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Abstract

The spread of an epidemic is often modeled
by an SIR random process on a social net-
work graph. The MinInfEdge problem for
optimal social distancing involves minimizing
the expected number of infections, when we
are allowed to break at most B edges; simi-
larly the MinInfNode problem involves re-
moving at most B vertices. These are fun-
damental problems in epidemiology and net-
work science. While a number of heuristics
have been considered, the complexity of these
problems remains generally open. In this pa-
per, we present two bicriteria approximation
algorithms for MinInfEdge, which give the
irst non-trivial approximations for this prob-
lem. The irst is based on the cut sparsi-
ication result of Karger (1999), and works
when the transmission probabilities are not
too small. The second is a Sample Aver-
age Approximation (SAA) based algorithm,
which we analyze for the Chung-Lu random
graph model. We also extend some of our
results to tackle the MinInfNode problem.

1 INTRODUCTION

With the COVID-19 pandemic and future such pan-
demics in mind, computational epidemiology, powered
by AI and eicient algorithms, has emerged as a vital
discipline. There are two major sources of uncertainty
in typical applications of computational epidemiology:
how the disease will unfold probabilistically (we may
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have a good model for this, but have limited control
over such stochasticity), and models for contact be-
tween members of a population (social-contact net-
works). In this work, we take a rigorous stochastic-
optimization approach to develop provably-good ap-
proximation algorithms for budgeted epidemic control
under such sources of uncertainty.

The most widespread tool for modeling the spread of
an epidemic in a social-contact network G = (V,E) are
SIR random processes (Pastor-Satorras et al., 2015;
Marathe and Vullikanti, 2013). According to those,
the infection starts at a given set S of vertices, where
without loss of generality we can assume that these
nodes are merged into a single infectious vertex s (this
is formally explained in Section 1.1). Afterwards, if
any node u ∈ V gets infected, it spreads the disease
independently to each łhealthyž neighbor v ∈ V of
it with probability pu,vÐalso denoted peÐwhere e =
(u, v) ∈ E is an edge of the given contact network.

In order to control and mitigate the spread of the dis-
ease, there are two primary interventions studied in
the literature. The irst involves social distancing, and
is modeled as removing a subset F ⊆ E of edges from
the graph. The second corresponds to vaccination, and
is modeled by removing a set V ′ ⊆ V of nodes. There
is a signiicant cost associated with removing nodes
and edges, and this motivates the problems we study
in this paper. In MinInfEdge, the goal is to choose a
set F of edges for social distancing, so that the cost of
F is at most some budget B, and the expected num-
ber of infections is minimized; similarly, MinInfNode

involves removing a subset of at most B nodes to min-
imize the expected number of infections.

Despite the signiicant importance of the MinIn-

fEdge and MinInfNode problems, they both remain
quite open. A number of heuristics have been pro-
posed, which choose edges or nodes based on local
structural properties, e.g., degree, centrality and eigen-
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vector components. However, these do not give any
guarantees in general, except in very special random
graph models, e.g., (Bollobás and Riordan, 2004). The
only prior work on MinInfEdge with rigorous guar-
antees is for the case of deterministic graphs, where
we assume pu,v = 1 for all (u, v) ∈ E (Hayrapetyan
et al., 2005a; Eubank et al., 2004, 2006; Svitkina
and Tardos, 2004). This scenario actually models a
highly-contagious disease, and can be viewed as the SI
model (Marathe and Vullikanti, 2013). In this paper,
we obtain the irst rigorous results for both MinIn-

fEdge and MinInfNode.

1.1 Formal Problem Definition

Suppose we have an undirected graph G = (V,E) with
edge weights ce ≥ 0 for every edge e ∈ E (representing
the cost of removing the social connection e). Finally,
let n = |V | and m = |E|.

We assume an SIR model of disease spread, in which
each node is in one of the states S (susceptible), I (in-
fectious) or R (recovered). We also assume the infec-
tion starts at a subset I0 ⊆ V . An infectious vertex
v infects each susceptible neighbor u ∈ N(v) once,
independently with probability pu,v ∈ [0, 1], where
N(v) = {u ∈ V : (u, v) ∈ E}. This is equivalent
to a percolation process (Pastor-Satorras et al., 2015;
Marathe and Vullikanti, 2013): consider a random sub-
graph G(p⃗) = (V,E(p⃗)) obtained by retaining each
edge e ∈ E independently with probability pe (and
thus removing each edge with probability 1 − pe). In
particular, the probability that a set Vinf of vertices
is reachable from I0 in G(p⃗) is precisely equal to the
probability that the set Vinf becomes infected during
the SIR process. We will sometimes abuse notation
and let G(p⃗) also represent the distribution over sub-
graphs thus obtained. Without loss of generality, we
can assume that I0 consists of a single vertex s, since
we can add a meta-vertex s with edges to all vertices
in I0 with probability 1. Finally, some of our results
assume a uniform probability setting in which pe = p
for all e ∈ E; in this case we denote the random graph
G(p⃗) by G(p).

A social distancing strategy corresponds to the re-
moval of a subset F ⊆ E of edges; for such an F , we
denote by inf(V,E \ F, s) the number of vertices that
are in the same connected component as s in the resid-
ual graph GF = (V,E \ F ). For simplicity, we refer
to F as a cut or a cut-set, though it need not always
induce a cut in the graph for our problems of inter-
est. The expected number of infected vertices in the
percolation process is then EG(p⃗)[inf(V,E(p⃗) \ F, s)].

For the vaccination intervention, F ⊆ V is a set
of nodes to be removed, and in this case, GF =

(V,E − {(u, v) ∈ E : u ∈ F or v ∈ F}) is the sub-
graph obtained by removing edges incident to nodes
in F ; here inf(V,E \ {(u, v) ∈ E : u ∈ F or v ∈ F}, s)
will denote the number of infected vertices when the
edges incident to vertices in F are removed. For the
expected number of infections in the percolation pro-
cess we use EG(p⃗)[inf(V,E(p⃗) \ {(u, v) ∈ E(p⃗) : u ∈
F or v ∈ F}, s)].

The MinInfEdge Problem: Besides the already-
described input, we are given a budget B, and the goal
is to choose a set F ⊆ E of edges such that:

1. c(F ) =
∑

e∈F ce ≤ B, i.e., the total cost of the
set F of edges to be removed, is at most B.

2. EG(p⃗)[inf(V,E(p⃗) \ F, s)], i.e., the expected num-
ber of nodes reachable from s when we remove the
edges in F and conduct the disease percolation on
the remaining graph, is minimized.

The MinInfNode Problem: Besides the already-
described input, we are given a budget B, and the goal
is to choose a set F ⊆ V of vertices such that:

1. |F | ≤ B, i.e., the total number of removed vertices
is at most B.

2. EG(p⃗)[inf(V,E(p⃗) \ {(u, v) ∈ E(p⃗) : u ∈ F or v ∈
F}, s)] is minimized.

(α, β)-approximation. As in (Hayrapetyan et al.,
2005a; Eubank et al., 2004), we focus on bicriteria
algorithms. We deine this notion only for MinIn-

fEdge, since the case of MinInfNode is almost iden-
tical. We say that a solution F ⊆ E is an (α, β)-
approximation if c(F ) ≤ αB, and EG(p⃗)[inf(V,E(p⃗) \
F, s)] ≤ βEG(p⃗)[inf(V,E(p⃗) \ F ∗, s)], where F ∗ is an
optimal solution for the given instance.

Random Models for Networks: With the ever-
growing importance of networks and network science,
we need good random-graph models for predictive ap-
plications, simulations, testing of new algorithms etc.:
see, e.g., (Barabási and Albert, 1999; Bollobás and Ri-
ordan, 2004).

In our context of social-contact networks, the random-
graph model of Chung and Lu (2006) is particularly
useful. In this model, we have vertices V , and a weight
wv for every node v ∈ V that denotes its expected
degree in the graph; let wmin = minv wv and wmax =
maxv wv. The edges E of the graph are determined
via the following random process. For all u, v ∈ V , the
probability of having the (u, v) edge in E is

qu,v =
wuwv
∑

r∈V wr
,
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where these edges are present independently and self-
loops are allowed. A natural assumption here is that
wmin = O(1). A common instantiation of this model
is with a power law, in which ni, the number of nodes
of weight i, satisies ni = Θ(n/iβ), with β > 2 being a
model parameter. In our paper, we use the power law
instantiation every time we consider this model.

The random graphs captured by the Chung-Lu model
are more realistic than those of the simple Erdős-Renyi
model (Eubank et al., 2004). The reason for this is
imposing a speciied degree sequence that models the
heavy-tailed nature of real-world degree distributions.

We refer to MinInfEdge and MinInfNode when the
graph G = (V,E) is from the Chung-Lu model as
MinInf-CL and MinInfNode-CL, respectively. The
random process for constructing the graph G = (V,E)
in the Chung-Lu model should not be confused with
the percolation process occurring on G during the
spread of the disease. In the case of MinInf-CL and
MinInfNode-CL, the reader can view the whole pro-
cess as happening in two steps. At irst, G = (V,E)
is chosen randomly according to the Chung-Lu model.
Afterwards, the disease starts its difusion in the cho-
sen network according to the probability vector p⃗.

1.2 Contributions and Outline

We mostly focus on MinInfEdge for the rest of the
paper. In Appendix B we discuss which of our results
extend to the case of MinInfNode.

In Section 2, we study the unit edge-cost case of Min-

InfEdge (all edges of G have cost 1), and we present
an (O(1), O(1))-approximation for it. This result is
for the uniform p probability setting, in the regime
where Karger’s cut sparsiication result holds. How-
ever, even this simple setting is not trivial, and to the
best of our knowledge, this is the irst rigorous result
when the transmission probability is not 1. Let Ĝ be
the weighted graph obtained by setting the weight we

of each edge e equal to p, and let ĉ denote the weight of
the minimum cut in Ĝ. Karger’s result (Theorem 2.1)
states that if ĉ ≥ 9 lnn, then the size of every cut in
G(p) is close to the corresponding cut in Ĝ. In this
case, we are able to reduce MinInfEdge to a prob-
lem from (Hayrapetyan et al., 2005a), using just one
random sample G(p).

In Section 3 we present a sampling framework for Min-

InfEdge that utilizes the powerful sample-average-
approximation (SAA) approach (Kleywegt et al., 2002;
Ruszczynski and Shapiro, 2003; Shapiro, 2003; Swamy
and Shmoys, 2012). Speciically, we sample a polyno-
mial number of graphs from G(p⃗) and then formulate
a linear program (LP) that describes the empirical es-
timate of the optimal solution of those samples. Af-

terwards, we solve this LP and provide a randomized-
rounding procedure that transforms its fractional so-
lution into an integral one. Let F0 be the solution (set
of edges to remove) that we compute, OPT the value
of the optimal solution, and Γ the expected number of
simple paths1 in a randomly drawn graph from G(p⃗),
where the randomness also includes the random choice
of G, in case G is drawn from a random-graph model.

Three different sources of randomness: Our
statements will refer to (combinations of) three dis-
tinct sources of randomness/uncertainty:

• Type 1: This randomness is over the random
choice, if any, of our network G = (V,E) (such
as randomness resulting from choosing G accord-
ing to the Chung-Lu model). If the network G
is deterministic, Type 1 is vacuous: there is no
randomness.

• Type 2: This randomness arises from the choices
of our randomized rounding algorithm.

• Type 3: This type of randomness refers to the
random percolation/difusion of the disease, gov-
erned by p⃗.

Our main theorem for the SAA approach of Section
3 is summarized in the following, where ł logž denotes
the natural logarithm throughout.

Theorem 1.1. For any chosen constants ϵ > 0 and
γ > 1, the following hold:

• with probability at least 1 − O(n−γ), where the
randomness is solely of Type 2, we have c(F0) ≤
O(γϵ ) log n ·B;

• there exists an event A with Pr[A] ≥ 1−O( 1
n2 )−

O
(

Γ logn
ϵ2nγ

)

and E[inf(V,E(p⃗)\F0, s)
∣

∣ A] ≤ (1+ϵ)·
OPT . Here, randomness is with respect to Type
1 (if applicable), Type 2, and Type 3.

Observe now that if Γ ≤ poly(n)2, we can choose γ
to be large enough, such that Pr[A] ≥ 1 − O(1/n2).
As we show in Section 3 this immediately implies the
following corollary.

Corollary 1.2. When Γ ≤ poly(n), we easily get
E[inf(V,E(p⃗) \ F0, s)] ≤ (1 + O(ϵ) + O(1/n))OPT ,
where the randomness is with respect to Type 1 (if ap-
plicable), Type 2, and Type 3.

Hence, in Section 4 we prove that a family of Chung-
Lu random-graphs satisies the Γ ≤ poly(n) property

1“Paths" will refer throughout to simple paths: ones in
which no nodes or edges are repeated.

2Throughout, “poly" will denote an arbitrary univariate
or bivariate polynomial.
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(recall this model captures realistic social-contact net-
works well (Eubank et al., 2004, 2006)). Under this
property, are main result informally says that we can
approximate the budget to within a factor O(log n) with
high probability, and the expected number of infected
people to within a constant factor.

A remark regarding Section 3 is that our goal is to
present a "proof of concept", so we do not optimize the
constants in our algorithms, and we are content with
polynomial running times. In particular, we do not
spell out the actual running times of our algorithms:
these will easily be seen to be bounded by polynomials
of n and m. We remark that most of the prior work
on this problem has been experimental, and that our
paper is the irst to give rigorously-proven results.

Section 4 develops the above-mentioned poly(n) bound
on Γ for a realistic Chung-Lu family of graphs. More
generally, it shows a phase-transition phenomenon for
the expected number of paths of any length k, as a
function of the model parameter β: this is proved to
be at most poly(n, 2k) for β > 3, and to be at least
(k!)Ω(1) for β < 3. This leads to our provably-good
approximation algorithms for the Chung-Lu family of
graph models when β > 3.

In Section 5, we show a slightly diferent SAA ap-
proach combined with a deterministic rounding, which
achieves an (O(n2/3), O(n2/3))-approximation for any
graph, without any dependence on the parameter Γ.

1.3 Further Related Work

There has been much work on heuristics for interven-
tions for the SIR model (Yang et al., 2019; Eames
et al., 2009; Cohen et al., 2003; Miller and Hyman,
2007; Barabási and Albert, 1999; Sambaturu et al.,
2020). In particular, heuristics based on degree or
centrality, e.g., (Cohen et al., 2003; Miller and Hy-
man, 2007), have been shown to be quite efective in
many classes of networks (including random graphs),
but these do not provide any guarantees. The work of
Sambaturu et al. (2020) explores the use of the sam-
ple average approximation method, but has worst-case
approximation bounds as large as O(n).

However, as mentioned earlier, rigorous results are
only known for the setting where pu,v = 1 for all
(u, v) ∈ E (Bollobás and Riordan, 2004; Hayrapetyan
et al., 2005a; Eubank et al., 2006; Svitkina and Tar-
dos, 2004). The MinInfEdge problem is known to
be NP-hard even in this setting (Hayrapetyan et al.,
2005a; Svitkina and Tardos, 2004), and constant factor
bicriteria approximation algorithms are known.

Another related direction of work has been on reduc-
ing the irst eigenvalue, referred to as the spectral ra-

dius, based on a characterization of the time to die
out in SIS models (in which, unlike the SIR model,
an infected node switches back to state S) (Ganesh
et al., 2005). There has been much work on reducing
the spectral radius, e.g., (Preciado et al., 2014b, 2013,
2014a; Saha et al., 2015; Ogura and Preciado, 2017).
However, these results do not imply any guaranteed
bounds for MinInfEdge or MinInfNode.

2 MinInfEdge WITH UNIT

EDGE-COSTS AND UNIFORM

PROBABILITIES

In this section we are going to consider a special case of
MinInfEdge. Speciically, we assume that the edge
costs of the network G = (V,E) are all 1, i.e., ce = 1
for all e ∈ E. Moreover, we will work under he uniform
transimition probability setting.

For a random graph G(p) = (V,E(p)) and any F ⊆ E,
let F (p) = F ∩E(p) be the random cut corresponding
to F in G(p). Let also cmin be the size of the smalletst
cut in G. We are going to use a cut sparisiication
result of Karger (1999).

Theorem 2.1. (Karger, 1999) Let ϵ =
√

3(d+2)(lnn)
cmin·p

for some d > 0. If ϵ ≤ 1 then, with probability at
least 1 − O(1/nd), we have

∣

∣|F (p)| − EG(p)[|F (p)|]
∣

∣ ≤
ϵEG(p)[|F (p)|] for every F ⊆ E.

Observation 2.2. When cmin · p ≥ 9 lnn, the state-
ment of Theorem 2.1 holds with high probability, i.e.,
with probability at least 1−O(1/n).

Observation 2.2 basically determines the regime where
the results of this section hold. However, notice that
cmin ·p ≥ 9 lnn is a realistic assumption, since for most
real-life scenarios the transmission probability will be
some constant, and the size of the minimum cut in G
can very well be Ω(lnn).

To tackle MinInfEdge in the current setting, we are
going to reduce it to a problem from (Hayrapetyan
et al., 2005b), namely the Minimum-Size Bounded-

Capacity Cut problem (MinSBCC). In this problem,
we are given a graph G = (V,E), a source vertex s ∈
V , and a budget B. We are then asked to ind a set
F ⊆ E of at most at most B edges, which minimizes
the number of nodes in the same component as s in
GF = (V,E \F ), i.e., inf(V,E \F, s). The main result
of Hayrapetyan et al. (2005b) follows.

Theorem 2.3. For any λ ∈ (0, 1), there exists a poly-
time ( 1λ ,

1
1−λ )-approximation algorithm for MinSBCC:

it finds a cut of size at most 1
λB, in which the number

of nodes in the same component as s in the resulting
subgraph is at most 1

1−λ times the value of the optimal
solution with size B.
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Our approach for solving MinInfEdge goes as fol-
lows. At irst, we sample a graph H = (V,E′) from
G(p). Then, we create an instance of MinSBCC, where
the graph under consideration is H, the source ver-
tex is s, and the budget is γBp for a small constant
γ which we set later. Finally, we run the ( 1λ ,

1
1−λ )-

approximation of Hayrapetyan et al. (2005b) on the
created instance of MinSBCC, and get a solution F ′ ⊆
E′. Let now S be all the vertices that are in the same
connected component as s in HF ′ = (V,E′ \ F ′). Our
returned solution for the original instance of MinIn-

fEdge is F̄ = {{u, v} ∈ E : u ∈ S, v ̸∈ S}.

Lemma 2.4. When the assumption of Observation
2.2 holds, |F̄ | ≤ γ

(1−ϵ)λB with probability at least

1−O(1/n), where ϵ < 1 is as in Theorem 2.1.

Proof. Notice that the vertices that are in the same
connected as s in (V,E \ F̄ ), are exactly those that are
connected to s in (V,E′ \ F ′). Therefore, the random
cut corresponding to F̄ in G(p) is F ′, i.e., F ′ = F̄ (p).
Hence, EG(p)[F

′] = EG(p)[F̄ (p)] = p|F̄ |. Therefore,
using Theorem 2.1, we have that with probability at
least 1−O(1/n):

∣

∣|F ′| − p|F̄ |
∣

∣ ≤ ϵp|F̄ | =⇒ |F ′| ≥ (1− ϵ)p|F̄ |

Since |F ′| ≤ γBp
λ (we ran the algorithm of Theorem

2.3 with budget γBp), we get γBp
λ ≥ |F ′| ≥ (1−ϵ)|F̄ |p

with probability at least 1−O( 1n ). Rearranging terms
implies that |F̄ | ≤ γ

(1−ϵ)λB.

Lemma 2.5. |S| ≤ γ
1−λOPT with probability at least

1− 2
γ , where OPT is the value of the optimal solution

(the expected number of nodes infected).

Proof. Let F ∗ denote the optimal solution (so |F ∗| ≤
B), and let F̂ = F ∗∩E′ be a random variable denoting
the edges of F ∗ that are present in E′. Let also SF̂ be
the random variable denoting the nodes that are in the
same connected component as s in (V,E′ \ F̂ ). We say
that there was a łsuccessž in the process of sampling H
if the following two conditions are satisied: 1) |F̂ | ≤
γBp and 2) |SF̂ | ≤ γ ·OPT . If either condition is not
true we say that there was a łfailurež.

Suppose that there was a success. Then the irst con-
dition implies that F̂ was a feasible solution for the
MinSBCC instance (since its size was within the given
budget), and hence |S| ≤ 1

1−λ |SF̂ |. Then the second
condition implies |S| ≤ γ

1−λOPT as desired.

Finally, we need to show that the probability of success
is at least 1 − 2

γ , or equivalently that the probability

of failure is at most 2
γ . Clearly EG(p)[|F̂ |] = p|F ∗| ≤

pB, so by Markov’s inequality Pr[|F̂ | > γBp] ≤ 1
γ .

Similarly, E[|SF̂ |] = OPT by the deinition of OPT ,
and so by Markov Pr[|SF̂ | > γ · OPT ] ≤ 1

γ . A union
bound implies a failure probability of at most 2/γ.

Theorem 2.6. When all edges have unit cost and the
transmission probabilities are uniform, there exists an
(O(1), O(1))-approximation for the MinInfEdge that
works with high probability, as long as the assumption
of Observation 2.2 holds.

Proof. If we set γ to be a large enough constant (say,
4), then with probability at least 1/2 − O(1/n) we
return a solution F̄ which violates the budget by at
most O(1) (Lemma 2.4), and the size of the connected
component in (V,E \ F̄ ) which contains s is at most
O(1) · OPT (Lemma 2.5). Clearly this implies that
EG(p)[inf(V,E(p) \ F̄ , s)] is also at most O(1) ·OPT .
Thus, our algorithm gives the bounds in Theorem 2.6
with constant probability. By repeating this process
O(log n) times and taking the best solution, this algo-
rithm can be made to work with high probability.

3 THE SAA PATH-DEPENDENT

FRAMEWORK FOR

ARBITRARY NETWORKS

Consider a general instance of MinInfEdge. For a
suitable number N ≤ poly(n,m) that is going to be set
later, we simulate the disease-percolation process on G
independently N times. In other words, we indepen-
dently sample N graphs Gj = (V,Ej), j = 1, 2, . . . , N ,
where Ej ⊆ E is the subset of edges acquired in the
jth simulation (or sample), when each edge is retained
with probability pe. The heart of our approach is to
then show how these łtypicalž samples Gj can guide
us towards computing a provably-good solution for our
given probabilistic percolation model.

We start by presenting the linear program LP (1)-(4).
This LP models an łempiricalž solution to the prob-
lem, when the difusion process can only result in the
graphs Gj , and each of these graphs materializes with
probability 1/N . We use P(s, v,Gj) to denote the set
of paths from s to v in the graph Gj , and [k] to de-
note the set {1, 2, . . . , k} for any positive integer k.
For the integral version of our LP, xe is the indicator
variable for removing edge e, and yvj the indicator for
vertex v not becoming reachable from s in Gj after our
edge-removal. Then, constraint (2) makes sure that
v is disconnected from s in Gj if for every path of
P(s, v,Gj) at least one edge of the path has been re-
moved. Constraint (3) captures the budget constraint,
and the objective function (1) measures exactly the
expected number of infections, when each Gj appears
with probability 1/N . Finally, in order to be able to
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eiciently solve the system, the {0, 1}śvariables are re-
laxed to lie in [0, 1].

min
1

N

∑

j∈[N ]

∑

v∈V

(1− yvj) such that (1)

∑

e∈P

xe ≥ yvj , ∀j, ∀v, ∀P ∈ P(s, v,Gj) (2)

∑

e∈E

cexe ≤ B (3)

xe, yvj ∈ [0, 1], for all j ∈ [N ], v ∈ V, e ∈ E (4)

Our algorithm involves the following steps:

1. Solve LP (1)-(4), and let x, y be the optimal frac-
tional solution. This solution can be computed in
polynomial time via the ellipsoid method, with a
separation oracle that checks if the shortest-path
distance from s to v in Gj (with edge weights xe)
is less than yvj (Grötschel et al., 1988).

2. For some user-speciied constant ϵ ∈ (0, 1), deine
the following sets for the sake of analysis:

S(j) = {v ∈ V : yvj ≥ ϵ} for every j ∈ [N ]

Phit = ∪j ∪v∈S(j) P(s, v,Gj)

3. Let F0 denote the set of edges which will consti-
tute our returned solution. For some constant γ
that will be deined later, put each edge e ∈ E
independently in F0, with probability

x′
e = min

{ (γ + 5)xe log n

ϵ
, 1
}

For any ixed F ⊆ E, we deine random variables
h(Gj , F ) and h(G,F ), where the randomness here is
over the choice of the Gj ’s, i.e., the randomness is
of Type 3. Let h(Gj , F ) = inf(V,Ej \ F, s) and
h(G,F ) = 1

N

∑N
j=1 h(Gj , F ); the former represents the

number of infections in the j-th sample if F are the
edges to be removed, and the latter represents the av-
erage number of infections over the N sampled graphs
if again F is the set of edges removed.

For the small user-deined constant ϵ > 0, we now
choose N = 3n

ϵ2 log
(

n2 · 2m+1
)

and present a simple
concentration result in Lemma 3.1; note that for this
choice we have N = poly(n,m) and hence our algo-
rithm runs in polynomial time.

Lemma 3.1. For the chosen value N = 3n
ϵ2 log

(

n2 ·

2m+1
)

, with probability at least 1 − 1
n2 , we have

h(G,F ) ∈
[

(1− ϵ)E[h(G,F )], (1+ ϵ)E[h(G,F )]
]

for all
sets F ⊆ E. The expectation here is over randomness
of Type 3, and specifically over the random sampling
of the N graphs Gj.

Let F ∗ = argminF E[h(G,F )], where the expectation
is again over the random sampling of the graphs Gj

(Type 3 randomness). Since for every F we have
E[h(Gj , F )] = EG(p⃗)[inf(V,E(p⃗)\F, s)] for all Gj , and
E[h(G,F )] = 1

N

∑

j E[h(Gj , F )], we see that F ∗ is ac-
tually the optimal edge set for MinInfEdge. Also,
we deine the random variable F̂ = argminF h(G,F ),
denoting the optimal integral solution of LP (1)-(4); F̂
is actually the optimal empirical solution for the sam-
pled set of graphs. Recall now that F0 is the subset
of edges computed by our LP rounding algorithm, and
recall the parameter Γ from Section 1, indicating the
expected number of paths in a randomly-drawn graph
(with randomness being of types 1 and 3).

Proof. (Theorem 1.1.) Showing the irst part of the
theorem is easy. Since each edge e is removed (inde-
pendently) with probability x′

e, the expected cost of
the removed edges is

E[c(F0)] ≤
∑

e

cex
′
e ≤

(γ + 5) log n

ϵ

∑

e

cexe

≤
((γ + 5) log n)B

ϵ

where the last inequality follows from constraint (3).
Next, we can assume w.l.o.g. that B = 1. To do so,
we irst hard-wire xe = 0 for all edges e with ce > B,
thus ignoring these edges in our edge-removal problem.
Then, we uniformly scale all remaining ce’s and the
budget by a factor of 1/B. Using the second statement
of Lemma C.1 with R = (6(γ + 5) log n)/ϵ gives:

Pr[c(F0) ≥ (6(γ + 5) log n)/ϵ] ≤ O(1/nγ)

We next prove the second part of the theorem. The
event A that is a function of the randomness of types
1, 2, 3 is the conjunction of the following three events:

• A1: For each P ∈ Phit, there exists an edge e ∈ P ,
such that e ∈ F0.

• A2: h(G,F ∗) ≤ (1 + ϵ)E[h(G,F ∗)].

• A3: h(G,F0) ≥ (1− ϵ)E[h(G,F0)].

We will irst show that E[inf(V,E(p⃗) \ F0, s)
∣

∣ A] ≤
(1 +O(ϵ))OPT , and then lower-bound Pr[A].

Let us irst condition on A. Consider any j ∈ [N ]. By
A1 and the deinition of the set Phit, the only vertices
in (V,Ej \ F0) that are reachable from s can be those
in V \S(j); these vertices are exactly the ones getting
infected in the j-th sample. Further, by deinition we
have yvj < ϵ for every v ∈ V \ S(j). Therefore, the
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empirical number of infections over all the samples is:

h(G,F0) ≤
1

N

∑

j∈[N ]

∑

v ̸∈S(j)

1

≤
1

N

∑

j∈[N ]

∑

v ̸∈S(j)

1− yvj
1− ϵ

≤
h(G, F̂ )

1− ϵ
≤

h(G,F ∗)

1− ϵ
(5)

The second inequality above follows because the LP
value is a lower bound on h(G, F̂ ), and the last inequal-
ity follows since F̂ minimizes h(G,F ). Combining (5)
and the deinitions of A2, A3 yields

E[h(G,F0)] ≤
h(G,F0)

1− ϵ
≤

h(G,F ∗)

(1− ϵ)2

≤
(1 + ϵ)

(1− ϵ)2
E[h(G,F ∗)]

= (1 +O(ϵ))E[h(G,F ∗)]

To conclude the proof we need to lower-bound Pr[A].
First, Lemma 3.1 shows that each of A2 and A3 holds
with probability at least 1−1/n2. Let us consider A1.

Let B be a random variable denoting the number of
paths over all the samples Gj . Since Γ is the ex-
pected number of paths in a single graph, linearity
of expectation gives E[B] = ΓN = O(n

3Γ
ϵ2 ), since

m = O(n2). Thus, by using Markov’s inequality
we have Pr[B = Ω(n

5Γ
ϵ2 )] ≤ O(1/n2). Equivalently,

Pr[B = O(n
5Γ
ϵ2 )] ≥ 1 − O(1/n2). The randomness in

the previous statements is of types 1 and 3.

Consider now a path P ∈ Phit. If there exists an
e ∈ P such that x′

e = 1, then this path is broken.
Hence, assume that for all e ∈ P we have x′

e < 1.
By the deinition of the paths in Phit we also have
∑

e∈P x′
e ≥ (γ + 5) log n. Therefore, the probability

that all edges of P survive is at most

∏

e∈P

(1− x′
e) ≤ e−

∑
e∈P x′

e ≤ e−(γ+5) logn ≤ n−(γ+5)

In the end, a union bound over all P ∈ Phit gives
Pr[A1|B] ≥ 1 − B

nγ+5 . Combining everything gives
Pr[A1] ≥ (1 − O( Γ

ϵ2nγ ))(1 − O( 1
n2 )) = 1 − O( Γ

ϵ2nγ ) −
O( 1

n2 ). Hence, putting down all the lower bounds for
A1,A2 and A3 yields Pr[A] ≥ 1−O( Γ

ϵ2nγ )−O( 1
n2 ).

Corollary 3.2. When Γ ≤ poly(n), we trivially get
E[inf(V,E(p⃗) \ F0, s)] ≤ (1 + O(ϵ) + O(1/n))OPT ,
where the randomness is with respect to Type 1 (if ap-
plicable), Type 2, and Type 3.

4 COUNTING PATHS IN THE

CHUNG-LU MODEL

Recall the random graph model of Chung and Lu
(2006). Here we are given vertices V , where each
vertex v ∈ V comes with a positive integer wv in-
dicating its expected degree in the graph. For ev-
ery pair of vertices u and v, the edge (u, v) is in-
dependently included in the graph with probability
qu,v = wuwv/

∑

r∈V wr. Furthermore, we consider a
power-law model, in which ni, the number of nodes
of weight i, satisies ni = Θ(n/iβ), where β > 2 is a
given parameter. Finally, recall that wmax = maxv wv,
wmin = minv wv, and a common assumption in this
setting is wmin = O(1).

Take now any random graph G = (V,E) that is pro-
duced by the above model. In that graph, we assume
that a disease percolation process takes place, and this
process is governed by some probability vector p⃗. We
are interested in bounding the expected number of
paths Γ in G(p⃗), where the randomness of Γ is ob-
viously of both Types 1 and 3. To do so, we start by
analyzing the expected number of paths of length k in
G, where the randomness here is only of Type 1. In
what follows, we are using ℓk to denote the latter.

Our irst result is showing that when β > 3, we have
ℓk ≤ poly(n, 2k). Furthermore, if pe ≤ c0 for all e ∈ E,
where c0 is a universal positive constant, we demon-
strate how to utilize the bound on ℓk and eventually
give a polynomial bound on Γ.

In addition, when β < 3 we provide a negative re-
sult, indicating that our SAA framework from Section
3 cannot be utilized for this case, as no polynomial
bound on Γ can be guaranteed.

By an abuse of notation, we will let m denote the
expected number (not actual number) of edges in the
graph G. Trivially, m =

∑

v∈V wv/2. Since β > 2, m
can also be expressed as:

m = Θ(
∑

i

i · ni) = Θ
(

∫ wmax

wmin

n

zβ−1
dz
)

= Θ
( n

wβ−2
min

)

(6)

The following lemma is required for counting paths.

Lemma 4.1. Fix some length k, and suppose that we
are given a positive integer D ≥ wmin. Let S(D, k)

.
=

{(a(wmin), a(wmin + 1), . . . , a(D)) : (∀i, a(i) ∈
Z≥0) and

∑

i a(i) = k}. Then,

ℓk ≤ n·

(

2kk!

mk

)

·
∑

a∈S(wmax,k)

wmax
∏

i=wmin

((

ni

a(i)

)

· i2a(i)
)

.
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Proof. We say that a vertex v is in class i if wv = i. Fix
a vertex v0. We upper bound how many diferent paths
of length k can start from v0. A potential such path
P = (u0, u1, . . . , uk) can be constructed as follows:

1. Pick a = (a(wmin), a(wmin + 1), . . . , a(wmax))
from S(wmax, k). This will give us the selection
of how many vertices from each degree class we
should pick, such that in total we have chosen k
vertices for P .

2. For the chosen a, pick a(i) vertices from each de-
gree class i, where wmin ≤ i ≤ wmax. This is pos-
sible only if a(i) ≤ ni for each class i. However,
since we are only computing an upper bound, we
will assume that such a selection is always pos-
sible. Notice that there may be some additional
double counting, because we may end up choosing
v0 again. Nonetheless, as we are only concerned
with an upper bound, we will permit such łunec-
essaryž cases in our counting.

3. Choose the positions of the chosen k vertices
among the indices {1, 2, . . . , k} of the path P to
be constructed (k! possibilities).

Overall, based on the 3 cases above, the total number
of paths starting from v0 can be at most:

k!
∑

a∈S(wmax,k)

wmax
∏

i=wmin

(

ni

a(i)

)

(7)

Let d0 be the class of u0. Suppose we complete the
three steps above and let (d0, d1, . . . , dk) be the or-
dered degree sequence obtained for the vertices in P ,
when the chosen vector was a. The probability of such
a path materializing in the edge selection phase is

k−1
∏

i=0

(

didi+1
∑

v wv

)

=
2k

mk

wmax
∏

i=wmin

i2a(i) (8)

Combining (7) and (8), the expected number of paths
of length k starting at u0 is at most
(

2kk!

mk

)

·
∑

a∈S(wmax,k)

wmax
∏

i=wmin

((

ni

a(i)

)

· i2a(i)
)

(9)

Summing this bound over all possible starting vertices
results in the claim of the Lemma.

4.1 A Positive Result When β > 3

We begin this section with a couple of important tech-
nical lemmas, and then move on to our inal result re-
garding the expected number of paths in a randomly
drawn graph.

Lemma 4.2. Let S(D, k) be as in Lemma 4.1, and let

N(D, k)
.
=
∑

a∈S(D,k)

∏D
i=wmin

1
ic1a(i)·a(i)!

for some

constant value c1 > 1. Then

N(D, k) ≤
1

k!
·

D
∏

i=wmin+1

(

1 +
1

ic1

)k

Lemma 4.3. Suppose β = 2 + c1 for some constant
c1 > 1. Then, for all k, ℓk ≤ poly(n, 2k).

Proof. Before we proceed to our main arguments, we
make some useful observations and give a bit more
notation. At irst, using (6) and the assumption that
wmin = O(1), we see that n

m = O(1). Furthermore,
because ni = Θ( n

iβ
) for every i ∈ [wmin, wmax], let λ

be a universal constant such that ni ≤
λn
iβ

for every i.
Using Lemma 4.1 we upper bound ℓk as follows:

n

(

2kk!

mk

)

∑

a∈S(wmax,k)

wmax
∏

i=wmin

(

n
a(i)
i

a(i)!
i2a(i)

)

≤

n

(

2kk!

mk

)

∑

a∈S(wmax,k)

wmax
∏

i=wmin

(

(λn/i2+c1)a(i)

a(i)!
i2a(i)

)

≤

nk!

(

λn

m

)k
∑

a∈S(wmax,k)

wmax
∏

i=wmin

(

(1/i2+c1)a(i)

a(i)!
i2a(i)

)

=

nk!

(

λn

m

)k
∑

a∈S(wmax,k)

wmax
∏

i=wmin

1

ic1a(i)a(i)!
=

poly(n, 2k) · k! ·N(wmax, k).

Using the bound on N(D, k) from Lemma 4.2, we have

ℓk ≤ poly(n, 2k) ·
∞
∏

i=wmin+1

(

1 +
1

ic1

)k

≤ poly(n, 2k) ·
∞
∏

i=wmin+1

e
k

ic1

= poly(n, 2k) · ek·
∑

i>wmin

1
ic1

≤ poly(n, 2k)

The last inequality follows because
∑

i>wmin
(1/ic1) =

O(1) when c1 > 1.

Corollary 4.4. Let G be a graph drawn from the
Chung-Lu distribution with power law weights, with pa-
rameter β = 2 + c1 for some constant c1 > 1. Then
there is a constant c0 > 0 that depends only on c1,
such that the following holds: if the probability pe of
retaining edge e during the disease percolation process
satisfies pe ≤ c0 for any e, then the expected number
Γ of paths in G(p⃗) is upper-bounded by poly(n). (This
expectation is over randomness of types 1 and 3.)
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Proof. From Lemma 4.3, we have ℓk ≤ poly(n, 2k); let
C be a constant such that ℓk ≤ nC2Ck for all k. We
choose c0 = 2−C . Then, when pe ≤ c0 for every e, the
probability that a given path of length k survives in
G(p⃗) is at most ck0 . Therefore, the expected number of
paths in G(p⃗) is

Γ ≤
∑

k

ℓkc
k
0 ≤

∑

k

nC(c02
C)k ≤ nC+1

Combining Corollaries 4.4 and 3.2, we get a bicriteria
approximation algorithm for MinInf-CL.

4.2 A Negative Result When β < 3

We now consider the case β < 3 and show an interest-
ing contrast to Lemma 4.3.

Lemma 4.5. When β = 2 + c0 for some constant
c0 < 1, there may exist k with ℓk = ω(poly(n, 2k)).

Proof. In the proof of Lemma 4.1 we gave an upper
bound for ℓk. However, the double counting or the
unnecessary cases we involved in our counting can only
account for low-order terms. In other words, we can
assume that ℓk is:

Θ



n

(

2kk!

mk

)

∑

a∈S(wmax,k)

wmax
∏

i=wmin

((

ni

a(i)

)

i2a(i)
)





(10)

Consider the case where wmin = 1 and wmax = k, and
just take the one sequence a = (1, 1, . . . , 1). Further-
more, because ni = Θ( n

iβ
) for every i ∈ [wmin, wmax],

let λ be a universal constant such that ni ≥
λn
iβ

for ev-
ery i. Since a(i) = 1 for all i here, the quantity inside
the Θ notation in (10), which we denote by Q, can be
lower-bounded as follows

Q ≥ n ·

(

2kk!

mk

)

·
wmax
∏

i=wmin

(

ni · i
2
)

≥ n ·

(

2kk!

mk

)

·
k
∏

i=1

(

(λn/iβ) · i2
)

= n ·

(

2kλknkk!

mk

)

·
k
∏

i=1

i−c0

= n ·

(

2kλknk

mk

)

· (k!)1−c0

= poly(n, 2k) · (k!)1−c0

Because c0 < 1, we have that (k!)1−c0 grows faster
than poly(2k). Hence, Q = ω(poly(n, 2k)) and conse-
quently ℓk = ω(poly(n, 2k)).

Using reasoning similar to that used in Corollary 4.4,
we see that Lemma 4.5 implies that under this stochas-
tic regime, our proof approach cannot provide mean-
ingful results for MinInf-CL. Thus we see a phase
transition for the expected number of paths of any
length k: from at least (k!)Ω(1) to poly(n, 2k) at β = 3.
It is an open question as to what happens when β = 3.

5 A DETERMINISTIC ROUNDING

SAA APPROACH

In this section we revisit the SAA approach of Section
3, and instead of a randomized rounding, we apply a
simple deterministic rounding scheme. The advantage
of the latter is that the success probability of the al-
gorithm no longer relies on the value Γ. However, this
comes at the expense of much worse bicriteria factors.

Once again we are going to sample N = 3n
ϵ2 log

(

n2 ·

2m+1
)

graphs Gj = (V,Ej) from G(p⃗), and then con-
struct LP (1)-(4). Let (x, y) be the optimal fractional
solution of the LP. In this case, our returned solution
will be F0 = {e ∈ E : xe ≥

1
4n2/3 }.

Theorem 5.1. With high probability, the set F0 is an
(O(n2/3), O(n2/3))-approximation for MinInfEdge.

6 CONCLUSIONS AND FUTURE

WORK

Despite the fundamental nature of MinInfEdge and
MinInfNode, their computational complexity re-
mained open for the p < 1 setting. A number
of heuristics have been proposed, and rigorous algo-
rithms are only known for very special random graphs.
We present the irst rigorous approximation results
for these problems for certain classes of instances;
however, even these turn out to be quite challeng-
ing, and require adapting the cut sparsiication and
sample-average approximation techniques in a non-
trivial manner.

Our work raises several interesting questions. First,
it would be interesting to extend the result based
on Karger’s cut sparsiication technique to the non-
uniform probability setting. Second, it would be in-
teresting to extend our work to other realistic random
models of social-contact networks, and to also identify
what reasonable assumptions on deterministic network
models would guarantee eicient solutions. Third, to
capture a wider variety of realistic scenarios, it would
be beneicial improving the constant upper bound on
p in Lemma 4.4. Finally, it is of interest to see if our
approximation guarantees and running times can be
improved.
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A MISSING PROOFS

Proof of Lemma 3.1. For a ixed set F , the quantities h(Gj , F ) are independent. Further, let Xj =
h(Gj ,F )

n ∈

[0, 1] and X =
∑N

j=1 Xj . Note that X = N
n h(G,F ). Using the Chernof bound of Lemma C.1 yields:

Pr
[

X /∈
[

(1− ϵ)E[X], (1 + ϵ)E[X]
]

]

≤ 2e−
ϵ2E[X]

3 = 2e−
ϵ2N·E[h(G,F )]

3n ≤
1

n22m

To get the last inequality we use the deinition of N , and the fact that E[h(G,F )] ≥ 1 (since there is always at
least one infection, namely the node s). Finally, since X = N

n h(G,F ), we also have:

Pr
[

h(G,F ) /∈
[

(1− ϵ)E[h(G,F )], (1 + ϵ)E[h(G,F )]
]

]

≤
1

n22m

Because the number of possible subsets F is 2m, a union bound over them concludes the proof.

Proof of Corollary 3.2. When Γ ≤ poly(n), we set γ large enough such that O( Γ
ϵ2nγ ) = O( 1

n2 ). Using
Theorem 1.1 we then have:

E[inf(V,E(p⃗) \ F0, s)] = E[inf(V,E(p⃗) \ F0, s)|A] Pr[A] + E[inf(V,E(p⃗) \ F0, s)|Ā] Pr[Ā]

≤ (1 +O(ϵ))OPT + nO(1/n2) ≤ (1 +O(ϵ) +O(1/n))OPT

To get the irst inequality we use the simply upper bound of E[inf(V,E(p⃗) \ F0, s)|Ā] ≤ n, and for the last one
we use the fact that 1 ≤ OPT (s is always infected).

Proof of Lemma 4.2. We prove by induction on D the stronger statement (A), which directly implies the
Lemma.

∀k, N(D, k) ≤
1

k!
·

D
∏

i=wmin+1

(

1 +
1

ic1

)k

(A)

The base case D = wmin is easy. For this notice that S(wmin, k) = {(k)}, and hence we have

N(wmin, k) =
1

wc1k
min · k!

≤
1

k!

The inequality above follows since c1 > 1.

We complete the proof by strong induction. Suppose D > wmin. Elementary calculations and the deinition of
N(·, ·) reveal the following recurrence when D > wmin

N(D, k) =
k
∑

j=0

(

N(D − 1, k − j) ·
1

Dc1j · j!

)

(11)
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Recurrence (11) and the induction hypothesis yield

N(D, k) ≤
k
∑

j=0

(

1

Dc1j · j!
·

1

(k − j)!

D−1
∏

i=wmin+1

(

1 +
1

ic1

)k−j
)

≤
k
∑

j=0

(

1

Dc1j · j!
·

1

(k − j)!

D−1
∏

i=wmin+1

(

1 +
1

ic1

)k
)

=

(

D−1
∏

i=wmin+1

(

1 +
1

ic1

)k
)

k
∑

j=0

(

1

Dc1j · j!
·

1

(k − j)!

)

=
1

k!
·

(

D−1
∏

i=wmin+1

(

1 +
1

ic1

)k
)

·
k
∑

j=0

((

k

j

)

·
1

Dc1j

)

=
1

k!
·

(

D
∏

i=wmin+1

(

1 +
1

ic1

)k
)

The last inequality above follows from the binomial sum
∑k

j=0

(

(

k
j

)

· 1
Dc1j

)

= (1 + 1/Dc1)k.

Proof of Theorem 5.1. Before we proceed with our analysis, let us recall some important notation from
Section 3. For any ixed F ⊆ E, h(Gj , F ) = inf(V,Ej \ F, s) and h(G,F ) = 1

N

∑N
j=1 h(Gj , F ). Finally, F ∗

denotes the optimal edge set for the given instance of MinInfEdge, and F̂ denotes the optimal integral solution
of LP (1)-(4).

To begin with, by the deinition of F0 and constraint (3), we have
∑

e∈F0

ce ≤ 4n2/3
∑

e∈F0

cexe ≤ 4n2/3B

Moving forward, note that by Lemma 3.1, we have h(G,F ∗) ≤ (1+ϵ)E[h(G,F ∗)] and h(G,F0) ≥ (1−ϵ)E[h(G,F0)]
with probability at least 1−O(1/n2). If we show that h(G,F0) ≤ 2n2/3h(G, F̂ ), then we are done. This is because:

E[h(G,F0)] ≤
h(G,F0)

1− ϵ
≤

2n2/3

1− ϵ
h(G, F̂ ) ≤

2n2/3

1− ϵ
h(G,F ∗) ≤

2(1 + ϵ)n2/3

1− ϵ
E[h(G,F ∗)]

At irst, suppose h(G, F̂ ) > n1/3. Since h(Gj , F0) ≤ n ≤ n2/3h(G, F̂ ) for any j, h(G,F0) ≤ 2n2/3h(G, F̂ ) follows
trivially through the deinition of h(G,F0).

Next, suppose h(G, F̂ ) ≤ n1/3. This implies 1
N

∑

j∈[N ]

∑

v∈V (1 − yvj) ≤ h(G, F̂ ) ≤ n1/3, because the optimal

LP-value is a lower bound for h(G, F̂ ). Let now A′ = {j ∈ [N ] :
∑

v∈V (1−yjv) ≤ n2/3} and A′′ = [N ]\A′ = {j ∈

[N ] :
∑

v∈V (1−yvj) > n2/3}. The upper bound of the optimal fractional solution value then gives |A′′| ≤ N/n1/3.
Consider now any j ∈ A′, and let v be a node such that 1 − yvj ≤ 1/2. We will argue below that for any path
P ∈ P(s, v,Gj), there exists an edge e ∈ P such that e ∈ F0. This means that if v is infected in (V,Ej \ F0),
then 1− yvj > 1/2, and so h(Gj , F0) ≤

∑

v 2(1− yvj). Hence,

h(G,F0) =
1

N

∑

j∈A′

h(Gj , F0) +
1

N

∑

j∈A′′

h(Gj , F0)

≤
1

N

∑

j∈A′

∑

v∈V

2(1− yvj) +
n|A′′|

N

≤
1

N

∑

j∈[N ]

∑

v∈V

2(1− yvj) + n2/3

≤
1

N

∑

j∈[N ]

∑

v∈V

2(1− yvj) + n2/3h(G, F̂ )

≤ (2 + n2/3)h(G, F̂ ) ≤ 2n2/3h(G, F̂ )
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where the third inequality follows because h(Gj , F̂ ) ≥ 1, and thus h(G, F̂ ) ≥ 1.

Finally, we prove that for any j ∈ A′, and any v such that 1 − yvj ≤ 1/2, it must be the case that for each
P ∈ P(s, v,Gj) we have P ∩ F0 ̸= ∅. Let P = (v0, v1, . . . , vr) with v0 = s be such a path of P(s, v,Gj). First,
suppose |P | = r ≤ 2n2/3. Then, constraint (2) yields

∑

e∈P xe ≥ 1/2, and hence there exists e ∈ P with
xe ≥ 1/(2|P |) ≥ 1/(4n2/3), which implies e ∈ F0. Next, suppose |P | > 2n2/3. Let P ′ = (v0, v1, . . . , vk) be the
preix of P of length k = 2n2/3. We will show that P ′ ∩ F0 ̸= ∅, which implies P ∩ F0 ̸= ∅. By deinition of
A′, we have

∑k
i=0(1 − yvij) ≤ n2/3. Since k = 2n2/3, there exists some 1 ≤ ℓ ≤ k such that 1 − yvℓj ≤ 1/2, or

yvℓj ≥ 1/2. Constraint (2) applied for vℓ and the path (v0, v1, . . . , vℓ) gives
∑ℓ−1

i=0 x(vi,vi+1) ≥ yvℓj ≥ 1/2, and
thus there exists an edge (vi, vi+1) ∈ P ′ with x(vi,vi+1) ≥

1
2ℓ ≥ 1

2k ≥ 1
4n2/3 , which means that (vi, vi+1) ∈ F0.

B THE MinInfNode PROBLEM

While the results based on Karger’s technique (Section 2) do not easily extend to the MinInfNode problem,
our SAA based results do, and we explain this here.

We make a few small changes to the linear program LP (1)-(4). At irst, we use variable xv as the indicator for
removing (i.e., vaccinating) vertex v. Furthermore, each P ∈ P(s, v,Gj) will now contain the vertices of the path
and not the edges. Everything else remains the same, and thus we get the following linear program, denoted by
LPvacc:

min
1

N

∑

j

∑

v

(1− yvj) such that (12)

∑

v∈P

xv ≥ yvj , ∀j ∀P ∈ P(s, v,Gj) (13)

∑

v

cvxv ≤ B (14)

xv, yvj ∈ [0, 1], for all j ∈ [N ], v ∈ V (15)

MinInfNode in the Chung-Lu model. Our rounding scheme now involves constructing a subset F0 ⊆ V ,
by picking each v ∈ V with probability

x′
v = min

{ (γ + 5)xv log n

ϵ
, 1
}

It is easy to verify that Theorem 1.1 and Corollary 3.2 hold in the case of vertex removal, by considering the
quantity inf(V,E \ {(u, v) ∈ E : u ∈ F or v ∈ F}, s) instead of inf(V,E \ F, s). Corollary 4.4 is unchanged
for the vertex removal case, as well. Putting these together, we have the following result for the MinInfNode

problem.

Corollary B.1. The solution F0 picked by the rounding scheme above is an (O(log n), O(1))-approximation for
the MinInfNode problem for graphs drawn from the Chung-Lu model with power law weights, with parameter
β = 2 + c1 for some constant c1 > 1.

MinInfNode in general graphs. The deterministic rounding of Section 5 holds if the rounding for edges is
replaced by the same rounding for nodes, which gives us the following result.

Corollary B.2. There is an (O(n2/3), O(n2/3))–approximation for the MinInfNode problem.

C AUXILIARY LEMMAS

Lemma C.1. (Chernoff, 1952) Let X1, X2, . . . , XK be independent random variables with Xk ∈ [0, 1] for every

k. For X =
∑K

k=1 Xk with µ = E[X]:

• For any δ > 0, we have Pr
[

X /∈ [(1− δ)µ, (1 + δ)µ]
]

≤ e
−µδ2

3 .

• For any R ≥ 6µ, we have Pr[X ≥ R] ≤ 2−R.
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