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Abstract

Glutamate transporters preserve the spatial specificity of synaptic transmission by limiting

glutamate diffusion away from the synaptic cleft, and prevent excitotoxicity by keeping the

extracellular concentration of glutamate at low nanomolar levels. Glutamate transporters

are abundantly expressed in astrocytes, and previous estimates have been obtained about

their surface expression in astrocytes of the rat hippocampus and cerebellum. Analogous

estimates for the mouse hippocampus are currently not available. In this work, we derive the

surface density of astrocytic glutamate transporters in mice of different ages via quantitative

dot blot. We find that the surface density of glial glutamate transporters is similar in 7-8 week

old mice and rats. In mice, the levels of glutamate transporters increase until about 6 months

of age and then begin to decline slowly. Our data, obtained from a combination of experi-

mental and modeling approaches, point to the existence of stark differences in the density of

expression of glutamate transporters across different sub-cellular compartments, indicating

that the extent to which astrocytes limit extrasynaptic glutamate diffusion depends not only

on their level of synaptic coverage, but also on the identity of the astrocyte compartment in

contact with the synapse. Together, these findings provide information on how heterogene-

ity in the spatial distribution of glutamate transporters in the plasma membrane of hippocam-

pal astrocytes my alter glutamate receptor activation out of the synaptic cleft.

Author summary

In this work, we use experimental and modeling approaches to estimate the surface den-

sity of the glial glutamate transporters GLAST and GLT-1 in mouse hippocampal astro-

cytes. The results show that the surface density of glutamate transporters in hippocampal

astrocytes is similar in 7–8 week old mice and rats. In mice, GLAST and GLT-1 reach

their peak expression at * 6 months of age. Their expression, however, varies widely
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across different sub-cellular compartments. These findings indicate that the identity of the

sub-cellular compartment of an astrocyte in contact with a glutamatergic synapses, in

addition to the extent of its synaptic coverage, is a main factor to limit glutamate spillover

and receptor activation at a distance from the release site.

Introduction

Glutamate removal from the extracellular space relies on passive diffusion and active transport,

a phenomenon mediated by transporter molecules abundantly expressed in the plasma mem-

brane of astrocytes [1–3]. In the rat hippocampus, * 57% of excitatory synapses are contacted

by astrocytic membranes, which surround * 43% of the synaptic perimeter [4]. Structural,

electrophysiological and modeling studies indicate that small changes in the density of expres-

sion of glutamate transporters can profoundly change the lifetime of glutamate in the extracel-

lular space, receptor activation, and the time course of excitatory synaptic currents [5–7]. For

this reason, it is important to have detailed understanding of how their surface density varies

across species and across different domains of the astrocyte plasma membrane.

The first attempts to estimate the surface density of glutamate transporters in astrocytes was

based on electrophysiological studies in the hippocampus and cerebellum. These studies sug-

gested that glutamate transporters are at least two orders of magnitude more abundant than

glutamate receptors, but the range of these estimates was very broad (1,315–13,150 μm−2)

[8–10]. An alternative approach, which we summarize here, relied on quantitative immuno-

blotting of protein extracts [11]. First, the immunoreactivity of GLAST and GLT-1 in whole

tissue extracts was compared with the immunoreactivty of purified protein standards isolated

with an immunoaffinity purification protocol. This, in the adult rat hippocampus, led to den-

sity estimates of 3,200 μm−3 for GLAST and 12,000 μm−3 for GLT-1. Second, electron micros-

copy (EM) sections were used to identify astrocyte profiles, and calculate the linear density of

astrocytic membranes to extrapolate their corresponding 3D values. These astrocyte mem-

brane density values (* 1.3 − 1.6 μm2/μm3) were collected from layers I-IV of the visual cortex

of P23–25 male Long Evans rats [12]), but were used to derive estimates for the rat hippocam-

pus and cerebellum. Third, the astrocyte membrane density values were used to convert gluta-

mate transporter concentrations into measures of glutamate transporter density in astrocytic

membranes (2,300 μm−2 and 8,500 μm−2 molecules for GLAST and GLT-1, respectively [11]).

Note that for these calculations, it was assumed that GLAST and GLT-1 are only expressed in

astrocytes, where these transporters are known to be most abundant [13, 14]. This assumption

appears to be reasonable for the hippocampus, where the protein expression of GLAST is lim-

ited to astrocytes [14–16], and only very small amounts of the GLT-1 protein have been

detected in neurons [1, 17–26]. Accordingly, neuronal GLT-1 accounts for only 5 − 10% of all

GLT-1 molecules [20], and its physiological role remains a mystery, with data suggesting that

selective neuronal deletion of GLT-1 does not lead to obvious behavioral consequences or sur-

vival [27, 28]. Clearly, the approximation of GLAST/GLT-1 being purely astrocytic proteins is

not meant to dismiss a potentially important and only partially understood functional rele-

vance of neuronal GLT-1 [19, 29, 30]. However, in the context of this work, given the relatively

small expression levels of GLT-1 in neurons, the approximation of it being only localized in

astrocytic membranes is unlikely to introduce major distortions in the surface density esti-

mates for this transporter [1, 18, 20]. The calculations described above also assumed that

GLAST/GLT-1 are only present in the plasma membrane, and not in the membrane of intra-

cellular organelles. Even in this case, the approximation is not meant to be perfect, but it is
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reasonable because the proportion of transporters expressed in intracellular membranes like

the endoplasmic reticulum is small compared to the plasma membrane, with likely negligible

effects on the final surface density estimates [1, 11, 16]. With these considerations in mind, the

average surface density of all glutamate transporters in astrocytic membranes of the rat hippo-

campus have settled to a total of * 10, 800 μm−2 and these measures appeared consistent with

indirect estimates collected using electrophysiological recordings [1, 9, 11, 31].

These values of GLAST/GLT-1 surface density have been used extensively in the scientific

community, particularly in computational models of glutamate clearance from the extracellu-

lar space. Despite having been derived from rats, and despite the fact that some key parameters

were obtained from different brain regions and in rats of different ages (e.g., the astrocyte

membrane density values), these estimates have served as reference values for modeling gluta-

mate uptake in other rodent species (e.g., mice) of different ages [6, 7, 32–39]. Whether this is

a legitimate assumption, and whether the estimates of [11] hold true for hippocampal astro-

cytes of mice of different ages, which are now widely used in the scientific community, remains

unclear.

Another aspect that remains incompletely understood is whether it is fair to assume that

the distribution of glutamate transporters is homogeneous throughout the astrocyte plasma

membrane. Shortly after the first isolation and reconstitution of glutamate transporters,

immunolabeling light microscopy studies suggested the existence of a higher density of gluta-

mate transporters in small astrocytic processes, and lower expression levels in astrocyte cell

bodies [13]. These findings were reproduced by other groups using immunolabeling EM and

confocal microscopy in acute and organotypic hippocampal slice cultures [16, 40–42]. More

recently, the existence of a clustered distribution of GLT-1 in the plasma membrane of astro-

cytes has been confirmed using super-resolution STORM and STED multi-color microscopy

imaging [43, 44]. Some of the GLT-1 clusters remain stable over time, whereas others appear

to undergo remodeling [42]. Under basal conditions, the mobile GLT-1 molecules have a

median instantaneous diffusion coefficient of 2.1 − 2.3 � 10−2 μm2/s at 37˚C [2, 45], which is

similar to that of mobile GluN2B-containing NMDA receptors (2.5 � 10−2 μm2/s [46]), but

much higher than that of mobile AMPA (7.5 � 10−3 μm2/s [47]) and GluN2A-containing

NMDA receptors (7.5 � 10−4 μm2/s [46]). The diffusion coefficient of GLT-1 is increased in

astrocyte cell bodies and decreased upon glutamate exposure, suggesting that there is an activ-

ity-dependent confinement of GLT-1 around excitatory synapses [2, 3, 45]. In addition to

being clustered (i.e., confined to hot spots), the distribution of glutamate transporters along

the cell membrane appears to be highly non-uniform. Accordingly, the expression of GLAST

in fine astrocytic processes is roughly half of that at the soma, whereas the expression of GLT-1

in astrocyte cell bodies is sparse [44, 48]. Molecular studies suggest that an extracellular loop

within the 4th transmembrane region of the GLT-1 protein is responsible for its trafficking and

localization in small astrocyte processes referred to as tips or leaves [48].

While these findings provide evidence for the existence of a heterogeneous expression of

glutamate transporters along the astrocyte membrane, a number of questions remain currently

unanswered. How does the local surface density of glutamate transporters change in different

sub-cellular domains of the astrocyte membrane? How do geometrical constraints limit the

local density of these molecules in astrocyte tips and leaves, the smallest membrane processes

formed by these cells? Here, we address these questions using a combination of experimental

measures of GLAST/GLT-1 expression in the hippocampus of mice aged from 2 weeks to 21

months, and theoretical models. We analyze the effect of geometrical constraints on the local

surface density of glutamate transporters. Our data show that the astrocyte tips and leaves,

which contain the highest surface density of these molecules, represent only a small proportion

of the entire astrocytic membrane. This suggests that many hippocampal synapses may be
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contacted by other sub-cellular compartments of the astrocyte membrane, with lower trans-

porter expression. We analyze how these changes alter the activation of glutamate receptors at

a range of distance from the release site, and with release sites located closer or farther away

from neighboring glial processes.

Materials and methods

Ethics statement

All experimental procedures were performed in accordance with protocols approved by the

Institutional Animal Care and Use Committee at SUNY Albany, Albany Medical College, and

guidelines described in the National Institutes of Health’s Guide for the Care and Use of Labo-

ratory Animals.

Mice

Unless otherwise stated, all mice were group housed and kept under 12 hour:12 hour light:

dark conditions (lights on at 7 AM; lights off at 7 PM), with food and water available ad libi-
tum. All experiments were performed on C57BL/6NCrl wild-type mice of either sex, aged

from 2 weeks to 21 months.

Rats

Unless otherwise stated, all rats were group housed and kept under 12 hour:12 hour light:dark

conditions (lights on at 7 AM; lights off at 7 PM), with food and water available ad libitum. All

experiments were performed on Sprague Dawley male rats purchased from (Boyertown, PA)

at P21, and aged 7–8 weeks.

Dot blotting

Dot blot experiments were performed on protein extracts from the hippocampus of mice of

either sex aged 2 weeks to 21 months. Membrane proteins were extracted using the Mem-PER

Plus Membrane Protein Extraction Kit according to the manufacturer’s instructions (Cat#

89842; ThermoFisher Scientific, Waltham, MA), using a mixture of protease and phosphatase

inhibitors (10 μl/ml, Cat# 78441; ThermoFisher Scientific, Waltham, MA). Cross-contamina-

tion of cytosolic proteins into the membrane fraction is usually less than 10%. The total mem-

brane protein concentration was determined using a Bradford assay (Cat# 5000006, BioRad,

Hercules, CA). Purified, GST-tagged, recombinant protein of the human homologs of GLAST

and GLT-1 (Slc1a3, Cat# H00006507-P02; Slc1a2, Cat# H00006506-P01; Abnova, Taipei, Tai-

wan) were serially diluted in phosphate buffered saline (PBS) and used to generate standard

curves. Purified, recombinant protein and total hippocampal membrane protein were spotted

on polyvinylidene difluoride (PVDF) membranes (Cat# P2563; MilliporeSigma, Burlington,

MA). The membranes were blocked with 5% nonfat milk in Tris-buffered saline with 0.1%

Tween 20 (TBST) pH 7.6, and probed with primary antibodies (1 : 1, 000 for GLAST and

GLT-1) for 1–2 hours at room temperature in 5% bovine serum albumin (BSA) in TBST, pH

7.6. The blots were subsequently incubated with biotinylated horse anti-rabbit antibody

(1:1,000) for 1 hour at room temperature in 5% BSA in TBST, pH 7.6. We amplified the

immuno-labeling reactions using the Vectastain ABC kit (PK-6100, Vector Laboratories, Bur-

lingame, CA) (1 : 2, 000 for GLAST and GLT-1), and the Clarity Western enhanced chemilu-

minescence (ECL) system served as the substrate for the peroxidase enzyme (Cat# 1705060,

Bio-Rad, Hercules, CA). A list of antibodies and reagents used for the dot blot experiments,

together with their RRID, is reported in Table 1.
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For our quantitative analysis, protein dot intensities were collected as 16-bit images using a

digital chemiluminescence imaging system using different exposure times (1 s − 10 min; c300,

Azure Biosystems, Dublin, CA). Each image was converted to an 8-bit image for analysis using

the Fiji software (https://fiji.sc/). Only images collected at exposure times that did not lead to

saturation were included in the analysis. The intensity of each dot was calculated as the RID in

a region of interest (ROI) drawn around each dot. Background correction was carried out for

each dot by subtracting the average RID of three dots containing only PBS. Each concentration

of purified protein or total hippocampal membrane protein was spotted 2–3 times (1 μl each).

We averaged the RID values after background correction. Each age group contained protein

samples from n = 3 mice. The molecular weights of the human, GST-tagged, recombinant pro-

teins (87,387 Da and 89,988 Da for GLAST and GLT-1, respectively) and of the endogenous

mouse proteins (59,619 Da and 62,027 Da for GLAST and GLT-1 in mice, and 54,374 Da and

60,914 Da for GLAST and GLT-1 in rats, respectively) were calculated based on their amino

acid sequences using the software BioEdit (https://bioedit.software.informer.com/7.2/). We

also accounted for the purity of the recombinant proteins (92.82% for GLAST and 86.93% for

GLT-1). Mass corrected standard curves correlating average RID in each ROI to the amount

of purified GLAST or GLT-1 spotted onto the membrane were fitted using the following sig-

moidal curve:

FðxÞ ¼
max

1 þ exp
xhalf � x
rate

� �
ð1Þ

Based on this fit, we calculated the fraction of GLAST and GLT-1 in dots from total hippo-

campal membrane proteins. We assumed that there are 97.8 g protein per Kg of hippocampal

tissue [11], and that the density of brain tissue is 1.05 g/cm3 [11]. Furthermore, we calculated

the surface density of astrocytic membrane in stratum radiatum of the mouse hippocampus

using 3D axial STEM tomography reconstructions (see below). Based on this analysis, the esti-

mated astroglial surface density is 3.15 μm2/μm3. With these assumptions, we were able to esti-

mate the average number of GLAST and GLT-1 molecules/μm2 on the membrane surface of

hippocampal astrocytes in tissue samples from different age groups: from 2 weeks to 21 month

old mice. Note that a small proportion of GLT-1, the most abundant glial glutamate trans-

porter in the adult mammalian brain, is also expressed in neurons (5–10%) [18]. For consis-

tency with [11, 16], we assumed that all the GLAST/GLT-1 molecules isolated in our dot blot

experiments belonged to astrocytes did not account for this in our surface density calculations.

Likewise, we did not account for any potential expression of GLAST/GLT-1 in oligodendro-

cytes, which has been detected in regions of the brain other than the hippocampus [23].

EM and 3D axial STEM tomography

Acute hippocampal slices processed for EM analysis were prepared as described for the

electrophysiology experiments, from P17 mice. Slices were microwave-fixed for 13 s in 6%

Table 1. List of antibodies and reagents used for dot blot experiments. The table lists the RRID number of antibodies

and reagents used for dot blot analysis.

RRID Item Supplier

AB_955879 rabbit anti GLAST Abcam, Cambridge, MA

AB_11005463 rabbit anti GLT-1 Novus, Littleton, CO

AB_2336201 biotinylated horse anti-rabbit Vector Laboratories, Burlingame, CA

AB_2336819 Vectastain ABC kit Vector Laboratories, Burlingame, CA

https://doi.org/10.1371/journal.pcbi.1009845.t001
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glutaraldehyde, 2% PFA, 2 mM CaCl2 in 0.1 N sodium cacodylate buffer and stored overnight

at 4˚C. After three washes in 0.1 N cacodylate buffer, we cut samples from the middle part of

CA1 stratum radiatum, * 100 μm away from the pyramidal cell layer. These samples were

treated with 1% osmium tetroxide for 1 hour on ice, en bloc mordanted with 0.25% uranyl ace-

tate at 4˚C overnight, washed and dehydrated with a graded series of ethanol, and embedded

in epoxy resins. Thin sections (70–90 nm) were counter-stained with lead citrate and uranyl

acetate and examined on a JEOL 1200 EX transmission electron microscope. Images were

collected with a CCD digital camera system (XR-100, AMT, Woburn, MA). To visualize

the arrangement of post-synaptic densoties (PSDs) and astrocytic processes, thick sections

(* 1 − 1.5 μm) were cut from regions of CA1 stratum radiatum and electron tomograms were

collected in a 300 kV electron microscope operated in the scanning transmission EM (STEM)

mode, as described previously [49, 50]. A sample thickness of 1 μm (enabled by axial STEM

tomography) provided sufficient sample depth to visualize features of interest in their entirety,

such as synapses. In contrast to STEM tomography, conventional TEM tomography is limited

to a specimen thickness of * 400 nm and cannot be applied to such thick sections because the

transmitted electrons undergo multiple inelastic scattering processes, resulting in images that

are blurred by chromatic aberration of the objective lens. Axial STEM tomography is not

affected by chromatic aberration because the objective lens that forms the electron probe is in

front of the specimen. Dual-axis tilt series of selected sections were recorded using an FEI Tec-

nai TF30 TEM/STEM operating at 300 kV (1.5˚ tilt increment, tilt range from 55˚ to -55˚,

pixel size = 5.6 nm). Image registration, tomogram generation, tracing, surface area and vol-

ume measures were performed using IMOD 4.7 (https://bio3d.colorado.edu/imod/). In the

tomograms, we identified astrocytic processes based on their shape and cytoplasmic structure

(i.e., presence of intermediate filaments and a relatively clear cytoplasm), their lack of synaptic

vesicles and post-synaptic densities and because they did not give rise to pre- or post-synaptic

terminals [4]. Orthoslices through the STEM tomograms showed that astrocytic processes

contained glycogen granules, intermediate filament bundles and a more electron-lucent cyto-

plasm with respect to that of neurons. The astrocytic processes were traced for the entire thick-

ness of the reconstructed volume (1.5 μm). We reconstructed all astrocytic processes in a

tissue block.

Acute slice preparation

Acute coronal slices of the mouse hippocampus were obtained from C57BL/6NCrl mice of

either sex (P16–21), deeply anesthetized with isoflurane and decapitated in accordance with

SUNY Albany Animal Care and Use Committee guidelines. The brain was rapidly removed

and placed in ice-cold slicing solution bubbled with 95% O2/5% CO2 containing the following

(in mM): 119 NaCl, 2.5 KCl, 0.5 CaCl2, 1.3 MgSO4 � H2O, 4 MgCl2, 26.2 NaHCO3, 1

NaH2PO4, and 22 glucose, 320 mOsm, pH 7.4. The slices (250 μm thick) were prepared using

a vibrating blade microtome (VT1200S; Leica Microsystems, Buffalo Grove, IL). Once pre-

pared, the slices were stored in slicing solution in a submersion chamber at 36˚C for 30 min

and at room temperature for at least 30 min and up to 5 hours. Unless otherwise stated, the

recording solution contained the following (in mM): 119 NaCl, 2.5 KCl, 2.5 CaCl2, 1 MgCl2,

26.2 NaHCO3, and 1 NaH2PO4, 22 glucose, 300 mOsm, pH 7.4. We identified the hippocam-

pus under bright field illumination and astrocytes using differential interference contrast,

using an upright fixed-stage microscope (BX51 WI; Olympus Corporation, Center Valley,

PA). Whole-cell, voltage-clamp patch-clamp recordings were made using patch pipettes con-

taining (in mM): 120 CsCH3SO3, 10 EGTA, 20 HEPES, 2 MgATP, 0.2 NaGTP, 5 QX-314Br,

290 mOsm, pH 7.2. Biocytin 0.2–0.4% was added to the internal solution. All recordings were
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obtained using a Multiclamp 700B amplifier (Molecular Devices, San Jose, CA), filtered at

10 KHz, converted with an 18-bit 200 KHz A/D board (HEKA Instrument, Holliston, MA),

digitized at 10 KHz, and analyzed offline with custom-made software (A.S.) written in IgorPro

6.37 (Wavemetrics, Lake Oswego, OR). Patch electrodes (#0010 glass; Harvard Apparatus,

Holliston, MA) had tip resistances of *5 MO. Series resistance (*20 MO) was not compen-

sated, but was continuously monitored and experiments were discarded if this changed by

more than 20%. All reagents were purchased from Millipore Sigma (Burlington, MA). All

recordings were performed at room temperature.

Biocytin fills, proExM and 2P-LSM image acquisition

Patched astrocytes were maintained in the whole-cell configuration and voltage-clamp mode,

at a holding potential of -90 mV for at least 30 min, to allow biocytin to fill small cellular com-

partments. At the end of this time, the patch pipette was gently removed and the slice was

fixed with PBS 4% PFA overnight at 4˚C, cryoprotected in PBS 30% sucrose and stored in PBS

for up to 1 week. Each slice was then incubated in 0.1% streptavidin-Alexa Fluor 488 conjugate

and 0.1% Triton X-100 for 3 hours at room temperature. The day before starting the protein

retention expansion microscopy (proExM) protocol [51], we incubated the slice with DAPI

Fluoromount G overnight at 4˚C (Cat# 0100–20; SouthernBiotech, Birmingham, AL) to

ensure the whole slice could be visualized under fluorescence microscopy to localize the biocy-

tin-filled, streptavidin-labelled astrocyte. The proExM protocol, originally developed by [51],

was analogous to the one used in our previous work [52]. Briefly, each slice was incubated with

200 μl of anchoring solution overnight at room temperature. The following day, the slices were

gelled and digested with Proteinase K overnight at room temperature. Subsequently, they were

expanded using three consecutive incubations with distilled water for 15 min each. The

expanded gels containing biocytin-filled astrocytes were then covered with 2% agarose and

submerged in distilled water before being imaged with a custom-made two-photon laser-scan-

ning microscope. The two-photon laser scanning system (Scientifica, Clarksburg, NJ) was

powered by a Ti:sapphire pulsed laser (Coherent, Santa Clara, CA) tuned to 760 nm and con-

nected to an upright microscope with a 60×/1.0 NA objective (Olympus Corporation, Center

Valley, PA). The green fluorescent signal was separated from the red using a 565 nm dichroic

mirror and filtered using FITC filter sets (Olympus Corporation, Center Valley, PA). Under

these experimental conditions, the optical lateral resolution was resx,y = λ/2NA = 380 nm and

the axial resolution was resz = 2λ/NA2 = 1.52 μm. We averaged eight frames for each optical

section (260×260 μm, 512×512 pixels, pixel size: 0.51 μm) and collected z-stacks for a total

distance of *200 μm (in 1.20 μm steps). The composition of the anchoring, gelling and diges-

tion solution are reported in Table 2. Note that the linear expansion factor of proExM in our

experimental conditions was *2 [52]. Taking this correction into account, our effective opti-

cal resolution was 0.19 μm × 0.19 μm × 0.76 μm, and our voxel size was 0.26 μm × 0.26

μm × 0.60 μm.

Analysis of 2P-LSM images of proExM treated tissue

Adjacent z-stack tiles acquired using 2P-LSM were stitched using the Pairwise Stitching plugin

available in Fiji (https://imagej.net/Fiji), with Linear Blending Fusion Method (check peaks

value: 95). After stitching, we imported the z-stacks into Bitplane Imaris 9.3.1 (Oxford Instru-

ments, Abingdon, UK) and converted them to 8-bit .ims files. The next steps aimed to isolate

the biocytin-filled astrocyte from other gap-junction coupled astrocytes, typically much dim-

mer. First, we smoothed each image using a Gaussian filter with a width of 0.51 μm, matching

the x,y pixel size of the image stacks collected using 2P-LSM. Second, we generated a surface
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mask using an absolute intensity threshold that allowed us to get rid of all voxels with an inten-

sity value greater than 20. Third, we segmented the surface mask using a seeded region-grow-

ing method using a seed point diameter of 20 μm and a quality threshold of 10. Fourth, we

manually deleted surfaces outside the patched astrocyte. This allowed us to refine the surface

mask to be used in the next step. Fifth, we applied this refined surface mask to the original z-

stack. This allowed us to isolate voxels belonging to the astrocyte of interest based on their

location (i.e., they resided within the mask) and gray intensity (i.e., gray intensity >1). All

other voxels outside this mask were assigned an intensity value of zero. To generate the cyto-

plasmic volume of the astrocyte, in Bitplane Imaris, we selected the channel created using a

gray intensity >1, applied the seeded region growing algorithm (seed point diameter: 20 μm)

and manually set an arbitrary quality threshold that allowed us to identify only one surface

within the astrocyte (typically between 10 and 20). No surface smoothing was applied. To com-

plete the surface rendering, Bitplane Imaris uses a marching cubes computer graphics algo-

rithm. Briefly, the marching cubes algorithm allows to determine whether an arbitrary set of

points is within the boundary of an object. To do this, the volume occupied by these points is

divided into an arbitrary number of cubes and the algorithm tests whether the corners of those

cubes lie within the selected object. All cubes where corners are found both within and outside

of the object produce a set of points that define the boundary of a surface that identifies the

cytoplasmic volume [53]. We used a similar approach to generate the bounding volume. In

this case, we applied a surface smoothing factor of 5 μm, meaning that structural details

smaller than 5 μm (2.5 μm without proExM) were lost. To generate filaments, which represent

astrocyte branches of different levels, we selected the masked channel containing only the bio-

cytin-filled astrocyte, and used the Autopath (no loops) filament tracing algorithm for big data

Table 2. Composition of anchoring, gelling and digestion solution for proExM. The tables list the chemical reagents that were used to process hippocampal slices for

proExM.

Anchoring solution (200 μl/slice) Cat# Supplier Amount

Acryloyl X, SE A20770 Life Technologies 0.1 mg/ml

DMSO 472301 Millipore Sigma 2 μl
PBS P4417 Millipore Sigma 198 μl
Monomer solution (188 μl/slice) Cat# Supplier Amount

Sodium acrylate 408220 Millipore Sigma 86 mg/ml

Acrylamide A9099 Millipore Sigma 25 mg/ml

N,N’-methylenebisacrylamide M7279 Millipore Sigma 1.5 mg/ml

NaCl 215700 BeanTwon Chemical 117 mg/ml

PBS 10X P4417 Millipore Sigma 18.8 μl (1:10)

Distilled water 169.2 μl
Gelling solution (200 μl/slice) Cat# Supplier Amount

Monomer solution 188 μl
4-hydroxy-TEMPO 176141 Millipore Sigma 4 μl (0.01%)

TEMED T9281 Millipore Sigma 4 μl (0.2% w/w)

APS A3678 Millipore Sigma 4 μl (0.2% w/w)

Digestion solution (200 μl/slice) Cat# Supplier Amount

Tris pH 8.0 AM9855G Ambion 50 mM

EDTA 03690 Fluka Analytical 1 mM

Triton X-100 X100 Millipore Sigma 0.5% v/v

Guanidine hydrochloride G3272 Millipore Sigma 0.8 M

Proteinase K P6556 Millipore Sigma 8 U/ml

https://doi.org/10.1371/journal.pcbi.1009845.t002
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sets. The Autopath (no loops) algorithm produces a tree-like filament (based on local intensity

contrast) that connects large (25.4 μm at the soma) to small seed points (1 μm at the most distal

processes). The origin of the primary branches was set to the center of the soma. For the fila-

ment branch count, we masked the portion of the primary branches that fell within the radius

of the soma. We calculated branch diameters from input parameters rather than from the

image intensity values.

3D Monte Carlo reaction-diffusion simulations

We used a 3D, realistic Monte Carlo reaction-diffusion model to analyze the diffusion proper-

ties of glutamate in and out of the cleft. This model allowed us to implement stochastic reac-

tion-diffusion in a 3D environment, and incorporates the major sources of variability that can

affect glutamate diffusion, and the 3D geometry of adjacent pre- and post-synaptic terminals.

We analyzed the dynamics of glutamate diffusion and receptor activation in a 3D environment

that contained a central synapse (from which glutamate was released) surrounded by six inac-

tive synapses. In this regular arrangement, all synapses were 500 nm apart [5]. The geometry

of seven adjacent synaptic contacts was created in silico with an open source program (Blender

2.79b) and an add-on that allows creating computational models for use in a Monte Carlo sim-

ulation environment (MCell) and visualizing the simulation results (CellBlender 3.5.1.1). The

simulations were run within a cube (world), with transparent properties for all diffusing mole-

cules (3 μm × 3 μm × 3 μm). Each pre- and post-synaptic terminal was modelled as a hemi-

sphere with radius of 250 nm, positioned either at the center of the world or 1 μm away

(center-to-center) along the vertices of a hexagonal polygon centered at the origin of the world

(i.e., the edge-to-edge distance was 500 nm for consistency with [5]). The two hemispheres

were separated from each other by a 20 nm high synaptic cleft. Four synapses (i.e., 4/7 = 57%)

had 43% of their synaptic perimeter flanked by a 50 nm thick, 250 nm tall portion of an astro-

cyte, which we represented as a section of a cylindrical sheet located 20 nm away from the edge

of the synapse. This organization is consistent with previous EM analysis of rodent hippocam-

pal synapses [4, 5]. Each transporter molecule had a surface diffusion coefficient of 0.23 � 10−8

cm2/s [2]. We used this model to estimate the glutamate concentration profile at all synapses.

The glutamate transporters were modeled using a simplified kinetic scheme [7]. This scheme

captures the known affinity and recovery time constant of glial glutamate transporters mea-

sured experimentally [9, 31, 54], and does not require an explicit simulation for binding/

unbinding reactions of co-transported ions [55]. In this model, each transporter can interact

with a diffusing glutamate molecule. All rates were adjusted for Q10 = 3, to approximate the

transporter kinetics at 35˚C. In a set of simulations, we varied the surface density of the gluta-

mate transporters between 0–20,000 μm−2. CellBlender computes the surface area of the glial

sheets, and populates them with a randomly distributed group of glutamate transporter mole-

cules. Their number is calculated by CellBlender by multiplying the surface area and the cho-

sen surface density value. At t = 0, 2,000 glutamate molecules were released from a point

source placed at the origin of the world, at the center of the synaptic cleft of the central synapse.

Glutamate diffused away with a diffusion coefficient D� = 3.30 � 10−6 cm2/s within the synaptic

cleft [56]. Outside the cleft the apparent diffusion coefficient was set to D� = 1.29 � 10−6 cm2/s,

to account for a tortuosity value of λ = 1.6 [7]. Each simulation consisted of 100,000 iterations

with a time step t = 1 μs (therefore spanning a 100 ms time window), and was repeated 100

times. Glutamate hitting the surfaces of all objects in the simulation environment bounced

back in the extracellular space (i.e., the surface of all other geometries in the simulation was

reflective for glutamate). The glutamate concentration was monitored every t = 10 μs in three

regions: the volume above the PSD, the perisynaptic and extracellular volumes. The volume
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above the PSD region was defined as the volume of a cylindrical portion of the synaptic cleft

located above the PSD (i.e., a cylinder with radius r = 125 nm and height h = 20 nm). The PSD

represented the central half of the apposition zone (i.e., a circle with radius r = 125 nm). The

perisynaptic region represented the outer portion of the apposition zone surrounding the PSD

(i.e., a cylindrical annulus with radius r = 125 nm and height h = 20 nm). The extracellular vol-

ume represented the volume of the world without including the synapses and glial sheets. We

used these simulations to calculate the glutamate concentration in and out of the synaptic cleft.

The glutamate concentration waveforms obtained from CellBlender were imported into Chan-

neLab 2.041213 (Synaptosoft) and used to calculate the open probability of AMPA and

NMDA receptors. Given the limited surface density of these receptors, and the stochastic

nature of their behavior, this approach allows to gain accurate predictions about their open

probability without having to incur in prohibitively long simulation times [6, 32, 57, 58].

Therefore, it improves the computational efficiency of the simulations without compromising

their accuracy. The kinetic rates for AMPA receptors were set in accordance to [59] and the

kinetic rates for NMDA receptors were set in accordance to [60], which were both estimated

at glutamatergic hippocampal synapses. In both cases, the reaction rates were adjusted by

Q10 = 3, to approximate the receptor and transporter kinetics at 35˚C.

Statistical analysis

Data are presented as mean±SD, unless otherwise stated. Statistical significance was deter-

mined by Student’s paired or unpaired t-test, as appropriate (IgorPro 6.36). Differences were

considered significant at p<0.05 (�p<0.05; ��p<0.01; ���p<0.001). Pearson’s correlation coef-

ficient was calculated to compare Sholl distributions.

Generation of 3D models of astrocytes

Our in silico rendition of astrocytes was based off our key features from the morphological

analysis of biocytin-filled astrocytes processed with proExM and imaged with 2P-LSM, follow-

ing conversion for a linear expansion factor of 2 [52]. A detailed description of how we distrib-

uted transporter trimers using different geometries is shown in S1–S5 Figs. Each model

astrocyte consisted of a spherical soma soma and a tree of processes that branched off of it.

The main features of reconstructed and model astrocytes are summarized in Table 3. The

astrocyte branching tree was created recursively from a set of primary branches emerging

from the soma. The model was developed using custom-made routines written in

MATLAB2019 (Mathworks, Natick, MA). The recursive branching mechanism was based on

the principle that new branches, with higher branching level, can be formed by each existing

branch. The branching algorithm allowed us to control the number of branch levels, their

length and diameter, and allowed for cell-to-cell branch variability. The algorithm incorpo-

rates a number of experimentally-derived constraints and features, which are described below.

Astrocyte branch generation. The number of primary branches departing from the soma

was chosen randomly between 3 − 7 for each model astrocyte, consistent with the number of

primary branches measured through the morphological analysis of biocytin-filled astrocytes

(Table 3). The primary branches emerged at random locations from the soma, and extended

radially along straight lines. Each primary branch could generate up to M = 15 daughter (sec-

ondary) branches in a 3D space (at intervals that will be described below). The opening angles

of the daughter branches, calculated with respect to the direction of the primary branch, were

all set to π/6, and their rotation angles were chosen randomly within the range from 0 − 2π.

The operation was then repeated recursively for up to N = 11 branching levels, consistent with

the maximum number of branching levels detected experimentally. At each branching point,
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each parent branch could either generate a daughter branch and continue on, or terminate

(see termination criteria below). The angle between the direction of the daughter branch and

that of the parent branch increased from π/6 (as established for the secondary branches) by π/

80 at each branching level. This was a simple linear model that best approximated the increas-

ing trend in the size of the branching angles at each branching level, as observed in the recon-

structed astrocytes. The segments connecting any two branching points were approximated as

cylinders. An exception was made for the tips of the astrocyte terminal processes, which were

modeled as hemispheres. The geometry at the tips and around branch points, as well as their

consequences to the shape of the cell and transporter placement are further discussed in a sep-

arate section of this manuscript.

Astrocyte branch length generation. We generated the astrocyte branch segments (i.e.,

the portion of a branch between two consecutive branching points) in a way that would best fit

our average empirical measures, while also accounting for the existence of cell-to-cell, in-cell

and branch-to-branch variability. For each astrocyte, we first generated a random value c0

within the range 0 − 25 μm, to be used as a cell-wide baseline for segment lengths. In order to

allow variability between primary branches (which exists in real astrocytes) we customized a

specific segment length baseline for each primary branch, by randomly choosing a specific

value of c � c0. All segments within the tree generated by a primary branch (i.e., the segments

along the primary branch and all its daughter branches) were generated by adding a random

term �10 μm to the baseline value c. This modeling scheme allowed us to best fit a collection

of experimentally-derived measurements: the branch segments length (χ0 − χ9 and λ0), the

average branch length for each branching level, and the Sholl profile of the astrocytes.

Astrocyte branch diameter generation. The diameter of the cylinders representing the

primary branches was set to 5 μm. To establish a rule to determine the diameter of the daugh-

ter branches, we considered previous attempts to solve this problem in neurons. In neurons,

the input conductance of dendritic branches depends on the 3/2 power of the branch diameter

[61]. When the constraint that the sum of the 3/2 power values of the daughter branch

Table 3. List of parameters describing astrocyte morphology in vitro and in silico. Morphological measures were determined experimentally from 3D axial STEM

tomography reconstructions (δn) and from biocytin-filled neurons processed with proExM and imaged with 2P-LSM (rsoma, Rastro, nI, χ0−9, λ0). These measures were used

to implement the in silico, model representations of astrocytes. Abbreviations: number of primary branches (num. branch I), distance (dist.), branching point (bpt), pri-

mary branch (I), secondary branch (II).

Var Description Experiments Model

mn (μm) SD n mn (μm) SD n

δn tip/leaf diameter 0.25 (0.02–0.45) 0.10 73 0.08 (0.02–0.19) 0.04 24,556

rsoma soma radius 4.9 1.1 12 5 0 10

Rastro cell radius 112.2 23.6 10 100.9 32.5 10

nI num. branch I 4.5 1.9 12 5.4 1.3 10

χ0 dist. soma − bpt 1 (I) 6.5 4.1 41 7.2 4.2 54

χ1 dist. bpt 1 − 2 (I) 4.4 3.4 31 5.9 4.2 54

χ2 dist. bpt 2 − 3 (I) 4.8 1.9 14 5.8 4.6 54

χ3 dist. bpt 3 − 4 (I) 3.4 2.7 19 6.4 3.9 54

χ4 dist. bpt 4 − 5 (I) 2.4 2.4 10 5.8 4.3 54

χ5 dist. bpt 5 − 6 (I) 9.6 12.1 2 6.5 4.1 54

χ6 dist. bpt 6 − 7 (I) - - - 6.0 3.7 54

χ7 dist. bpt 7 − 8 (I) - - - 6.0 4.3 54

χ8 dist. bpt 8 − 9 (I) - - - 5.7 5.2 51

χ9 dist. bpt 9 − 10 (I) - - - 4.3 2.9 22

λ0 dist. base—bpt 1 (II) 4.3 4.4 41 6.0 4.0 451

https://doi.org/10.1371/journal.pcbi.1009845.t003
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diameters is equal to the 3/2 power of the parent branch diameter, the entire dendritic tree of

the neuron can be mapped to an equivalent cylinder (provided also that all terminal branches

end at the same electrotonic distance from the trunk). This rule is commonly referred to as the

3/2 rule [62, 63]. We asked whether this rule also applied to astrocytes. To do this, we mea-

sured the average diameter of the primary (δ1 = 1.3 ± 0.7 μm, n = 46) and secondary branches

(δ2 = 0.8 ± 0.3 μm, n = 76) in a group of 10 astrocytes. We then calculated the values of δ2 that

could be obtained once we set δ1 = 1.3 ± 0.7 μm, using various values for k in the relationship

Dk=2 ¼ dk=2

1 þ dk=2

2 , where d1 = d2. The most accurate prediction of the experimental data (i.e.,

δ2 = 0.8 ± 0.3 μm) was obtained using the 3/2 rule. These findings suggested that the 3/2 rule

holds true for both neurons and astrocytes. Based on this information, when creating daughter

branches in our model, we determined the diameter d1 of the parent branch after the branch-

ing point and the diameter d2 of the daughter branch based on the diameter D of the parent

branch before the branching point, based on the 3/2 rule: D3=2 ¼ d3=2

1 þ d3=2

2 [61–63]. To

account for variability in the size of emerging branches, we set d1 = (f � d2), and used the 3/2

rule in the form: D3=2 ¼ ðf � d2Þ
3=2

þ d3=2

2 . Here, d2 is the diameter of the daughter branch, and

(f � d2) is the diameter of the parent branch after the branching point. In our simulations, the

bias f was chosen randomly within the interval 1 − 1.5.

Astrocyte branch termination conditions. While all astrocytes were allowed to have up

to M = 15 branching points along each primary branch, and up to N = 11 branching points in

higher order branches, our algorithm also allowed us to terminate a branch at any branching

point, based on their diameter. In each model astrocyte, the termination diameter dmax was

generated randomly within the interval 0.02 − 0.15 μm for each primary branch (leading to an

overall terminal diameter range comparable to that established based on 3D axial STEM

tomography analysis of astrocytic processes [57]). The generation of daughter branches along

a parent branch was also terminated if the diameter of any of the two emerging branch seg-

ments (as computed according to the 3/2 rule described above) was lower than dmax. The

resulting range for tip diameters in model astrocytes was similar to that obtained from biocy-

tin-filled astrocytes (Table 3).

Astrocyte leaves. Small processes, called leaves, were added to all astrocyte branches.

Each leaf was modeled as a cylinder of 0.7 μm length, randomly distributed every 3–8 μm

along the length of each branch, and emerging perpendicularly from the main axis of each

branch. The length and orientation of the leaves were taken to be consistent with those used in

an existing study by Savtchenko et al. [64], in which leaves reconstructed using 60 nm thick

serial EM sections were modeled as orthogonal to the parent branch, and with a length of 0.5–

1.25 μm (the mean of which matches the length of our leaves). The linear density distribution

of the leaves in our model was taken to be uniform, with a mean value that was calculated post-
hoc, so that dependent measures (such as branch density per neuropil volume, leaf diameter

and Sholl profile) were in agreement with our own empirical data. The diameter of each leaf

was generated using the same 3/2 rule used for the generation of higher order processes, albeit

with a larger bias f. Here, the bias f was chosen in the interval 1.5–100, in a way that adapted to

the thickness of the parent branch, but also incorporated a random aspect. Accordingly, f = 0.5

+ 3(1 + ρ)D, where ρ is a random number in the interval [0, 1], and D is the parent branch

diameter (the dependence on D was introduced so that thicker branches would not generate

thicker leaves). This way, leaf diameters in our model ranged between 0.02–0.19 μm (Table 3).

Since the generation of each leaf with the 3/2 rule had only a minor impact on the branch

diameter, the branch diameter was considered (for all computations) unchanged along the

length of each branch, and only updated at the tip of the branch, according to the number of

leaves on the segment. These leaves were not included in the Sholl analysis, as their size falls
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below the resolution limit of the 2P-LSM used to detect the main morphological features of

astrocytes after proExM.

Morphology analysis of model astrocytes. Each in silico generated astrocyte was

designed to incorporate fixed terms (i.e., the somatic radius, the diameter of the primary

branches, the maximum number of branch levels and the opening angle for each level) and

random terms (i.e., branch length, diameter ratios are branch points, terminal diameter). This

allowed our 3D models to produce a large variety of astrocyte sizes and shapes, consistent with

experimental data. For each model astrocyte, we computed the cytoplasmic volume and total

branch surface area, total branch length, average segment length λ and χ, average tip diameter,

number of branches per level and average branch length per level. For each astrocyte, we com-

puted the 3D Sholl profile, using 0.5 μm spaced spherical shells. We illustrate these 3D Sholl

profiles of 10 randomly generated astrocytes, as well as their average, which agrees with the

experimentally derived 3D Sholl profiles.

Volume distribution measures. Our model of the branching tree captures some impor-

tant features of the 3D structure of astrocytes derived experimentally. For example, the core

structure of our model (i.e., soma and branches larger than 1 μm) accounts for about 35±2% of

the total astrocytic volume, while the smaller branches and leaves (the non-core structure)

account for the rest of the 65±2% of the volume (n = 10). This is in general agreement with

what was reported by [65] (i.e., * 75%). In addition, the non-core structure in our model cells

occupies 6.7±3.5% of the surrounding neuropil volume (n = 10), which is within the range

reported by [66] (i.e., * 4.0 − 8.9%). To compute this, we simulated the surrounding neuropil

by covering the non-core structure with small cubes of side length of 2 μm, as follows. First,
the whole 3D volume occupied by the astrocyte was partitioned into small cubes of 2 μm side

length. From this partition, only the cubes intersecting non-core branches were retained and

added to the volume of the simulated neuropil. We then computed the ratio between the actual

volume of the non-core structure of the model, and the simulated neuropil, producing the esti-

mate reported above. Using the same approach of covering the volume occupied by branches

with cubes of side length 2 μm, we obtained a density for astrocytic processes in the in silico
model of 4.3 ± 2.0 μm−3, which is consistent with the density of 4.0 μm−3 collected from 3D

axial STEM tomography data.

Glutamate transporter spatial distribution

We calculated the maximum number of transporters that could be placed in each model astro-

cyte, and the fraction of the membrane surface area they occupied. Our estimates were based

off the crystal structure of glutamate transporter trimers of the prokaryotic homolog GltPh,
which can be approximated to a triangular prism, with a base of 8 nm side length and 6.5 nm

height [67]. The analysis of glutamate transporter placement on the membrane of model astro-

cytes required us to analyze much simpler geometrical scenarios, in 2D and 3D. We first con-

sidered how the geometry of these triangular prisms, which resemble rectangles in the 2D

space, can optimally fit that of a circle, a sphere (approximating the shape of the astrocyte

soma) and a cylinder (approximating the shape of each astrocyte branch segment). The opti-

mization constraints stemmed from the curvature of the membrane surface, which introduced

some room between adjacent trimers, to avoid collision of the portions of these trimers pro-

truding into the astrocyte cytoplasm or in the extracellular space (depending on the concavity/

complexity of the branching points). Our optimal distribution was based on trimers fitting

into spheres or cylinders that abide by this constraint, and maximize the space available on the

membrane surface. While the theoretical trimer distribution that we propose is not always pos-

sible precisely in the form described (due to geometric limitations), our formulas can
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nonetheless be used as general close estimates, especially for the soma/branch radius ranges in

which the model operates. Each trimer replaces a curved portion of a sphere or cylinder. We

computed analytically the area of this portion, as a function of the (sphere/cylinder) radius and

of the trimer size. Last, we used these estimates to calculate the maximum surface density and

surface area occupied by these molecules over the entire astrocyte, taking into account the

potential effects introduced by angle constraints and transporter crowding around branching

points. Our measurements took into account changes in the protrusion of transporters in the

astrocyte cytoplasm, due to transporters moving across different conformational states.

Distributing trimers on the surface of a sphere. To estimate the maximum number of

transporter trimers that can be placed on the surface of a sphere of radius r1, we computed the

maximum triangular trimer bases that can cover, without colliding, a smaller sphere of radius

r−1 (accounting for the depth of cytoplasmic protrusion of the transporters r1 − r−1). We did

this using the geometry of lunar triangles. A spherical lune is defined as the surface that lies

between two great circles that intersect each other on the surface of a sphere. In our case, for a

fixed triangle in the w-triangulation, one can consider the three planes defined by each pair of

adjacent vertices, together with the center of the sphere. Each plane defines a great circle on

the sphere, and each pair of great circles delimits a lune. We considered the spherical lunar

triangle at the intersection of these three lunes with identical areas Alune ¼ 4ar2
�1

, where α is

the angle between the great circles defining the lune (in this case, identical for all three lunes).

Notice that, for a w-triangulation of the sphere, the entire spherical surface can be written as a

union of all lunar triangles defined by the triangulation, leading to Eq (S11). The area ADs of

the lunar triangle can be calculated using Girard’s Theorem by expressing the area of the

sphere as:

4pr2

�1
¼ 3Alune � 4ADs

This gives us an expression for the area of the lunar equilateral triangle in terms of the sphere

radius and the lunar angle.

ADs ¼ r2
�1

ð3a � pÞ ð2Þ

The angle α was computed using trigonometry in the spherical triangle. Call γ = a = b = c the

small arc defined by each of the triangle vertices on the corresponding great circle, and use the

identity: cos a = cos b cos c + sin b sin c cos α):

cos a ¼
tanðg=2Þ

tan g
¼

1 � tan2ðg=2Þ

2
ð3Þ

Since sin
g

2

� �
¼

o

2r�1

, the area of the lunar triangle corresponding to an w-triangulation of a

sphere of radius r−1 is:

ADs ¼ r2
�1

ð3a � pÞ ¼ r2
�1

3 arccos
2r2

�1
� o2

4r2
�1

� o2

� �

� p

� �

ð4Þ

Computation of the sphere surface area occupied by transporters. The triangular base

of a glutamate transporter trimer can be viewed in a reference (x, y) coordinate plane as an

equilateral triangle of side ω centered at the origin. We calculated the surface area AD
sphere of the

portion of the sphere of radius r1 situated above this triangle. This represents the portion of the

astrocyte surface area occupied by a transporter trimer of side length w. The computation of
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the integral was carried out in polar coordinates, for convenience:
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, we obtained:

AD
sphere ¼ 3r2

1

Z y¼5p=6

y¼p=6

1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
a2

sin2ðtÞ

s

dt ð5Þ

To derive an explicit dependence of AD
sphere on parameters, we solved the remaining integral

with the help of Integral Calculator (https://www.integral-calculator.com, accessed March 17,

2019):

FðtÞ ¼
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where α can be considered small enough so that α2 < 1/2 (which implies sin2 τ − α2 > 0, since

π/6 � τ � 5π/6). The definite integral can then be calculated as:
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In conclusion:
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Computation of the cylinder surface area occupied by transporters. We called AD
cylðrcylÞ

the area that each trimer occupies on the surface of a cylinder of radius rcyl. This can be calcu-

lated as the area of the cylindrical region lying on top of the domain D, enclosed by an equilat-

eral triangle of side ω centered at the origin. Since the cylinder of radius R is given by the

equation z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
cyl � x2

q
, the area of the portion of the cylinder lying above the triangle can be
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expressed as the double iterated integral:
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Additional information on glutamate transporter distribution in tips/leaves and branching

points can be found in S5 Fig.

Results

Quantification of glutamate transporters in mouse hippocampal astrocytes

We quantified GLAST and GLT-1 protein levels in membrane protein extracts of the mouse

hippocampus using dot blotting experiments. As a first step, we dissected the hippocampi

from both brain hemispheres from mice aged 2 weeks to 21 months. Hippocampi from 7–8

week old rats were used to validate our approach, as this is the same age range of rats used to

derive previous estimates of GLAST and GLT-1 surface density [11]. We extracted all proteins

from the hippocampi (i.e. cytoplasmic and membrane-bound), and determined their concen-

tration using a Bradford assay. Next, the hippocampal membrane protein extracts from the

mouse hippocampus in each age cohort were dotted alongside known amounts of purified,

recombinant proteins of the human homologs of GLAST and GLT-1 (Fig 1). The intensities of

the dots was measured as raw integrated density (RID) using image analysis software. The RID

of the purified proteins was used to generate a standard curve, which was used to convert the

RID value of each sample dot to weights and then moles of GLAST or GLT-1 (Fig 1A–1D).

We used the dot blot results to estimate the surface density of each glutamate transporter in

hippocampal astrocytes. Like [11], we assumed that: (i) the mouse and rat hippocampus con-

tain * 97.8 g of protein per Kg of tissue [68]; (ii) the rodent hippocampus has a density of

1.05 g/cm3 [69]; (iii) GLAST and GLT-1 are mostly expressed in astrocytes (only * 5 − 10% of

these molecules is expressed in neurons [11, 19]); (iv) GLAST and GLT-1 are mostly expressed

in the plasma membrane (their level of expression in association with intracellular membranes

is small [11, 16, 70]); (v) the molecular weights of GLAST and GLT-1 are 59,619 Da and 62,027

Da in mice, and 54,374 Da and 60,914 Da in rats, respectively [71, 72].

The estimates reported in Fig 2A indicate that GLAST and GLT-1, together, contribute at

most * 6% of all hippocampal proteins in 6 month old mice. This value is * 4.5% in 7–8

week old mice and * 3.5% in 7–8 week old rats, meaning * 2.2 − 2.8% times higher than

those previously reported for 7–8 week old rats by [11]. The reasons for this small difference

might be due to different protein extraction procedures or to existing differences between rat

strains, which are beyond the scope of this work. According to our experiments, GLAST and

GLT-1, together, comprise up to 15% of all hippocampal membrane proteins in 6 month old

mice, with varying levels depending on mouse age Fig 2B. In the rat visual cortex, estimates

from 2D EM images suggest that the astrocyte membrane density is 1.3–1.6 μm2/μm3 [12]. We

tested whether these measures hold true for the mouse hippocampus by using a more direct

approach, capable of detecting astrocyte membranes in 3D. To do this, we identified astrocytic

processes in stratum radiatum of the mouse hippocampus using 3D axial STEM tomography,

a technique that offers a spatial resolution of only a few nm [49, 50, 73] and that allowed us to

analyze a tissue block of * 18 μm3 volume (Fig 3A). We traced the contours of astrocytic pro-

cesses manually (Fig 3B), to generate 3D reconstructions (Fig 3C) [52, 57]. This allowed us to

PLOS COMPUTATIONAL BIOLOGY Heterogeneous distribution of glutamate transporters in mouse hippocampal astrocytes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009845 February 4, 2022 16 / 44

https://doi.org/10.1371/journal.pcbi.1009845


estimate the total surface area of small astrocytic processes contained in this tissue block, as

well as their size and density (δn in Table 3).

The astrocyte membrane density in the reconstructed block was 3.15 μm2/μm3, which is

more than two times larger than previous values obtained from extrapolations made using 2D

EM micrographs in layers I-IV of the visual cortex of Long Evans male rats aged P23–25 [12],

and previously used to estimate the astrocyte plasma membrane density in the rat hippocam-

pus [11]. The density of small astrocytic processes was * 4 μm−3. Comparative analysis shows

that the proportion of neuronal versus non-neuronal cells in mice and rats are very similar,

and the shape and size of non-neuronal cells is very similar in the neocortex, cerebellum and

the rest of the brain of these rodent species [74]. Therefore, we used our estimated value of

astrocytic membrane density (i.e., 3.15 μm2/μm3) to calculate the surface density of glutamate

transporters in our own tissue samples, from mice and rats. We assumed that there is no

major change in the surface area of astrocytes in the hippocampus of mice aged 2 weeks—21

months. The amounts of transporter proteins as percent of total tissue proteins and the tissue

concentrations of glutamate transporters are shown in Fig 2C–2E and in Table 4, respectively.

Fig 1. Dot blot analysis of GLAST and GLT-1 expression in the mouse hippocampus. A. Dot blots of recombinant and native

GLAST in hippocampal membrane protein extracts from mice aged from 2 weeks to 21 months, and rats aged 7–8 weeks. B. As in A,

for GLT-1. C. Sigmoidal fit of dot intensity for different amounts of recombinant GLAST. Each dot represents the mean±SD (n = 3).

D. As in C, for GLT-1.

https://doi.org/10.1371/journal.pcbi.1009845.g001
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The expression of GLT-1 increases between 2 weeks and 6 months, and then starts declining

(note that there is no statistical significance between the data collected at 15 months and 21

months; p = 0.22). A similar trend was detected for GLAST and GLT-1, although the overall

expression of GLAST is much lower than that of GLT-1. The values obtained in 7–8 week old

mice are similar to those obtained in 7–8 week old rats, and consistent with those previously

obtained in 7–8 week old rats by [11]. This suggests that our estimates provide a good approxi-

mation of glutamate transporter surface density in both rats and mice.

An evaluation of glutamate transporter surface density based on their

heterogeneous distribution along the astrocyte plasma membrane

A number of studies suggest that glutamate transporters are non-uniformly distributed along

the plasma membrane of astrocytes, with a rapid recycling rate from intracellular compart-

ments and a range of surface diffusion rates [2, 2, 3, 13, 16, 40, 42, 45]. Their expression is

often described as punctate, with regions where transporters are enriched and display lower

lateral mobility, which are confined to fine terminal branch tips and small lateral protrusions

Fig 2. Transporter proteins as percent of total and membrane-bound hippocampal proteins. The amount of each

glutamate transporter in mouse hippocampal membranes was determined by quantitative dot blot as described in the

Materials and methods section. A. The percentage of total hippocampal proteins (i.e., cytoplasmic and membrane-bound)

represented by each transporter was calculated from n = 3 samples, assuming that there are 97.8 g of protein per Kg of tissue,

for GLAST (blue) and GLT-1 (orange). The sum of the data collected for GLAST and GLT-1 is shown in red. B. Percentage of

hippocampal membrane proteins represented by GLAST (blue) and GLT-1 (orange). The concentration of total proteins in

the hippocampal membrane fraction was determined by Bradford assay. The amount of transporter detected in each dot was

divided by the total amount of hippocampal membrane protein spotted. C. Estimates of GLAST surface density expression in

hippocampal astrocytes of mice aged 2 weeks—21 months and in 7–8 week old rats, based on the parameters listed in Table 4.

The black dot represents the results obtained in previous estimates from 7–8 week old rats [11]. D. As in C, for GLT-1. E.

Estimates of surface density for both GLAST and GLT-1. For consistency with previous work [11, 16], a correction for 5–10%

neuronal GLT-1 was not applied to our surface density estimates. Data represent mean±SD.

https://doi.org/10.1371/journal.pcbi.1009845.g002
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(leaves) present on all astrocytic processes [2, 13, 16, 40, 42]. Different glutamate transporter

variants have been suggested to exhibit marked differences in their sub-cellular localization

[48]. For example, GLAST tends to be excluded from astrocytes fine processes (i.e., branch tips

and leaves), where its expression is 0.6-fold of that at the astrocyte soma [48]. Here, the branch

tips represent the terminal ending of an astrocyte branch, whereas the leaves represent the thin

lateral protrusions that depart from each branch. The expression ratio of GLAST between the

astrocyte tips/leaves:shafts:stems is 0.8:0.6:1. Here, the stems represent the GFAP+ primary

and secondary branches, whereas the shafts represent all other regions of the astrocyte plasma

membrane except the soma, branch tips and leaves [75]. This means that the tips/leaves:shafts:

stems:soma expression ratio with respect to the soma is 0.6:0.5:0.8:1. In contrast, GLT-1 is pri-

marily localized to the plasma membrane, with a 2.3-fold higher expression in fine processes

compared to the soma [48]. For GLT-1, the expression ratio at the astrocyte tips/leaves:shafts:

stems is 3.2:2:1 [48]. Therefore, the tips/leaves:shafts:stems:soma ratio with respect to the soma

is 2.3:1.4:0.7:1. Although the astrocyte tips/leaves are in contact with a subset of excitatory syn-

apses [4], this does not mean that other portions of the astrocyte plasma membrane cannot

Fig 3. 3D Axial STEM tomography analysis of astrocytic processes in the mouse hippocampus. A. Example of a

single plane of of the reconstructed block of tissue, with contours of astrocytic processes (blue) and post-synaptic

density (PSD; red). Scale bar: 1 μm. B. As in B, without the raw EM data. C. 3D representation of the astrocytic

processes and PSD regions in a portion of the reconstructed tissue block.

https://doi.org/10.1371/journal.pcbi.1009845.g003
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also form contacts with them. This makes room for an interesting consideration: that the aver-

age surface density measures for GLAST and GLT-1 derived from our dot blot experiments

(Table 4) can be refined based on the known variations in the expression of each transporter

variant across different sub-cellular compartments. To account for this, we first need to deter-

mine which proportion of the entire astrocyte plasma membrane is represented by the tips/

leaves, shafts, stems and soma. This can be done using a modeling approach capable of captur-

ing macroscopic features of the astrocyte morphology (captured experimentally using proExM

and 2P-LSM) as well as microscopic ones (captured experimentally using 3D axial STEM

tomography).

We first analyzed the morphological properties of biocytin-filled mouse hippocampal astro-

cytes using proExM, 2P-LSM imaging and then scaled them to their real size using a correction

factor for linear expansion (see Materials and methods). From the 3D reconstructions of these

astrocytes, we estimated the volume occupied by the whole cell and all its processes (astrocyte

cytoplasm), the volume of the neuropil occupied by the astrocyte (astrocyte boundary), and

the volume occupied by the astrocyte branches (Fig 4A). The branching levels were defined

according to the color code shown in Fig 4C. The average volume of the neuropil occupied by

an astrocyte was 5.9 � 105 ± 2.1 � 105 μm3, whereas the average astrocyte cytoplasmic volume

was 2.2 � 105 ± 1.2 � 105 μm3 (n = 10; mean±SD). The volume occupied by the branch approxi-

mation of the astrocyte, which provided a lower bound for the cytoplasmic volume, was 8.2 �

Table 4. Tissue concentrations of glutamate transporters. The number of molecules of GLAST or GLT-1 per volume of hippocampal tissue and per cell membrane area

were calculated from the dot blot experiment using the following assumptions: the mouse hippocampus contains 97.8 g of protein per Kg of tissue [68], has a density of

1.05 g/cm3 [69], and that the molecular weigh of GLAST and GLT-1 are 59,619 and 62,027 Da, respectively (mean±SD; n = 3). The astrocyte plasma membrane density was

set to 3.15 μm2/μm3 for mice (according to measures obtained from our 3D axial STEM tomography data) and rats (see Results section for details).

age mg transp / g hipp tissue μM molec / μm3 μm2 / μm3 molec / μm2

GLAST 2 wk 0.51 ± 0.10 9 ± 2 5,399 ± 1,026 3.15 1,714 ± 326

3 wk 0.67 ± 0.52 12 ± 9 7,147 ± 5,482 3.15 2,269 ± 1,740

7–8 wk 1.15 ± 0.19 20 ± 3 12,190 ± 1,972 3.15 3,870 ± 626

6 mo 1.32 ± 0.13 23 ± 2 13,980 ± 1,365 3.15 4,438 ± 433

12 mo 1.23 ± 0.09 22 ± 2 13,033 ± 976 3.15 4,138 ± 310

15 mo 0.98 ± 0.05 17 ± 1 10,409 ± 559 3.15 3,304 ± 177

21 mo 1.08 ± 0.15 19 ± 3 11,430 ± 1,618 3.15 3,628 ± 514

7–8 wk rat 0.97 ± 0.11 19 ± 2 11,333 ± 1,245 3.15 3,598 ± 395

GLT-1 2 wk 0.45 ± 0.12 8 ± 2 4,596 ± 1,264 3.15 1,459 ± 401

3 wk 1.45 ± 0.46 25 ± 8 14,783 ± 4,687 3.15 4,693 ± 1,488

7–8 wk 3.31 ± 0.64 56 ± 11 33,718 ± 6,564 3.15 10,704 ± 2,084

6 mo 4.40 ± 0.25 75 ± 4 44,880 ± 2,558 3.15 14,248 ± 812

12 mo 4.21 ± 0.25 71 ± 4 42,890 ± 2,502 3.15 13,616 ± 794

15 mo 2.89 ± 0.43 49 ± 7 29,473 ± 4,356 3.15 9,357 ± 1,383

21 mo 3.62 ± 0.75 61 ± 13 36,894 ± 7,671 3.15 11,712 ± 2,435

7–8 wk rat 2.44 ± 0.22 42 ± 4 25,344 ± 2,309 3.15 8,046 ± 733

GLAST+GLT-1 2 wk 0.96 ± 0.12 17 ± 2 9,996 ± 1,264 3.15 3,173 ± 401

3 wk 2.12 ± 0.52 36 ± 9 21,930 ± 5,482 3.15 6,962 ± 1,740

7–8 wk 4.46 ± 0.64 76 ± 11 45,909 ± 6,564 3.15 14,574 ± 2,084

6 mo 5.72 ± 0.25 98 ± 4 58,860 ± 2,558 3.15 18,686 ± 812

12 mo 5.44 ± 0.25 93 ± 4 55,924 ± 2,502 3.15 17,754 ± 794

15 mo 3.87 ± 0.43 66 ± 7 39,882 ± 4,356 3.15 12,661 ± 1,383

21 mo 4.70 ± 0.75 80 ± 13 48,323 ± 7,671 3.15 15,341 ± 2,435

7–8 wk rat 3.42 ± 0.22 61 ± 4 36,678 ± 2,309 3.15 11,644 ± 733

https://doi.org/10.1371/journal.pcbi.1009845.t004
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Fig 4. Astrocyte morphology in stratum radiatum of the mouse hippocampus. A. Top left, Maximum intensity projection of a

2P-LSM z-stack of a biocytin-filled astrocyte in a mouse hippocampal stratum radiatum. Top right, Image analysis of astrocytic

branches. Higher branching levels are denoted by warmer colors. Bottom left, Image analysis of astrocyte cytoplasm. Bottom right,
Volume of the hippocampal neuropil occupied by the astrocyte. B. Top, In silico representation of an astrocyte generated through

our MATLAB model. The color scheme for each branch level is the same used for the reconstructions of biocytin-filled astrocytes
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104 ± 3.0 � 104 μm3 (n = 10; Fig 4E, left). These values are consistent with analogous measures

obtained by [65]. The astrocyte surface area was 4.0 � 105 ± 2.0 � 105 μm2 (n = 10; Fig 4E,

center). On average, in each astrocyte, the cumulative length of all branches was 2.4 � 104 ± 1.2 �

104 μm, with 2.2 � 103 ± 1.3 � 103 branching points and 8.5 ± 1.2 branch levels (Fig 4E, right).
We used these measures as our reference to build the backbone of an in silico model of

astrocytes (Fig 4B). While some aspects of our geometric model are compatible and agree with

existing work (e.g., [64]), our model is unique in other aspects that are driven by our own

experimental data and the specific aim of understanding cell-compartment specific differences

in the distribution of glutamate transporters. Even though a full, point-by-point comparison

with other existing reconstructive models is not possible, we will include, when applicable, dis-

cussion points around the overlap with other studies. In this model, the soma was approxi-

mated as a sphere and each process was approximated as a cylinder with rounded tips at their

endings. At each branching point, the parent branch generated a daughter branch with a diam-

eter that obeyed the 3/2 rule [61]. Each astrocyte branch was populated with leaves, repre-

sented as fine lateral cylindrical protrusions with rounded tips at their endings. At each

branching point, the daughter branch had a smaller mean diameter and higher branch level

than the parent branch. By contrast, the parent branch became thinner and maintained the

same branch level (Fig 4D). As shown in our 3D axial STEM tomography data (Fig 3, Table 3),

the size of the small processes that emerge from the main astrocyte branches (i.e., the leaves)

has an average diameter of 250 nm, with a range of 20–450 nm. These small processes are pres-

ent throughout the astrocyte surface and give these cells a spongiform appearance [76]. To

account for the presence of leaves in our model, we used an approach similar to that of [64].

Accordingly, leaves were incorporated in our model as a multitude of short (i.e., 0.7 μm) and

thin cylindrical extensions. Tips and leaves had a mean diameter of 0.08 ± 0.04 μm, consistent

with the experimental values of δn reported in Table 3. Leaves emerged orthogonally with

respect to the main axis of the parent branch at random intervals, so that their density in the

neuropil was similar to that detected in our 3D axial STEM tomography measures (experi-

ments: 4.0 μm−3; model: 4.3 ± 2.0 μm−3). The average volume of the in silico astrocytes was

4.6 � 103 ± 0.8 � 103 μm3 (���p ¼ 2:3 � 10�4), with a surface area of 1.1 � 104 ± 2.9 � 104 μm2

(���p ¼ 1:4 � 10�4). The average branch length (9.7 � 103 ± 2.4 � 103 μm; ��p ¼ 1:3 � 10�3), num-

ber of branching points (1.9 � 103 ± 0.9 � 103; p = 0.56) and branching levels (8.5 ± 0.5; p = 1.00)

were in good agreement with the measures collected from biocytin-filled astrocytes recon-

structed experimentally (Fig 4E, right). The model also provided a reasonably accurate descrip-

tion of the Sholl profile (Fig 4F–4G, left; ���p ¼ 2:1 � 10�13), number of branches (Fig 4F–4G,

right; p = 0.64), branch length (Fig 4H–4I, left; p = 0.77) and branching angle for each branch

level of the astrocyte (Fig 4H–4I, right; p = 0.14). The surface to volume ratio of model astro-

cytes was 2.4 ± 0.3 μm−1 without including leaves, and 2.6 ± 0.2 μm−1 with leaves (n = 10).

These values are consistent with those reported in previous work by [77] using confocal

shown in panel A. The scale bar is 20 μm in the x (cyan), y (red) and z axis (black). Bottom, close-up view of a model astrocyte, with

leaves color coded in black. C. Color-coded representation of branching levels of progressively higher order. D. As in C, for the in
silico data. E. Summary analysis of volume (left) and surface area analysis (middle) of the cell boundary, cytoplasm and branches

(volume, ���p = 2.7�10−4; surface area, ���p = 1.6�10−4). The purple dots represent values of volume and surface area obtained in the

model without including leaves. The horizontal orange line represent values of surface area and volume obtained by including

estimates obtained for leaves. The histogram on the right provide a quantitative analysis of branch length, number of branch points

and branch levels across all analyzed astrocytes (length, ��p = 4.2�10−3; points, p = 0.49; levels, p = 0.65). F. Sholl analysis (left) and

summary of branch count analysis for different branch levels (right). G. As in F, for the in silico data (intersections 3D, Pearson’s

correlation coefficient r = 0.98; number of branches, p = 0.77). H. Summary analysis of branch length (left) and branching angle

(right) for each branching level. I. As in G, for the in silico data (branch length, p = 0.73; branch angle, p = 0.14). Data represent

mean±SEM.

https://doi.org/10.1371/journal.pcbi.1009845.g004
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morphometry (* 2.64 μm−1), and by [78] in the cat cortex (* 3.3 μm−1). The discrepancy

between these values and much higher ones reported by [79–81] (13.0−26.2 μm−1) has been

previously suggested to be due to cell swelling during the fixation procedure in EM measure-

ments, as well as to the differences in image processing and resolution between confocal

microscopy and EM [77]. In our model, the tips/leaves, together with the astrocyte shafts, are

analogous to what [65] defined as the non-core regions. In our simulations, the sum of the vol-

ume of shafts and tips/leaves (i.e. the non-core regions) is * 65% of the entire astrocyte vol-

ume. This is consistent with the estimates of [65], where these non-core regions

occupy * 75% of the entire astrocyte volume. In our astrocyte models, we also calculated the

tissue volume fraction occupied by fine processes, as well as the density of processes in the neu-

ropil. For consistency with empirically-based estimated of analogous measures, we simulated

the neuropil of a model astrocyte as a minimal cover that can be obtained with a 3D partition

of small cubes of 2 μm side length, as described in further details in the Materials and methods

and in S6 Fig. With this computation method, the simulated tissue volume fraction, was

6.7 ± 3.5% (n = 10), which is consistent with the values of 4.0−8.9% reported by [66]. In addi-

tion, the branching pattern of our model astrocyte is such that there are, on average, 4.3 ± 2.0

μm−3 processes in the neuropil covered by them, consistent with our 3D axial STEM tomogra-

phy data showing that there are 4.0 μm−3 processes in our sample tissue. Together, these find-

ings indicate that our model is in general agreement not only with our experimental data and

with data collected by other groups.

From the model astrocytes, we calculated that the astrocyte tips and leaves, shafts, stems

and soma represented 1.8% ± 0.6%, 62.5% ± 6.2%, 34.1% ± 5.8% and 1.6% ± 0.6% of the total

astrocyte plasma membrane, respectively (n = 10; mean±SD). Therefore, *98% of the astro-

cyte membrane has a surface density for glutamate transporters that has higher GLAST and

lower GLT-1 levels than those present at the tips/leaves of astrocytes (Fig 5E). The results,

shown in Fig 5, indicate how different the concentration of transporters is in the tips/leaves,

shafts, stems and soma. This suggests that the identity of the astrocyte sub-cellular compart-

ment in contact with a synapses, not only the extent of its synaptic coverage, is a key determi-

nant of glutamate spillover and extrasynaptic receptor activation at a given synapse. Synapses

with the same levels of astrocyte coverage can experience various levels of spillover, where the

maintenance of the specificity of synaptic transmission is dependent on which sub-cellular

compartment of a given astrocyte reaches the synapse.

Theoretical estimates of relative surface density and effective surface

fraction occupied by glutamate transporters

There are geometrical constrains that prevent glutamate transporters from occupying specific

domains of the plasma membrane due to crowding effects (S5 Fig). This is due to the fact that

glutamate transporters are sizable molecules, and steric hindrance limits their expression at

tight insertion points (i.e., the branching points) and in structures with convex curvature (i.e.,

branch tips and leaves; S5 Fig). As an example, the extracellular portions of glutamate trans-

porters can collide with each other an branching points, whereas their cytoplasmic portions

can collide with each other at the tips. This means that very small, restricted domains of the

astrocyte membrane can lack glutamate transporters. These regions can be wider or narrower

depending on the insertion depth in the lipid bilayer, which changes depending on the confor-

mation state of the transporters. Accordingly, glutamate transporters protrude towards the

cytoplasm when they are fully bound to glutamate (Fig 5F) [82]. For this reason, we asked the

following two questions: (ii) how does the experimentally-derived surface density of glutamate

transporters compare with the maximum one that can be achieved theoretically, given the
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Fig 5. Spatial gradient of glutamate transporter expression in different sub-cellular compartments. A. The color-coded bar graphs

represent the surface area distribution in four different astrocyte sub-cellular compartments. The tips and leaves represent the hemispheric

endings of the terminal branches, and the thin protrusions that depart from all astrocyte branches, respectively. The stems represent the

sum of primary and secondary branches. The soma represents the surface area of a spherical representation of the soma following

subtraction of the surface area of the sphere underlying the base of the primary branches. The shafts represent all other compartments that
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existence of crowding effects at branching points and tips? (ii) what proportion of the astrocyte

plasma membrane area that could be occupied by glutamate transporters is actually occupied

by them? We answered these questions for different sub-cellular compartments, taking into

account different insertion depths of glutamate transporters in the plasma membrane.

As a first step, we generated a geometrical approximation for glutamate transporters. These

molecules assemble as trimers in the astrocyte membrane, based on information collected

from their crystal structure [67]. For this reason, in the model, we approximated each trimer

as a triangular prism (S1 Fig). Each trimer in our model was assigned different values of inser-

tion depth, a value that we referred to as hin. We initially ignored potential restrictions due to

crowding effects at branching points, and we approximated different portions of the astrocyte

with simpler 3D morphologies, like spheres (for the soma) and cylinders of different size (for

stems, shafts and tips/leaves). The maximum number of transporters that can be placed in a

sphere of radius r1, assuming for a moment that these were the only molecules on the plasma

membrane, is provided by Eq (S12). We then updated our computations to account for crowd-

ing, according to the branching angle and local geometry at each branching point.

Each one of the K primary branches of diameter δ1 departing from the soma covers a por-

tion of the sphere surface that can be estimated as:

Acap ¼ 2pr1ðr1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
1

� ðd1=2Þ
2

q

Þ

This means that the effective surface area of the soma where the transporter trimers can be

expressed is Asoma − K � Acap. Based on these considerations, the maximum number of trimers

that can populate the soma can be expressed as:

nsoma ¼
Asoma

4pr2
1

� nsphere ¼
4pr2

1
� K � Acap

4pr2
1

� nsphere ð10Þ

where nsphere(r1) is given in Eq (S12).

The maximum area occupied by all trimers in the soma can be expressed as:

Ssoma ¼ nsomaA
D

sphere;

where the area of the spherical portion replaced by each trimer AD
sphereðr1Þ is provided by Eq

(S14).

For the astrocyte branches, the total surface area Atree, the maximum number of transporter

trimers ntree that it can contain, and the total surface area that can be occupied by them Stree

are not part of the ones described above. The blue line and filled circles described the relative distribution of GLAST in different sub-

cellular compartments [48, 75]. Analogous measures for the distribution of GLT-1 are shown using the orange line and filled circles. For

both GLAST and GLT-1 we scaled these proportions from [48, 75] so that their sum was 1. B. Surface density of glial glutamate

transporters in different sub-cellular compartment of hippocampal astrocytes for mice aged 2 week—21 months and 7–8 week old rats. C,

D. The data were calculated using the surface density values from Table 4, using distribution ratios in the tips/leaves:shafts:stems:soma of

0.6:0.5:0.8:1 and 2.3:1.4:0.7:1 for GLAST and GLT-1, respectively (n = 3). The weighted average of the data relative to each compartment

corresponds to values shown in Table 4. Data represent mean±SD. E. Measures of the maximal surface density of glutamate transporters

that can be achieved in the astrocyte tips/leaves, stems, shafts and soma. F. Maximal surface fraction that can be occupied by glutamate

transporters in the astrocyte tips/leaves, stems, shafts and soma. G. Relative transporter surface density, measured as the ratio between the

experimentally measured transporter density, distributed in each compartment (Fig 5), and the maximal one obtained from the model

shown, for 2 week to 21 month old mice and for different insertion depths of glutamate transporters through the plasma membrane. H.

Effective transporter surface fraction, calculated as the ratio between the surface area occupied by transporters and the maximum area that

they can occupy in each compartment, for different insertion depths. In these graphs, the values of ϕexp were calculated as ϕexp = σexp/σmodel
� ϕmodel.

https://doi.org/10.1371/journal.pcbi.1009845.g005
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were estimated as follows:

Atree ¼
XB

j¼1

pd
2

j

4
lj ð11Þ

ntree ¼
XB

j¼1

ncyl

dj

2
; lj

� �

ð12Þ

Stree ¼
XB

j¼1

ncyl

dj

2
; lj

� �

AD

cyl

dj

2

� �

ð13Þ

where the sums are calculated over all B branch segments 1 � j � B, with lengths lj and diame-

ters δj, computed as specified in the Materials and methods section (the average lengths for the

first branching levels are shown in Table 3 as the value of λ and the vector χ). Recall that the

expression for AD
cylðr1Þ was provided by Eq (S19). A combination of our formulas gives us the

estimate for the total surface area of the astrocyte:

Atotal ¼ Asoma þ Atree

the maximum number of transporter trimers that it can contain:

ntotal ¼ nsoma þ ntree

and the maximum fraction the astrocyte surface area that can be occupied by them:

Stotal ¼ Ssoma þ Stree

We then calculated the maximum transporter trimer surface density as:

s ¼
ntotal

Atotal

The maximum surface density of glutamate transporter monomers was then obtained by mul-

tiplying σ by three, and the fraction of the astrocyte surface area occupied by the transporters

was calculated as:

F ¼
Stotal
Atotal

We computed all these values for a set of model astrocytes generated using MATLAB simula-

tions, with structural features that were in reasonable agreement with those of biocytin-filled

astrocytes reconstructed after proExM and 2P-LSM imaging (Fig 4B). If transporters were the

only molecules expressed on the astrocyte plasma membrane, crowding effects would pose an

upper limit to their surface density in the tips/leaves and, to a lesser extent, in the shafts. These

effects would become more pronounced as the transporters protrude towards the cytoplasm,

as it happens when they are fully bound [82]. Consequently, the maximum surface density of

glutamate transporters would be lowest in the branch tips, and progressively larger in the

leaves, shafts, stems and soma, as the size of these sub-cellular compartments increases (Fig

5E). Increasing the insertion depth of transporters at the tips/leaves would reduce their maxi-

mal surface density in all compartments (Fig 5E). This would lead to a reduction in the maxi-

mum astrocyte surface area occupied by the transporters of * 9% in the tips/leaves,

and * 5% in the shafts, with a much smaller effect in the soma and stems (Fig 5F). By taking
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into account the experimental measures of GLAST and GLT-1 surface density, and existing

gradients in their expression across different sub-cellular compartments, we estimated their

relative surface density (σexp/σmodel; Fig 5G) and effective surface fraction (ϕexp; Fig 5H). The

results highlight prominent age-dependent effects, whereby glutamate transporters are present

at * 14% of their theoretical maximal density in astrocyte tips/leaves of 2 week old mice. This

value reaches * 100% in 6 month old mice, suggesting that at this age, almost all of the surface

area of the astrocyte tips/leaves is occupied by glutamate transporters (see Discussion). In

other—and larger—sub-cellular compartments, the relative glutamate transporter density is

much lower (* 3%), and shows a similar age-dependence to the one described for the tips/

leaves. Given the large density of these molecules, local changes in the insertion depth of the

transporters along the plasma membrane, and therefore conformational changes of these mol-

ecules, have small effects on the relative surface density and the effective fraction of the plasma

membrane occupied by the transporters. Together, these findings indicate that crowding

effects can in principle limit the local expression of membrane proteins like glutamate trans-

porters in astrocytic membrane, although the exact extent to which this happens ultimately

depends on the local expression of glutamate transporters and other proteins expressed in the

cell membrane of a given sub-cellular compartment.

Varying the glutamate transporter surface density alters peri- and extra-

synaptic glutamate receptor activation

The findings described so far prompted us to ask whether local differences in the expression of

glutamate transporters might be of particular physiological relevance for regulating glutamate

receptor activation at hippocampal synapses. To address this, we generated a 3D reaction-dif-

fusion Monte Carlo simulation (Fig 6). Here, we distributed seven synapses in a hexagonal

array, 500 nm away from each other for consistency with previous anatomical data [5]. We

flanked four of them (i.e., 57% [4]) with astrocytic processes covering 43% of their perimeter

[4], and released glutamate from the center of the synaptic cleft of the central synapse (Fig 6A–

6B). We performed distinct sets of simulations in which we varied the surface density of gluta-

mate transporters in the glial membranes in the range 0–20,000 μm−2. Here, each transporter

molecule could interact with a diffusing glutamate molecule, to bind and/or translocate it

across the membrane. The kinetic rates of the binding and translocation reactions were set in

accordance to a simplified kinetic scheme for glutamate transporters which does not require

an explicit treatment of the movement of co-transported ions (see Materials and methods) [7,

9]. We calculated the probability for each transporter of being in the outward-facing unbound

state (To; magenta), the outward-facing bound state (ToG; yellow) or the inward-facing bound

state (TiG; green; Fig 6B). The higher the surface density of glutamate transporters, the higher

the glutamate uptake capacity of astrocytes. Therefore, the proportion of transporters in each

of the three states decreased for higher values of the glutamate transporter surface density (Fig

6C–6D). An increase in astrocytic glutamate transporter expression did not lead to changes in

the glutamate concentration profile in the center of the synaptic cleft, above the PSD region

(Fig 6E). This is consistent with previous experimental and modeling works, showing that

dilution by diffusion dominates the termination of synaptic glutamate receptor activation in

the cleft of small central synapses, whereas astrocyte transporters are responsible for limiting

spillover activation of glutamate receptors at a distance from the release site [5, 7, 34, 39, 83,

84]. This was also confirmed by our model where the peri/extrasynaptic glutamate concentra-

tion profile, which is smaller and arises and decays more slowly than in the cleft [5–7, 34, 39,

83, 84], became progressively smaller as the glutamate transporter concentration in astrocytic

membranes increased (Fig 6E–6F) This led to a modest decrease in the open probability of
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Fig 6. Varying the glutamate transporter surface density alters extra-synaptic receptor activation. A. 3D representation of the geometries of

seven neighboring synapses used to run the 3D Monte Carlo diffusion model. The kinetic scheme of glutamate transporters, on the left hand

side, has the following kinetic: kTo ! kToG = 18 � 106 M−1 s−1; kToG ! kTo = 3, 594 s−1; kToG ! kTiG = 6 � 103 s−1; kTiG ! kTo = 150 s−1. B. Left,
Close-up view of an individual synapse, composed of a hemispheric pre- (green) and post-synaptic terminal (white), with 57% of its perimeter

surrounded by an astrocytic process, populated with glutamate transporters (blue). Glutamate molecules can be seen diffusing out of the

synaptic cleft (cyan). Right, Close-up view of the synaptic cleft. Glutamate molecules diffusing in the PSD (purple) and perisynaptic portion of
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perisynaptic receptors, and a sharp decrease in that of extrasynaptic AMPA (Fig 6G–6H) and

NMDA receptors (Fig 6I–6J). Together, these results show that local changes in glutamate

transporter expression around a synapse can induce dramatic changes in extrasynaptic recep-

tor activation without major consequences on the activation of synaptic receptors. These find-

ings highlight the importance of gaining accurate estimates of the local surface density of

glutamate transporters at the synapse as this, through the modulation of AMPA and NMDA

receptor activation, can ultimately shape the temporal dynamics of fast synaptic transmission

and the propensity to undergo plastic changes in synaptic strength.

In a last set of simulations, we varied the location of the glutamate release site from the center

to the periphery of the PSD, either towards the portion of the synapse facing the astrocyte pro-

cess or away from it (Fig 7A). These represented the most extreme scenarios, as they covered

the whole range of distances that a release site can be: from the closest to the furthest away from

the neighboring glial sheet. Clearly, release sites located at intermediate distances would experi-

ence more nuanced flavors of the data that we describe here. Changing the surface density of

glutamate transporters altered the probability of occupancy of glutamate-bound transporters

(inward-facing and outward-facing; Fig 7B), and altered the open probability of AMPA and

NMDA receptors (Fig 7C). By contrast, since glial glutamate transporters outnumber the gluta-

mate molecules released in the cleft, the proportion of outward-facing unbound glutamate

transporters remained relatively stable. These effects were most pronounced when glutamate

release occurred from a release site close to neighboring glial sheets, suggesting that the location

of the release site with respect to the glial sheet is crucial to determine the extent to which the

glial sheet can limit post-synaptic glutamate receptor activation. The further is the release site

from the glial sheet, the more likely it is for glutamate to activate peri/extrasynaptic receptors.

We explored these results more closely by constraining the surface density of glial glutamate

transporters to 20,000 μm−2, similar to their concentration in tips/leaves. We changed the loca-

tion of the release site from the center of the PSD to the closest and farthest points to the neigh-

boring glial sheet (Fig 8). As noted in (Fig 6), the closer the release site to the glial sheet, the

more likely it is for glutamate to be bound by a glial transporter (Fig 8A–8B) and not by extra-

synaptic AMPA and NMDA receptors (Fig 8C–8H). Perisynaptic receptors are less susceptible

to these effects, but their activation is slightly reduced when the release site is not located at the

center of the synaptic cleft. This is because when the release site is closer to the glial sheet, a

larger proportion of glutamate is bound by glial transporters. When the release site is farther

from the glial sheet, a large portion of glutamate diffuses out in the extracellular space, out of

the synaptic cleft. These effects are similar for AMPA and NMDA receptors, and this is not

surprisingly given their similar glutamate binding rates [59, 60]. In summary, glutamate spill-

over from the synaptic cleft is shaped not only by the extent of glial coverage of a given syn-

apse, but also on the identity of the sub-cellular compartment forming that glial coverage, and

the relative location of the release site with respect to the glial sheet.

the cleft (cerulean), and in the extracellular space out of the synaptic cleft (cyan). C. The three graphs in this panel provide a description of the

probability for each transporter of being in one of the three states To, ToG or TiG. The results are obtained using a range of transporter surface

density values color-coded in the legend. Lighter colors represent higher values of σastro. D. Summary describing how the probability of

glutamate transporters of being in one of the three states To, ToG or TiG varies with glutamate transporter surface density. The data are

normalized based on the results obtained with σastro = 100 μm−2. E. Temporal profile of the glutamate concentration in the PSD (left),
perisynaptic (center) and extrasynaptic regions (right), for different levels of σastro. F. Summary of the peak glutamate concentration measured in

the PSD (purple) and perisynaptic regions (blue), and in the extrasynaptic region (cyan). The data are normalized based on the results obtained

with σastro = 0 μm−2. G. Open probability of synaptic (left), perisynaptic (center), and extrasynaptic AMPA receptors (right) measured using

different surface density levels of glutamate transporters. H. Summary of the peak open probability of AMPA receptors. The data are normalized

based on the results obtained with σastro = 0 μm−2. I,J. As in G,H, for NMDA receptors. Simulations were run using σastro values of 0, 10, 100,

1,000, 10,000 and 20,000 μm−2. Data represent mean values.

https://doi.org/10.1371/journal.pcbi.1009845.g006
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Fig 7. Varying the glutamate transporter surface density has more profound effects on receptor activation if the

release site is located closer to the glial sheet. A. Close-up view of the synaptic cleft. Glutamate molecules diffusing in

the PSD (purple) and perisynaptic portion of the cleft (cerulean), and in the extracellular space out of the synaptic cleft

(cyan). The three red arrows point to the location of the glutamate release site in different three sets of simulation. Its

location was either (i) above the center of the PSD (center), or at its edges, (ii) close or (iii) far from the glial sheet. In

this figure, the surface density of glutamate transporters was set to σastro = 20,000 μm−2. B. Summary graph, showing

how the probability of occupancy of the To (left), ToG (center) and TiG states (right) varies depending on the location

of the glutamate release site. The data are normalized by the values obtained with σastro = 100 μm−2 (trough for To and

peak for ToG and TiG), and a release site located above the center of the PSD. C. Summary graph, showing how the

peak glutamate concentration (top) and peak open probability of AMPA (middle) and NMDA receptors (bottom)

varies depending on the location of the glutamate release site. The estimates were obtained for the PSD (left),
perisynaptic (center) and extrasynaptic regions (right). The data are normalized by the values obtained with σastro = 0

μm−2, and a release site located above the center of the PSD. For clarity, error bars are not included in this figure.

https://doi.org/10.1371/journal.pcbi.1009845.g007
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Fig 8. Changing the location of the release site for σastro = 20,000 μm−2. A. The three graphs in this panel provide a description of the probability

for each transporter of being in one of the three states To, ToG or TiG, with σastro = 20,000 μm−2, when the release site is located above the center of

the PSD, close or far from the glial sheet (Fig 6A). B. Summary describing how the probability of glutamate transporters of being in one of the

three states To, ToG or TiG varies with release site location. The data are normalized based on the results obtained when the release site is located

above the center of the PSD. C. Temporal profile of the glutamate concentration in the PSD (left), perisynaptic (center) and extrasynaptic regions

(right), for different release site locations. D. Summary of the peak and half decay time (t50) of the glutamate concentration measured in the PSD

(purple) and perisynaptic regions (blue), and in the extrasynaptic region (cyan). The data are normalized based on the results obtained with the

release site located above the center of the PSD region. E. Open probability of synaptic (left), perisynaptic (center), and extrasynaptic AMPA

receptors (right) measured for different release site locations. F. Summary of the peak open probability of AMPA receptors. The data are

normalized based on the results obtained with σastro = 0 μm−2. G,H. As in E,F, for NMDA receptors. Lines are used in panels B, D, F, H to facilitate

the interpreration of the results, collected using three different release site locations. Data represent mean values.

https://doi.org/10.1371/journal.pcbi.1009845.g008
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Discussion

Comparison of present and past findings in rats

Currently available estimates of glutamate transporter density in astrocytic membranes,

obtained from 7−8 week old rats [11], have been widely used in modeling studies of glutamate

diffusion, uptake and cross-talk among synapses for different rodent species and ages [6, 7, 32,

33, 36, 52, 57, 64, 83, 85, 86]. These estimates showed that the total concentration of glutamate

transporters in stratum radiatum of the rat hippocampus is * 30 μM [11], slightly lower than

what we obtained in our own experiments (* 58 μM). There are multiple methodological dif-

ferences between our experiments and the ones of [11] that could account for this minor dis-

crepancy. First, we use different protein extraction methods. Lehre and Danbolt homogenized

their whole hippocampal tissue with 1% SDS, according to methods described by [87–89]. We

used a membrane protein extraction kit to separate membrane-bound from cytoplasmic pro-

teins. If anything, this method could lead to a slight underestimate of our measures, if some

membrane-bound proteins were lost in the cytoplasmic fraction. However, we think this is an

unlikely scenario as our experiments did not reveal detectable signals for GLAST in the cyto-

plasmic fraction of our samples, and only * 0.2% for GLT-1. Second, Lehre and Danbolt

raised their own antibodies against GLAST and GLT1, whereas we used commercially-avail-

able ones. There could be unknown differences in their sensitivity and specificity. Third, there

might be slight differences in reactivity of our GLAST antibody to glutamate transporters from

different species. The GLAST antibody used in this work was raised against a human antigen;

while the exact antigen sequence is proprietary, this region of the protein is 93% identical in

mice and 95% identical in rats. However, we do not anticipate species recognition to be an

issue for the GLT-1 antibody, because the antigen sequence is 100% identical in humans, rats

and mice. Fourth, there might be subtle differences in the protein concentrations of GLAST

and GLT-1 across rat strains, since previous work used Wistar rats and our work used Sprague

Dawley rats.

Despite these potential differences in protein concentration, our surface density measures

for GLAST and GLT-1 are in agreement with the values obtained by [11]. This is due to the

fact that the conversion from protein concentration to surface density requires the use of a

numerical estimate for the astrocyte surface density. This value was 1.4 μm2/μm3 for [11] and

3.15 μm2/μm3 for our work. The value of 1.4 μm2/μm3 was selected by [11] for being in reason-

able agreement with estimates of the astrocyte surface density in layers I-IV of the visual cortex

of male Long Evans rats aged P23–25 (i.e., 1.32–1.64 μm2/μm3) [12]. These values, however,

were obtained from the analysis of collections of 2D EM images, which does not provide a

direct readout of astrocyte membranes in 3D. Our estimates, by contrast, are based on the

analysis of 3D EM reconstructions of tissue samples from hippocampal stratum radiatum of

P17 mice. Given that the proportion of neuronal versus non-neuronal cells, and the shape and

size of non-neuronal cells is very similar in the neocortex of mice and rats [74], we chose to

use 3.15 μm2/μm3 as the astrocytic surface density for all samples analyzed in this work. We

acknowledge that these calculations rely on a number of approximations and that there are

limitations to the experimental approaches used; however, we believe they provide reasonable

ballpark figures for the distribution of glutamate transporters in the hippocampal neuropil.

Despite the technical advantages provided by proExM, which allows to literally make small

structures bigger with isotropic expansion, this approach also lead to a dilution of target mole-

cules or fluorophores [51]. This is simply due to the fact that now the same number of mole-

cules occupy a larger volume. A consequence and potential drawback of this effect is that very

small structures can fall below the detection limit of 2P-LSM. There is evidence that the cellular

architecture of astrocytes is complex and finer than what can be distinguished using images
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approaches with a spatial resolution of a few hundred of nanometers [64–66, 76, 90–92].

Therefore, the 3D axial STEM tomography analysis provides an ideal complement to the infor-

mation that can be collected from proExM and 2P-LSM imaging of biocytin-filled astrocytes.

Age-dependent changes in glutamate transporter expression in mice

As mice have become widely used in the scientific community, it is important to determine

whether the estimates collected from rats provide a good approximation of the glutamate

transporter concentration and surface density in astrocytes of the mouse hippocampus. Our

results show that the concentration of glutamate transporter is similar between 7–8 week old

mice and rats (* 76 ± 11 versus * 61 ± 11 μM, n = 3; p = 0.091). These values, however,

change with mouse age, being 17 μM in 2 week old mice, increasing to 98 μM in 6 month old

mice, and then declining to 66–80 μM in 15–21 month old mice (Table 4). Since the extracellu-

lar space in the mouse hippocampus is * 15% [32], the effective concentration of glutamate

transporters in portions of the extracellular space delimited by astrocytic membranes is likely

in the order of 110 − 650 μM within the mouse age range studied here. This is consistent with

values previously obtained from rats (cf. 140–330 μM in rats [11]). Assuming that the total

plasma membrane density is 14 μm2/μm3 [5, 11], then the fraction of the extracellular space

enclosed between an astrocyte membrane and any other membrane is * 35% in mice (i.e., 2 �

3.15/14 � (14 − 3.15)/14 μm2/μm3). This means that in the mouse hippocampus, the effective

concentration of glutamate transporters in portions of the extracellular space flanked by astro-

cytic and non-astrocytic membranes is 0.3 − 1.9 mM, depending on the mouse age.

These values, which are similar to those previously obtained from rats, indicate that the glu-

tamate uptake capacity in the hippocampus can vary substantially with age: increasing progres-

sively until adulthood and then starting to decline after 6 months of age. We believe our data

extend previous works through the analysis of a much broader age window. For example,

developmental changes in postnatal expression of GLAST and GLT-1 in the mouse hippocam-

pus were previously analyzed between 3–5 days and 2 months of age [44]. According to this

work, in mice, the relative expression of GLAST increases progressively during the first three

post-natal weeks, when it plateaus to levels found in adult tissue (i.e., 2 month old) [44]. By

contrast, the expression of GLT-1 continues to increase progressively between 3–5 days after

birth and 2 months of age in mice [44]. Our results differ from those of [44], which suggested

that the expression of GLAST reaches adult protein levels at P20–25. This discrepancy might

be simply due to the fact that [44] did not analyze mice older than 2 months, possibly over-

looking a further increase in GLAST expression that occurs at a later time point. We find that

the developmental trend of expression of GLAST and GLT-1 within the wide range of ages

tested here (from 2 weeks to 21 months) is qualitatively similar. In both cases, the expression

of these transporters continues to increase until 6 months of age. This is consistent with the

work of [93] in rats, showing a progressive increase in the postnatal expression of GLAST and

GLT-1 until adulthood in the cortex, cerebellum and striatum, albeit with different magnitude

and time course across brain regions. However, the exact age of the adult rats used by [93] is

not included in their work, making a close comparison particularly challenging. A key differ-

ence that we find between GLAST and GLT-1 lies in the fact that the surface density of GLT-1

is 0.85 times that of GLAST in 2 week old mice, and increases to 2 times that of GLAST in 3

week old mice. In 6 month old mice, the surface density of GLT-1 is 3 times that of GLAST.

Therefore, GLT-1 is already the dominant glutamate transporter variant in the hippocampus

of 3 week old mice, well before adulthood. The different levels of expression of GLAST and

GLT-1 suggest the existence of potential differences in molecular and cellular mechanisms that

regulate GLAST and GLT-1 expression in mouse astrocytes throughout development. These
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regulatory mechanisms include complex signaling cascades and suggest that different gluta-

mate transporter variants might have different susceptibility to their activation [94].

In this general context, our data indicate that the expression of the astrocyte glutamate

transporters GLAST and GLT-1 increases progressively from adolescence to young adulthood

and middle age, before declining with aging. This increased expression could function to pre-

serve the spatial specificity of synaptic transmission, limiting the ability of glutamate to activate

receptors at a distance from its release site. It could also provide a mechanism to reduce further

the steady-state concentration of glutamate in the extracellular space, with potentially notable

effects on fast synaptic transmission, short- and long-term plasticity, as well as on the dynam-

ics of biosynthetic mechanisms to regulate glutamate biosynthesis and degradation in

astrocytes.

On the other hand, a disruption of these regulatory mechanisms of glutamate homeostasis

could act as a main contributing factor to cognitive decline and neurological disease in the

aging brain. A natural decline in the expression of astrocytic glutamate transporters has been

suggested to occur in rats (3 − 6 month versus 24 − 27 month old) [95], 3 month versus 24

month old [96]) and also in humans (8 − 40 versus and 40 − 63 years old [97]). In humans, a

decline in glutamate transporter expression has also been detected in neurodegenerative dis-

ease like attention deficit hyperactivity disorder [98, 99], autism [98, 100], depression [101–

103] and Alzheimer’s disease [104–107], prompting the idea that it may represent an impor-

tant risk factor for these disease [108].

Uneven distribution of glutamate transporters along the plasma membrane

of astrocytes

Glutamate transporters are unevenly distributed along the astrocytic plasma membrane [13,

16, 42]. Accordingly, immunostaining experiments in hippocampal sections and organotypic

slice cultures show that GLT-1 forms small clusters in lamellae and filopodia-like processes,

the size and distribution of which can be modulated by neuronal activity [42]. This confined

expression, which is a common property among transporters with trimeric assembly like

ASCT1, is not attributed to the presence of consensus sequences in the cytoplasmic tails of the

transporters, which act as binding sites of cytosolic scaffolding proteins. Instead, it has been

suggested to be due to the presence of an extracellular loop at the center of the 4th transmem-

brane helices, not far from the glutamate binding sites, which does not require transporter

activity [48]. In the astrocyte tips at the end of astrocyte branches, and in fine leaves protruding

laterally from each branch, the surface density of glutamate transporters is high, due to the

presence of a transmembrane domain acting as a sorting signal to the astrocyte processes tips

[48]. The increased density of glutamate transporters in astrocytes tips is largely due to a

2.3-fold increase in GLT-1 expression in the tips/leaves compared to the soma [48, 75]. By con-

trast, GLAST is 0.6-fold less abundant in the tips/leaves compared to the soma. These findings

indicate that the molecular mechanisms responsible for sorting glutamate transporters to dif-

ferent sub-cellular compartments might differ among specific variants [48, 75]. Our data show

that these tips, defined as the hemispheric cap of terminal processes, together with leaves, rep-

resent a relatively small portion of the surface area of an astrocyte (8.7 ± 2.7%). A typical astro-

cyte occupies a 588,000 μm3 domain of the hippocampus (Fig 4E). Within this volume, there

are 588, 000 − 1, 764, 000 synapses, based on anatomical estimates suggesting that there are 1

− 3 μm−3 synapses in the hippocampal neuropil [109]. Given that only 57% of these synapses

have an astrocytic process apposed to them [4], the number of synapses contacted by an astro-

cyte is 335, 000 − 1, 005, 000. This number is higher than the average number of tips/leaves of

an astrocyte (2,456), suggesting that only 0.2 − 0.7% of all synapses in the neuropil volume
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occupied by an astrocyte are contacted by a tip/leaf. For GLAST, the tips/leaves:shaft:stem:

soma expression ratio with respect to the soma is 0.6:0.5:0.8:1, whereas this is 2.3:1.4:0.7:1 for

GLT-1. In other words, the tips/leaves:shaft:stem:soma expression ratio with respect to the

soma of all glutamate transporters is 1.4:0.9:0.7:1. This means that * 99% synapses contacted

by an astrocyte have only 50 − 71% of the glutamate transporters found at synapses contacted

by astrocyte tips/leaves. At first sight, these estimates might seem at odds with those collected

in anatomical studies showing that in layer II of the mouse somatosensory and anterior cingu-

late cortex, * 60% of the astrocytic processes in contact with excitatory synapses come from

leaflets, * 37% from branchlets and * 3% from branches [110]. This classification was based

on the diameter of these processes [111]. Here, the term leaflets refers to processes with dimen-

sions on the scale of hundreds of nanometers [111]. Our classification is slightly different, as it

is based on the identity of a process. Although the diameter of tips/leaves is * 30 nm, stems

and branches are defined as such regardless of their dimensions, and these can vary signifi-

cantly as one moves from the base to the ending of a process. For this reason, we do not think

that our results and those of [110] might be necessarily in conflict. Unfortunately, some level

of ambiguity in the terminology pervades the field, and this might be due, in part, to historical

limitations of 2D-EM works, where determining the identity of the astrocytic sub-cellular

compartment in contact with a synapse was a particularly challenging task. While trying to

generate a unifying terminology is desirable but beyond the scope of this work, we emphasize

the importance of providing clear definitions when it comes to the nomenclature of different

sub-cellular compartments. Since changes in the local density of glutamate transporters alter

the extent of extrasynaptic AMPA/NMDA receptor activation, these findings indicate that

there is a significant proportion of synapses where the activation of these receptors is favored.

Our findings also indicate that crowding effects my introduce an upper limit to the expression

of glutamate transporters in spatially confined astrocytic processes. This, in turn, could con-

tribute to the limited surface mobility of these molecules in astrocyte tips [2].

At first sight, the findings that glutamate transporter occupy essentially all the surface area

of tips/leaves may in astrocytes of 6 month old mice might seem at odds with transcriptomics

data detecting mRNAs for molecules other than glutamate transporters that can be readily

transcribed in peripheral or perisynaptic astrocytic processes (e.g., potassium channels, con-

nexins) [112, 113]. Note, however, that in these works, these astrocytic processes are identified

for their proximity to synapses, but can be formed by any of the sub-cellular compartments

described in our own work (i.e., soma, stems, shafts, tips/leaves). For this reason, we do not

think that there is any inconsistency between our and previous transcriptomic data. Last, we

would like to point out that our data provide ballpark figures. As such, the finding that 100%

of the surface area of astrocyte tips/leaves in 6 month old mice is occupied by transporters

indicates that the vast majority of the surface area of these processes is occupied by transport-

ers. The possibility that other membrane proteins might be expressed is not ruled out, but just

seems rare according to our estimates.

The 3/2 rule applies to astrocytes

According to Rall’s equivalent cylinder model, the complexity of branching geometries of cells

can be reduced to that of a simple cylinder [61]. This condition is satisfied, in neurons, when

the relationship between the diameter of the parent and daughter branches at a particular

branching point follows a constraint commonly referred to as the 3/2 rule [61–63]. Under

these conditions, the input conductance of dendritic branches depends on the 3/2 power of

the branch diameter [61]. Our anatomical measures indicate that the diameter distribution of

daughter and parent astrocytic branches at a branching point also appear to be described by
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the 3/2 rule (Table 3). The ability to map the entire branching geometry of an astrocyte as an

equivalent cylinder according to the 3/2 rule means that the input conductance of each branch

cylinder also depends on the 3/2 power of its diameter and that the fundamental rules of pas-

sive signal propagation and integration through astrocyte branches share the same biophysical

properties of neurons, validating the use of compartmental models for these cells.

Conclusion

Together, our findings provide a quantitative framework to study glutamate uptake and signal

propagation in astrocytes, with long-range effects on the control of synaptic specificity. We

provide estimates of glutamate transporter surface density in different sub-cellular compart-

ments in astrocytes of the mouse hippocampus, at different ages. Strikingly, the identity of the

sub-cellular domain of the astrocyte membrane that is in contact with a synapse emerges as a

major determinant of glutamate spillover and extrasynaptic receptor activation, due to the

uneven distribution of glutamate transporters. Recent findings identify local hot spots for

astrocytic membrane depolarization induced by extracellular potassium accumulation during

action potential generation, which might alter the efficacy of glutamate uptake through their

action on glutamate transporters [114]. These findings may point out to the existence of local

clusters of potassium channels on the astrocyte membrane, although their distribution along

different sub-cellular compartments remains to be determined. The emerging scenario, based

on this and our own work, is that of a complex molecular landscape of the astrocyte plasma

membrane, a far cry from the assumptions of uniform molecular distributions that are pres-

ently used.

Supporting information

S1 Appendix. Geometrical computations. This file contains the mathematical details of for

estimating the maximal density of glutamate transporters in a circle, sphere and cylinder.

(PDF)

S1 Fig. Geometrical approximations used for modeling transporters. A. Extracellular view

of the ribbon representation of a GltPh trimer, with protomers shown in orange, magenta and

cyan. The green triangle with side length w = 8 nm is used to approximate the cross section of

the trimer. B. View of the trimer parallel to the membrane. The green rectangle with h = 6.5

nm height is used to approximate the side view of the trimer. C. Spherical triangle (formed by

three intersecting lunes) with spherical angles α, β and γ, corresponding to angles at the center

of the sphere called a, b and c, respectively. D. Schematic representation of a trimer (green tri-

angular prism) protruding through the plasma membrane of a spherical compartment. E.

Schematic representation of a transporter protruding inside a cylindrical compartment; the

bottom of the trimer and its projection onto the x, y Cartesian coordinate plane are shown as

green triangles. F. Projection of the trimer onto the coordinate plane, used as the domain for

computing the double integrals for AD
sphere and AD

cyl.

(TIF)

S2 Fig. Spatial relationship between adjacent glutamate transporter trimers in a circle. A.

Each transporter trimer had a portion of length (hin) that could protrude inside the circle from

the cytoplasmic layer of the plasma membrane. The side length of the trimers was ω = 8 nm.

This spatial arrangement provided a framework to estimate the maximum number of trans-

porter trimers and monomers that can reside in the perimeter of a circle (ncircle) of radius r1. B.

Schematic representation of circles with transporter trimers. The glutamate transporter tri-

mers were represented as rectangles with 8 nm side length and 6.5 nm height. The example at
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the top refers to trimers that do not protrude into the circle. In the example in the middle, the

trimers were located half way through the plasma membrane and protruded in the circle by

1.75 nm. In the case described at the bottom, the trimers protruded all the way through the

membrane, for 3.5 nm. C. Estimates of the maximum number of transporter molecules (3ncir-
cle) that can be positioned along the circumference of circles of different radius r1. We exam-

ined the three different cases described in (A), where hin = 0 nm (black), hin = 1.75 nm (dark
green) and hin = 3.5 nm (light green). D. Estimates of the 2D glutamate transporter monomer

density for each value of hin. E. Proportion of the circle perimeter occupied by transporter

monomers for increasing values of the circle radius. An asymptotic value of 1 was reached at

varying rates depending on the value of hin.
(TIF)

S3 Fig. Spatial relationship between adjacent glutamate transporter trimers in a sphere. A.

Top, Spatial distribution of transporter trimers in a sphere. Bottom, A spherical triangle is a fig-

ure formed on the surface of a sphere by three great circular arcs intersecting pairwise in three

vertices. The spherical triangle is the spherical analog of the planar triangle. The figures shows

a spherical triangle with angles a, b, c, equivalent to the angles α, β, γ. B. Schematic representa-

tion of spheres used as 3D representations of the astrocyte soma. Glutamate transporter tri-

mers are represented as triangular prisms with a base of 8 nm side length and 6.5 nm height.

The example at the top refers to trimers that do not protrude into the sphere. In the example

in the middle, the trimers are located half way through the plasma membrane and protrude in

the sphere by 1.75 nm. In the case described at the bottom, the trimers protrude all the way

through the membrane, for 3.5 nm. C. Estimates of the maximum number of transporter tri-

mers ns phere that can be positioned along the surface of spheres of different radius r1. We

examined the three different cases described in (B), where hin = 0 nm (black), hin = 1.75 nm

(dark green) and hin = 3.5 nm (light green). D. Estimates of the 3D transporter trimer surface

density for each value of hin. E. Fraction of the surface area of the sphere that can be occupied

by transporter trimers.

(TIF)

S4 Fig. Spatial relationship between adjacent glutamate transporter trimers in a cylinder.

A. Schematic representation of trimer arrangement around the lateral surface of a cylinder.

For clarity, we only show three adjacent trimers, but in reality they keep covering the entire lat-

eral surface of the cylinder using the same pattern. B. Schematic representation of cylinders

used as 3D representations of astrocytic branches. Glutamate transporter trimers are repre-

sented as triangular prisms with a base of 8 nm side length and 6.5 nm height. The example at

the top refers to trimers that do not protrude in the lumen of the cylinder. In the example in

the middle, the trimers are located half way through the plasma membrane and protrude

inside the cylinder by 1.75 nm. In the case described at the bottom, the trimers protrude all the

way through the membrane, for 3.5 nm. C. Estimates of the maximum trimer number ncyl that

can be positioned along the lateral surface of cylinders of different radius rcyl (the height of the

cylinder in this case is set to L = 1 μm. We examined the three different cases described in (B),

where hin = 0 (black), hin = 1.75 (dark green) and hin = 3.5 nm (light green). D. Estimates of tri-

mer surface density for each value of hin. E. Estimates of the fraction of the lateral surface of

the cylinder that can be occupied by trimers for each value of hin. The area shaded in magenta

represents the range of experimental measures for tip diameters.

(TIF)

S5 Fig. Geometric constrains on trimer distribution close to branch points. A. The illustra-

tion shows in cross section the astrocyte geometry at a branch point and at a branch tip. Each
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transporter trimer is represented as a green rectangle of height h. In this specific illustration,

the trimer is protruding out of the plasma membrane by hout, but our calculations were per-

formed for hin = 0–3.5 nm. The branching points and branch tip are regions that display a

crowdedness effect, which reduces the local density of transporter trimers (as further explained

in the text). B. Close-up view of the tip of an astrocyte process ending either as a cylinder (left)
or as a hemisphere (right). C. Estimates of the maximum trimer number that can be placed in

a cylinder with height equals to the radius (solid line) or in a hemisphere (dashed line), for

hin = 0 nm (top), hin = 1.75 nm (middle) and hin = 3.5 nm (bottom). D. As in C, for trimer den-

sity. E. As in C, for the portion of the plasma membrane occupied by transporter trimers.

(TIF)

S6 Fig. Walking cubes approximation for measuring astrocyte process volume fraction in

the gliapil. Simulated surrounding volume for an example cell with 3 primary branches, using

a mesh of cubes with side length of 2 μm (shown in red). The blue wedge represents a portion

of the astrocyte soma. The astrocyte processes departing from the soma are color coded based

on their branch level.

(TIF)
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