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Abstract—We consider the use of regenerating codes in dis-
tributed storage systems where connections between the nodes
are constrained by a graph. In this setting the cost of node
repair is determined by the graphical distance from the helper
nodes to the failed node. In our recent work (arXiv:2108:00939)
we considered the MSR case, showing that linear MSR codes are
amenable to intermediate processing of the information, resulting
in reduced repair bandwidth which also meets the lower bound
on the minimum repair cost. Here we extend this study to the
non-MSR case. We derive a lower bound on the repair bandwidth
and formulate repair procedures with intermediate processing for
several families of regenerating codes, with an emphasis on the
recent constructions from multilinear algebra. We also consider
intermediate processing for the problem of partial node repair.

I. INTRODUCTION

A distributed storage system (DSS) is formed of a number
of nodes connected by communication links which carry the
information to accomplish the two basic tasks performed in the
system, namely data recovery and node repair. The amount of
information sent over the links is a key metric of the system
efficiency. The problem of node repair has been widely studied
in the literature in the last decade following its introduction in
[1]. A DSS is modeled as n storage nodes each with a storage
capacity of l units, used to store a file F of size M , such that
the following two properties are met:

• (Reconstruction) The entire file can be recovered by
accessing any k < n nodes.

• (Repair) If a single node fails, data from d surviving, or
helper, nodes is used to restore the lost data. We assume
that each of the helper nodes contributes β ≤ l units of
data, and that k ≤ d ≤ n− 1. The parameter β is called
the per-node repair bandwidth.

We write the parameters of a regenerating code as
(n, k, d, β, l,M). The fundamental tradeoff between the file
size and the repair bandwidth is expressed by the bound of
[1] which has the form

M ≤
k∑

i=1

min{l, (d− i+ 1)β}. (1)

In this work we focus on the repair problem, which exists
in two versions, namely functional and exact repair. While
for functional repair the entire bound (1) is achievable, for the
more stringent exact repair requirement there is a gap between
the achievable file size and the bound, first demonstrated in
[14] in an example and then extended in [7], [11] to all sets
of parameters (n, k, d). This bound can be attained for the
two corner points of the storage/bandwidth curve (1), giving
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rise, respectively, to Minimum Storage Regenerating (MSR)
codes and Minimum Bandwidth Regenerating (MBR) codes.
The MSR point is the most widely studied in the literature,
giving rise to a variety of interesting families of algebraic
codes. Some of these families are mentioned below, and we
refer to the survey [9] for a detailed overview. The main
focus of this work is on interior points of the trade-off curve.
Several interior-point code families are known, among them
constructions in [5], [12], [4], and [2].

Problem statement and our results: We consider a variant
of the node repair problem in which communication between
the nodes is constrained by a (connected) graph G(V,E)
and the cost of sending a unit of information from vi to
vj is determined by the graph distance ρ(vi, vj) in G. This
assumption results in a bias in the information cost of node
repair in favor of the helper nodes closer to the failed node vf ,
and suggests that the helper nodes located closer to the failed
node vf combine the information received from the outer
extremes of the helper set before relaying it to the failed node.
In our earlier work [8], which also introduced this problem,
we called this approach Intermediate Processing, or IP (as
opposed to direct relaying). In [8] we considered the MSR
case of this problem, showing that linear MSR codes can be
modified to implement IP, resulting in savings in the repair
bandwidth over simple relaying.

Here we study a general version of this problem, considering
regenerating codes on graphs for interior points on the tradeoff
curve. In Sec. II we prove a general lower bound on the repair
bandwidth which generalizes a result of [8]. Our main results
are related to implementing the IP techniques for interior-point
codes, and our main focus is evaluation codes1. We start by
rephrasing the IP repair for product-matrix codes (which are
still MSR codes) and their recent extension in [3], which sets
the stage for later parts of the paper. Then in Sec. III-D we
turn to interior point codes. Of the general interior-point code
families, the moulin codes of [2] fall under the evaluation
category, and we show that repair for these codes can be
adjusted to support IP. The same claim applies to determinant
codes, omitted from this extended abstact. We note however
that, unlike the MSR case, there exists a gap between the
lower bound on the minimum possible required information
transmission and what is achievable using the constructions
designed here.

II. BOUNDS ON THE REPAIR BANDWIDTH

For a finite field F = Fq we consider a code C ⊂ Fnl

whose codewords are represented by l × n matrices over F .
We assume that each coordinate (a vector in F l) is written
on a single storage node, and that a failed node amounts to

1We use this term loosely to refer to a code whose encoding can be phrased
as evaluation of a linear functional written in a convenient algebraic way.
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having its coordinate erased. Suppose that each coordinate of
a codeword C ∈ C is written on a vertex of a graph G(V,E)
with |V | = n. Suppose further that the coordinate Cf for
some f ∈ [n] is erased, i.e., that the node f ∈ [n] has failed.
Let D ⊂ V \{vf}, |D| = d be the set of nodes in the graph
G that are closest to vf in terms of graph distance. This set
can be found by a breadth-first search with vf as the root
node. Let Gf,D = (Vf,D, Ef,D) be the subgraph spanned by
D ∪ {vf}. To repair the failed node, the helper nodes provide
information which is communicated to vf over the edges in
Ef,D. Each helper node in the graph, starting from the nodes
farthest from the failed node, sends its repair data (β symbols
each) to the next node along the shortest path towards vf .
An intermediate node can simply collect this data, supplement
it with its own information, and forward it along the path
to vf (Accumulate-and-Forward, or AF). The AF technique
can be wasteful in high-depth repair graphs since the same
data gets transmitted multiple times. This gives rise to the
problem of attaining savings by processing the information in
the intermediate nodes relying on the IP approach. This idea
has been already validated for MSR codes in [8].

A. Lower bounds on the repair bandwidth
In this section we derive a lower bound on the minimum

required transmission for a set of helper nodes for repair of a
failed node. Suppose that the information stored at the vertices
is given by random variables Wi, i ∈ [n] that have some joint
distribution on (F l)n and satisfy H(Wi) = l for all i, where
H(·) is the entropy. For a subset A ⊂ V we write WA =
{Wi, i ∈ A}. Denote by Sf

i the information provided to vf
by the ith helper node in the traditional fully connected repair
scheme, and let Sf

D = {Sf
i , i ∈ D}. By definition we have

H(Sf
i ) = β, H(Sf

i |Wi) = 0, H(Wf |Sf
D) = 0.

We also assume that H(F |WB) = 0 for any B ⊂ [n], |B| =
k, which supports the data reconstruction property. The fol-
lowing result was proved in [13]:

Lemma II.1. For any A ⊂ [n], |A| ≤ d and i ̸∈ A

H(Wi|WA) ≤ min(l, (d− |A|)β).

The next lemma forms a simple extension of our Lemma
II.1 in [8], generalizing it to all exact regenerating codes.

Lemma II.2. Let vf , f ∈ [n] be the failed node. For a subset
of the helper nodes E ⊂ D let Rf

E be a function of Sf
E such

that
H(Wf |Rf

E , S
f
D\E) = 0. (2)

If |E| ≥ d−k+1, then H(Rf
E) ≥ (d−k+1)β. In particular,

at the MSR point we have H(Rf
E) ≥ l.

Proof: By the assumption (2), given the contents of all the
nodes in D\E, the information contained in Rf

E is sufficient
to repair vf , i.e.,

H(Wf |Rf
E ,WD\E) = 0. (3)

We have |D\E| ≤ k − 1. Consider a set A ⊂ E with |A| =
k − 1− |D\E|. Now, by (3)

H(Rf
E ,WD\E ,WA) = H(Rf

E ,WD\E ,Wf ,WA) = M, (4)

where the first equality in (4) follows from (3) and the chain
rule, and the second follows from reconstruction property
because |D\E|+ |A|+ 1 = k. Next observe that

H(Rf
E ,WD\E ,WA) ≤ H(Rf

E) +H(WD\E ,WA),

and so
H(Rf

E) ≥ M −H(WD\E ,WA)

≥ M −
k−1∑
i=1

min{l, (d− i+ 1)β}

where the last inequality follows from Lemma II.1. The largest
value of M is given in (1), implying the claim of the lemma.

Note that at the MSR point (d − k + 1)β = l and we
recover Lemma II.1 from [8]. In that work we also showed
that H(Rf

E) = l is achievable at the MSR point. At the same
time for any other point on the tradeoff curve, (d−k+1)β < l.
Below in this paper we show that the value H(Rf

E) = l can be
achieved by some code families, and hence there is a possibil-
ity for improvement of the bound. The following lemma from
[7] shows that this bound can indeed be sometimes improved.

Lemma II.3 ([7], Lemma 2). For any pair of disjoints sets
E,B ⊆ D with i /∈ E ∪B, we have

H(Sf
E |WB) ≥

|E|
d− |B|

H(Sf
D|WB).

Taking B = ∅ and noting that H(Sf
D) ≥ H(Wf ) ≥ l, we

obtain

Corollary II.4. For any E ⊂ D, H(Rf
E) ≥

|E|l
d .

If |E| > (d − k + 1)β(d/l) then this result is better than
the claim of the lemma at the interior points.

The constructions presented below do not reach the bounds
proved here, leaving an open question of the optimal repair
bandwidth for the IP repair technique.

III. INTERMEDIATE PROCESSING FOR EVALUATION CODES

In this section we show that F -linear regenerating codes
support repair on graphs with lower communication complex-
ity compared to the AF strategy. We begin with an alternative
description of node repair using the IP strategy at the MSR
point for product-matrix codes and their generalization [3] (the
latter result is formally new). The main purpose of the MSR
part of this section is to develop intuition which will enable
us to define node repair for interior-point codes in Sec. III-D.

A. Product-matrix (PM) codes

In this section we rewrite the IP repair of PM codes
originally introduced in [8, Sec.II.A] to fit the evaluation
code paradigm. PM codes, constructed in [10], form a family
of MSR codes with parameters [n, k, d = 2(k − 1), l =
k − 1, β = 1,M = k(k − 1)]. In the original description,
the data file F is represented by two symmetric matrices
S1, S2 of order k−1, accounting for a total of M independent
symbols, and the encoding is defined as multiplication of
(S1|S2)

⊺ by some well-chosen Vandermonde-like matrices.
To phrase this differently, let s1(y, z) and s2(y, z) be two
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symmetric polynomials over F of degree at most k − 2 in
each of the two variables. Because of symmetry, the total
number of independent coefficients is M , so s1, s2 can be
used to represent F . Letting a1, . . . , an be distinct points of
F , we let node i store the l coefficients of the polynomial
g(i)(z) = s1(ai, z) + ak−1

i s2(ai, z) for all i ∈ [n].
Using this definition of the codes, the IP repair process of

[8] can be phrased as follows. Let f ∈ [n] be the failed node,
let D be the set of d helpers, and let A be a set of helper
nodes of size at least d − k + 1 = k − 1. For h ∈ D define
the polynomial

l(h)(z) =

d−1∑
j=0

lhj z
j :=

∏
i∈D

i̸=h

z − ai
ah − ai

(5)

of degree at most d− 1. Then the set A transmits the l-vector

ξ(f,A) =
∑
h∈A

g(h)(af )


lh0 + ak−1

f lhk−1

lh1 + ak−1
f lhk
...

lhk−2 + ak−1
f lh2k−3

 . (6)

We show that (i) the failed node can recover its value based on
the vector ξ(f,D), and (ii) the intermediate nodes can save on
the repair bandwidth by processing the received information.
To show (i) we prove

Lemma III.1. The content of the failed node f coincides with
the vector ξ(f,D), i.e., g(f)(z) =

∑l−1
i=0(ξ(f,D))i z

i.

Proof. Consider the polynomial H(z) = s1(af , z) +
zk−1s2(af , z) and note that deg(H) ≤ 2k − 3 = d− 1. Thus
if we write H(z) =

∑d−1
j=0 gjz

j , then the polynomial g(f)

defined above can be written as

g(f)(z) =
∑k−2

j=0 (gj + ak−1
f gk−1+j)z

j .

Rephrasing, the contents of the node f is

(g0 + ak−1
f gk−1, g1 + ak−1

f gk, . . . , gk−2 + ak−1
f g2k−3)

⊺.

At the same time, using (5) we can write H(z) in the Lagrange
form H(z) =

∑
h∈D g(h)(af )l

(h)(z). The coefficient vector of
this polynomial is nothing but ξ(f,D).

To show part (ii) we note that the polynomials {lh(z)}h∈D

do not depend on F and can be computed at any node in the
network. So what we care to receive from the helper nodes are
the multipliers {g(h)(af )}h∈D. Hence, for any set of helper
nodes with |A| < d−k+1, it is gainful to send {g(h)(af )}h∈A

rather than the vector ξ(f,A) since the former requires fewer
than l transmissions. To conclude, we see that when |A| ≥
d− k+1, we can transmit the vector ξ(f,A) of dimension l,
meeting the bound of Lemma II.2 and reproducing the result
from [8].

Using multilinear algebra notation, explained in the next
section, we can rephrase the code description as follows.
The encoding is defined as a linear functional ϕ ∈ (F 2 ⊗
S2F k−1)∗, where S2F k−1 is the second symmetric power
(this is another way of saying that the encoding relies on
evaluations of symmetric polynomials). Node i stores a re-
striction of ϕ to xi ⊗ yi ⊗ F k−1, where xi = [1, ak−1

i ], yi =

[1, ai, . . . , a
k−2
i ]. The contents of the failed node is a vector

in the l-dimensional subspace (xf ⊗ yf ⊗ F k−1)∗, and the
IP procedure recovers the coordinates of this vector in stages
that correspond to moving along the repair graph toward the
failed node. A general version of this idea underlies the repair
procedure in the following sections.

B. Linear-algebraic notation

In this section we introduce elements of notation used below
to define code families for which we design IP procedures of
node repair.

For a linear space U over F we denote by U∗ its dual space;
its elements are linear functionals of the form ϕ : U → F . The
spaces U and U∗ have the same dimension and (U∗)∗ ∼= U .
A restriction of ϕ to a subspace V ⊂ U is denoted as ϕ ↾ V .

Let U, V be linear spaces of dimensions m and n, re-
spectively, and let us fix bases {ui}mi=1 and {vj}nj=1. The
tensor product of U and V is a linear space U ⊗ V =
{
∑

ij aijui ⊗ vj , aij ∈ F} where aij ∈ F and the tensors
ui ⊗ vj form a basis in U ⊗ V (thus dim(U ⊗V ) = mn). By
definition, u⊗V = {

∑
j aju⊗vj , aj ∈ F} and u⊗V ⊆ U⊗V

The dual of a tensor product is the tensor product of duals, i.e.,
(U⊗V )∗ = U∗⊗V ∗. We denote by T pV := V ⊗V ⊗· · ·⊗V
the pth tensor power of V . The dimension of T pV is np.

The symmetric power SpV is the linear space of symmetric
tensors, i.e., elements of T pV invariant under transformations
of the form v1 ⊗ · · · ⊗ vp 7→ vσ(1) ⊗ · · · ⊗ vσ(p) for any
permutation σ. We write symmetric tensors as∑

i1,i2,··· ,ip
1≤i1≤i2≤···≤ip≤n

ai1i2···ipvi1 ⊙ vi2 ⊙ · · · ⊙ vip ,

where ⊙ denotes the symmetric product. By definition,
dim(SpV ) =

(
n+p−1

p

)
.

Finally, x ∧ y denotes the exterior (alternating) product of
vectors, characterized by x∧y = −y∧x; hence vσ(1)∧vσ(2)∧
· · · ∧ vσ(n) = sgn(σ)v1 ∧ v2 ∧ · · · ∧ vn, where sgn(σ) is the
signature of the permutation σ. The exterior power ΛpV is a
vector subspace of dimension

(
n
p

)
spanned by elements of the

form vi1 ∧ vi2 ∧ · · · ∧ vip , 1 ≤ i1 < i2 < · · · < ip ≤ n.

C. Generalized PM Codes

An extension of the PM construction was recently proposed
in [3]. The construction of [3, Sec.4] yields a family of MSR
codes with parameters n, k, d = (k−1)t

t−1 , l =
(
k−1
t−1

)
,M = t

(
k
t

)
for any t ≥ 2. In this section we follow the paradigm of
evaluation codes to introduce an IP node repair procedure for
this code family.

We start with a brief description of the code construction.
Let X = F t and Y = F k−t+1. Let L := X ⊗ StY and note
that dim(L) = M. The encoding ϕ : L → Fnl is an F -linear
map. To define a concrete encoding procedure, we fix a basis
in L∗ and let the coordinates of ϕ be the contents of the stored
data.

To support the data reconstruction and node repair tasks,
we further choose, for each i ∈ [n], a pair of vectors xi ∈ X
and yi ∈ Y such that

(i) Any t-subset of xi’s spans X .
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(ii) Any (k − t+ 1)-subset of yi’s spans Y .
(iii) Any d subspaces xi ⊗ yi ⊙ St−2Y span X ⊗ St−1Y.

The first two properties enable data reconstruction, while the
node repair property depends on the third condition [3].

With these assumptions, the contents of node i corresponds
to the restriction ϕ↾xi⊗yi⊙St−1Y ∈ (xi⊗yi⊙St−1Y )∗. This
is consistent with the code parameters: indeed, an element in
(xi⊗yi⊙St−1Y )∗ is completely described by its evaluations
on a basis of the space xi⊗yi⊙St−1Y, which requires storing
exactly l =

(
k−1
t−1

)
evaluations.

As before, let f ∈ [n] be (the index of) the failed node
and let D ⊆ [n] \ {f} be the helper set. Note that we wish to
recover the restriction ϕ ↾ xf⊗yf⊙St−1Y. Choose a basis for
xf ⊗ yf ⊙St−1Y and let xf ⊗ yf ⊙ (yi1 ⊙· · ·⊙ yit−1

) be one
of the basis vectors. Let {y

j1
⊙ · · · ⊙ y

jt−2
, 1 ≤ j1 ≤ j2 · · · ≤

jt−2 ≤ n} be a basis of St−2Y . Similarly to the PM codes, the
helper node i ∈ D transmits to the failed node the restriction
of ϕ to the set of vectors {xi⊗ yi⊙ (y

j1
⊙· · ·⊙ y

jt−2
)⊙ yf}.

By (iii) above we can write

xf ⊗ yf ⊙ (yi1 ⊙ · · · ⊙ yit−1
) = xf ⊗ (yi1 ⊙ · · · ⊙ yit−1

)⊙ yf

=
∑
i∈D

∑
j1,··· ,jt−2

ai,j1···jt−2xi ⊗ yi ⊙ Yj1,...,jt−2 ⊙ yf .

where we denoted Yj1,...,jt−2 = y
j1

⊙ · · · ⊙ y
jt−2

. Again
similarly to the PM codes, any set A ⊆ D with |A| ≥ d−k+1
can transmit the following single evaluation of ϕ along the path
to f :

ϕ
(∑

i∈A

∑
j1,··· ,jt−2

ai,j1···jt−2xi ⊗ yi ⊙ Yj1,...,jt−2 ⊙ yf

)
=

∑
i∈A

∑
j1,··· ,jt−2

ai,j1···jt−2
ϕ(xi ⊗ yi ⊙ Yj1,...,jt−2

⊙ yf ).

This can be done for all basis vectors of the chosen basis of
xf ⊗ yf ⊙ St−1Y, and that requires l =

(
k−1
t−1

)
transmissions

which matches the lower bound of Lemma II.2. Note that the
AF repair would require any set A of helpers to transmit β|A|
symbols of F , which is greater than l for |A| > d− k + 1.

D. IP for Interior Point Codes

The intuition accumulated in the previous sections motivates
the IP protocol for linear regenerating codes of the evaluation
type. We exemplify this approach by using a family of non-
MSR exact repair codes introduced recently in [2] (see also
[9, Sec. 7.2]). Let s be an integer such that n − 1 ≥ d ≥
k ≥ s − 1 ≥ 1. The family of moulin codes that we discuss
(the name was given by the authors of [2]) has parameters
[n, k, d, l, β,M ] where

l =
∑

p+q=s−1(d− k)p
(
k
q

)
β =

∑
p+q=s−2(d− k)p

(
k−1
q

)
M =

∑
p+q=s−1 d(d− k)p

(
k
q

)
−
∑

p+q=s(d− k)p
(
k
q

)
. (7)

Let V = F d−k, W = F k, and U = V ⊕W ∼= F d. We shall
be dealing with spaces of the form T pV ⊗ U ⊗ ΛqW where
p+q = s−1 and p, q ≥ 0. While the general idea is the same as
before (node contents are given by restrictions of linear maps

to subspaces), the detailed description relies on two operations
on tensor products called co-wedge multiplication ∇ and
coboundary operators ∂, defined formally in the appendix.

For a fixed s satisfying the constraints above, the file F is
chosen to be an element ϕ of the dual space⊕

p+q=s−1

(T pV ⊗ U ⊗ ΛqW )∗ (8)

which satisfies the parity checks that place constraints on ϕ
that guarantee that the diagram

T pV ⊗ Λq+1W F

T pV ⊗W ⊗ ΛqW

ϕ

∇ ϕ

commutes for all p ≥ 1, q ≥ 0 with p + q = s − 1 (plus
the boundary cases of p = 0, q = −1, not discussed for space
constraints). The file size is the dimension of the direct sum of
the vector spaces (8) minus the dimension of the parity check
space, which is exactly (7). To each node i ∈ [n] we associate
a vector ui ∈ U such that any d of these vectors span U and
any k vectors span U/V under the quotient map U → U/V .
The i-th node stores the following restriction of the mapping
ϕ:

ϕ ↾
⊕

p+q=s−1

T pV ⊗ ui ⊗ ΛqW.

The size l of the node equals dim(T pV ⊗ ui ⊗ ΛqW ).
Now suppose that node f ∈ [n] fails and we are provided

with a set D ⊆ [n] \ {f} of d helpers. Each helper h ∈ D
provides the restrictions of its contents to coboundaries:

ϕ ↾ ∂U
uf
(T pV ⊗ uh ⊗ ΛqW ) (9)

for each pair p, q with p + q = s − 2. We shall need the
following result.

Lemma III.2 ( [2], Thm. 4.1). For all possible p, q ≥ 0, such
that p+ q = s− 1, for all ν ∈ T pV, ω ∈ ΛqW , we have

ϕ(∂U
uf
(∇(ν ⊗ ω)))− ϕ(∂U

uf
(ν ⊗ ω)) = (−1)pϕ(ν ⊗ uf ⊗ ω).

The right-hand side of the above equation is one coordinate
of the failed node, and the left-hand side can be computed
from (9). The statement of next lemma appears in [2] without
a proof. We include it here to set up the notation.

Lemma III.3. 1) For all possible p ≥ 1, q ≥ 0, such that
p + q = s − 1, for all ν ∈ T pV, ω ∈ ΛqW , the tensor ν ⊗ ω
is contained in the linear span of the union of the spaces
{T pV ⊗ uh ⊗ ΛqW}h∈D,p+q=s−2.
2) For all possible p, q ≥ 0, such that p + q = s − 1, for all
ν ∈ T pV, ω ∈ ΛqW , ∇(ν⊗ω) is contained in the linear span
of the union of the spaces {T pV ⊗ uh ⊗ΛqW}h∈D,p+q=s−2.

Proof: 1) Fix p1 ≥ 1, q1 > 0 such that p1 + q1 = s − 1.
Let ν ∈ T p1V and ω ∈ Λq1W . Fix a basis {νi ⊗ uh ⊗
ωi}

(d−k)p1−1( k
q1
)

i=1 of T p1−1V ⊗ uh ⊗ ΛqW . Since the set
{uh}h∈D spans U , we can write

ν ⊗ ω =

Tp1−1V︷ ︸︸ ︷
(ν1 ⊗ · · · ⊗ νp1−1)⊗ νp1︸︷︷︸

U

⊗
ΛqW︷︸︸︷
ω

2022 IEEE International Symposium on Information Theory (ISIT)

1611



and hence ν ⊗ ω is an element of T p1−1V ⊗ U ⊗ Λq1W . So
we can write ν ⊗ ω =

∑
i,h ai,h(νi ⊗ uh ⊗ ωi).

2) Similarly, for a basis {νj ⊗ uh ⊗ ωj}
(d−k)p1( k

q1−1)
j=1

of T p1V ⊗ uh ⊗ Λq1−1W , we can write ∇(ν ⊗ ω) =∑
j,h bj,h(νj ⊗ uh ⊗ ωj).

Lemma III.4. Let A ⊆ D. The nodes in A need to transmit
only l symbols for the repair of f .

Proof. Fix p, q ≥ 0 such that p+q = s−1. Let ν ∈ T pV, ω ∈
ΛqW . If p ≥ 1,

ϕ(∂U
uf
(∇(ν⊗ω)))−ϕ(∂U

uf
(ν⊗ω)) =

∑
j,h

bj,hϕ(∂
U
uf
(νj⊗uh⊗ωj))

−
∑
i,h

ai,hϕ(∂
U
uf
((νi ⊗ uh ⊗ ωi)).

If p = 0 then the second term on the LHS is already 0. If
p > 0, then by Lemma III.2, the LHS is (−1)pϕ(ν⊗uf ⊗ω),
and we have recovered one symbol of the failed node. For
this, the set A need to transmit the element∑

h∈A

[∑
j

bj,hϕ(∂
U
uf
(νj ⊗ uh ⊗ ωj))

−
∑
i

ai,hϕ(∂
U
uf
((νi ⊗ uh ⊗ ωi))

]
.

Doing this for any fixed {ν, ω} basis of T pV ⊗ uf ⊗ ΛqW,
for all values of p, q, requires the set A to transmit a total of
l symbols.

Observe that whenever |A| ≥ ⌈ l
β ⌉, the IP protocol given by

this lemma results in communication savings compared to the
AF repair.

IV. PARTIAL NODE REPAIR

In this section we briefly consider the node repair problem
for the situation when only a part, say γl, 0 ≤ γ ≤ 1, of
node’s symbols are erased. One of the first works devoted to
this question was [6] which derived a bound on the file size
of the form (1) that accounts for the parameter γ.

This problem gives rise to a number of open questions, start-
ing with MSR code constructions, that have not been addressed
in the literature. Without attempting a comprehensive analysis,
we point out that partial repair can be implemented under the
IP approach discussed here. The underlying idea is that the
helper nodes need to transmit only the linear combinations
corresponding to the failed coordinates.

Example IV.1. Consider the [n = 7, k = 4, d = 6, l = 3, β =
1,M = 12] PM MSR code, placed on the following graph.

Suppose that the root node is erased, and the remaining 6
nodes form the helper set. If the entire contents of the root node

is lost, both the AF strategy and the IP strategy of Lemma III-A
require a total transmission of 10 symbols. At the same time, if
only the first coordinate of the root node needs to be recovered,
then the two immediate neighbors of the root node can transmit
just the first row of equation (6), and 6 transmissions suffice.

Let Tf be a rooted tree of Gf,D rooted at f . Let D(v) be the
descendants of node v ∈ Vf,D and let D∗(v) = D(v) ∪ {v}.
We have the following lemma that generalizes our earlier result
(Theorem III.1 in [8]).

Lemma IV.1. Given an [n, k, d, l, β, F ] linear regenerating
code. There exists a repair procedure that recovers a γ ∈ (0, 1)
fraction of the failed node using the repair bandwidth∑

v∈D

min{γl, |D∗(v)|β}.

This result entails savings in communication when the
erased fraction of the node contents γ is small, namely γl < β.

APPENDIX

Here we define operations on tensor product spaces used in
Sec. III-D. The notation below was introduced in Sec. III-D
and III-B. Below p, q > 0.
Co-wedge multiplication:

∇ : T pV ⊗ Λ1W → T pV ⊗W

ν ⊗ w1 → ν ⊗ w1

∇ : T pV ⊗ Λ2W → T pV ⊗W ⊗ Λ1W

ν ⊗ w1 ∧ w2 → ν ⊗ w1 ⊗ w2 − ν ⊗ w2 ⊗ w1

∇ : T pV ⊗ Λq+1W → T pV ⊗W ⊗ ΛqW

ν ⊗ ω ∧ w1 → ∇(ν ⊗ ω) ∧ w1 + (−1)qν ⊗ w1 ⊗ ω.

Coboundary operators (differentials). For any v ∈ V :

∂V
v : ΛqW → U ⊗ ΛqW

ω → 0

∂V
v : U ⊗ ΛqW → T 1V ⊗ U ⊗ ΛqW

u⊗ ω → v ⊗ u⊗ ω

∂V
v : T pV ⊗ U ⊗ ΛqW → T p+1V ⊗ U ⊗ ΛqW

ν ⊗ u⊗ ω → ∂V
v (ν)⊗ u⊗ ω + (−1)pν ⊗ v ⊗ u⊗ ω

and for every w ∈ W :

∂W
w : T pV ⊗ U → T pV ⊗ U ⊗ Λ1W

ν ⊗ u → (−1)pν ⊗ u⊗ w

∂W
w : T pV ⊗ U ⊗ ΛqW → T pV ⊗ U ⊗ Λq+1W

ν ⊗ u⊗ ω → (−1)p+qν ⊗ u⊗ ω ∧ w.

Finally for u ∈ U such that u = v+w, v ∈ V,w ∈ W , define

∂U
u = ∂V

v + ∂W
w .
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