2111.10041v1 [cs.CG] 19 Nov 2021

arxiv

Embeddings and labeling schemes for A*

Talya Eden * Piotr Indyk T Haike Xu ¥
Boston University and MIT MIT Tsinghua University
Abstract

A¥* is a classic and popular method for graphs search and path finding. It assumes the existence of a
heuristic function h(u,t) that estimates the shortest distance from any input node u to the destination
t. Traditionally, heuristics have been handcrafted by domain experts. However, over the last few years,
there has been a growing interest in learning heuristic functions. Such learned heuristics estimate the
distance between given nodes based on “features” of those nodes.

In this paper we formalize and initiate the study of such feature-based heuristics. In particular, we
consider heuristics induced by norm embeddings and distance labeling schemes, and provide lower bounds
for the tradeoffs between the number of dimensions or bits used to represent each graph node, and the
running time of the A* algorithm. We also show that, under natural assumptions, our lower bounds are
almost optimal.

1 Introduction

A* is a classic and popular method for graphs search and path finding. It provides a method for computing
the shortest path in a given weighted graph G = (V, E, W) from a source s to a destination ¢ that is often
significantly faster than classic algorithms for this problem. It assumes the existence of a heuristic function
h(u,t) that estimates the shortest distance from any input node u to the destination ¢. The algorithm uses
the greedy approach, at each step selecting a node u that minimizes d(s,u) + h(u,t), where d(s,u) is the
(already computed) distance from s to u. Alternatively, A* can be viewed as a variant of Dijkstra algorithm,
with the distance function d(u,v) replaced by d(u,v) + h(v,t) — h(u,t). Since its inception in the 1960s,
the algorithm has found many application, e.g., to robotics [Yonetani et al., 2021, Bhardwaj et al., 2017],
game solving [Cui and Shi, 2011], computational organic chemistry [Chen et al., 2020]. Over the last two
decades, it has been also shown be highly effective for “standard” shortest path computation tasks in road
networks [Goldberg and Harrelson, 2005].

The performance of A* is governed by the quality of the heuristic function that estimates the distance
from a given node to the target. For example, if the heuristic function is perfect, i.e., h(u,t) = d(u,t) for all
nodes u, then the number of vertices scanned by A* is proportional to the number of hops in the shortest
path. In practice, the heuristic function is carefully selected based on the properties of the underlying class
of problems. E.g., for graphs whose vertices corresponds to points in the plane (e.g., shortest paths in
road networks or paths avoiding 2D obstacles), typical choices include Euclidean, Manhattan or Chebyshev
distances. In many cases, the task of identifying an appropriate heuristic for a given problem can be quite
difficult.

Over the last few years, there has been a growing interest in learning heuristic functions based on
the properties of input graphs, see e.g., [Yonetani et al., 2021, Bhardwaj et al., 2017, Chen et al., 2020].
Such predictors are trained on a collection of input graphs. After training, the predictor estimates the

*CSAIL at MIT, Boston University Department of Computer Science, talyaa01@gmail.com. Partially supported by the NSF
Grant CCF-1740751, the Eric and Wendy Schmidt Fund, Ben-Gurion University, and the Computer Science Department at
Boston University.

TCSAIL at MIT, indyk@mit.edu. Partially supported by the NSF TRIPODS program (awards CCF-1740751 and DMS-
2022448) and Simons Investigator Award.

IIIS, Tsinghua University, zhk18@mails. tsinghua. edu. cn.

distance between given nodes based on the pre-computed “features” of those nodes, plus possibly other
auxiliary information (see Section 1.4 for a discussion). The features are vectors in a d-dimensional space,
either handcrafted based on the domain knowledge, or trained using machine learning methods. Thus, such
learned heuristics bear similarity to metric embeddings [Naor, 2018] or distance labels [Gavoille et al., 2004],
two notions that have been extensively investigated in theoretical computer science and mathematics. The
notions of the quality of embeddings in the above lines of research is, however, quite different from what is
required in the A* context. Specifically, a typical objective of metric embeddings or distance labelling is to
preserve the distances between every pair of vertices up to some (multiplicative) approximation factor. On
the other hand, in the context of A* search, it is acceptable if the estimated distances deviate significantly
from the ground truth, as long as the A* search process that uses those estimates does not take too much
time. At the same time, approximate estimates of the distances in the metric embedding sense might not
be useful if they are not able to disambiguate between many different short paths, leading to high running
times. This necessitates studying different notions of embeddings and labeling that are tailored to the A*
context.

Motivated by these considerations, in this paper we formalize and initiate the study of embeddings and
distance labeling schemes that induce efficient A* heuristics. In particular, we study tradeoffs between the
dimensionality of the embeddings (or the length of the labels in labeling schemes) and the complexity of
the A* search process. Our focus is on average-case performance of A*, where the average is taken over all
pairs of vertices in the graph. For lower bounds, average-case results provide much stronger limitations than
worst-case results. At the same time, those lower bounds naturally complement our algorithms, which rely
on the average-case assumptions for technical reasons.

We start by formally defining the metric that we will use to evaluate the quality of a heuristic.

Definition 1.1. For a graph G = (V,E, W), and a heuristic h, P(s,t) denote the set of vertices on the
shortest path between s and t with the mazimal number of hops, and let Sy (s,t) be the set of vertices scanned
by A* given s,t and h. Further let p(s,t) = |P(s,t)|. We say that h has an additive overhead ¢ on average
if

Es,tEVHSh(Sa t)| - p(87 t):” <c

where s and t are chosen independently and uniformly at random from V.

Informally, the above definition measures the number of “extra” vertices that needs to be scanned, in
addition to the size of the shortest path. We note that one could alternatively define the overhead in a
“multiplicative” way, by computing the ratio between the number of vertices scanned and the number of
hops in a shortest paths. However, several of our results (esp. the lower bounds) rely on instances where we
are guaranteed that all shortest paths have constant number of hops. In this case, an additive overhead of
T automatically translates into a multiplicative overhead of Q(T).

In this paper we focus on heuristics that are consistent. The consistency property, introduced by Hart
et al. [1968] and stated below, implies that the A* search algorithm using the heuristic correctly identifies
the shortest path upon termination.

Definition 1.2 (Consistent heuristic function). A heuristic function h(s,t) which estimates dist(s,t) is
consistent if for any destination t and edge (u,v), the modified cost wi(u,v) = w(u,v) + h(v,t) — h(u,t) is
non-negative and also h(t,t) = 0.

1.1 Heuristic types

We now formally define the types of heuristics that we study in this paper. Specifically, we introduce heuristic
induced by norm embeddings and labelling schemes, as well as embeddings induced by “beacons”, which can
be viewed as a special type of norm embeddings induced by the £, norm.

Definition 1.3 (Norm heuristic). A heuristic function h : V x V. — R is a norm heuristic induced by a
function 7 : V. — R?% and the 1, norm if h(s,t) = ||7(s) — n(t)|, for any pair of vertices s,t € V. The
dimension d is referred to as the dimension of h.

Note that h(s,t) as defined above satisfies triangle inequality, i.e. h(s,u) + h(u,t) > h(s,t) for any
s, t,ueV.

Definition 1.4 (Labeling heuristic). A heuristic function h : V. x V. — {0...C} is a labeling heuristic
induced by functions f:V —{0...C} and g: {0...C}r' x {0...C} —{0...C}, if h(s,t) = g(f(s), f(1))
for any pair of vertices s,t € V.. Here the parameter C is assumed to be polynomial in |V|, and L is referred
to as the label length.

Note that f and g must be fixed functions working for any graph and label pairs. Furthermore, we assume
no limitation on the computational power of f and g. Finally, note that the function g does not have to be
a norm function, or to satisfy the triangle inequality.

We also define a particular type of heuristic that is induced by a set of “beacons”. This is a natural class
of A* heuristics that is particularly popular in the context of shortest path problems [Abraham et al., 2010].

Definition 1.5 (Beacon heuristic). A heuristic function h : V x V. — R is a beacon heuristic induced
by a set B < V if h(s,t) = |m(s) — 7(t)|lwo, where w(s) = (dist(s,b1),...,dist(s,bp|)) (so that h(s,t) =
maxpep |dist(s,b) — dist(t,b)]).

Given the above definitions, we can now formally state our results (also summarized in Table 1).

1.2 Lower bounds results

Our first set of results provide lower bounds on the trade-off between the complexity of a heuristic and the
complexity of the A* algorithm. Specifically, we will show that there exist graphs where all shortest paths
have constant complexity (i.e., consist of a constant number of hops), but on which A* will scan a large
number of vertices unless its heuristic has large complexity. We start from heuristics induced by norms.
Recall that the average-case complexity is defined with respect to the set of all possible source-destination
pairs.

Theorem 1.6 (Lower bound for norm heuristics). There exists an n-vertex unweighted graph G = (V, E) of
constant diameter such that for any consistent norm heuristic induced by an l, norm of dimension d, where
d = o(n/logn) for p < o ord = o(logn) for p= o0, the A* algorithm scans)(n) vertices on average.

The proof for the above theorem appears in Section 3.1. For the special case of the [, norm we show a
stronger lower bound. However, it requires that the input graph is weighted (see Section 3.2).

Type Settings Comments Result Reference
p < © d = o(n/logn) = Q(n) avg. overhead
p =00 d = o(logn) = Q(n) avg. overhead T 16
heﬁgggcs general graphs 4= o(n®) = Q(nl—a) ave. overhead Thm. 1.7
p =00 grid graphs (a < 0.5) Thm. 3.4
weighted graphs beacon based

Assumption 1.9

d = O0(n®) and O(n'~%) avg. overhead | Thm. 1.10

general graphs Thm. 1.8

Labeling L = o(n®) = Q(n'~%) avg. overhead

heuristics weighted graphs | grid graphs (o < 0.5) Thm. 3.9

Assumption 1.11 L = O(n%) and O(n'=?®) avg. overhead | Thm. 1.12

Table 1: Summary of our results. Upper bounds are colored in gray.

Theorem 1.7 (Lower bound for Iy norm heuristics). There exists a weighted n-vertex graph G such that
(i) the shortest path between any pair of vertices in G consists of a constant number of hops and (ii) for any
consistent norm heuristic induced by lo, of dimension d = o(n®), the A* algorithm scans Q(n'~%) vertices
on average.

We now turn to heuristics induced by general labeling schemes. Our main result here is that a trade-off
analogous to that in Theorem 1.7 applies even to general labeling schemes (see Section 3.3).

Theorem 1.8 (Lower bound for labeling heuristics). For any consistent labeling heuristic function h with
length L = o(n®), there exists an n-vertex weighted graph G such that (i) the shortest path between any pair
of vertices in G consists of a constant number of hops and (ii) the A* algorithm scans Q(n'=%) vertices on
average.

For the last two theorems, we also show their variants for a graph G that is a grid graph (with weighted
edges). See Theorems 3.4 and 3.9 in Appendix A for further details. This makes our instances realiz-
able in the robotics planning problems, which is one of the main applications where heuristics have been
applied Bhardwaj et al. [2017] (see Section 1.4 for more details).

1.3 Upper bound results

We complement the lower bounds from the previous sections with upper bounds, i.e., constructions of
embedding or labeling heuristics. Our constructions, however, require certain assumptions regarding breaking
ties in the A* algorithm. Specifically, at any step of the algorithm, there could be multiple vertices with
the same value of the estimate d(s,u) + h(u,t), and breaking such ties appropriately can have significant
impact on the efficiency of A* [Asai and Fukunaga, 2016, 2017, Rathfux et al., 2019]. In our theoretical
analysis we deal with tie-breaking in two ways. Our first approach is to make an assumption about the
A* algorithm. Specifically, Assumption 1.9 states that the A* algorithm can break ties in a way that
minimizes its complexity. Our second approach is to make an assumption about the input graph. Specifically,
Assumption 1.11 states that the weighted graph G is such that there is a unique shortest path between
any pair of vertices, and that there is a separation between the lengths of the shortest and the second
shortest path. We note that the lower bounds corresponding to our upper bounds are consistent with these
assumptions, as per discussions in the corresponding sections.
We start by stating the assumption about the tie-breaking behavior of the algorithm.

Assumption 1.9 (Breaking ties). We assume that, when there is a tie on the estimated distance lower
bound (as specified in Definition 2.3) for multiple different vertices, the A* algorithm chooses the next vertex
in a way that minimizes the total running time.

Note that in the context of Fact 2.4 stated in Preliminaries, the assumption states that A* only scans
those vertices that must be scanned.

Under this assumption, we show that Theorem 1.7 is almost optimal. In fact, the upper bound is based
on a beacon heuristic (see Section 4.1).

Theorem 1.10 (Beacon-based upper bound). Under Assumption 1.9, for any weighted graph G = (V, E,W)
with |V| = n wvertices, there exists a beacon heuristic induced by a set B with |B| = n® with an additive
overhead n'=?, i.e., such that A* scans at most n'=* + Eg; [|P(s,t)|] vertices on average.

We now consider the assumption about lack of ties in the input graph.

Assumption 1.11 (Unique shortest path). We assume that for any pair (s,t) of vertices in G, the difference
between the length of their shortest path and second shortest path between s and t is greater than a constant
¢>0 (e.g. c=3).

Under this assumption, we show that Theorem 1.8 is almost optimal (see Section 4.2).

Theorem 1.12 (Labeling-based upper bound). Under Assumption 1.11, for any weighted graph G =
(V,E, W) with vertex set size |V| = n, there exists a consistent labeling heuristic of length L = O(n®)
with an additive overhead n'=%, i.e., such that A* scans at most n*=* + Eg,[|P(s,t)|] vertices on average.

1.4 Learned A¥* overview

As discussed previously, the main motivation for this study are recent works on learned A* heuristic functions,
where the learned features on which the h heuristic is based can be viewed as embedding or labeling schemes.
In this section we briefly describe several approaches used in recent papers on A* with learned heuristic
functions [Yonetani et al., 2021, Bhardwaj et al., 2017, Chen et al., 2020]. As these are applied machine
learning papers, our description here abstracts away many technical details, focusing on high-level ideas.

e [Bhardwaj et al., 2017] is focused on learning A* heuristics for robot path planning. The experiments
are done on graphs induced by two-dimensional environments modeled as 2D grids with obstacles. The
heuristic function is represented by a feed-forward neural network with two fully connected hidden
layers containing respectively 100 and 50 units with ReLu activation. The input to the network is a
17 dimensional feature vector. The features contain the descriptor of the node w (containing various
features of the spatial point) as well as the descriptor of the current “state” of the neural A* algorithm
when reaching w.

e [Yonetani et al., 2021] is also focused on robot path planning in 2D grids with obstacles. It uses a
neural network architecture called U-net to transform the input instance into a “guidance map”, which
for each graph vertex provides an adjustment to a “standard” heuristic function based on Chebyshev
distance between the given node and the destination node ¢. The input to U-net consists of the input
graph, the source node s and destination node ¢t. The presence of the last component technically makes
it possible to map each node into a one-dimensional scalar equal to the true distance to target node t.
However, given that training of the heuristic function is expensive, it is natural to aim for a heuristic
that is “target independent”, i.e., trained for a particular environment, independently of the choice of
the source and destination. In this way one can reuse the same heuristic trained for a particular grid
for many source/destination pairs.

e [Chen et al., 2020] addresses problems in a different domain, focusing on path searching in the molecule
space. The goal of the planner is to identify a series of re-actions that can lead to the synthesis of
a target product, a classic problem in organic chemistry. The feature vector used as an input to the
learned heuristic is based on the “Morgan fingerprint of radius 2”7, which is 2048 bit long. The vector
is then fed into a single-layer fully connected neural network of hidden dimension 128, which provides
an estimate of the distance.

In the context of the aforementioned works, our results provide insights into the complexity of representing
efficient heuristics for various classes of graphs. We leave other important issues, such as the complexity of
learning those heuristics, to future work.

2 Preliminaries

Notation. We use dist(u,v) to denote the length of the shortest paths between nodes v and v in a graph.
For (u,v) € E we use w(u,v) to denote the edge length.

Heuristic properties. We first recall several standard definitions of heuristic functions which will be
useful in our proofs.

Definition 2.1 (Admissible heuristic function). For a heuristic function h(s,t) which estimates dist(s,t),
it is said to be admissible if for any source and destination (s,t), we have h(s,t) < dist(s,t).

It is well-known that all consistent heuristic functions (Definition 1.2) are admissible.

Definition 2.2 (Sub-additive heuristic function). For a heuristic function h(s,t) which estimates dist(s,t),
it is said to be sub-additive if for any three vertices (u,v,w), we have h(u,v) + h(v,w) = h(u,w).

Note that consistent heuristics may not be sub-additive, but all norm heuristics (Definition 1.3) and
beacon heuristics (Definition 1.5) are sub-additive.

Definition 2.3 (Estimated distance lower bound). Given a query pair dist(s,t), for any vertex u, we define
g(u) to be the estimated distance lower bound calculated by A* for shortest path from s to t passing w:
g(u) = dist(s,u) + h(u,t). In particular, g(t) = dist(s,t).

A* algorithm. Now, we describe the operation of A* with heuristic function h, which will be the main
object of our analysis in the paper. (See Algorithm 1)

Algorithm 1: A* search
Input: G(V, E, W), start point: s, end point: ¢
1 Initialize S = {s}, d(s) = 0, d(S\s) = ©
2 while t ¢ S do
3 u «— argmin{d(u) + h(u,t)}
ueV\S

for v s.t. (u,v) € E do

d(v) = min(d(v), d(u) + w(u, v))
S=5u{u}

[B

Fact 2.4 (Scan condition, see Hart et al. [1968]). Suppose we apply A* to calculate dist(s,t) with a consistent
heuristic function h(u,t). Then a vertex u must be scanned if and only if dist(s,u) + h(u,t) < dist(s,t) and
may be scanned if and only if dist(s,u) + h(u,t) < dist(s,t).

3 Lower bounds

3.1 An average-case lower bound for [, norms

In this section, we prove Theorem 1.6.

Theorem 1.6 (Lower bound for norm heuristics). There ezists an n-vertex unweighted graph G = (V, E) of
constant diameter such that for any consistent norm heuristic induced by an l, norm of dimension d, where

d = o(n/logn) for p < o ord = o(logn) for p = o, the A* algorithm scans Q(n) vertices on average.

Before exactly defining the lower bound instance (depicted in Figure 1) and proving the theorem, we give
a short overview of the ideas behind the construction and proof.

Proof overview. The central part of our constructed hard instance contains a star with n petals. We then
add to it O(log n) additional sets of vertices, each of size O(n), in a way that ensures that for every pair of star
petals (u,v), there exists Q(n?) vertex pairs in the additional sets whose shortest path goes through (u,v).
Given this construction, we rely on a standard “packing argument” stating that a low dimensional space
cannot contain a large equilateral vertex set. Therefore, it holds that if the dimension d of the embedding
is too small, then by the admissibility property of the embedding, for at least one pair of the star petals, its
embedded distance is distorted. We then utilize this pair of distorted petals to show that every query (s,t)
whose shortest path goes through the distorted pair has a large query overhead. Specifically, we rely on
the design of non-uniqueness of the shortest paths to further amplify the penalty due to the distorted pair
to Q(n) per each query as above, so that in total we get that there exists Q(n?) pairs for which the query
overhead is Q(n).

Figure 1: Average-case complexity lower bound instance for [, norms with k = 2 and n = 4.

The lower bound instance. We continue to formally define our lower bound instance for heuristics
induced by [, norms. Note that the lower bound instance is both sparse and unweighted. The lower bound
graph contains a star with n leaves {ci,...,¢,} connected to a center ¢g. Without loss of generality, we
assume n = 2* is a power of 2. Then we have k pairs of vertices {(a;,a;)}_;. For each pair a; and a@;, and
for each c;, we connect ¢; to a; if the i-th bit in the binary representation of j — 1 is 1 and to a; otherwise.
Then, for each a;, we create auxiliary vertex sets {a; ; }}‘:O and {b; ; }?:1. We connect a; to all {a;; }?:1,
and, for each j, we connect b; ; to a;o and a,. Similarly, for each a@;, we connect it to all {a;; }?:1. Our
instance has size |V| = ©(nlogn) and |E| = O(|V|). See Figure 1 for an illustration with k£ = 2 and n = 4.

Lemma 3.1. Suppose h is a norm heuristic function h(s,t) = |n(s) — w(t)||. For the instance described
above with |V| = ©(nlogn), as long as one pair of distinct vertices in {c;}?_,, say ¢; and c;, satisfies

h(ci,cj) = |m(e;) —m(e;)| <2, the A* algorithm scans at least § (mgL?n) vertices on average.

Proof. Suppose ||7(cy,) — 7(cy)| < 2 and w # v, then there exists a digit p s.t. their binary representations
differ, e.g. w’s digit is 0 and v’s is 1. Then, for the pair (a,,a,) whose real distance is dist(a,,a,) = 4, by
sub-additivity, their embedded distance satisfies

Im(ap) = m(@p)| < lw(ap) —m(eu)| + |w(cu) = m(eo)| + [m(cn) — 7(@p)| <4 = dist(ayp, ap).

Now, we can check that for any query pair (s,t) with s € {a, j,}} _; and t € {ay ;,}7,_, A* must scan the
whole set {b, j, }7, _; To see this, first note that all vertices u € {b, j, }, _; lie on the shortest path between
s and ¢, and satisfy h(u,t) < dist(u,t) (due to the sub-additivity and since |w(a,) — 7(a,)| < dist(ap, ap)).
Therefore, every u € {b, j, }?1=1 will be scanned by A* according to Fact 2.4. To calculate the average query
complexity, observe that for a random query pair (s,t), with probability at least Q(log%n) we have that
s € {ap, ;=1 and t € {@, ,} _; simultaneously hold. Once this event occurs, A* will scan at least Q(n)
vertices, so the average query complexity is lower bounded by Q(log’%n) O

Definition 3.2. In a metric space lg, we say a vertexr set X is equilateral if any two different vertices
z,y e X satisfy |x —yl, = 1. We define e(lg) to be the size of the largest equilateral vertex set in Zg and its
inverse function e~ 1(p,n) equals to the minimum d such that e(lg) > n.

Lemma 3.3. For a metric space lg, we have the following upper bounds on e(lg)

O(dlogd) p=1 [Alon and Pudldk, 2003]

e(lg) < d+1 p=2 [Guy, 1983]
O(dlogd) 2 <p <o [Swanepoel and Monthly, 2004]
24 p= 0 [Guy, 1983]

and corresponding lower bounds for e~ (p,n)

Q) p=1

n—1 =2
e L(p,n) > P

Qpgn) 2<p<©

logom p=o0
Here our asymptotic bound is in terms of d and hides the dependence on p.

Proof of Theorem 1.6. We only need to verify that the assumption made in Lemma 3.1 is true. By the
definition of an equilateral set (in Definition 3.2) and a consistent heuristic function (in Definition 1.2), we
know that for metric space lg if d < e7!(p,n), then for a set of n 2-equidistant vertices {c;}"_; in the original
graph, at least two of them will have embedded distance smaller than 2. O

3.2 A stronger lower bound for [, norm space

In this section, we prove a stronger lower bound for embeddings into I4 both for general graphs and for
grid graphs. The first lower bound instance is a general graph with constant diameter (as in the previous
section), which means that the ratio of the number of vertices scanned by A* to the actual path length is
large. Based on this instance we prove Theorem 1.7, restated below.

Theorem 1.7 (Lower bound for Iy norm heuristics). There exists a weighted n-vertex graph G such that
(i) the shortest path between any pair of vertices in G consists of a constant number of hops and (i) for any
consistent norm heuristic induced by lo, of dimension d = o(n®), the A* algorithm scans Q(n'=%) vertices
on average.

The second lower bound instance has super-constant diameter, but it is a grid graph, which is a more
natural structure in the context of robot planning applications. This instance is described in Appendix A,
and is used to prove the grid variant of Theorem 1.7.

Theorem 3.4. There exists a weighted grid graph G so that any consistent norm heuristic h(s,t) induced
by w: V — Re with dimension d < o(n®) for a < 0.5 and the ly, norm will result in A* average-case query
complexity of at least Q(n'=%).

Importantly, Theorem 1.7, as well as its grid analog, Theorem 3.4, hold even under Assumption 1.9, i.e.,
when A* can break ties arbitrarily. This is because Lemma 3.7 below holds for any tie-breaking rule, i.e., it
lower bounds the number of vertices that must be scanned. Therefore, the upper bound Theorem 1.10 is a
matching upper bound. For further details on the upper bound see Section 4.1.

We start with the intuition behind the lower bound construction and proof.

Proof idea. The proof idea here follows the one in the previous section, where we first prove that there
exist some pairs of vertices with large distortion, and then amplify the query cost penalty due to these
pairs. The previous equilateral set argument works well for [, norm with p < o0 but works poorly for the I
norm. Therefore, we use a special property of I to get a tighter lower bound, specifically, that the [, norm
solely depends on one coordinate (with the maximum absolute value). We can observe that if the distance
that our embedding “wants to memorize” is random, then it cannot remember too much information in
each one dimensional space. Our construction consists of a clique of size O(m), and the edge weights are
chosen uniformly in [10,11]. This ensures that the shortest path between any pair of vertices is the edge
directly connecting them, and that the weights are randomized and independent of each other. Therefore,
each dimension can only “memorize” O(m) shortest path distances, while there are O(m?) pairs of vertices.
Similarly to the previous case, the second step of amplifying the penalty is achieved by adding auxiliary sets
to the main lower bound construction, so that each distorted pair appears in the shortest path for many
queries (s,t).

I by b3 b5

Figure 2: Average-case complexity lower bound instance for l,, norms.

The lower bound instance. Our lower bound instance (in Figure 2) consists of a clique {a;}!"; where
each a; is attached to k leaves {b;; }?zl. The edge weight between (a;,a;) is w;; = 10 + u;;, where u;;
are i.i.d. random variables chosen from the uniform distribution over the interval [0,1]. The edge weight
between each attached leaf to its corresponding vertex in the clique is equal to wg, specified subsequently.

Definition 3.5 (Approximated-tie). For a set of values {w;}?_, and an parameter €, we say there exists
an approzimated-tie if there exists a coefficient vector {c;}I'_, where each ¢; € {—4...4} with at least one
non-zero component and | Y. c;w;| < e.

Proposition 3.6. For weights {w; ;}; je[m] generated as above, there exists an € > 0 such that no approrimated-
tie exists in {w; ;j} with probability at least 0.99.

Let € be as in the above proposition We set the edge weights between the clique to the leaves to be
e

wo = 1¢,,- From now on, we assume that there is no € approximated-tie in the graph. We can observe that
in this graph, the shortest path between any two vertices in {a;} is exactly the edge connecting them.

Lemma 3.7. For a pair of vertices (a;,a;), if the embedding distance between them has error larger than
5 then any query (b7, 0%) for p, q € [k] will always scan Q(k) vertices (under any tie-breaking rule.)
Proof. In the setting of Theorem 1.7, we denote h(s,t) = |7 (s) — w(t)| 0. If |7(as) — 7(a;)|| < wij — 55,
can check that for query dist(by,b}) all vertices in {b] /}pfe[k] will be scanned by A*: Let b? " be an arbitrary
leaf attached to a;.

we

dist(W, b) + (B!) — (b))

177
’

< dist(W,0) + | (W) = w(a)| + |m(a:) — wlay)] + |m(a;) — w(bD)]

7

€
<2wo+wo+wi7jf—+wo

2n
- €
<wp i — —
T d4n
c g 1P pd
< dist(b;, b})
Therefore, for every p’ € [k], by the scan condition, b? " will be scanned. O

Lemma 3.8. For the heuristic considered by Theorem 1.7, as long as d < o(m), at least half of pairs (s,t)
where s,t € {a;},i =1...m, satisfy h(s,t) < dist(s,t) — 5.

Proof. By the definition of I norm, if |7 (u) — 7(v)|e > dist(u,v) — 5-, then there must exist a coordinate
i € [d] where |m(u); — m(v);| = dist(u,v) — 5. We call such coordinate a “crucial coordinate” for the pair of
vertices (u,v)

We claim that for each coordinate ¢ € [d], at most m — 1 pairs of vertices use coordinate ¢ as their crucial
coordinate. To show this, we first construct an auxiliary graph with vertices {a;} where we assign an edge
to (u,v) if (u,v) uses the current coordinate as their “crucial coordinate”. Because the auxiliary graph has
m vertices, if there are more than m edges, at least one simple cycle exists with length [< m. We can go
along the cycle to get an approximated-tie consisting of a £1 weighted sum of w; ;. Because [- 5~ < ¢, such
a cycle would violate Proposition 3.6.

Therefore if there are at most o(m) coordinates, there can be at most o(m?) “crucial coordinates”, which

means that at least mTQ pairs are embedded with error more than 5. O

Proof of Theorem 1.7. We set m = n® and k = n'~% then |V| = ©(n). Now we calculate the overall average
complexity lower bound. Each pair (a;,a;) with h(a;, a;) < dist(as;,a;) — 5 contributes k2 pairs of queries,
each of which causes A* to have query complexity (k). Therefore the average query complexity is lower

bounded by the following:

m? 2L n2a . p2(-a) pl-a .

3.3 An average-case lower bound for labeling heuristics

In this section, we state two lower bounds for labeling heuristics. The first holds for general graphs, and the
second for grid graphs. Note that labeling heuristics doe not have the sub-additivity property.

First, we make some assumptions on the graphs we consider. As usual, we consider weighted undirected
graphs G(V, E,W) where |V| = n. We further assume that the edge weight between any two vertices u
and v, w(u,v), is an integer and that the sum of weights satisfies »,, , w(u,v) < C, where C' = poly(n).
Therefore, each quantity produced by our algorithm can be represented by B = O(logn) bits.

We first recall the lower bound that holds for general, non grid, graphs.

Theorem 1.8 (Lower bound for labeling heuristics). For any consistent labeling heuristic function h with
length L = o(n®), there exists an n-vertex weighted graph G such that (i) the shortest path between any pair
of vertices in G consists of a constant number of hops and (ii) the A* algorithm scans Q(n'=%) vertices on
average.

We also provide a grid graph which preserves the complexity lower bound and is common in robotics
planning problem.

Theorem 3.9. For any consistent labeling heuristic function h with length L = o(n®), there exists an
n-vertex weighted grid graph G such that the A* algorithm scans Q(n'=) vertices on average.

Importantly, both the graph used in Theorem 1.8 and the one used to prove Theorem 3.9 satisfy As-
sumption 1.11 regarding unique shortest paths, after an appropriate weight scaling. Therefore, Theorem 1.12
shown later in Section 4.2 is a matching upper bound result.

In this section we only prove the general theorem, and we defer the proof of Theorem 3.9 to Appendix A.2,
as it follows similar ideas. We start from a short overview.

Proof idea. This proof inherits the idea of reducing a good embedding to a “memorizing random number”
task. We utilize the hardness of the “indexing” communication complexity problem to prove that it is
impossible to remember too many random numbers using a limited amount of storage.

10

The lower bound instance. The lower bound instance is depicted in Figure 3. It consists of a clique
{a;}7 | and additionally, each a; has a corresponding leaf set {b? ’12:1. To avoid boundary cases, we assume
both m, k > 10. Indeed, this graph has the same structure as that in Figure 2, however, we choose a different
set of parameters. The edge weight between each attached leaf to its corresponding vertex in the clique is 1
and the edge weight between (a;,a;) is w;; = 6 - (2° + &;;) — 2, where &;; € [0,2° — 1] to be specified later.
The setting of w;; guarantees that the shortest distance between any two vertices a;, a; is due to the edge
(a;,a;). Finally, we define an m-tuple to be a set consisting of m vertices (vy,...,vm) = (b}, ...,bim) for
indices i; € [k]. Therefore, there are k™ different m-tuples. See in Figure 3 an example to one possible
m-~tuple colored in blue.

bi b7 b by b3 b

Figure 3: Average-case complexity lower bound instance for labeling.

For the ease of proof, we define the binary version of labeling heuristics which only allows for 0/1 bits
and the length is multiplied by B.

Definition 3.10 (Binary labeling heuristics). Labeling heuristic with length L consists of two fized deter-
ministic functions f : V — {0,1}BL and g : {0,1}PL x {0,1}BL — {0,1}B. The distance of two vertices u,v
in the embedded space is defined to be g(f(u), f(v)).

Interpreting strings in {0, 1} as the binary version of integers within the range [0, 27 — 1], the consistent
definition still applies to the new definition.
We will reduce our embedding problem to the following well known indexing problem.

Definition 3.11 (Indexing problem). Alice gets a vector, z € [0,2° — 1]™ chosen uniformly at random. Bob
gets an index i € [1,n] chosen uniformly at random. The goal is for Bob to report x; after receiving a single
message from Alice.

We set the bit length for each number in the input of indexing problem to be b = % Another mild
condition is that B should be set such that 2° < n and n® < 25, to ensure that every quantity produced in

the reduction process can still be represented in B bits.

Theorem 3.12 (Folklore, see e.g., Rao and Yehudayoff [2020]). Any one-way protocol for the indexing
problem defined above requires Q(nb) bits of communication in order to succeed with probability > %

Definition 3.13 (A bad pair). We say that a pair of vertices v;,v; is a bad pair if they have large distortion,
defined as g(f(vi), f(v;)) < dist(v;,v;) — 3.

We continue to argue about the contribution of bad pairs to the average query complexity of A*.

11

Lemma 3.14. If there are Q(m?) bad pairs in every m-tuple, the contribution of bad pairs to the query
complexity of A* (over all possible pair queries) is Q(m?k3), so the average complexity for A* is at least
Proof. We first argue that if a pair of vertices (b, b?) is a bad pair (as defined in Definition 3.13), then for
any shortest path query of the form (b7 /,b?) for any p’ € [k] will scan b”. By Fact 2.4, for a shortest path
query (s,t), a vertex u is always scanned by A* if dist(s,u) + g(f(u), f(t)) < dist(s,t). By Definition 3.13,

if (b7,07) is a bad pair, then g(f(b7), (b)) < dist(b],b}) — 3 = w;; — 1. Therefore, for any query from bf/

to b where b} " is any other element in the set {bryk_,

dist(b0,B2) + g(f (W), F(bD)) <2+ wij — 1 < dist(0¥,b7).

implying that b” will be scanned. Therefore, every bad pair contributes (k) cost to the summation of
all-pair shortest path queries cost.

It remains to lower bound the number of such bad pairs at Q(k?m?). By the assumption that there are
Q(m?) bad pairs for each m-tuple, counting with repetitions, there are at least Q(m? - k™) bad pairs. Since
every bad pair appears in at most k™2 m-tuples, it follows that there are at least Q(k? - m?) distinct bad
pairs. Hence, the bad pairs contribute Q(m?2k?) to the overall query complexity of A*. Because n = O(mxk),
the average-case complexity is at least Q(k). O

Lemma 3.15. Consider the graph described above and the A* algorithm using a consistent L = o(m) labeling
heuristic. If for any choice of {d;j} there exists an m-tuple (vq,...vy) (where recall that v; = b for some
pi € [k]), for which at most o(m?) number of the induced all-pair embedding distances {g(f(vi), f(v;))}s,jem]
have large distortion, g(f(v;), f(v;)) < dist(v;,vj) — 3, then there is a one-way protocol for the indexing
problem using o(nb) bits and succeeds with probability at least 1 — o(1).

Proof. Suppose that for every choice of {J;;}, there exists at least one m-tuple (v1,...,v,,) with its induced

all-pair embedding distance satisfying that for at least 1 — o(1) fraction of the pairs v;,v;, dist(v;,v;) — 3 <

g(f(vi), f(v;)) < dist(vi,vj). Then we construct the following protocol for the indexing problem. We let
(7;), and we think of the index that bob receives as a tuple (i, j), where 4,5 € [m] and @ < j.

Alice: given an input z € [0,2° — 1](7;), set {0;;} = x respectively. Enumerate over all the m-tuples

to find the one whose embedded distance has distortion smaller than 3 for at least 1 — o(1) fraction of all

pairs. Note that a distortion smaller than 3 means that dist(a;,a;) — 1 < g(f(v:), f(v;)) < dist(a;, a;) + 2.
Recall that dist(a;,a;) = w;; = 6 (2° + 6;;) — 2. Hence, [M] — 2% = §;;. Alice then sends to Bob
the embedding {f(v;)}™,, which has bit length o(m?B), or equivalently o(m?b) in terms of the indexing bit
length b.

Bob: Receive {f(v;)} from Alice, use them to construct d;; = [M} — 2% where at least 1 — o(1)
fraction of them satisfy d;; = d;; = z. Given Bob’s query (4, j), Bob answers the corresponding term d;;.

Therefore, the protocol above can solve the indexing problem with probability greater than 1 — o(1) and
communication complexity o(m?b) for any input. O

n =

We are now ready to prove Theorem 1.8.

Proof of Theorem 1.8. We set m = n® and k = n'~%, implying that that the size of the lower bound graph
is ©(m - k) = O(n) as required. We prove this theorem by contradiction. If there exists a consistent labeling
heuristic & with length L = o(n®) such that for any choice of {§;;}, A* with heuristic h scans o(n'~®) vertices.
Then by Lemma 3.14, for each choice of {d;;} we can find a m-tuple, where there is at most o(1) fraction
of bad-pairs. Finally, by Lemma 3.15, we can get an algorithm for the indexing problem, contradicting
Theorem 3.12. O

12

4 Upper bounds

4.1 Random beacons

In this subsection, we analyze the performance of beacon heuristic under Assumption 1.9 when A* has the
ability to arbitrarily break ties. Assumption 1.9 means that for the scanning condition stated in Fact 2.4,
when answering query dist(s,t), A* will only scan vertex u that must be scanned, i.e., if either u € P(s,t)
or dist(s,u) + h(u,t) < dist(s,t).

We can verify that the random beacon embedding is consistent according to Definition 1.2.

Theorem 1.10 (Beacon-based upper bound). Under Assumption 1.9, for any weighted graph G = (V, E, W)
with |V| = n wvertices, there exists a beacon heuristic induced by a set B with |B| = n® with an additive
overhead n'=?, i.e., such that A* scans at most n'=* + Eg; [|P(s,t)|] vertices on average.

Proof. First, we uniformly at random select the set B from the vertex set V. By Assumption 1.9, A*
answering query dist(s,t) will visit a vertex u ¢ P(s,t) if dist(s,u) + h(u,t) < dist(s,t), or equivalently
[7(u) — 7(t)| < dist(s,t) — dist(s,u). By the definition of |7(u) — 7(t)| = maxyep |dist(u,v) — dist(t,v)]
in the random beacon embedding, u will satisfy the inequality above only if s can give a better distance
estimation for dist(u,t) than all beacons in B. This happens with probability at most IBI% over a random
selection of B u {s} for a fixed pair u,t. In expectation, for any pair (u,t), there are at most ﬁ such vertices
s. Therefore, taking a summation over all pairs of (u,t) yields that the expected number of extra vertices

2
scanned is at most %ﬁB‘ = ﬁ. Finally, we choose |B| = n® to get the desired result. O

4.2 A labeling heuristic

In this section we present a labeling heuristic with parameters as in Theorem 1.12, assuming Assumption 1.11.
First, we observe that this assumption holds for “generic” graphs, i.e., holds with high probability assuming
that the edge weights are generated randomly. We defer the proof to Appendix B.

Proposition 4.1. For any weighted graph G = (V, E,W) with |V| = n with edge weight independently
generated from a discrete distribution whose probability mass at each point is upper bounded by %, Assump-

tion 1.11 holds with probability at least 1 — %

Since it is easy to re-scale the edge weights, we set the constant in Assumption 1.11 to be 3 for the ease
of later proofs. For convenience, we restate the main theorem shown in this section.

Theorem 1.12 (Labeling-based upper bound). Under Assumption 1.11, for any weighted graph G =
(V,E,W) with vertex set size |V| = n, there exists a consistent labeling heuristic of length L = O(n®
with an additive overhead n'=, i.e., such that A* scans at most n'=* + Eg ,[|P(s, t)|] vertices on average.

Proof idea. Since a “naive” beacon embedding produces ties, our idea for the proof is to slightly increase
the embedded distance so that potential ties are avoided by adding more information to the embedding.
This preserves the consistency of the heuristic, except in the case where the original embedded distance is
already tight. The latter case only happens when one of the three vertices (s, u or t) lies on the shortest path
between the other two. Under the unique shortest path assumption (Assumption 1.11), this case is easy to
detect if we encode the Euler tour of the shortest path tree rooted at each beacon in the “extra” bits of the
labels. At the same time, adding this information increases the label length by only a negligible factor.

In order to prove the theorem, we first extend the definition of the beacon heuristic from the previous
section.

Definition 4.2 (Beacon heuristic with tie breaking). For a beacon set B, we define w to be a concatenation
of two d dimensional embeddings 7° and 7' where 79(s) = dist(s,b;) is the same as beacon-based embedding

13

and 7} (s) : V — [2n]? are the locations of the two occurrences of the vertex s in the Euler tour of the shortest
path tree rooted at b; (see Figure /).

M&ﬂ:gg |70 (s) — 70 (t)| + > sign (x)(s) —) (1)) (4.1)

~
checking whether s is ¢’s ancestor/descendent

Note that by the property of the Euler tour, the second part in Equation 4.1 is equal to either 0 or 2.
Moreover, the value is equal to 0 only when w is an ancestor of v or v is an ancestor of u.
Note A(-,-) is not a norm function of 7(-) — 7(-) in general.

a(1,10)

1234 567 8910
(COO)0))
- - RV
(2,7) (8,9) v
C d b
(3,4) (5,6)
a

Figure 4: An example of a shortest path tree (left) and its Euler tour (right).

Lemma 4.3. Under Assumption 1.11, the beacon-based embedding with tie breaker defined in Definition 4.2
is consistent and has the following compact expression:

{mm@ﬂ if [70(s) — 10(t) |0 = dist(s, 1)

h(s,t) = (4.2)

[70(s) = 7)o + 2 if [7°(s) = 70(t)] o0 < dist(s,?)

Proof. We prove the equation in line 4.2 first. Due to the unique shortest path assumption, we can show
that |dist(b;,s) — dist(b;,t)| = dist(s,t) if and only if s is an ancestor or descendant of ¢ on the shortest
path tree rooted at b;. The “if” part is immediate, since one of the vertices s and ¢ lies on the shortest path
between the root and the other vertex. For the “only if” part, let u be the lowest common ancestor of s
and ¢ on the shortest path tree rooted at b; and assume w.l.o.g. that dist(u,s) > dist(u,t). The shortest
paths from s to u and from ¢ to u consist of the tree edges. Because |dist(b;, s) — dist(b;,t)| = dist(s,t),
by canceling the common sub-path, we get that dist(u,s) — dist(u,t) = dist(s,t). Therefore, concatenating
the shortest paths from s to ¢ and from ¢ to u produces a second shortest path from s to u, thus violating
our unique shortest path Assumption 1.11. Thus, the second expression in line 4.1 is equal to 0 when
|dist(b;, s) — dist(b;,t)| = dist(s,t) and equal to 2 otherwise. Therefore Equation 4.2 follows.

To prove that the new heuristic is consistent, we first prove that h(s,t) < dist(s,t), i.e., h is admissible.
By Equation 4.2, it suffices to show that if |dist(b;, s) — dist(b;,t)| < dist(s,t) then |dist(b;, s) — dist(b;,t)| <
dist(s,t) — 2. We prove this by contradiction. If there exists b; such that dist(s,t) —2 < dist(b;,s) —
dist(b;,t) < dist(s,t), then we can concatenate paths P(b;,t) and P(t,s) to get a path from b; to s of length
smaller than dist(b;, s) + 2, contradicting Assumption 1.11 that the second shortest path should be longer
than the shortest path by at least 3.

Now, we fix any two vertices u,v and recall the definition of consistency: h(u,t) < w(u,v) + h(v,t).
By Equation 4.2, we know that h(u,v) — |7%(u) — 7°(v)|ls equals to either 0 or 2, so there are 4 cases for
checking the inequality. Consider another heuristic h'(u,v) = ||[7°(u) — 7°(v)| . It is a standard beacon
heuristic and thus consistent. Therefore we only need to consider the worst case where h(u,t) = h'(u,v) + 2
and h(v,t) = h'(v,t). Note that h(v,t) = h'(v,t) means that h(v,t) = dist(v,t), so the RHS becomes

14

w(u, v) + dist(v, t) which is greater than dist(u,t) and therefore greater than h(u,t) by admissibility shown
above. O

Proof of Theorem 1.12. The analysis extends on the proof of Theorem 1.10 by using random beacon-based
embedding which is 7° in Definition 4.2.

Considering a pair of query dist(s,t), for those vertices u satisfying dist(s,u) + |7°(u) — 7°(t)||lo <
dist(s,t), they are inevitably scanned, and by invoking Theorem 1.10 with O(n®) dimension, the average
number of such vertices u is upper bounded by O(n!=®). Also, for those vertices u satisfying dist(s,u) +
[7(u) — ()]s > dist(s,t), they will not bother our A* because h(s,v) = |7%(s) —7°(t)| is a strictly tighter
distance estimation than 7. Now we only care about those u satisfying dist(s,u)+||7(u) —7(t)|| e = dist(s,t)
and there are two cases: If |7(u) — 7(t)| o = dist(u,t), we have dist(s,u)+ dist(u,t) = dist(s,t), so u lies on
P(s,t) and should be scanned by A*. Otherwise |m(u) — ()| < dist(u,t) and h(u,t) = |7(u) —7(t)]| +2,
breaking the tie, so A* will not scan such a vertex u. Therefore, all previous ties impose no extra scanning
complexity for A*, O

References

Ittai Abraham, Amos Fiat, Andrew V Goldberg, and Renato F Werneck. Highway dimension, shortest
paths, and provably efficient algorithms. In Proceedings of the twenty-first annual ACM-SIAM symposium
on Discrete Algorithms, pages 782-793. STAM, 2010.

Noga Alon and Pavel Pudldk. Equilateral sets in [;. Geometric & Functional Analysis GAFA, 13(3):467-482,
2003.

Masataro Asai and Alex Fukunaga. Tiebreaking strategies for a* search: How to explore the final frontier.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

Masataro Asai and Alex Fukunaga. Tie-breaking strategies for cost-optimal best first search. Journal of
Artificial Intelligence Research, 58:67-121, 2017.

Mohak Bhardwaj, Sanjiban Choudhury, and Sebastian Scherer. Learning heuristic search via imitation. In
Conference on Robot Learning, pages 271-280. PMLR, 2017.

Binghong Chen, Chengtao Li, Hanjun Dai, and Le Song. Retro*: learning retrosynthetic planning with
neural guided a* search. In International Conference on Machine Learning, pages 1608-1616. PMLR,
2020.

Xiao Cui and Hao Shi. A*-based pathfinding in modern computer games. International Journal of Computer
Science and Network Security, 11(1):125-130, 2011.

Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. Distance labeling in graphs. Journal of
Algorithms, 53(1):85-112, 2004.

Andrew V Goldberg and Chris Harrelson. Computing the shortest path: A* search meets graph theory. In
SODA, volume 5, pages 156-165, 2005.

Richard K. Guy. An olla-podrida of open problems, often oddly posed. The American Mathematical Monthly,
90(3):196-200, 1983. ISSN 00029890, 19300972. URL http://www.jstor.org/stable/2975549.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100-107, 1968. doi:
10.1109/T'SSC.1968.300136.

Assaf Naor. Metric dimension reduction: a snapshot of the ribe program. In Proceedings of the International
Congress of Mathematicians: Rio de Janeiro 2018, pages 759-837. World Scientific, 2018.

15

http://www.jstor.org/stable/2975549

Anup Rao and Amir Yehudayoff. Communication Complexity: and Applications. Cambridge University
Press, 2020.

Thomas Rathfux, Hermann Kaindl, Ralph Hoch, and Franz Lukasch. Efficiently finding optimal solutions
to easy problems in design space exploration: A* tie-breaking. In Proceedings of the 14th International
Conference on Software Technologies, ICSOFT 2019, page 595-604, Setubal, PRT, 2019. SCITEPRESS -
Science and Technology Publications, Lda. ISBN 9789897583797. doi: 10.5220/0008119405950604. URL
https://doi.org/10.5220/0008119405950604.

Konrad J. Swanepoel and Amer Math Monthly. A problem of kusner on equilateral sets. Archiv der
Mathematik, 2004.

Ryo Yonetani, Tatsunori Taniai, Mohammadamin Barekatain, Mai Nishimura, and Asako Kanezaki. Path
planning using neural A* search. In International Conference on Machine Learning, 2021.

16

https://doi.org/10.5220/0008119405950604

A Lower bounds for grid graphs

The main technical difficulty for the grid version lower bounds is that we are no longer allowed to construct
a clique as in the proofs of the general theorems. Hence, the independence property of each shortest path
distance is lost. Fortunately, with a careful choice of parameters, we can restrict the shortest path to follow
a certain trajectory, and then we can use similar ideas to the ones for the general case lower bounds.

A.1 Stronger lower bound for /,, norm on a grid

In this section we modify our lower bound instance so that is based on a 2D grid. This makes it more similar
to the instances in the path planning applications discussed in the introduction. Instead of drawing the
instance in the form of vertices connected by weighted edges, it will be more natural to associate vertices
with grid nodes (cells), and put weights on vertices. The edges from each vertex/cell lead to up to four of
its neighbors in the grid, and are unweighted.

k

i I

7 Wi, j

Figure 5: Grid lower bound instance.

Our instance (call it G) is depicted in Figure 5. It consists of a concatenation of 3 rectangles. The
upper-left rectangle R is of dimension m x m and the two rectangles attached to its right (R,) and lower
(Ry;) sides are of dimensions m x k and k x m, where m and k are defined later. For the simplicity of
notation, we label the lower right node of R with coordinates (0,0) and all other nodes are labeled with
coordinates (z,y), where the x-axis is horizontal and pointing to the left, while the y-axis is vertical and
pointing to the top. We denote the node with coordinates (x,y) by vs ,, and denote its weight by w, ,; the
values of the weights will be defined later. Finally, the edges corresponding to the red lines in the picture
(interpreted as obstacles) are removed. We use n = |V| to denote the size of the graph. This instance has
size |[V| = n = m? + 2mk. We set the weights w; ; as follows:

(n—z) n®+uzy z,y=0
We,y =
€w zory<0

where u, , are i.i.d. random variables chosen from the uniform distribution over the interval [0,1] and €, is
a small number to be specified later.
Recall we aim to prove Theorem 3.4.

Theorem 3.4. There exists a weighted grid graph G so that any consistent norm heuristic h(s,t) induced
by m: V — R? with dimension d < o(n®) for a < 0.5 and the ly, norm will result in A* average-case query
complexity of at least Q(n'=%).

17

Proposition A.1. For weights {w, ,} generated from the description above, we can find a constant e where
no approximated-tie exists in {wy ,} with probability at least 0.99.

Now, we set the parameter €,, = g5 where € is defined by Proposition A.1.

Lemma A.2. Consider an auziliary graph with vertices V' = {a;}™ 3" U {b:i}75" and edges (a;,bj) with
weights equal to the distance dist(v;o,vo,;) in the original graph. Then, for any simple cycle C in this
auziliary graph, any +1 weighted sum of the weights of the nodes in the cycle has absolute value larger than
€.

Proof. The proof is similar to the proof of Lemma 3.8. First, from the choice of the weights w ,, we observe
that the shortest path from v; ¢ to vo ; must first go straight up to v; ; and then go straight right to vg ;. Let
D¢ j-wj ; be the +£1 weighted sum of the weights in the cycle. To apply Definition 3.5 and Proposition A.1,
we need to show that |¢; ;| < 4 and })|¢; ;| > 0. For the first condition, if w;; appears on the shortest
path between vy ¢ to v j» and (vy g,v0,57) is an edge in C, then either ¢ = ¢’ or j = j/. There are at most
4 such edges in C, so |¢; ;| < 4. For the second condition, we only need to show that there exists at least
one |c,-’]-| > 0. We choose v; 9 with the maximal ¢ appearing in C' and then vy ; which is adjacent to the v; o
on some occurrence of v; o and has the maximal index j. For this edge (a;,b;) in the cycle, v; ; is passed
through only once and has ¢; ; = +1. O

Lemma A.3. For any pair of vertices (vio,vo,;) (1,7 € [0,m — 1]), if their embedded distance has error
larger than 55—, then for any query (vi—p,v_q;), (p,q € [1,k]) the algorithm will scan Q(k) vertices.

Proof. In the setting of Theorem 3.4, we denote h(s,t) = |7(s)—7(t)] 0. If |7(vi0)—7(vo ;)| < dist(vio,vo;)—
50—, we can check that for query dist(v; _p,v_q ;) with (p,q € [1,k]), all vertices that lie below v; ¢ or to the
right of vy ; will be scanned by A*. We verify this for one such vertex v; _,y(p’ > 0) here:

dist(vi,—p, Vi,—pr) + [T (Vi,—p) = T(v—g,5)]
< dist(vi,—p; Vi, —p) + |7(vi,—p) = w(vi0)[+ [7(vi0) = 7(vo5)] + 7 (vo,5) = 7(v—g,;)l
< kEw + ka + dist(vi 0, V0 j) - L + kéw
’ ’ 2m
. €
= dist(vi0, vo5) — g~
< diSt(’Ui’o, ’U()’j) < dz’st(vi7_p,v_q,j)

The last inequality follows because we have obstacles (depicted in red) between different rows and columns
in R, and Ry, so the shortest path from v; _, to any v;o must pass v;o. A similar statement holds for
V_q,j- O

Lemma A.4. For the consistent lo, norm heuristic considered by Theorem 3.4, as long as d < o(m), at least
half of the pairs from (s,t) € {v;0}7" x {vo; ;”:_01 satisfies h(s,t) < dist(s,t) — 5=.

2m

Proof. By the definition of I, norm, if |7(u) — 7(v)|w = dist(u,v) — 55, then there must exist a coordinate
i € [d] where |7(u); — m(v);| = dist(u,v) — 55. We call such coordinate a “crucial coordinate” for the pair
of vertices (u,v)

We claim that for one coordinate i, at most 2m — 1 pairs of vertices uses coordinate i as their crucial
coordinate. The reason is that if we construct an auxiliary graph where we assign an edge to (u,v) if (u,v)
uses the current coordinate as their “crucial coordinate”, the auxiliary graphs have 2m vertices. If there are
more than 2m edges, at least one simple cycle exists with length [< 2m. Because | - 5~ < ¢, such a cycle
will violate Lemma, A.2.

Therefore if there are at most o(m) coordinates, there can be at most o(m?) “crucial coordinates”, which

€

means that at least mTQ pairs are embedded with error more than 5. O

18

Proof of Theorem 3.4. We set m = n® and k = n'~® then |V| = ©(n) when a < 0.5.

Now we calculate the overall average complexity lower bound. Each pair (v;0,v0,;) with h(v;,v0;) <
dist(vi0,v0,5) — 5 will produce k? pairs of queries with query complexity Q(k), so the average query
complexity is lower bounded by the following:

2
m: 2k 2a . ,2(1—a) . l—a
Q(2 ’) ZQ(n - 2 -) ZQ(nl_a>
n n

A.2 A lower bound for labeling heuristics on a grid

In this section we prove Theorem 3.9, which we restate here for the sake of convenience.

Theorem 3.9. For any consistent labeling heuristic function h with length L = o(n®), there exists an
n-vertex weighted grid graph G such that the A* algorithm scans Q(n'=) vertices on average.

The lower bound instance. The hard instance we use in this section has the same structure as that in
Figure 5, but with a different setting of parameters. We set the weights as follows:

n—z)-n*+8,, n—2k z,y=0
Way = =) Y Y (A1)

1 zory<0

where §,,, € [-n?,n?] to be specified later. Additionally, we define A(i, j) to be the sum of §; ; along the
shortest path from v; o to vy ;.

Lemma A.5. For any choice of 6., in Equation A.1, the shortest path of any pair (v;o,vo ;) is first going
up from v, o to v; j, and then going right to vjo (recall Figure 5).

Proof. Observe that for any possible z and d, , values, the first term in the weight w, , is larger than the
summation of all grids’ second terms (since z < m and d,, € [-n? n?]). Hence, any shortest path must
minimize the number of visited cells. Furthermore, the first term (n — x)-n? only depends on the z-axis and

is smaller when z is large, implying that the shortest path should first go up and then go right. O

Lemma A.6. For any vector z € [0,2° — 1]m2, there exists a choice of {8; ;} satisfying |8; ;| < n? for any
i,7 and A3, j) = Tiom+-

Proof. We first construct those {d;;} with i = 0 or j = 0. We set do0 = To, ;0 = Tim — T(i—1).m>
and dp; = x; — xj—1. Then, we iterate 4,j in the order of vi1,...,v1,m—1,v2,1,- ., VUm—1,m—1 and set
0ij = 0i1,j—1+ (Timtj +T(i1)mtj—1) — (Timtj—1 + T 1)m5). It holds that [d; ;| < 2m-max;, j|z; ;| < n?,
and it can be verified that for every i, j, A(4,7) = Zim4;-

Definition A.7 (2m-tuple). We define a 2m-tuple to be a set consisting of 2m vertices (ag, . .., Gm—1,00, -+, bm—1)
where a; € {v@_p}’;:l and similarly b; € {U_q7i}g:1. Therefore, there are k*™ different 2m-tuple for our graph.
Definition A.8 (A bad pair). We refer to a pair of vertices (a;,b;) with distortion larger than 2k as a bad
pair.

Proposition A.9. If a pair of vertices (v; —p,v_q,;) where p,q > 0 is a bad pair as defined above, then for
any shortest pair query (v; —p,v—_q;) (' > 0) A* will scan v; _,. Therefore, one bad pair contribute Q(k)
cost to the summation of all-pair shortest path queries cost.

19

[
j Wi, j ([
m
[
{
(
k {
[{
H/_/
m

Figure 6: The lower bound instance, with an example of one possible 2m-tuple in blue.

Proof. By Fact 2.4, for a pair of shortest path query (s,t), a vertex u must be scanned by A* if dist(s,u) +
g(f(u), f(t)) < dist(s,t). If (v;,—p,v_q,;) is a “bad” pair, it means that g(f(vi—p), f(v—q,;)) < dist(vi,—p,v_q;)—
2k. Then for any query from v; _,» to v_ ;, we have

dist(vi,—p, Vi —p) + g(f(Vi,—p), [((v—q,;)) < k + dist(v; p,v_q ;) — 2k < dist(vi_p,V_q;)
Therefore v; _, will be scanned by at least k queries. O

Next, we lower bound the number of such “bad” pairs at Q(n?).

Lemma A.10. If there are Q(m?) bad pairs in every 2m-tuple, then the total number of “bad pairs” is lower
bounded by Q(k*m?).

The proof of this lemma is similar to Lemma 3.14, so we omit it here.

Lemma A.11. Consider the graph described above and the A* algorithm using a consistent L = o(m) labeling
heuristic. If for any choice of {8;;} there exists a 2m-tuple (ag, ..., am—1,b0,--.,bm—1), at most o(m?) pairs
of the induced all-pair embedding distances {g(f(a:), f(bj))}i jem] have large distortion, g(f(a:), f(b;)) <
dist(a;,bj) — 2k, then there is an one-way protocol for indexing problem using o(nb) bits and succeeds with
probability at least 1 — o(1).

Proof. Suppose for every choice of {J; ;}, there exists at least one 2m-tuple with their induced all-pair em-
bedding distances satisfying that for at least 1 —o(1) fraction of the pairs, dist(a;, b;)—2k < g(f(a:), f(b;)) <
dist(a;,b;). Then we construct the following protocol for the indexing problem. We let n = m? and we think
of the index that Bob receives as a tuple (i, j) where 4,5 € [m].

Alice: given an input x € [0,2° — 1]m2, invoke Lemma A.6 to produce {J; ;} s.t. V(4,7),Ai; = Tim+;-
Enumerate over all the 2m-tuples to find the one such that for at least 1 — o(1) fraction of its pairs,
the embedded distance distortion is smaller than 2k. Note that smaller than 2k distortion means that
dist(vs0,v0,5) — 2k < g(f(a:), f(bj)) < dist(vio,vo,;) + 2k so that [M} —(n—1i)-n®=A;;. Alice

sends to Bob {f(a;)} and {f(b;)}, which has bit length o(m?b).
Bob: Receive {f(a;)} and {f(b;)} from Alice, and use them to construct A} ; = [M] —(n—1i)-n3,

n
where at least 1 — o(1) fraction of them satisfy A}, = z;;. Given Bob’s query (i,j), Bob answers the
corresponding term Aj ;.
Therefore, the protocol above can solve the indexing problem with probability greater than 1 —o(1) and
communication complexity o(nb) for any input. O

20

Proof of Theorem 3.9. We set m = n® and k = n'~ with (a < 0.5) implying that the size of the graph
is still ©(n). We prove this theorem by contradiction. If there exists a consistent labeling heuristic h with
length L = o(n®) such that for any choice of {0;;}, A* with heuristic h scans o(n'~®) vertices. Then
by Proposition A.9 and Lemma A.10, for each choice of {d;;} we can find a 2m-tuple, there are at most
o(m?) bad-pairs. Finally, by Lemma A.11, we can get an algorithm for indexing problem contradicting
Theorem 3.12. O

B Proof of Proposition 4.1

Proof. We define a boolean variable tie(s,t) which equals 1 if and only if there exists two equal length
shortest path from s to ¢, N(s) to denote the set of neighbors of vertex s, w(u,v) to be the edge weight for
edge (u,v).

Prlus evi[tie(s,t)]]
< Z Z Prlw(s,u) + dist(u,t) = w(s,v) + dist(v,t)]
$,t u,veN (8) Au#v

< n*Priw(s,u) + dist(u,t) = w(s,v) + dist(v,t)]

In the following, we prove that for any fixed t,u,v where u,v € N(s) and u # v, the expression above
Prlw(s,u) + dist(u,t) = w(s,v) + dist(v,t)] is bounded by n=>. We use ds (-,) to be the shortest distance
using all edges in F\(s,u), and d(-,-) to be the shortest distance using all edges in E (an abbreviation for
dist(-,-)). Then, the probability of the existence of non-unique shortest path can be upper bounded as the
following:

Priw(s,u) + d(u,t) = w(s,v) + d(v,t)]
= Pr[w(s,u) = w(s,v) + d(v,t) — d(u,1)]
= Pr[d(v,t) = ds (v, t) A d(u,t) = dg o (u,) A w(s,u) =w(s,v) + d(v,t) — d(u,t)]
+ Pr{(d(v,t) # dsu(v,t) v d(u,t) # dsu(u,t)) A w(s,u) = w(s,v) +d(v,t) — d(u,t)] (B.1)

this case is impossible
Priw(s,u) = w(s,v) + dsu(v,t) — ds u(u,t)] (B.2)
mgxPr[w(s,u) = (]

-5

NN

N
S

On line B.1, we expand the probability basing on whether the distance function changes after adding edge
(s,u). We can observe that as long as the addition of edge (s, u) influences the shortest path P(v,t) or P(u,t),
the later equality cannot hold. In line B.2, w(s, u) is independent of all the other quantities. Therefore, we
prove that the probability of violation of Assumption 1.11 is upper bounded by %

Because our edge weight are drawn from a discrete distribution, unique shortest path is enough to show
the existence of a constant margin as required in Assumption 1.11. O

21

	1 Introduction
	1.1 Heuristic types
	1.2 Lower bounds results
	1.3 Upper bound results
	1.4 Learned A* overview

	2 Preliminaries
	3 Lower bounds
	3.1 An average-case lower bound for lp norms
	3.2 A stronger lower bound for linf norm space
	3.3 An average-case lower bound for labeling heuristics

	4 Upper bounds
	4.1 Random beacons
	4.2 A labeling heuristic

	A Lower bounds for grid graphs
	A.1 Stronger lower bound for l norm on a grid
	A.2 A lower bound for labeling heuristics on a grid

	B Proof of Proposition 4.1

