
Faster Matchings via Learned Duals

Michael Dinitz
Johns Hopkins University
mdinitz@cs.jhu.edu

Sungjin Im
UC Merced

sim3@ucmerced.edu

Thomas Lavastida
Carnegie Mellon University
tlavasti@andrew.cmu.edu

Benjamin Moseley
Carnegie Mellon University
moseleyb@andrew.cmu.edu

Sergei Vassilvitskii
Google

sergeiv@google.com

Abstract

A recent line of research investigates how algorithms can be augmented with
machine-learned predictions to overcome worst case lower bounds. This area has
revealed interesting algorithmic insights into problems, with particular success in
the design of competitive online algorithms. However, the question of improving
algorithm running times with predictions has largely been unexplored.

We take a first step in this direction by combining the idea of machine-learned
predictions with the idea of “warm-starting" primal-dual algorithms. We consider
one of the most important primitives in combinatorial optimization: weighted
bipartite matching and its generalization to b-matching. We identify three key
challenges when using learned dual variables in a primal-dual algorithm. First,
predicted duals may be infeasible, so we give an algorithm that efficiently maps
predicted infeasible duals to nearby feasible solutions. Second, once the duals are
feasible, they may not be optimal, so we show that they can be used to quickly
find an optimal solution. Finally, such predictions are useful only if they can be
learned, so we show that the problem of learning duals for matching has low sample
complexity. We validate our theoretical findings through experiments on both real
and synthetic data. As a result we give a rigorous, practical, and empirically
effective method to compute bipartite matchings.

1 Introduction

Classical algorithm analysis considers worst case performance of algorithms, capturing running times,
approximation and competitive ratios, space complexities, and other notions of performance. Recently
there has been a renewed interest in finding formal ways to go beyond worst case analysis [41], to
better understand performance of algorithms observed in practice, and develop new methods tailored
to typical inputs observed.

An emerging line of research dovetails this with progress in machine learning, and asks how algorithms
can be augmented with machine-learned predictors to circumvent worst case lower bounds when the
predictions are good, and approximately match them otherwise (see Mitzenmacher and Vassilvitskii
[36] for a survey). Naturally, a rich area of applications of this paradigm has been in online
algorithms, where the additional information revealed by the predictions reduces the uncertainty
about the future and can lead to better choices, and thus better competitive ratios. For instance, see
the work by Lykouris and Vassilvitskii [33], Rohatgi [40], Jiang et al. [29] on caching; Antoniadis
et al. [3], Dütting et al. [19] on the classic secretary problem; Purohit et al. [39], Lattanzi et al. [32]
on scheduling; Purohit et al. [39], Anand et al. [2] on ski rental; and Bamas et al. [8] on set cover.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

However, the power of predictions is not limited to improving online algorithms. Indeed, the aim of
the empirical paper that jump-started this area by Kraska et al. [31] was to improve running times for
basic indexing problems. The main goal and contribution of this work is to show that at least in one
important setting (weighted bipartite matching), we can give formal justification for using machine
learned predictions to improve running times: there are predictions which can provably be learned,
and if these predictions are “good” then we have running times that outperform standard methods
both in theory and empirically.

How can predictions help with running time? One intuitive approach, which has been used extensively
in practice, is through the use of “warm-start” heuristics [46, 23, 22, 37], where instead of starting
with a blank slate, the algorithm begins with some starting state (which we call a warm-start “solution”
or “seed”) which hopefully allows for faster completion. While it is a common technique, there is a
dearth of analysis understanding what constitutes a good warm-start, when such initializations are
helpful, and how they can best be leveraged.

Thus we have a natural goal: put warm-start heuristics on firm theoretical footing by interpreting the
warm-start solution as learned predictions. In this set up we are given a number of instances of the
problem (the training set), and we can use them to compute a warm-start solution that will (hopefully)
allow us to more quickly compute the optimal solution on future, test-time, instances. There are three
challenges that we must address:

(i) Feasibility. The learned prediction (warm-start solution) might not even be feasible for the
specific instance we care about! For example, the learned solution may be matching an edge
that does not exist in the graph at testing time.

(ii) Optimization. If the warm-start solution is feasible and near-optimal then we want the
algorithm to take advantage of it. In other words, we would like our running time to be a
function of the quality of the learned solution.

(iii) Learnability. It is easy to design predictions that are enormously helpful but which cannot
actually be learned (e.g., the “prediction” is the optimal solution). We need to ensure that
a typical solution learned from a few instances of the problem generalizes well to new
examples, and thus offers potential speedups.

If we can overcome these three challenges, we will have an end-to-end framework for speeding up
algorithms via learned predictions: use the solution to challenge (iii) to learn the predictions from
historical data, use the solution to challenge (i) to quickly turn the prediction into something feasible
for the particular problem instance while preserving near-optimality, and then use this as a warm-start
seed in the solution to challenge (ii).

1.1 Our Contributions

We focus on one of the fundamental primitives of combinatorial optimization: computing bipartite
matchings. For the bipartite minimum-weight perfect matching (MWPM) problem, as well as its
extension to b-matching, we show that the above three challenges can be solved.

A key conceptual question is finding a specification of the seed, and an algorithm to use it that satisfies
the desiderata above. We have discussed warm-start “solutions”, so it is tempting to think that a good
seed is a partial solution: a set of matched edges that can then be expanded to a optimal matching.
After all, this is the structure we maintain in most classical matching algorithms. Moreover, any such
solution is feasible (one can simply set non-existing edges to have very high weight), eschewing the
need for the feasibility step. At the same time, as has been observed previously in the context of
online matchings [13, 45], this primal solution is brittle, and a minor modification in the instance
(e.g. an addition of a single edge) can completely change the set of optimal edges.

Instead, following the work of [13, 45], we look at the dual problem; that is, the dual to the natural
linear program. We quantify the “quality” of a prediction ŷ by its ℓ1-distance from the true optimal
dual y∗, i.e., by ‖ŷ − y∗‖1. The smaller quantities correspond to better predictions. Since the dual
is a packing problem we must contend with feasibility: we give a simple linear time algorithm that
converts the prediction ŷ into a feasible dual while increasing the ℓ1 distance by a factor of at most 3.

Next, we run the Hungarian method starting with the resulting feasible dual. Here, we show that the
running time is in proportional to the ℓ1 distance of the feasible dual to the optimal dual (Theorem 5).
Finally, we show via a pseudo-dimension argument that not many samples are needed before the

2

empirically optimal seed is a good approximation of the true optimum (Theorem 6), and that this
empirical optimum can be computed efficiently. For the learning argument, we assume that matching
instances are drawn from a fixed but unknown distribution D.

Putting it all together gives us our main result.

Theorem 1 (Informal). There are three algorithms (feasibility, optimization, learning) with the
following guarantees.

• Given a (possibly infeasible) dual ŷ from the learning algorithm, there exists an O(m+ n)
time algorithm that takes a problem instance c, and outputs a feasible dual ŷ′(c) such that
‖ŷ′(c)− y∗(c)‖1 ≤ 3‖ŷ − y∗(c)‖1.

• The optimization algorithm takes as input feasible dual ŷ′(c) and outputs a minimum weight

perfect matching, and runs in time Õ(m
√
n ·min{‖ŷ′(c)− y∗(c)‖1,

√
n}).

• After Õ(C2n3) samples from an unknown distribution D over problem instances, the
learning algorithm produces duals ŷ so that Ec∼D [‖ŷ−y∗(c)‖1] is approximately minimum
among all possible choices of ŷ, where C is the maximum edge cost and y∗(c) is an optimal
dual for instance c.

Combining these gives a single algorithm that, with access to Õ(C2n3) problem instance samples

from D, has expected running time on future instances from D of only Õ(m
√
nmin{α,√n}), where

α = miny Ec∼D [‖y − y∗(c)‖1].

We emphasize that the Hungarian method with Õ(mn) running time is the standard algorithm
in practice. Although there are other theoretically faster exact algorithms for bipartite minimum-
weight perfect matching [38, 21, 20, 18] that run in O(m

√
n log(nC)), they are relatively com-

plex (using various scaling techniques). Very recent breakthroughs give algorithms of run time
Õ((m+ n1.5) log2(C)) for the minimum-weight perfect matching problem and several interesting
extensions [43, 44]. However, the algorithms are highly complicated and their practical performance
is yet to be demonstrated. In fact, we could not find any implementation of the above algorithms,
except for the Hungarian method, of which multiple implementations are readily available.

Note that our result shows that we can speed up the Hungarian method as long as the ℓ1-norm error
of the learned dual, i.e., ‖ŷ − y∗(c)‖1 is o(

√
n). Further, as the projection step that converts the

learned dual into a feasible dual takes only linear time, the overhead of our method is essentially
negligible. Therefore, even if the prediction is of poor quality, our method has worst-case running
time that is never worse than that of the Hungarian algorithm. Even our learning algorithm is simple,
consisting of a straightforward empirical risk minimization algorithm (the analysis is more complex
and involves bounding the “pseudo-dimension” of the loss functions).

We validate our theoretical results via experiments. For each dataset we first feed a small number of
samples (fewer than our theoretical bounds) to our learning algorithm. We then compare the running
time of our algorithm to that of the classical Hungarian algorithm on new instances.

Details of these experiments can be found in Section 4. At a high level they show that our algorithm
is significantly faster in practice. Further, our experiment shows only very few samples are needed to
achieve a notable speed-up. This confirms the power of our approach, giving a theoretically rigorous
yet also practical method for warm-start primal-dual algorithms.

1.2 Related Work

Matchings and b-Matchings: Bipartite matchings are one of the most well studied problems in
combinatorial optimization, with a long history of algorithmic improvements. We refer the interested
reader to Duan and Pettie [17] for an overview. We highlight some particular results here. If edges
have no weights and thus the goal is to find the maximum cardinality matching (see Section 2 for
a formal definition), the fastest running time had long been O(m

√
n) [14, 30, 27] until the recent

breakthrough with Õ(m+n1.5) running time was discovered [43]. We are interested in the weighted
versions of these problems and when all edge weights are integral. Let C be the maximum edge
weight, n be the number of vertices, and m the number of edges. For finding exact solutions to
the minimum weight perfect matching problem, the scaling technique leads to a running time of
O(m

√
n log(C)) [38, 21, 20, 18].

3

Large scale bipartite matchings have been studied extensively in the online setting, as they represent
the basic problem in ad allocations [34]. While the ad allocation is inherently online, most of the
methods precompute a dual based solution based on a sample of the input [13, 45], and then argue
that this solution is approximately optimal on the full instance. In contrast, we strive to compute the
exactly optimal solution, but use previous instances to improve the running time of the approach.

Algorithms with Predictions: Kraska et al. [31] showed how to use machine learned predictions
to improve heavily optimized indexing algorithms. The original paper was purely empirical and
came with no rigorous guarantees; recently there has been a flurry of work putting such approaches
on a strong theoretical foundation, evaluating the benefit of augmenting classical algorithms with
machine learned predictions, see [36] for a survey. Online and streaming algorithms in particular
have seen significant successes, as predictions reveal information about the future and can help
guide the algorithms’ choices. This has led to the design of new methods for caching [33, 40, 29],
scheduling [39, 32], frequency counting [12, 28, 1], and membership testing [35, 42] that can break
through worst-case lower bounds when the predictions are of sufficiently high quality.

Most of the above work abstracts the predictions as access to an error-prone oracle and asks how to
best use predictions: getting performance gains when the predictions are good, but limiting the losses
when they are not. A related emergent area is that of data driven algorithm design [25, 7, 5, 4, 6, 11].
Here, the objective is to “learn” a good algorithm for a particular family of inputs. The goal is not
typically to tie the performance of the algorithm to the quality of the prediction, but rather to show
that the prediction makes sense; that is only a small number of problem samples are needed in order
to ensure the learned algorithm generalizes to new data points.

1.3 Roadmap

We present our theoretical results on min-cost perfect bipartite matching in Section 3. The experiments
are presented in Section 4. The extension to b-matching, as well as all missing proofs, can be found
in the full version of this paper as supplementary materials.

2 Preliminaries

Notation: Let G = (V,E) be an undirected graph. When G is bipartite we will use L and R to
refer to the two sides of the bipartition. We will let N(i) := {e ∈ E | i ∈ e} be the set of edges
adjacent to vertex i. For a set S ⊆ V , let Γ(S) be the vertex neighborhood of S. For a vector
y ∈ R

n, we let ‖y‖1 =
∑

i |yi| be its ℓ1-norm. Let 〈x, y〉 be the standard inner product on R
n.

Linear Programming and Complementary Slackness: Here we recall optimality conditions for
linear programming that are used to ensure the correctness of some algorithms we present. Consider
the primal-dual pair of linear programs below.

min c⊤x; Ax = b; x ≥ 0 (P) max b⊤y; A⊤y ≤ c (D)

A pair of solutions x, y for (P) and (D), respectively, satisfy complementary slackness if x⊤(c−
A⊤y) = 0. The following lemma is well-known.

Lemma 2. Let x be a feasible solution for (P) and y be a feasible solution for (D). If the pair x, y
satisfies complementary slackness, then x and y are optimal solutions for their respective problems.

Maximum Cardinality Matching: Let G = (V,E) be a bipartite graph on n vertices and m edges.
A matching M ⊆ E is a collection of non-intersecting edges. The Hopcroft-Karp algorithm for
finding a matching maximizing |M | runs in time O(

√
n ·m) [26], which is still state-of-the-art for

general bipartite graphs. For moderately dense graphs, a recent result by van den Brand et al. [43]
gives a better running time of Õ(m+ n1.5) (where Õ hides polylogarithmic factors).

Minimum Weight Perfect Matching (MWPM): Again, let G = (V,E) be a bipartite graph on n
vertices and m with costs c ∈ Z

E
+ on the edges, and let C be the maximum cost. A matching M is

perfect if every vertex is matched by M . The objective of this problem is to find a perfect matching
M minimizing the cost c(M) :=

∑

e∈M ce.

4

When looking for optimal solutions we can assume that G is a complete graph by adding all possible
edges not in E with weight Cn2. It is easy to see that any o(n) approximate solution would not use
any of these edges.

3 Faster Min-Weight Perfect Matching

In this section we describe how predictions can be used to speed up the bipartite Minimum Weight
Perfect Matching (MWPM) problem.

The MWPM problem can be modeled by the following linear program and its dual – the primal-dual
view will be very useful for our algorithm and analysis. We will sometimes refer to a set of dual
variables y as dual prices. Both LPs are well-known to be integral, implying that there always exist
integral optimal solutions.

min
∑

e∈E

cexe (MWPM-P)

∑

e∈N(i)

xe = 1 ∀i ∈ V

xe ≥ 0 ∀e ∈ E

max
∑

i∈V

yi (MWPM-D)

yi + yj ≤ ce ∀e = ij ∈ E

Suppose we are given a prediction ŷ of a dual solution. If ŷ
is feasible, then by complementary slackness we can check if
ŷ represents an optimal dual solution by running a maximum
cardinality matching algorithm on the graph G′ = (V,E′),
where E′ = {e = ij ∈ E | ŷi + ŷj = cij} is the set of tight
edges. If this matching is perfect, then its incidence vector x
satisfies complementary slackness with ŷ and thus represents
an optimal solution by Lemma 2.

We now consider the problem from another angle, factoring
in learning aspects. Suppose the graph G = (V,E) is fixed
but the edge cost vector c ∈ Z

E
+ varies (is drawn from some

distribution D). If we are given an optimal dual y∗ as a prediction, then we can solve the problem by
solving the max cardinality matching problem only once. However, the optimal dual can significantly
change depending on edge cost c. Nevertheless, we will show how to learn “good” dual values and
use them later to solve new MWPM instances faster. Specifically, we seek to design an end-to-end
algorithm addressing all the aforementioned challenges:

1. Feasiblity (Section 3.1). The learned dual ŷ may not be feasible for MWPM-D with some
specific cost vector c. We show how to quickly convert it to a feasible dual ŷ′(c) by
appropriately decreasing the dual values (the more we decrease them, the further we move
away from the optimum). Finding the feasible dual minimizing ‖ŷ − ŷ′(c)‖1 turns out to be
a variant of the vertex cover problem, for which we give a simple 2-approximation running
in O(m+n) time. As a result, we have ‖ŷ′(c)− y∗(c)‖1 ≤ 3‖ŷ− y∗(c)‖1. See Theorem 4.

2. Optimization (Section 3.2). Now that we have a feasible solution ŷ′(c), we want to find an
optimal solution starting with ŷ′(c) in time that depends on the quality of ŷ′(c). Fortunately,
the Hungarian algorithm can be seeded with any feasible dual, so we can “warm-start” it
with ŷ′(c). We show that its running time will be proportional to |‖ŷ′(c)‖1 − ‖y∗(c)‖1| ≤
‖ŷ′(c)− y∗(c)‖1. Our analysis does not depend on the details of the Hungarian algorithm,
and so applies to a broader class of primal-dual algorithms.

3. Learnability (Section 3.3). The target dual we seek to learn is argminy Ec∼D‖y − y∗(c)‖;
here y∗(c) is the optimal dual for MWPM-D with cost vector c. We show we can efficiently
learn ŷ that is arbitrarily close to the target vector after Õ(C2n3) samples from D. See
Theorem 6.

Combining all of these gives the following, which is a more formal version of Theorem 1. Let D be
an arbitrary distribution over edge costs where every vector in the support of D has maximum cost C.
For any edge cost vector c, let y∗(c) denote the optimal dual solution.

Theorem 3. For any p, ǫ > 0, there is an algorithm which:

• After O
(

(

nC
ǫ

)2
(n log n+ log(1/p))

)

samples from D, returns dual values ŷ such that

Ec∼D[‖ŷ − y∗(c)‖1] ≤ min
y

Ec∼D[‖y − y∗(c)‖1] + ǫ with probability at least 1− p.

• Using the learned dual ŷ, given edge costs c, computes a min-cost perfect matching in time
O (m

√
n ·min{‖ŷ − y∗(c)‖1,

√
n}).

In the rest of this section we detail our proof of this Theorem.

5

3.1 Recovering a Feasible Dual Solution (Feasibility)

Algorithm 1 Fast Approx. for Distance to Feasibility

1: procedure FASTAPPROX(G = (V,E), r)
2: ∀i ∈ V , δi ← 0
3: while E 6= ∅ do
4: Let i be an arbitrary vertex of G
5: while i has a neighbor do
6: j ← argmaxj′∈N(i) rij′
7: δi ← rij
8: Delete i and all its edges from G
9: i← j

10: Return δ

Let ŷ be an infeasible set of (integral)
dual prices – this should be thought of as
the “good” dual obtained by our learning
algorithm. Our goal in this section is to
find a new feasible dual solution ŷ′(c)
that is close to ŷ, for a given MWPM-D
instance with cost c. In particular we seek
to find the closest feasible dual under the
ℓ1 norm, i.e. one minimizing ‖ŷ′(c) −
ŷ‖1.

Looking at (MWPM-D), it is clear that
we need to decrease the given dual val-
ues ŷ in order to make it feasible. More
formally, we are looking for a vector of non-negative perturbations δ such that ŷ′ := ŷ − δ is feasible.
We model finding the best set of perturbations, in terms of preserving ŷ’s dual objective value, as a
linear program. Let F := {e = ij ∈ E | ŷi + ŷj > cij} be the set of dual infeasible edges under ŷ.
Define re := ŷi + ŷj − ce for each edge e = ij ∈ F . Asserting that ŷ− δ is feasible for (MWPM-D)
while minimizing the amount lost in the dual objective leads to the following linear program:

min
∑

i∈V

δi; δi + δj ≥ rij ∀ij ∈ F ; δi ≥ 0 ∀i ∈ V (1)

Note that this is a variant of the vertex cover problem—the problem becomes exactly the vertex cover
problem if rij = 1 for all edges ij. We could directly solve this linear program, but we are interested
in making this step efficient. To find a fast approximation for (1), we take a simple greedy approach.

Algorithm 1 is a modification of the algorithm of Drake and Hougardy [15] which walks through the
graph setting δi appropriately at each step to satisfy the covering constraints in (1). The analysis is
based on interpreting the algorithm through the lens of primal-dual—the dual of (1) turns out to be a
maximum weight matching problem with new edge weights rij .

A similar analysis as in Drake and Hougardy [15] implies this is a 2-approximation which runs in
O(m+ n) time (all proofs are in the Supplementary material). This essentially immediately implies
the following theorem (the 2-approximation turns into 3 due to a use of the triangle inequality).
Theorem 4. There is a O(m+n) time algorithm that takes an infeasible integer dual ŷ and constructs
a feasible integer dual ŷ′(c) for MWPM-D with cost vector c such that ‖ŷ′(c)− ŷ‖1 ≤ 2‖ŷ− y∗(c)‖1
where y∗(c) is the optimal dual solution for MWPM-D with cost vector c. Thus by triangle inequality
we have ‖ŷ′(c)− y∗(c)‖1 ≤ 3‖ŷ − y∗(c)‖1.

3.2 Seeding Hungarian with a Feasible Dual (Optimization)

In this section we assume that we are given a feasible integral dual ŷ′(c) for an input with cost
vector c and the goal is to find an optimal solution. We want to analyze the running time in terms of
‖ŷ′(c) − y∗(c)‖1, the distance to optimality. We use a simple primal-dual schema to achieve this,
which is given formally in Algorithm 2.

To satisfy complementary slackness, we must only choose edges with yi+ yj = cij . Let E′ be the set
of such edges. We find a maximum cardinality matching in the graph G′ = (V,E′). If the resulting
matching M is perfect then we are done by complementary slackness (Lemma 2) Otherwise, in steps
7-9 we modify the dual in a way that guarantees a strict increase in the dual objective. Since all
parameters of the problem are integral, this strict increase then implies our desired bound on the
number of iterations.

We will show this algorithm performs at most O (‖y∗(c)− ŷ′(c)‖1) iterations. We can further
improve this by ensuring the algorithm runs no longer than the standard Hungarian algorithm in the
case that we have large error in the prediction, i.e., ‖y∗(c)− ŷ′(c)‖1 is large. In particular, steps 6
and 11 do not precisely specify the choice of the set S and the matching M . If we instantiate these
steps appropriately (let S = L \ C for step 6, where C is a minimum vertex cover, and update M
along shortest-augmenting-paths for step 11) then we recover the Hungarian Algorithm. Together,
we can prove the following theorem.

6

Theorem 5. For an arbitrary cost vector c, the Hungarian method starting with a feasible integer dual

solution ŷ′(c) finds a minimum weight perfect matching in Õ (m
√
n ·min {‖y∗(c)− ŷ′(c)‖1,

√
n})

time, where y∗(c) is an optimal dual solution.

3.3 Learning Optimal Advice (Learning)

Algorithm 2 Simple Primal-Dual Scheme for MWPM

1: procedure MWPM-PD(G = (V,E), c, y)
2: E′ ← {e ∈ E | yi + yj = cij } ⊲ Tight Edges
3: G′ ← (V,E′) ⊲ G containing only tight edges
4: M ← Maximum cardinality matching in G′

5: while M is not a perfect matching do
6: Find S ⊆ L such that |S| > |Γ(S)| in G′

7: ǫ← mini∈S,j∈R\Γ(S){cij − yi − yj}
8: ∀i ∈ S, yi ← yi + ǫ
9: ∀j ∈ Γ(S), yj ← yj − ǫ

10: Update E′, G′

11: M ← Maximum cardinality matching in G′

12: Return M

Now we want to formally instantiate the
“learning” part of our framework: if there
is a good starting dual solution for a given
input distribution, we want to find it with-
out seeing too many samples. The formal
model we will use is derived from data
driven algorithm design and PAC learn-
ing.

We imagine solving many problem in-
stances drawn from the same distribu-
tion. To formally model this, we let
D be an unknown distribution over in-
stances. For simplicity, we consider the
graph G = (V,E) to be fixed with vary-
ing costs. Thus D is a distribution over cost vectors c ∈ R

E . We assume that the costs in this
distribution are bounded. Let C := maxc∼D maxe∈E ce be finite and known to the algorithm. Our
goal is to find the (not necessarily feasible) dual assignment that performs “best” in expectation over
the distribution. Based on Theorems 4 and 5 , we know that the “cost” of using dual values y when
the optimal dual is y∗ is bounded by O(m

√
n‖y∗ − y‖1), and hence it is natural to define the “cost”

of y as ‖y∗ − y‖1.

For every c ∈ R
E we will let y∗(c) be a fixed optimal dual solution for c:

y∗(c) := argmax
y

{

∑

i

yi | ∀ij ∈ E, yi + yj ≤ cij

}

.

Here we assume without loss of generality that y∗(c) is integral as the underlying polytope is known
to be integral. We will let the loss of a dual assignment y be its ℓ1-distance from the optimal solution:

L(y, c) = ‖y − y∗(c)‖1.

Our goal is to learn dual values ŷ which minimize Ec∼D[L(y, c)]. Let y∗ denote the vector minimizing
this objective, y∗ = argminy Ec∼D[L(y, c)].

We will give PAC-style bounds, showing that we only need a small number of samples in order
to have a good probability of learning an approximately-optimal solution ŷ. Our algorithm is
conceptually quite simple: we minimize the empirical loss after an appropriate number of samples.
In the supplementary we show that this can be done efficiently, giving the following theorem.

Theorem 6. There is an algorithm that after s = O
(

(

nC
ǫ

)2
(n log n+ log(1/p))

)

samples returns

dual values ŷ such that Ec∼D[L(ŷ, c)] ≤ Ec∼D[L(y
∗, c)] + ǫ with probability at least 1 − p. The

algorithm runs in time polynomial in n,m and s.

This theorem, together with Theorems 4 and 5, immediately implies Theorem 3.

At the heart of the proof of Theorem 6 lies the proof of the following theorem regarding pseudo-
dimensions of ℓ1-norm distance functions, which may be of independent interest.

Theorem 7. Let Hn = {fy | y ∈ R
n} where fy : Rn → R is defined by fy(x) = ‖y − x‖1. The

pseudo-dimension ofHn is at most O(n log n).

We remark that minimizing this emprical loss can be efficiently implemented by taking the coordinate-
wise median of each optimal dual, i.e. taking yj = median(x1

j , x
2
j , . . . , x

s
j) for each j ∈ V .

7

Dataset Blog Feedback [10] Covertype KDD Skin [9] Shuttle
of Points (n) 52,397 581,012 98,942 100,000 43500

of Features (d) 281 54 38 4 10
Table 1: Datasets used in experiments based on Euclidean data

4 Experiments

In this section we present experimental results on both synthetic and real data sets. Our goal is to
validate the two main hypotheses in this work. First we show that warm-starting the Hungarian algo-
rithm with learned duals provides an empirical speedup. Next, we show that the sample complexity
of learning good duals is small, ensuring that our approach is viable in practice. We present some
representative experimental results here; additional results are in the Supplementary Material.

Experiment Setup: All of our experiments were run on Google Cloud Platform [24]
e2-standard-2 virtual machines with 2 virtual CPU’s and 8 GB of memory.

We consider two different setups for learning dual variables and evaluating our algorithms.

• Batch: In this setup, we receive s samples c1, c2, . . . , cs from the distribution of problem
instances, learn the appropriate dual variables, and then test on new instances drawn from
the distribution.

• Online: A natural use case for our approach is an online setting, where instance graphs
G1, G2, . . . arrive one at a time. When deciding on the best warm start solution for Gt

we can use all of the data from G1, . . . , Gt−1. This is a standard scenario in industrial
applications like ad matching, where a new ad allocation plan may need to be computed
daily or hourly.

Datasets: To study the effect of the different algorithm parameters, we first run a study on synthetic
data. Let n be the number of nodes on one side of the bipartition and let ℓ, v be two parameters we set
later. First, we divide the n nodes on each side of the graph into ℓ groups of equal size. The weight of
all edges going from the i’th group on the left side and the j’th group on the right side is initialized to
some value Wi,j drawn from a geometric distribution with mean 250. Then to generate a particular
graph instance, we perturb each edge weight with independent random noise according to a binomial
distribution, shifted and scaled so that it has mean 0 and variance v. We refer to this as the type model
(each type consists of a group of nodes). We use n = 500, ℓ ∈ {50, 100} and vary v from 0 to 220.

We use the following model of generating instances from real data. Let X be a set of n points in R
d,

and fix a parameter k. We first divide X randomly into two sets, XL and XR and compute a k-means
clustering on each partition. To generate an instance G = (L ∪ R,E), we sample one point from
each cluster on each side, generating 2k points in total. The points sampled from XL (resp. XR)
form the vertices in L (resp. R). The weight of an (i, j) edge is the Euclidean distance between these
two points. Changing k allows us to control the size of the instance.

We use several datasets from the UCI Machine Learning repository [16]. See Table 1 for a summary.
For the KDD and Skin datasets we used a sub-sample of the original data (sizes given in Table 1).

Implemented Algorithms and Metrics: We implemented the Hungarian Algorithm (a particular
instantiation of Algorithm 2, as discussed in Section 3.2) allowing for arbitrary seeding of a fea-
sible integral dual. We experimented with having initial dual of 0 (giving the standard Hungarian
Algorithm) as the baseline and having the initial duals come from our learning algorithm followed
by Algorithm 1 to ensure feasibility (which we refer to as “Learned Duals”). We also added the
following “tightening” heuristic, which is used in all standard implementations of the Hungarian
algorithm: given any feasible dual solution y, set yi ← yi +minj∈N(i){cij − yi − yj} for all nodes
i on one side of the bipartition. This can be quickly carried out in O(n+m) time, and guarantees
that each node on that side has at least one edge in E′. We compare the runtime and number of
primal-dual iterations, reporting mean values and error bars denoting 95% confidence intervals. The
runtime results are in the supplementary material, and exhibit similar behavior (i.e., the extra running
time caused by using Algorithm 1 in Learned Duals is negligible).

To learn initial duals we use a small number of independent samples of each instance type. We
compute an optimal dual solution for each instance in the sample. To combine these together into

8

Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, 3-8 December 2018, Montréal, Canada, pages 10664–10674, 2018.

[7] Maria-Florina Balcan, Dan F. DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and
Ellen Vitercik. How much data is sufficient to learn high-performing algorithms? CoRR,
abs/1908.02894, 2019. URL http://arxiv.org/abs/1908.02894.

[8] Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning
augmented algorithms. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
e834cb114d33f729dbc9c7fb0c6bb607-Abstract.html.

[9] Rajen Bhatt and Abhinav Dhall. Skin segmentation dataset, uci machine learning repository,
2012.

[10] Krisztian Buza. Feedback prediction for blogs. In Myra Spiliopoulou, Lars Schmidt-Thieme,
and Ruth Janning, editors, Data Analysis, Machine Learning and Knowledge Discovery, pages
145–152, Cham, 2014. Springer International Publishing. ISBN 978-3-319-01595-8.

[11] Shuchi Chawla, Evangelia Gergatsouli, Yifeng Teng, Christos Tzamos, and Ruimin Zhang.
Learning optimal search algorithms from data. CoRR, abs/1911.01632, 2019. URL http:
//arxiv.org/abs/1911.01632.

[12] Edith Cohen, Ofir Geri, and Rasmus Pagh. Composable sketches for functions of frequencies:
Beyond the worst case. CoRR, abs/2004.04772, 2020. URL https://arxiv.org/abs/2004.
04772.

[13] Nikhil R. Devanur and Thomas P. Hayes. The adwords problem: online keyword matching
with budgeted bidders under random permutations. In Proceedings 10th ACM Conference on
Electronic Commerce (EC-2009), Stanford, California, USA, July 6–10, 2009, pages 71–78,
2009.

[14] Efim A Dinic. Algorithm for solution of a problem of maximum flow in networks with power
estimation. In Soviet Math. Doklady, volume 11, pages 1277–1280, 1970.

[15] Doratha E. Drake and Stefan Hougardy. A simple approximation algorithm for the weighted
matching problem. Inf. Process. Lett., 85(4):211–213, 2003. doi: 10.1016/S0020-0190(02)
00393-9. URL https://doi.org/10.1016/S0020-0190(02)00393-9.

[16] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

[17] Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. J. ACM,
61(1):1: 1–1: 23, 2014. doi: 10.1145/2529989. URL https://doi.org/10.1145/2529989.

[18] Ran Duan and Hsin - Hao Su. A scaling algorithm for maximum weight matching in bipartite
graphs. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1413–1424.
SIAM, 2012. doi: 10.1137/1.9781611973099.111. URL https://doi.org/10.1137/1.
9781611973099.111.

[19] Paul Dütting, Silvio Lattanzi, Renato Paes Leme, and Sergei Vassilvitskii. Secretaries with
advice. CoRR, abs/2011.06726, 2020. URL https://arxiv.org/abs/2011.06726.

[20] Harold N. Gabow. A scaling algorithm for weighted matching on general graphs. In 26th
Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA, 21-23 October
1985, pages 90–100. IEEE Computer Society, 1985. doi: 10.1109/SFCS.1985.3. URL https:
//doi.org/10.1109/SFCS.1985.3.

11

[21] Andrew V. Goldberg and Robert Kennedy. Global price updates help. SIAM J. Discret. Math.,
10(4):551–572, 1997. doi: 10.1137/S0895480194281185. URL https://doi.org/10.1137/
S0895480194281185.

[22] Jacek Gondzio. Warm start of the primal-dual method applied in the cutting-plane scheme.
Math. Program., 83:125–143, 1998. doi: 10.1007/BF02680554. URL https://doi.org/10.
1007/BF02680554.

[23] Jacek Gondzio and Pablo González-Brevis. A new warmstarting strategy for the primal-
dual column generation method. Math. Program., 152(1-2):113–146, 2015. doi: 10.1007/
s10107-014-0779-8. URL https://doi.org/10.1007/s10107-014-0779-8.

[24] Google Cloud Platform. https://cloud.google.com/.

[25] Rishi Gupta and Tim Roughgarden. A PAC approach to application-specific algorithm selection.
SIAM J. Comput., 46(3):992–1017, 2017. doi: 10.1137/15M1050276. URL https://doi.
org/10.1137/15M1050276.

[26] John E. Hopcroft and Richard M. Karp. An n5/2-algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2(4):225–231, 1973. doi: 10.1137/0202019. URL
https://doi.org/10.1137/0202019.

[27] John E Hopcroft and Richard M Karp. An nˆ5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on computing, 2(4):225–231, 1973.

[28] Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. In 7th International Conference on Learning Representations, 2019.

[29] Zhihao Jiang, Debmalya Panigrahi, and Kevin Sun. Online algorithms for weighted paging
with predictions. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,
Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 69:1–69:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi: 10.4230/LIPIcs.ICALP.2020.69. URL
https://doi.org/10.4230/LIPIcs.ICALP.2020.69.

[30] Alexander V Karzanov. On finding maximum flows in networks with special structure and
some applications. Matematicheskie Voprosy Upravleniya Proizvodstvom, 5:81–94, 1973.

[31] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned
index structures. In Proceedings of the 2018 International Conference on Management of Data,
pages 489–504. ACM, 2018.

[32] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online
scheduling via learned weights. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January
5-8, 2020, pages 1859–1877. SIAM, 2020. doi: 10.1137/1.9781611975994.114. URL
https://doi.org/10.1137/1.9781611975994.114.

[33] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned ad-
vice. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 3302–3311, 2018.

[34] Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V. Vazirani. Adwords and
generalized online matching. J. ACM, 54(5):22, 2007. doi: 10.1145/1284320.1284321. URL
https://doi.org/10.1145/1284320.1284321.

[35] Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching. In
Advances in Neural Information Processing Systems, pages 464–473, 2018.

[36] Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. CoRR,
abs/2006.09123, 2020. URL https://arxiv.org/abs/2006.09123.

12

[37] Vinod Nair, Dj Dvijotham, Iain Dunning, and Oriol Vinyals. Learning fast optimizers for
contextual stochastic integer programs. In Amir Globerson and Ricardo Silva, editors, Pro-
ceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI 2018,
Monterey, California, USA, August 6-10, 2018, pages 591–600. AUAI Press, 2018. URL
http://auai.org/uai2018/proceedings/papers/217.pdf.

[38] James B. Orlin and Ravindra K. Ahuja. New scaling algorithms for the assignment and minimum
mean cycle problems. math. Program., 54:41–56, 1992. doi: 10.1007/BF01586040. URL
https://doi.org/10.1007/BF01586040.

[39] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml predictions.
In Advances in Neural Information Processing Systems, pages 9661–9670, 2018.

[40] Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice. In
Symposium on Discrete Algorithms (SODA), 2020.

[41] Tim Roughgarden. Beyond the Worst-Case Analysis of Algorithms. Cambridge University Press,
2020.

[42] Kapil Vaidya, Eric Knorr, Tim Kraska, and Michael Mitzenmacher. Partitioned learned bloom
filter. CoRR, abs/2006.03176, 2020. URL https://arxiv.org/abs/2006.03176.

[43] Jan van den Brand, Yin-Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak,
Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-linear time on moderately
dense graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 919–930. IEEE, 2020.

[44] Jan van den Brand, Yin Tat Lee, Yang P Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao
Song, and Di Wang. Minimum cost flows, mdps, and ℓ1-regression in nearly linear time for
dense instances. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 859–869, 2021.

[45] Erik Vee, Sergei Vassilvitskii, and Jayavel Shanmugasundaram. Optimal online assignment
with forecasts. In Proceedings 11th ACM Conference on Electronic Commerce (EC-2010),
Cambridge, Massachusetts, USA, June 7-11, 2010, pages 109–118, 2010.

[46] Hiroshi Yamashita and Takahito Tanabe. A primal-dual exterior point method for nonlinear
optimization. SIAM Journal on Optimization, 20(6):3335–3363, 2010. doi: 10.1137/060676970.
URL https://doi.org/10.1137/060676970.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] This work

focuses on the efficiency of a classic combinatorial optimization problem.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] In the supplementary

material.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

13

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Our Contributions
	Related Work
	Roadmap

	Preliminaries
	Faster Min-Weight Perfect Matching
	Recovering a Feasible Dual Solution (Feasibility)
	Seeding Hungarian with a Feasible Dual (Optimization)
	Learning Optimal Advice (Learning)

	Experiments
	Conclusion and Future Work

