table 1.   Maximum Supply Air Temperature of the Evaporatively-

Cooled System 
Location Maximum Supply Air Temperature (°C) 
Boston 31.1 
Denver 21.7 
Miami 29.4 

Phoenix 
San Francisco 

26.4 
21.0 

 
Results shown in Table 2 indicate that switching from a CRAC-based cooling system to a CRAH-based cooling system 

could significantly reduce the DC PUE due to the use of a cooling tower over a CRAC air-cooled condenser coil. 
Specifically, the DC PUE drops by 10.1-14.9% for the locations in this study, suggesting a relative independence on location. 
Results also show that a water-intensive cooling solution (e.g., CRAH-based cooling) with large on-site water usage could 
result in a lower WSUE than a solution requiring no or less on-site water consumption (e.g., CRAC-based cooling) if PUE 
and/or SWI values are large, which is the case in Phoenix and San Francisco. The general WSUE values for water-scarce 
Phoenix are much larger than those in water-rich Boston and Miami, regardless of cooling system type. However, CRAC-
based cooling possesses a lower WSUE (40.83 L/kWh) than CRAH-based cooling (250.72 L/kWh) in Denver because the 
level of water shortage in that city (AWARE CF = 100) leads to a higher water scarcity impact from direct water usage 
comparing to indirect water usage (SWI = 24.16 L/kWh). Further, compared to other cities who possess relatively low SWI 
values, a much higher WSUE value is observed in Phoenix (1,673.76 L/kWh) for CRAC-based cooling system due to a high 
SWI (890.3 L/kWh), indicating the significance of water stress impact from indirect water consumption. Similarly, the 
evaporative cooling solution in San Francisco returns a higher WSUE (124.86 L/kWh) than in Denver (33.40 L/kWh) due to 
the higher SWI (123.6 L/kWh) in San Francisco, which again emphasizes the importance of indirect water consumption in 
water stress impact quantification. Finally, the evaporative cooling solution for Denver and San Francisco indicates a much 
lower PUE, WUE, and WSUE than the other cooling solutions, which is due to the use of airside economization (rather than 
heated return air) and the lack of a compressor within the cooling system.  

The WSUE does contain limitations. First, the AWARE CF is bounded between 0.1 and 100, which could provide 



artificially lower values of WSUE in water scarce locations and potentially reduce the contribution of on-site water usage to 
the metric. Second, the physical meaning of WSUE is more obscure than the well-known PUE and WUE metrics since 
WSUE depends on a combination of water consumption in electricity generation (and their associated local water 
availability) and on-site water use compared to available water. A useful way to use the metric is to take the ratio of WSUE 
values for two locations, per Eq. (8), as 

 

The above ratio of WSUE values is therefore the ratio of potential environmental impacts due to water per the WSF 
definition in Eq. (4). Therefore, per Table 2 a DC using CRAC cooling in Phoenix has roughly 1,881 times the potential 
holistic water environmental impact compared to the same DC in Boston, although that ratio may be even higher due to the 
capping of AWARE CF at 100 for Phoenix. 

 
Table 2.   Performance Metrics of DCs with Different Cooling Systems in Various Regions* 

Location AWARE CF 
(0-100) SWI (L/kWh) Cooling System PUE WUE (L/kWh) WSUE (L/kWh) 

Boston 0.27 0.53 
CRAC cooling 1.69 0 0.89 
CRAH cooling 1.52 2.11 1.38 

Evaporative cooling 1.01 0.01 0.54 

Denver 100 24.16 
CRAC cooling 1.69 0 40.83 
CRAH cooling 1.52 2.14 250.72 

Evaporative cooling 1.01 0.09 33.40 

Miami 0.67 0.91 
CRAC cooling 1.86 0 1.69 
CRAH cooling 1.61 2.37 3.04 

Evaporative cooling 1.01 0.01 0.92 

Phoenix 100 890.3 
CRAC cooling 1.88 0 1,673.76 
CRAH cooling 1.6 2.44 1,668.48 

Evaporative cooling 1.01 0.30 929.20 

San Francisco 0.96 123.6 
CRAC cooling 1.71 0 211.36 
CRAH cooling 1.53 2.17 191.19 

Evaporative cooling 1.01 0.02 124.86 
*The modeled evaporative cooling system supply air temperatures in Boston, Miami, and Phoenix are too high for practical 
comparison of metrics with other cooling systems. 

CONCLUSION 

The proposed metric WSUE provides a straightforward mechanism to evaluate the impact of a data center’s location 
and cooling system type on regional water stress. The results suggest that location plays a more significant role in WSUE 
than cooling system type, although the WSUE can be significantly altered based on the DC cooling solution. This study 
suggests that WSUE can be considered along with other widely used DC performance metrics (i.e., PUE, CUE and WUE) 
when evaluating how efficient and how “green” a DC is. The metric also represents is also a useful mechanism for making 
decisions regarding DC siting and cooling solutions.  
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NOMENCLATURE 

AMD =  Water availability minus demand 
AWARE-CF      =     Available Water Remaining Characterization Factor 
COP =  Coefficient of performance 



CUE =  Carbon Usage Effectiveness, kg-CO2e/kWh 
EWIF =  Energy Water Intensity Factor, L/kWh 
P =  Energy consumption, kWh 
PUE =  Power Usage Effectiveness 
R  = Ratio of water consumption to available water 
UA  = Overall heat transfer conductance, W/K 
W =  Water consumption, L 
WSF =  Water Scarcity Footprint, L 
SWI =  Scarce Water Index, L/kWh 
WSUE = Water Scarcity Usage Effectiveness, L/kWh 
WUE =  Water Usage Effectiveness, L/kWh 
WUEsource   =    Water Usage Effectiveness source, L/kWh 

Subscripts 

IT =  IT equipment 
ref =  reference value 
site =  on-site 
off-site =  off-site 
source =  on-site plus off-site 
tot =  total 
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