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Abstract

Graph cut problems are fundamental in com-
binatorial Optimization, and are a central ob-
ject of study in both theory and practice.
Further, the study of fairness in Algorithmic
Design and Machine Learning has recently re-
ceived signiőcant attention, with many difer-
ent notions proposed and analyzed for a vari-
ety of contexts. In this paper we initiate the
study of fairness for graph cut problems by
giving the őrst fair deőnitions for them, and
subsequently we demonstrate appropriate al-
gorithmic techniques that yield a rigorous
theoretical analysis. Speciőcally, we incorpo-
rate two diferent notions of fairness, namely
demographic and probabilistic individual fair-
ness, in a particular cut problem that models
disaster containment scenarios. Our results
include a variety of approximation algorithms
with provable theoretical guarantees.

1 INTRODUCTION

Let G = (V,E) be an undirected graph with vertex
set V and edge set E, where n = |V | and every e ∈ E
has a cost we ∈ R≥0. In addition, we are given a
designated łsourcež vertex s ∈ V . We are concerned
with attempting to mitigate some sort of łdisasterž
that begins at s and infectiously spreads through the
network via the edges. This means that vertices v ∈ V
that are connected to s (i.e., there exists an undirected
s−v path in G) are at some sort of risk or disadvantage.

A natural approach to mitigate the aforementioned
spread is to remove edges from G, in an attempt to
disconnect as many vertices of the graph from s as pos-
sible. Speciőcally, if we remove a cut-set or simply cut
F ⊆ E from the graph, we denote by prot(V,E \ F, s)
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the set of vertices in V that are no longer connected to
s in GF = (V,E \F ), and hence are protected from the
infectious process. At a high-level, the edge removal
strategy contains the disastrous event within the set
V \prot(V,E \F, s). Observe now that there is a clear
trade-of between the cost w(F )1 of the cut F and
| prot(V,E \ F, s)|, i.e., the more edges we remove the
more vertices we may be able to save.

The aforementioned trade-of naturally leads to the
following optimization problem, which we call Size
Bounded Minimum Capacity Cut or SB-MinCC for
short. Given a graph G with designated source ver-
tex s and a integer target value T > 0, we want to
compute a cut F ⊆ E with the minimum possible cost
w(F ), such that at least T vertices of V are saved in
GF = (V,E \ F ), i.e. | prot(V,E \ F, s)| ≥ T . This
problem is NP-hard as shown in (Hayrapetyan et al.,
2005). The work of Svitkina and Tardos (2004) gave
a O(log2 n)-approximation algorithm for SB-MinCC,
while Hayrapetyan et al. (2005); Eubank et al. (2004)
gave constant factor bicriteria algorithms for it, i.e.,
algorithms that provide solutions that come within a
constant factor of the optimal cut cost, but at the same
time might not save at least T vertices.

Inspired by the recent interest revolving around algo-
rithmic fairness, our goal in this paper is to incorporate
such ideas in SB-MinCC, and initiate the discussion
of fairness requirements for cuts in graphs. To the best
of our knowledge, our work here is the őrst to combine
fairness with this family of problems.

The őrst notion of fairness that we consider is the
widely used Demographic Fairness one. The high-level
idea behind this deőnition is that the set of elements
that require łservicež consists of various subsetsÐsay
demographic groupsÐand the solution should equally
and fairly treat and represent each of these groups. In
our case, if the vertices of the graph belong to difer-
ent groups, we would like our solution to fairly separate
vertices of each of them from the designated node s. In
this way, we will avoid outcomes that completely ignore
certain groups for the sake of minimizing the objective

1For a vector α = (α1, α2, . . . , αk) and a subset X ⊆
{1, 2, . . . , k}, we use α(X) to denote

∑
i∈X

αi
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function. Hence, we deőne the following problem.

DemFairCut: In addition to a graph G = (V,E) with
weights {we}e∈E and the source s ∈ V , for some inte-
ger γ ≥ 1 we are given sets V1, V2, . . . , Vγ and values
f1, f2, . . . , fγ , such that ∀h ∈ [γ]2 we have Vh ⊆ V
and fh ∈ (0, 1]. Note that each v ∈ V may actu-
ally belong to multiple sets Vh. Letting nh = |Vh|,
the goal is to őnd a cut F ⊆ E with the mini-
mum possible w(F ), subject to the constraint that
|Vh ∩ prot(V,E \ F, s)| ≥ fh · nh for all h ∈ [γ]. In
words, if each Vh is interpreted as a demographic, we
want the minimum cost cut under the condition that at
least an fh fraction of the points in Vh are disconnected
from s (for all h).

Instantiating this deőnition with diferent values of fh
allows us to model a variety of fairness scenarios. For
example, setting fh = 1/2 would let us guarantee a so-
lution that protects at least half the vertices of each Vh.
Alternatively, we can set fh to be a decreasing function
of nh/n, and thus yield a solution that focuses more
on protecting smaller demographics. Moreover, notice
that SB-MinCC is a special case of DemFairCut,
where γ = 1 (we only have one demographic group)
and f1 = T

n . Hence, DemFairCut is NP-hard, since
SB-MinCC is already known to be NP-hard.

The second notion of fairness we consider is called
Probabilistic Individual Fairness, and was őrst intro-
duced in the context of robust clustering (Harris et al.,
2019; Anegg et al., 2020). According to it, the őnal
solution should not simply be just one solution, but
rather a distribution D over solutions. Then, consid-
ering each input element individually, the probability
that it will get łgood servicež in a randomly drawn so-
lution from this distribution, should be at most some
given (fairness related) parameter. Obviously, sam-
pling from this constructed distribution D must be
achievable in polynomial time, and we call such dis-
tributions efficiently-sampleable. Under this notion of
fairness, we avoid outcomes that deterministically pre-
vent satisfactory outcomes for certain individuals.

Incorporating the above concept of fairness in SB-

MinCC, implies that besides the global guarantee of
saving at least T vertices, we also need to provide a
stochastic guarantee for each individual vertex, ensur-
ing it that in the őnal solution it will be disconnected
from s with a certain probability. For instance, ensure
that each vertex gets disconnected with probability at
least 1/2, and hence no speciőc vertex enjoys prefer-
ential treatment. The formal deőnition follows.

IndFairCut: In addition to a graph G = (V,E) with
weights {we}e∈E , a target T ∈ N≥0 and source s ∈

2We use [k] to denote {1, . . . , k} for some integer k ≥ 1

V , for each v ∈ V \ {s} we are also given a value
pv ∈ [0, 1]. The goal is to őnd an eiciently-sampleable
distribution D over the cuts F(B) = {F ⊆ E : w(F ) ≤
B ∧ | prot(V,E \ F, s)| ≥ T}, such that PrF∼D[v ∈
prot(V,E \ F, s)] ≥ pv for each v ∈ V \ {s}, and B is
the minimum possible.

Further, SB-MinCC is also a special case of IndFair-

Cut, since we can always set pv = 0 for all v ∈ V \{s}
and make the stochastic constraints void. Hence, Ind-

FairCut is also NP-hard.

Observation 1.1. In both problems, we can assume
that the disastrous event simultaneously starts from
a set of vertices S, instead of just a single designated
vertex. This assumption is without loss of generality,
since S can be merged into a single vertex s (by re-
taining all edges between S and V \S), thus giving an
equivalent formulation that matches ours.

1.1 Contribution and Outline

Our main contribution lies in introducing the őrst fair
variants of graph-cut problems, together with approxi-
mation algorithms with provable guarantees for them.

In Section 2 we present a technique that is required in
our approach for solving DemFairCut and IndFair-

Cut. The key insight is that we can reduce these prob-
lems on general graphs to the same problems on trees,
by using a tree embedding result of Räcke (2008).

In Section 3 we address demographic fairness. At őrst,
we provide an O(log n)-approximation algorithm for
DemFairCut based on dynamic programming. The
latter algorithm runs in polynomial time only when
the number of groups γ is a constant. When γ is not a
constant and can be any arbitrary value, we develop a
diferent algorithm based on a linear programming re-
laxation together with a dependent randomized round-

ing technique. This result yields an O
(

logn log γ
ϵ2·minh fh

)

-

approximation for any ϵ > 0. However, we mention
that the covering guarantee it provides to each demo-
graphic Vh is only that at least (1−ϵ)fhnh vertices of it
will be saved. Regarding the dependence on minh fh,
we believe that in realistic fairness related applications
the covering fractions fh should be relatively big, i.e.,
some constant fh = Ω(1), since we care about protect-
ing the vertices in the best way possible. Hence, the
approximation ratio of our algorithm can be thought

of as O
(

logn log γ
ϵ2

)

. Finally, we show that even on

tree instances, DemFairCut with arbitrary γ is ac-
tually quite hard: it cannot be approximated better
than Ω(log γ). We do this by an approximation factor
preserving reduction from Set Cover.

In Section 4 we provide an O(log n)-approximation al-
gorithm for IndFairCut. The high-level approach of
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this result relies on the round-or-cut technique devel-
oped by Anegg et al. (2020), which we tailor in a way
that suits the speciőc needs of our problem.

Finally, notice that since SB-MinCC is a special
case of DemFairCut (with γ = 1), and also a
special case of IndFairCut (when pv = 0 for all
v), our dynamic programming algorithm from Sec-
tion 3 and the algorithm of Section 4, both provide a
O(log n)-approximation for SB-MinCC. This is an im-
provement over the best previously known O(log2 n)-
approximation of Svitkina and Tardos (2004).

All missing proofs are placed in Appendix A.

1.2 Motivating Examples

Regarding demographic fairness, consider the follow-
ing potential application. The vertices of the graph V
would correspond to geographic areas across the globe,
and an edge (u, v) ∈ E would denote whether or not
there is underlying infrastructure, e.g., highways or
airplane routes, that can transport people between ar-
eas u and v. The disastrous event in this scenario is the
spread of a disease in a global health crisis. If an area
u ∈ V is łinfectedž, then it is natural to assume that
neighboring areas (i.e., areas v ∈ V with (u, v) ∈ E)
can also get infected if we allow people to travel be-
tween u and v. A central planner will now naturally try
to break a set of connections F ⊆ E from the infras-
tructure graph, such that the total cost w(F ) of these
actions will be as small as possible, while some guaran-
tee on the number of protected areas | prot(V,E\F, s)|
is also satisőed. The value w(F ) can be interpreted as
the economic cost of the proposed strategy F , e.g.,
the lost revenue of airline companies resulting from
cancelling ŕights.

In terms of fairness, we can think of the areas V as
coming from γ diferent countries, with Vh being the
areas associated with country h ∈ [γ]. Then, a fair so-
lution would not tolerate a discrepancy in how many
areas are protected across diferent countries. For ex-
ample, a fair approach would be to ensure that each
country has at least half of its areas protected, since
the less łinfectedž areas each country has, the more
easily it can keep its local crisis under control.

As far as individual fairness is concerned, consider a
computer network facing the spread of a computer
virus. In this scenario, we want to minimize the cost of
the connections removed, such that the infectious pro-
cess is kept under control and thus a certain number
of users T does not get infected. However, each user
of the network would arguably prefer to be in the set
of protected vertices. Our notion of individual fairness
as studied in IndFairCut, will ensure exactly that in
a stochastic sense, by using appropriate values pv.

1.3 Related Work

The unfair variant of our problems, i.e., SB-MinCC,
was studied in (Hayrapetyan et al., 2005; Svitkina and
Tardos, 2004; Eubank et al., 2004). These papers also
considered additional versions of SB-MinCC, where
the goal was to maximize | prot(V,E \ F, s)| (equiva-
lently minimize |V \ prot(V,E \ F, s)|) subject to an
upper bound constraint on w(F ).

The study of fairness in algorithmic design and ma-
chine learning has recently received signiőcant atten-
tion. This is mainly due to the realization that the
output of standard optimization algorithms can very
well lead to solutions that are highly unfair and hurt-
ful for the individuals or the groups involved. Exam-
ples of this include racial bias in Airbnb rentals (Bad-
ger, 2016), gender bias in Google’s Ad Settings (Datta
et al., 2015) and discrimination in housing ads in Face-
book (Benner et al., 2019). There are two reasons
why such unfortunate events occur. First, the training
datasets may include implicit biases, and hence when
algorithms are trained on them, they learn to perpetu-
ate the underlying biases. Second, in many situations,
even if the data is completely unbiased, merely opti-
mizing an objective function does not suice if fair-
ness considerations are at play. In such cases, we must
explicitly incorporate fairness constraints in our algo-
rithm design process. Our work here tries to accom-
plish the latter.

Although algorithmic fairness has not yet been ad-
dressed in cut problems, there are other areas such
as classiőcation and clustering were examples of fair
algorithms are abundant. For example, Chierichetti
et al. (2017); Bercea et al. (2019); Bera et al. (2019);
Huang et al. (2019); Backurs et al. (2019); Ahma-
dian et al. (2019) consider notions of demographic fair-
ness in clustering, while Brubach et al. (2020); Anegg
et al. (2020); Harris et al. (2019) focus on notions of
individually-fair clustering. In the context of fair clas-
siőcation, one of the most seminal works with signif-
icant implications in other őelds as well, is the paper
of Dwork et al. (2012). This work studies individual
fairness and its interplay with a notion of demographic
fairness, namely statistical parity. Some excellent sur-
veys on the topic of algorithmic fairness are (Barocas
et al., 2019; Mehrabi et al., 2021).

2 REDUCTION TO TREE

INSTANCES

In this section we show how both DemFairCut and
IndFairCut can be efectively reduced to solving an
appropriate problem on a tree instance.

Definition 2.1. We call an algorithm for DemFair-
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Cut (ρ, α)-bicriteria, if for any given problem in-
stance I = {V,E, s, w, V1, . . . , Vγ , f⃗} with optimal
value OPTI , it returns a solution F such that 1)
w(F ) ≤ ρOPTI , and 2) | prot(V,E \ F, s) ∩ Vh| ≥
αfhnh, ∀h ∈ [γ].

Lemma 2.2. If we have a (ρ, α)-bicriteria algo-
rithm for DemFairCut in trees, we can get a (ρ ·
O(log n), α)-bicriteria algorithm for DemFairCut in
general graphs.

Our approach for tackling IndFairCut uses as a
black-box an algorithm for a new problem, which we
call AuxCut and we formally deőne below. In order
to get an algorithm for general instances of AuxCut,
we again use a reduction to trees.

AuxCut: We are given an undirected graph G =
(V,E), a designated vertex s ∈ V , a budget B > 0,
and a target value T ∈ N≥0. In addition, each e ∈ E
has a weight we ≥ 0, and each vertex v ∈ V \ {s}
has a value av ≥ 0. The goal is to őnd a cut F with
w(F ) ≤ B and | prot(V,E \F, s)| ≥ T , that maximizes
a(prot(V,E \ F, s)).

Definition 2.3. We say that an algorithm is (1, 1, ρ)-
bicriteria for AuxCut, if for any given instance I =
(V,E,B, T, w, s, a) of the problem with optimal value
OPTI , it returns a set of edges F , such that 1) w(F ) ≤
ρB, 2) | prot(V,E \ F, s)| ≥ T and 3) a(prot(V,E \
F, s)) ≥ OPTI .

Lemma 2.4. Given a (1, 1, ρ)-bicriteria algorithm for
AuxCut in tree instances, we get a (1, 1, ρO(log n))-
bicriteria algorithm for AuxCut in general graphs.

3 ADDRESSING DEMOGRAPHIC

FAIRNESS

In this section we tackle DemFairCut and present
two algorithms for it. The őrst works when is γ a con-
stant, and is an O(log n)-approximation. The second
addresses the case of an arbitrary γ, and for any ϵ > 0

it is an
(

O
(

logn log γ
ϵ2·minh fh

)

, 1− ϵ)-bicriteria one.

3.1 Solving DemFairCut for γ = O(1)

Given Lemma 2.2, we focus on only solving the prob-
lem in tree instances. Speciőcally, we show that when
γ = O(1) the problem in trees can be solved optimally
via dynamic programming. Without loss of generality,
we can also assume that the given tree is rooted at s
and it is binary (see Lemma 15.18 from (Williamson
and Shmoys, 2011)). Before we describe our approach
we need some additional notation. For a vertex v, let
ϕh(v) = 1 if v ∈ Vh and 0 otherwise.

Our dynamic programming algorithm is based on a ta-

ble M , where M [v, k1, k2, . . . , kγ ] represents the mini-
mum cost of a cut in the subtree rooted at v, so that
there are exactly kh nodes from Vh that are connected
to v. Let vr be the right child of v, and let vℓ be the
left child of v. Observe that the optimal solution ei-
ther cuts neither of the edges from v to its children,
just the left edge, just the right edge, or both of the
edges. So, we set M [v, k1, k2, . . . , kγ ] to the minimum
of the following:

1. min
{

M [vℓ, k
ℓ
1, k

ℓ
2, . . . , k

ℓ
γ ]+M [ur, k

r
1, k

r
2, . . . , k

r
γ ] :

kℓh + krh + ϕh(v) = kh ∀h ∈ [γ]
}

2. min
{

w(v,vℓ)+M [vr, k
′
1, k

′
2, . . . , k

′
γ ] : k

′
h+ϕh(v) =

kh ∀h ∈ [γ]
}

3. min
{

w(v,vr)+M [vℓ, k
′
1, k

′
2, . . . , k

′
γ ] : k

′
h +ϕh(v) =

kh ∀h ∈ [γ]
}

4. w(v,vr) + w(v,vℓ) if kh = ϕh(v) for all h ∈ [γ], +∞
otherwise.

The őrst case above corresponds to cutting neither of
the edges (v, vr), (v, vℓ), the second to cutting only
(v, vℓ), the third to cutting only (v, vr), and the fourth
to cutting both.

In order to successfully őll in M , we begin by initializ-
ing M [v, ϕ1(v), ϕ2(v), . . . , ϕγ(v)] = 0 for all leaves v of
the tree, and set all other table entries to +∞. Then
we proceed by őlling the table bottom-up. There are
at most O(nγ+1) table entries, and to compute each
one we need to access at most 2nγ other ones. Thus,
the total runtime is O(n2γ+1). Finally, in order to
őnd the optimal cut, we look for the minimum entry
M [s, k1, . . . , kγ ], with kh ≤ (1− fh)nh for all h ∈ [γ].

Theorem 3.1. When γ is a constant, we have an op-
timal dynamic programming algorithm for DemFair-

Cut in trees, running in time O(n2γ+1).

Combining Theorem 3.1 with Lemma 2.2, we see that
our approach achieves the following.

Theorem 3.2. When γ = O(1), we give a O(log n)-
approximation algorithm for DemFairCut.

3.2 Solving DemFairCut for an Arbitrary γ

Given Lemma 2.2, we again focus on instances I =
{V,E, s, w, V1, . . . , Vγ , f⃗}, where the underlying graph
T = (V,E) is a tree. Moreover, we can assume without
loss of generality that the tree is rooted at s. Before we
proceed with the description of our algorithm, we need
some more notation. For every v ∈ V let P (s, v) ⊆ E
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be the unique path from s to v in the tree, and ℓ(v) =
|P (s, v)|. In addition, for every e = (u, v) ∈ E let Pe =
P (s, r(e)), with r(e) = argminz∈{u,v} ℓ(z). In words,
Pe contains the edges of the path that starts from s and
őnishes just before reaching e. The following linear
program (LP) is then a valid relaxation of our problem.

min
∑

e∈E

we · xe (1)

yv =
∑

e∈P (s,v)

xe ∀v ∈ V (2)

∑

v∈Vh

yv ≥ fh · nh ∀h ∈ [γ] (3)

0 ≤ yv, xe ≤ 1 ∀v ∈ V, e ∈ E (4)

In the integral version of LP (1)-(4), xe = 1 if edge e
is included in the cut. Now notice that because the un-
derlying graph is a tree and the edge weights are non-
negative, for any v ∈ V the optimal solution would not
choose more than one edge from P (s, v). Therefore, by
constraints (2) and (4) we see that yv = 1 if v is sep-
arated from s in the optimal outcome. Consequently,
constraint (3) naturally captures the demographic cov-
ering requirements.

Our approach begins by solving LP (1)-(4) in order
to get a fractional solution x, y. We then apply the
following dependent randomized rounding scheme. We
consider the edges of the tree in non-decreasing order
of |Pe|, and for an edge e for which no other edge in
Pe is already chosen for the cut, we remove it with
probability xe/(1 − x(Pe)) if x(Pe) < 1. The latter
action is well-deőned because for every e′ ∈ Pe we
have |Pe′ | < |Pe|, and hence e′ is considered before e
in the given ordering. Further, if an edge e is chosen
to be placed in the cut, then all v ∈ V with e ∈ P (s, v)
are now disconnected from s. In addition, due to the
dependent nature of this process, no path P (s, v) will
have more than one edge of it in the solution.

Algorithm 1 demonstrates all necessary details of the
rounding, with Xe being an indicator random variable
denoting whether or not e is included in the solution,
and Yv an indicator random variable that is 1 if v is
disconnected from s in the őnal outcome.

Lemma 3.3. When we randomly decide to include e ∈
E in the cut, we do so with a valid probability.

Proof. Let e = (u, v), and without loss of generality
assume l(u) < l(v). This means that Pe = P (s, u)
and P (s, v) = P (s, u)∪ {e}. In addition, to consider a
randomized decision for e we should also have x(Pe) <
1. Using constraints (2) and (4) for v we therefore get:

xe +
∑

e′∈Pe

xe′ ≤ 1 =⇒
xe

1− x(Pe)
≤ 1

Algorithm 1: Randomized Rounding

For all e ∈ E and v ∈ V , set Xe ← 0 and Yv ← 0;
for all e ∈ E in non-decreasing order of |Pe| do

if x(Pe) < 1 and Xe′ = 0 for all e′ ∈ Pe then
Set Xe ← 1 with probability
xe/(1− x(Pe));

if Xe = 1 then
Set Yv ← 1 for all
{v ∈ V : e ∈ P (s, v)};

end

end

end

Lemma 3.4. For every e ∈ E and v ∈ V , we have
Pr[Xe = 1] = xe and Pr[Yv = 1] = yv.

Proof. Let us begin with an e ∈ E for which we
never made a random decision because x(Pe) ≥ 1, and
hence Xe = 0. If e = (u, v) with l(u) < l(v), then
Pe = P (s, u) and P (s, v) = P (s, u) ∪ {e}. Because
of constraints (2) and (4) for u we őrst get x(Pe) = 1.
Therefore, constraints (2) and (4) applied this time for
v yield xe = 0, which indeed gives Pr[Xe = 1] = xe.

Now consider edge e with x(Pe) < 1. Because for each
e′ ∈ Pe we have Pe′ ⊂ Pe, we also get x(Pe′) < 1. The
latter means that for all other edges in Pe a random
decision potentially takes place. Further, analysis of
the algorithm’s actions shows that Pr[Xe = 1] is

Pr[Xe = 1 | Xe′ = 0 ∀e′ ∈ Pe] · Pr[Xe′ = 0 ∀e′ ∈ Pe]

=
xe

1−
∑

e′∈Pe
xe′

∏

e′∈Pe

(

1−
xe′

1−
∑

e′′∈Pe′
xe′′

)

(5)

Let e1, . . . , em the edges of Pe in increasing order of
|Pej |. Then because Pej = {ej′ | j

′ < j}, (5) can be
rewritten as a telescopic product of fractions:

xe

1−
∑m

j=1 xej

m
∏

j=1

(

1−
xej

1−
∑j−1

i=1 xei

)

= xe

As for a vertex v ∈ V , we have Pr[Yv = 1] = Pr[∃e ∈
P (s, v) : Xe = 1] because there is a unique path from s
to it. Moreover, since our rounding will never put more
than one edges of P (s, v) in the cut, for all S ⊆ P (s, v)
with |S| ≥ 2 we get Pr[Xe = 1, ∀e ∈ S] = 0. Hence,
by the inclusion-exclusion principle Pr[∃e ∈ P (s, v) :
Xe = 1] =

∑

e∈P (s,v) Pr[Xe = 1] =
∑

e∈P (s,v) xe = yv,
where the last equality follows from constraint (2).

We will now analyze the satisfaction of the coverage
constraints for the diferent demographics. If Sh is the
number of vertices from Vh that are not connected to
s in the solution, we see that Sh =

∑

v∈Vh
Yv. Using
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Lemma 3.4 and constraint (3) gives E[Sh] ≥ fhnh. We
thus need to calculate how much can Sh deviate from
E[Sh]. For that we will need the following two lemmas.

Lemma 3.5. (Janson, 1998) Let Z1, . . . , Zm be
Bernoulli random variables, where Pr[Zi = 1] = zi
for every i ∈ [m]. Let Γ be the dependency graph
on the Zi. For i ̸= j, Zi and Zj are dependent if
there exists an edge between them in Γ, and we de-
note that as i ∼ j. Let also Z =

∑m
i=1 Zi, µ = E[Z],

∆ =
∑

{i,j}:i∼j Pr[Zi = Zj = 1], δi =
∑

j∼i zj and

δ = maxi δi. Then for any ϵ ∈ [0, 1]

Pr[Z ≤ (1− ϵ)µ] ≤ exp
(

−min
( ϵ2 · µ2

8∆ + 2µ
,
ϵ · µ

6δ

))

Lemma 3.6. For every positive integer m and some
sequence of non-negative numbers a1, a2, . . . we have
∑m−1

i=1 (m− i)ai ≤ m
∑m

i=1 ai.

Proof. We prove the statement via induction on m.
For m = 1 it is trivial. Suppose that the lemma holds
up to some m = k. We then prove it for m = k + 1:

k+1−1
∑

i=1

(k + 1− i)ai =
k

∑

i=1

(

(k − i)ai + ai

)

=

k
∑

i=1

(k − i)ai +

k
∑

i=1

ai

=

k−1
∑

i=1

(k − i)ai +

k
∑

i=1

ai

≤ k

k
∑

i=1

ai +

k
∑

i=1

ai

≤ (k + 1)

k
∑

i=1

ai ≤ (k + 1)

k+1
∑

i=1

ai

The őrst inequality uses the inductive hypothesis,
while the last one the fact that ak+1 ≥ 0.

Lemma 3.7. For all h ∈ [γ] and any ϵ ∈ [0, 1], we

have Pr[Sh ≤ (1− ϵ)E[Sh]] ≤ e
−ϵ2·fh

10 .

Proof. Due to Lemma 3.4, the random variables Yv for
v ∈ Vh are Bernoulli with Pr[Yv = 1] = yv. Because
of the tree structure they are also to some extent de-
pendent. Our goal here is to apply Lemma 3.5 for Sh,
and towards that end we need to upper bound the de-
pendency factors δ,∆. Since we do not know exactly
the underlying dependency graph Γ, we assume that
all pairs Yv, Yv′ are dependent. We begin by upper-

bounding the parameter ∆ of Lemma 3.5.

∆ ≤
∑

{v,v′}∈Vh

Pr[Yv = Yv′ = 1]

≤
∑

{v,v′}∈Vh

min(Pr[Yv = 1],Pr[Yv′ = 1])

=
∑

{v,v′}∈Vh

min(yv, yv′)

Now let a1, a2, ..., anh
be the values yv for all v ∈ Vh

in non-decreasing order. Then we have:

∑

{v,v′}∈Vh

min(yv, yv′) =

nh−1
∑

i=1

(nh − i)ai

≤ nh

nh
∑

i=1

ai = nh · E[Sh]

To get the őrst inequality we used Lemma 3.6. There-
fore, we get ∆ ≤ nh · E[Sh]. Moreover, a straightfor-
ward upper bound for each δv is δv ≤

∑

u∈Vh
yu =

E[Sh]. Thus, δ ≤ E[Sh]. Finally, we also need bounds
for the following two quantities, where µ = E[Sh]:

ϵ2 · µ2

8∆ + 2µ
≥

ϵ2 · µ2

8µ · nh + 2µ
=

ϵ2 · µ

8nh + 2

≥
ϵ2 · nh · fh
8nh + 2

≥
ϵ2 · fh
10

ϵ · µ

6δ
≥

ϵ · µ

6µ
=

ϵ

6

Since ϵ
6 ≥

ϵ2·fh
10 for any ϵ, fh ∈ [0, 1], Lemma 3.5 im-

mediately gives the desired bound.

To conclude, for some β ≥ 2 we repeat Algorithm 1
independently N = 10 log γβ

ϵ2·minh fh
times, and in each run t

of it (with t ∈ [N ]) we compute a set of edges Ft that
are chosen to be removed. Our őnal solution is set to
be F =

⋃

t Ft. Then we have the following.

Theorem 3.8. For DemFairCut in trees and any

ϵ ∈ (0, 1), we give an
(

O
(

log γ
ϵ2 minh fh

)

, 1− ϵ
)

-bicriteria

algorithm that runs in expected polynomial time.

Proof. Focus on a speciőc demographic h, and let St
h

the random variable denoting the number of nodes
of Vh separated from s in (V,E \ Ft). By Lemma
3.7 and the independent nature of the runs we get

Pr
[

St
h ≤ (1 − ϵ)E[St

h], ∀t
]

≤ e
−ϵ2·N·fh

10 ≤ 1
γβ . Thus,

because E[St
h] ≥ fhnh for all t, we have Pr

[

∣

∣Vh ∩

prot(V,E \ F, s)
∣

∣ ≥ (1 − ϵ)fhnh

]

≥ Pr
[

∃t : St
h >

(1− ϵ)E[St
h]
]

≥ 1− 1
γβ . A union bound over all demo-

graphics would őnally give Pr
[

∣

∣Vh∩prot(V,E\F, s)
∣

∣ ≥

(1− ϵ)fhnh, ∀h ∈ [γ]
]

≥ 1− 1
γβ−1 .
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By Lemma 3.4, in each run an edge e gets removed
with probability xe. Hence, with a union bound over
all runs, the probability that e gets removed is at most
Nxe. Therefore, the total expected cost of our al-
gorithm is N

∑

e∈E wexe, and since LP (1)-(4) is a
valid relaxation of the problem, we immediately get
the desired approximation ratio on expectation. By
Markov’s inequality we can further prove that with
probability at most 1

c , we get a őnal cut of cost more
than cN

∑

e∈E wexe for some constant c > 1.

Thus, with constant probability our algorithm satis-
őes both the ratio of O( log γ

ϵ2 minh fh
), and the 1 − ϵ ap-

proximate satisfaction of the demographic constraints
(speciőcally we fail to satisfy both of the above with
probability at most 1/γβ−1 + 1/c). Hence, repeating
the whole process an expected logarithmic number of
times, guarantees that we hit both targets.

By combining Theorem 3.8 and Lemma 2.2, we see
that our approach achieves the following.

Theorem 3.9. For any given constant ϵ ∈ (0, 1), we

give an
(

O
(

logn log γ
ϵ2·minh fh

)

, 1− ϵ
)

-bicriteria algorithm for

DemFairCut, that runs in expected polynomial time.

3.2.1 Hardness of DemFairCut with
Arbitrary γ

Here we show that even in tree instances, DemFair-

Cut with arbitrary γ is hard.

Set Cover: We are given a universe of elements U
and a collection of m sets {S1, S2, . . . , Sm}, where Si ⊆
U for every i ∈ [m]. The goal is to őnd C ⊆ [m], such
that

⋃

i∈C Si = U and |C| is minimized.

Theorem 3.10 (Dinur and Steurer (2014)). It is NP-
hard to approximate Set Cover instances of universe
size n and m ≤ poly(n) sets within a factor better
than lnn.

Theorem 3.11. It is NP-hard to approximate Dem-

FairCut with arbitrary γ on tree instances within a
factor better than ln γ.

Proof. Suppose that we are given an instance of Set

Cover. We create an instance of DemFairCut as
follows. For every set Si we create a vertex vi. For
every element e ∈ U we create a demographic group
Ve = {vi | e ∈ Si}. We set the covering requirement of
the group Ve to be 1/|Ve|, i.e., we want our solution to
protect at least |Ve| · (1/|Ve|) = 1 vertex from each Ve.
Finally, we add the designated vertex s to the graph,
and create edges (s, vi) for every vi. Note that the
resulting graph is a tree.

Now consider the optimal Set Cover solution C∗.
We claim that the set of edges {(s, vi) | i ∈ C∗} is a

feasible solution for the constructed instance of Dem-

FairCut. Take any demographic Ve for e ∈ U . Be-
cause C∗ is a feasible Set Cover solution, it contains
at least one Sj with e ∈ Sj . Therefore, we are going to
include the edge (s, vj) to our graph solution, and the
vertex vj from the group Ve is going to be protected.
Finally, see that |C∗| = |{(s, vi) | i ∈ C∗}|, and hence
the cost of the optimal solution for the DemFairCut

instance, say F ∗, is at most |C∗|.

Now we argue that any solution F to the DemFair-

Cut instance yields a feasible solution CF for the
Set Cover instance with |F | = |CF |. Simply take
CF = {i ∈ [m] | (s, vi) ∈ F}. It is clear that
|F | = |CF |. Now consider each e ∈ U . Since F is
feasible for DemFairCut, at least one vertex vi ∈ Ve

will be separated from s, and thus (s, vi) ∈ F . Hence
for that vertex vi we have e ∈ Si by construction.
Therefore, e is covered by CF .

Suppose now that for some ϵ > 0 we have an (1−ϵ) ln γ-
approximation algorithm for DemFairCut on trees.
Then given an instance of Set Cover, we őrst con-
struct the instance of DemFairCut given by the
above reduction and then run the given algorithm
on that instance to get a solution F . Then, as dis-
cussed, we construct the corresponding Set Cover so-
lution CF , with |F | = |CF |. By all the previous ar-
guments we have |CF | = |F | ≤ ((1 − ϵ) ln γ)|F ∗| ≤
((1−ϵ) ln |U |)|C∗|. This contradicts Theorem 3.10.

At a high-level, the previous theorem says that the
best we can achieve for DemFairCut in trees is an
approximation ratio of Ω(log γ). Trivially this implies
the following corollary.

Corollary 3.12. Unless P=NP, the best approxima-
tion ratio we can achieve for general instances of
DemFairCut with arbitrary γ is Ω(log γ).

4 ADDRESSING INDIVIDUAL

FAIRNESS

The purpose of this section is to provide an algorithm
for IndFairCut. To do so, we begin with a dynamic
programming bicriteria algorithm for AuxCut on tree
instances, which according to Lemma 2.4 implies an al-
gorithm for AuxCut in general graphs. Subsequently,
we show how the general graph algorithm can be incor-
porated in the round-or-cut framework of Anegg et al.
(2020), and in this way we get as our őnal result a
O(log n)-approximation for IndFairCut.

At this point, we have to mention that the LP-based
approach of Section 3.2 can also be applied here (by
adding the extra constraint yv ≥ pv in LP (1)-(4)),
yielding the same approximation ratio of O(log n).
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However, such an approach would unavoidably lead
to a bicriteria algorithm, since it will produce a solu-
tion that saves at least (1− ϵ)T vertices. On the other
hand, the algorithm we present in what follows is a
true approximation for IndFairCut.

4.1 A (1, 1, O(log n))-Bicriteria for AuxCut

Suppose we have an instance I = (V,E,B, T, s, w, a)
of AuxCut. Given Lemma 2.4, we focus on G =
(V,E) being a tree and present a dynamic program-
ming algorithm for AuxCut in trees.

Without loss of generality, we can assume that the
tree is rooted at s and is binary (see Lemma 15.18
from (Williamson and Shmoys, 2011)). Our algo-
rithm tries to őnd a cut F ⊆ E that minimizes
a(V \ prot(V,E \ F, s)) subject to w(F ) ≤ B and
| prot(V,E \ F, s)| ≥ T . Note that when we can com-
pute a solution of optimal value to this minimization
problem, minimizing a(V \prot(V,E \F, s)) is equiva-
lent to maximizing a(prot(V,E \F, s)). Therefore, the
version of the problem we solve here is equivalent to
the deőnition of AuxCut as given in Section 2.

Our approach relies on a table A. For every v ∈ V
let Tv ⊆ V and Ev ⊆ E be the vertices and the edges
of the subtree that is rooted at v (with v included in
Tv). Then, the entry A[v,W, k] would represent the
minimum possible a(Tv \ prot(Tv, Ev \ Fv, v)), for any
cut Fv ⊆ Ev with w(Fv) = W and |Tv \ prot(Tv, Ev \
Fv, v)| = k (see that the vertices of Tv connected to v
in this cut are those in Tv \ prot(Tv, Ev \ Fv, v)). Let
also vr be the right child of v, and let vℓ be the left
child of v. The optimal solution of I either cuts none
of the edges from v to its children, just the left edge,
just the right edge, or both edges. So we just have to
set A[v,W, k] to the minimum of the following:

1. min
{

A[vℓ,Wℓ, kℓ]+A[vr,Wr, kr]+av : Wℓ+Wr =

W and kℓ + kr + 1 = k
}

2. A[vr,W − w(v,vℓ), k − 1] + av if W ≥ w(v,vℓ) and
k > 1, +∞ otherwise.

3. A[vℓ,W − w(v,vr), k − 1] + av if W ≥ w(v,vr) and
k > 1, +∞ otherwise.

4. av if w(v,vℓ)+w(v,vr) = W and k = 1,∞ otherwise

The őrst case above corresponds to cutting neither of
the edges (v, vr), (v, vℓ), the second to cutting only
(v, vℓ), the third to cutting only (v, vr), and the fourth
to cutting both.

To őll in A, we begin by initializing A[v, 0, 1] = av
for all leaves v of the tree, and all other entries to

+∞. Then we proceed by őlling the table bottom-up.
Assuming that the edge weights are integers, we see
that A has n2B entries, and in order to őll each of
them, we need access to at most 2nB other entries.
Hence, in total our approach requires O(n3B2) time.
Finally, in order to őnd the optimal cut, we look for
the minimum entry A[s,W, k], such that W ≤ B and
k ≤ n− T .

Corollary 4.1. When the edge weights are integers
and B = poly(n), we can efficiently find an optimal
solution of AuxCut in tree instances.

To make sure the edge weights are integers and B is
polynomially bounded, we use a standard discretiza-
tion trick before running the dynamic program (Svitk-
ina and Tardos, 2004). Speciőcally, for any ϵ > 0,
let λ = ⌈m/ϵ⌉

B , where m = |E|. Then for each edge
e ∈ E create a new weight w′

e = ⌊λwe⌋. Also, set
B′ = λB = ⌈m/ϵ⌉. Notice now that all new edge
weights are integers and that B′ is polynomial in n.
Further, using these new values we create a new in-
stance I ′ = (V,E,B′, T, s, w′, a) of AuxCut. It is
easy to see that if there is a solution of edge-cost B for
I, then this solution has edge-cost B′ in I ′. In addi-
tion, for every solution of I ′ whose edge-cost is at most
B′, its edge-cost in I is at most (1 + ϵ)B. Combining
this with Corollary 4.1 gives the following.

Corollary 4.2. Our approach provides a (1, 1, 1 + ϵ)-
bicriteria algorithm for AuxCut in trees.

Finally, by Corollary 4.2, Lemma 2.4 and the fact that
ϵ is a constant, we get:

Theorem 4.3. We provide a (1, 1, O(log n))-bicriteria
algorithm for AuxCut.

4.2 A Round-or-Cut Solution for IndFairCut

Suppose we are given an instance I = (V,E, T, s, w, p⃗)
of IndFairCut with optimal value OPTI . For any
value B ≥ 0, let F(B) = {F ⊆ E : w(F ) ≤
B and | prot(V,E \ F, s)| ≥ T}. In the rest of the
section we demonstrate a process, which given I and
a target value B ≥ 0, operates as follows. It either
returns an eiciently-sampleable distribution D over
the cuts in the set F(O(log n)B) such that PrF∼D[v ∈
prot(V,E \ F, s)] ≥ pv for every v ∈ V \ {s}, or re-
turns łINFEASIBLEž. If the latter happens, then it is
guaranteed that B < OPTI .

Using the above process in a bisection search with step
(1+ϵ) over the range [0, w(E)], we can eiciently com-
pute a value B′ ≤ (1 + ϵ)OPTI , such that the process
will not return łINFEASIBLEž for B′. This will ac-
tually yield an eiciently-sampleable distribution over
F(O(log n)B′) that satisőes the stochastic constraints
for all vertices. Hence, we get our őnal result.
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Theorem 4.4. For any ϵ > 0 and instance I with
optimal value OPTI , we construct an efficiently sam-
pleable distribution D over F(O(log n)(1 + ϵ)OPTI),
such that PrF∼D[v ∈ prot(V,E \F, s)] ≥ pv for all v ∈
V \ {s}. The runtime of our approach is poly(n1/ϵ).

Therefore, since for our őnal result the aforementioned
process is all that is required, we start describing its
details. Notice now that for a given target value B,
we are basically interested in verifying whether or
not there is a feasible solution to I with edge-cost at
most B. Hence, consider the following exponential-
sized linear program, which we call PLP(B).

PLP(B)
min 0

∑

F∈F(B):
v∈prot(V,E\F,s)

xF ≥ pv ∀v ∈ V \ {s}

∑

F∈F(B)

xF = 1

0 ≤ xF ≤ 1 ∀F ∈ F(B)

DLP(B)

max
∑

v∈V \{s}

pv · yv − µ

∑

v∈prot(V,E\F,s)

yv ≤ µ ∀F ∈ F(B)

0 ≤ yv ∀v ∈ V

µ ∈ R

If we interpret xF as the probability of choosing the
cut F from F(B), we see that B yields a feasible
solution if PLP(B) is feasible. This is because the
őrst LP constraint captures the fairness requirements,
and the second LP constraint the fact that the
resulting solution should be a distribution over F(B).
In addition, if PLP(B) is feasible, then there are
only n values xF with xF > 0 (see Lemma 9 in
(Karlof, 1991)), and hence the resulting distribution
is eiciently-sampleable. Another important obser-
vation is that if PLP(B) is feasible, then clearly its
optimal value is 0.

However, since solving PLP(B) is not doable in poly-
nomial time, we focus on its dual, which we call
DLP(B) and we present next to the primal LP.

Here note that DLP(B) is always feasible (e.g., set
all variables to 0), and by LP duality DLP(B) has
an optimal value of 0 if PLP(B) is feasible. Further,
see that DLP(B) is scale-invariant. In other words, if
it has a feasible solution (y′, µ′) with strictly positive
objective value, then DLP(B) is unbounded because

(ty′, tµ′) will also be feasible for any t > 0. Consider
now the following polytope that contains all feasible
solutions of DLP(B) of objective value at least 1, i.e.,

Q(B) =
{

(y, µ) ∈ R
n−1
≥0 ×R :

∑

v∈V \{s} pvyv ≥ µ+1∧

y(prot(V,E \ F, s)) ≤ µ, ∀F ∈ F(B)
}

. Based on the

previous discussion we make the following very crucial
observation.

Observation 4.5. PLP(B) is feasible if Q(B) = ∅.

Using the algorithm of Section 4.1 we prove the fol-
lowing vital theorem.

Theorem 4.6. There exists a poly-time algorithm
that given a point (y, µ) ∈ R

n−1
≥0 × R satisfying

∑

v∈V \{s} pv ·yv ≥ µ+1, it either verifies that (y, µ) ∈

Q(B), or outputs a set F ∈ F(O(log n)B) such that
∑

v∈prot(V,E\F,s) yv > µ.

Proof. We begin by constructing an instance Iaux =
(V,E,B, T, s, w, y) of AuxCut, where the vertex
weights correspond to the y values. Then, we run the
algorithm of Section 4.1 on Iaux. Suppose now that
F ⊆ E is the solution returned by the algorithm, for
which by Theorem 4.3 we have w(F ) ≤ O(log n)B and
| prot(V,E \ F, s)| ≥ T . If y(prot(V,E \ F, s)) > µ,
then we return F as our answer, because we are guar-
anteed to have F ∈ F(O(log n)B). If on the other
hand y(prot(V,E \F, s)) ≤ µ, then all F ′ ∈ F(B) have
y(prot(V,E \F ′, s)) ≤ µ, because the properties of the
Section 4.1 algorithm ensure that y(prot(V,E\F, s)) ≥
y(prot(V,E \ F ′, s)). Therefore, (y, µ) ∈ Q(B).

Given the existence of an algorithm like the one de-
scribed in Theorem 4.6, Anegg et al. (2020) prove that
with a round-or-cut approach we can either show that
Q(B) ̸= ∅ or that Q(O(log n)B) = ∅. If Q(B) ̸= ∅,
then by Observation 4.5 we can infer B < OPTI

and return łINFEASIBLEž. If on the other hand
Q(O(log n)B) = ∅, then again by Observation 4.5 we
know that PLP(O(log n)B) is feasible. Further, in the
latter case the framework of Anegg et al. (2020) pro-
vides a set F ′ ⊆ F(O(log n)B) with polynomial size,
for which the following (poly-sized) LP is feasible.

min 0
∑

F∈F ′:
v∈prot(V,E\F,s)

xF ≥ pv ∀v ∈ V \ {s}

∑

F∈F ′

xF = 1

0 ≤ xF ≤ 1 ∀F ∈ F ′

Finally, since the above can be eiciently solved, we
obtain an eiciently-sampleable distribution D over
F(O(log n)B), such that PrF∼D[v ∈ prot(V,E \
F, s)] ≥ pv for all v ∈ V \ {s}.
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Supplementary Material:
Fair Disaster Containment via Graph-Cut Problems

A MISSING PROOFS

For the next two proofs we need the following lemma.

Lemma A.1 (Räcke (2008)). For any undirected G = (V,E) with edge costs we ≥ 0, we can efficiently construct
a collection of trees T1 = (V,E1), T2 = (V,E2), . . . , Tk = (V,Ek) with tree Ti having an edge-cost function

wi : Ei 7→ R≥0, and find non-negative multipliers (λ1, . . . , λk), such that
∑k

i=1 λi = 1 and k = poly(|V |).
Further, for any S ⊆ V let δ(S) be the set of edges in E with exactly one endpoint in S, and δi(S) denote the
set of edges in Ei with exactly one endpoint in S. Then, for any S ⊆ V :

1. w(δ(S)) ≤ wi(δi(S)) for every i ∈ [k]

2.
∑k

i=1 λiw
i(δi(S)) ≤ O(log n)w(δ(S))

Proof of Lemma 2.2. If I = {V,E, s, w, V1, . . . , Vγ , f⃗} is the general instance, we őrst apply the result of
Lemma A.1 in order to get a collection of trees T1 = (V,E1), . . . , Tk = (V,Ek), where each tree Ti has an
associated edge weight function wi. We then use the given algorithm and solve DemFairCut in each tree
instance Ii = {V,Ei, s, w

i, V1, . . . , Vγ , f⃗}, and get a solution Fi ⊆ Ei in return. For the solution Fi we compute
for Ii, let Xi = prot(V,Ei\Fi, s), and note that the properties of the algorithm ensure |Xi∩Vh| ≥ αfhnh, ∀h ∈ [γ].

After running the algorithm in each tree instance, we őnd the tree Tm with m = argmini w(δ(Xi)), and we set our
solution for the general graph to be δ(Xm). This means that in our general solution Xm ⊆ prot(V,E \ δ(Xm), s).
Combining this observation with the fact that |Xm ∩ Vh| ≥ αfhnh for all h ∈ [γ], implies that in the solution
for the general graph we again satisfy all demographic constraints up to an α violation. We now only have to
reason about the cost of δ(Xm).

Let X∗ be the set of vertices not connected to s in the optimal solution of I. If OPT is the value of the latter,
then w(δ(X∗)) ≤ OPT . Also, since X∗ satisőes all γ demographic constraints exactly, the set δi(X∗) is a feasible
solution for Ii, and OPTIi

≤ wi(δi(X
∗)). Hence, because δi(Xi) ⊆ Fi:

wi(δi(Xi)) ≤ ρ ·OPTIi
≤ ρ · wi(δi(X

∗)) (6)

Using the deőnition of m and the őrst property of the trees from Lemma A.1 gives

w(δ(Xm)) ≤
k

∑

i=1

λiw(δ(Xi)) ≤
k

∑

i=1

λiw
i(δi(Xi)) (7)

Combining (6), (7) and the second property of Lemma A.1 yields

w(δ(Xm)) ≤ ρ

k
∑

i=1

λiw
i(δi(X

∗)) ≤ ρ ·O(log n) · w(δ(X∗)) ≤ ρ ·O(log n) ·OPT

Proof of Lemma 2.4. Let I = (V,E,B, T, w, s, a) be an instance of AuxCut for a general graph. We őrst
apply the result of Lemma A.1 in order to get a collection of trees Ti = (V,Ei) with edge-weight functions wi.
Then, for each such tree we create an instance Ii = (V,Ei, B ·O(log n), T, wi, s, a), and we use the given bicriteria
algorithm to solve AuxCut on it. Let Fi ⊆ Ei the solution we get for Ii, and for notational convenience let again
Xi = prot(V,Ei \Fi, s). After that, we őnd the tree Tm with m = argmaxi a(Xi), and we set our solution for the
general graph to be δ(Xm). This means that in our general solution we again get Xm ⊆ prot(V,E \ δ(Xm), s).
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At őrst, because of the properties of the algorithm used on Ii, we have |Xm| ≥ T , and therefore even in our
solution for the general graph we end up saving at least T vertices.

Furthermore, because δi(Xi) ⊆ Fi, the properties of the bicriteria algorithm give wi(δi(Xi)) ≤ ρ · O(log n) · B
for every i. From the őrst property in Lemma A.1 we thus get

w(δ(Xm)) ≤ wm(δm(Xm)) ≤ ρ ·O(log n) ·B

To conclude we need to show that a(Xm) ≥ OPTI , where OPTI the value of the optimal solution of I. Let also
X∗ be the set of vertices not connected to s in the optimal solution of I. Since X∗ is the optimal such set of
vertices, we have |X∗| ≥ T and w(δ(X∗)) ≤ B. Moreover, let m∗ = argmini w

i(δi(X
∗)). The deőnition of m∗

and the second property from Lemma A.1 give

wm∗

(δm∗(X∗)) ≤
k

∑

i=1

λiw
i(δi(X

∗)) ≤ O(log n)w(δ(X∗)) ≤ B ·O(log n)

Hence δm∗(X∗) is feasible for Im∗ (recall that |X∗| ≥ T ), and since the given algorithm is a (1, 1, ρ)-bicriteria
we get a(Xm) ≥ a(Xm∗) ≥ OPTIm∗

≥ a(X∗) = OPTI .
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