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Interior-point regenerating codes on graphs

Adway Patra

Abstract—We consider the use of regenerating codes in dis-
tributed storage systems where connections between the nodes
are constrained by a graph. In this setting the cost of node
repair is determined by the graphical distance from the helper
nodes to the failed node. In our recent work (arXiv:2108:00939)
we considered the MSR case, showing that linear MSR codes are
amenable to intermediate processing of the information, resulting
in reduced repair bandwidth which also meets the lower bound
on the minimum repair cost. Here we extend this study to the
non-MSR case. We derive a lower bound on the repair bandwidth
and formulate repair procedures with intermediate processing for
several families of regenerating codes, with an emphasis on the
recent constructions from multilinear algebra. We also consider
intermediate processing for the problem of partial node repair.

I. INTRODUCTION

A distributed storage system (DSS) is formed of a number
of nodes connected by communication links which carry the
information to accomplish the two basic tasks performed in the
system, namely data recovery and node repair. The amount of
information sent over the links is a key metric of the system
efficiency. The problem of node repair has been widely studied
in the literature in the last decade following its introduction in
[M]. A DSS is modeled as n storage nodes each with a storage
capacity of [ units, used to store a file .# of size M, such that
the following two properties are met:

o (Reconstruction) The entire file can be recovered by
accessing any k < n nodes.

e (Repair) If a single node fails, data from d surviving, or
helper, nodes is used to restore the lost data. We assume
that each of the helper nodes contributes § < [ units of
data, and that kK < d < n — 1. The parameter 3 is called
the per-node repair bandwidth.

We write the parameters of a regenerating code as
(n,k,d,B,l, M). The fundamental tradeoff between the file
size and the repair bandwidth is expressed by the bound of
[M] which has the form

k
M < min{l, (d—i+1)8}. (1)

i=1
In this work we focus on the repair problem, which exists
in two versions, namely functional and exact repair. While
for functional repair the entire bound () is achievable, for the
more stringent exact repair requirement there is a gap between
the achievable file size and the bound, first demonstrated in
[T4] in an example and then extended in [], [IT] to all sets
of parameters (n,k,d). This bound can be attained for the
two corner points of the storage/bandwidth curve (), giving
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rise, respectively, to Minimum Storage Regenerating (MSR)
codes and Minimum Bandwidth Regenerating (MBR) codes.
The MSR point is the most widely studied in the literature,
giving rise to a variety of interesting families of algebraic
codes. Some of these families are mentioned below, and we
refer to the survey [9] for a detailed overview. The main
focus of this work is on interior points of the trade-off curve.
Several interior-point code families are known, among them
constructions in [8], [T2], [4], and [2].

Problem statement and our results: We consider a variant
of the node repair problem in which communication between
the nodes is constrained by a (connected) graph G(V, E)
and the cost of sending a unit of information from wv; to
v; is determined by the graph distance p(v;,v;) in G. This
assumption results in a bias in the information cost of node
repair in favor of the helper nodes closer to the failed node vy,
and suggests that the helper nodes located closer to the failed
node vy combine the information received from the outer
extremes of the helper set before relaying it to the failed node.
In our earlier work [B], which also introduced this problem,
we called this approach Intermediate Processing, or IP (as
opposed to direct relaying). In [8] we considered the MSR
case of this problem, showing that linear MSR codes can be
modified to implement IP, resulting in savings in the repair
bandwidth over simple relaying.

Here we study a general version of this problem, considering
regenerating codes on graphs for interior points on the tradeoff
curve. In Sec. O we prove a general lower bound on the repair
bandwidth which generalizes a result of [R]. Our main results
are related to implementing the IP techniques for interior-point
codes, and our main focus is evaluation codes®. We start by
rephrasing the IP repair for product-matrix codes (which are
still MSR codes) and their recent extension in [3], which sets
the stage for later parts of the paper. Then in Sec. =0 we
turn to interior point codes. Of the general interior-point code
families, the moulin codes of [Z] fall under the evaluation
category, and we show that repair for these codes can be
adjusted to support IP. The same claim applies to determinant
codes, omitted from this extended abstact. We note however
that, unlike the MSR case, there exists a gap between the
lower bound on the minimum possible required information
transmission and what is achievable using the constructions
designed here.

II. BOUNDS ON THE REPAIR BANDWIDTH

For a finite field ' = F, we consider a code 4 C F™
whose codewords are represented by [ X n matrices over F'.
We assume that each coordinate (a vector in F') is written
on a single storage node, and that a failed node amounts to

'We use this term loosely to refer to a code whose encoding can be phrased
as evaluation of a linear functional written in a convenient algebraic way.
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having its coordinate erased. Suppose that each coordinate of
a codeword C' € ¥ is written on a vertex of a graph G(V, E)
with [V| = n. Suppose further that the coordinate C'y for
some f € [n] is erased, i.e., that the node f € [n] has failed.
Let D C V\{vs},|D| = d be the set of nodes in the graph
G that are closest to vy in terms of graph distance. This set
can be found by a breadth-first search with vy as the root
node. Let Gy p = (Vy p, Ey,p) be the subgraph spanned by
D U {vy}. To repair the failed node, the helper nodes provide
information which is communicated to vy over the edges in
E; p. Each helper node in the graph, starting from the nodes
farthest from the failed node, sends its repair data (8 symbols
each) to the next node along the shortest path towards vy.
An intermediate node can simply collect this data, supplement
it with its own information, and forward it along the path
to vy (Accumulate-and-Forward, or AF). The AF technique
can be wasteful in high-depth repair graphs since the same
data gets transmitted multiple times. This gives rise to the
problem of attaining savings by processing the information in
the intermediate nodes relying on the IP approach. This idea
has been already validated for MSR codes in [H].

A. Lower bounds on the repair bandwidth

In this section we derive a lower bound on the minimum
required transmission for a set of helper nodes for repair of a
failed node. Suppose that the information stored at the vertices
is given by random variables W;,i € [n] that have some joint
distribution on (F')" and satisfy H(W;) = [ for all i, where
H(-) is the entropy. For a subset A C V we write W4 =
{W;,i € A}. Denote by S/ the information provided to v
by the <th helper node in the traditional fully connected repair
scheme, and let S}; = {Sif,i € D}. By definition we have

H(S))=p, H(S/|W;)=0, H(W/|SE)=o0.

We also assume that H(.#|Wpg) = 0 for any B C [n],|B| =
k, which supports the data reconstruction property. The fol-
lowing result was proved in [I3]:

Lemma II.1. For any AC [n],|A| < dandi¢g A
H(W;|Wa) <min(l, (d — |A])B).

The next lemma forms a simple extension of our Lemma
IL.1 in [8], generalizing it to all exact regenerating codes.

Lemma IL2. Let vy, f € [n] be the failed node. For a subset
of the helper nodes E C D let Rf; be a function of S]J; such
that

H(W;|RL, ST

Lp) = 0. )

If|[E| >d—k+1, then H(Ré) > (d—k+1)B. In particular,
at the MSR point we have H(R};) > 1.

Proof: By the assumption (M), given the contents of all the
nodes in D\ E, the information contained in R}.; is sufficient
to repair vy, i.e.,

H(W|RL, W) = 0. 3)

We have |D\E| < k — 1. Consider a set A C E with |A| =
k —1—|D\E|. Now, by (@)

H(RéawD\E7WA) = H(Réa WD\anfa WA) = Ma (4)

where the first equality in () follows from (B) and the chain
rule, and the second follows from reconstruction property
because |D\FE| + |A| + 1 = k. Next observe that

H(R, Wi\, Wa) < HRL) + HWpr g, Wa),

and so
H(R}) > M — H(Wp\g, Wa)

k—1
>M - minfl,(d—i+1)3}

i=1
where the last inequality follows from Lemma IIl. The largest
value of M is given in (), implying the claim of the lemma.
O
Note that at the MSR point (d — k + 1)8 = [ and we
recover Lemma II.1 from [R]. In that work we also showed
that H (Ré) = [ is achievable at the MSR point. At the same
time for any other point on the tradeoff curve, (d—k+1)5 < I.
Below in this paper we show that the value H (R]’;) = [ can be
achieved by some code families, and hence there is a possibil-
ity for improvement of the bound. The following lemma from
[(7] shows that this bound can indeed be sometimes improved.

Lemma IL.3 ([Z], Lemma 2). For any pair of disjoints sets
E,B C D with i ¢ E U B, we have

FE
H(SHWs) > 2

f

Taking B = () and noting that H(Sf;) > H(Wy) > 1, we

obtain
E|l

Corollary I14. For any E C D, H (Rg) > %.

If |[E| > (d — k+ 1)3(d/l) then this result is better than
the claim of the lemma at the interior points.

The constructions presented below do not reach the bounds
proved here, leaving an open question of the optimal repair
bandwidth for the IP repair technique.

III. INTERMEDIATE PROCESSING FOR EVALUATION CODES

In this section we show that F'-linear regenerating codes
support repair on graphs with lower communication complex-
ity compared to the AF strategy. We begin with an alternative
description of node repair using the IP strategy at the MSR
point for product-matrix codes and their generalization [3] (the
latter result is formally new). The main purpose of the MSR
part of this section is to develop intuition which will enable
us to define node repair for interior-point codes in Sec. [II=.

A. Product-matrix (PM) codes

In this section we rewrite the IP repair of PM codes
originally introduced in [8, Sec.I.A] to fit the evaluation
code paradigm. PM codes, constructed in [I0], form a family
of MSR codes with parameters [n,k,d = 2(k — 1), =
k—1,86 =1,M = k(k — 1)]. In the original description,
the data file .% is represented by two symmetric matrices
S1, S5 of order k— 1, accounting for a total of M independent
symbols, and the encoding is defined as multiplication of
(51]S2)T by some well-chosen Vandermonde-like matrices.
To phrase this differently, let s;(y,z) and sa(y,z) be two
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symmetric polynomials over F' of degree at most £k — 2 in
each of the two variables. Because of symmetry, the total
number of independent coefficients is M, so si,s can be
used to represent .#. Letting aq,...,a, be distinct points of
F, we let node i store the [ coefficients of the polynomial
99 (2) = s1(ai, 2) + aF " tsy(as, 2) for all i € [n).

Using this definition of the codes, the IP repair process of
[R] can be phrased as follows. Let f € [n] be the failed node,
let D be the set of d helpers, and let A be a set of helper
nodes of size at least d —k+ 1 =k — 1. For h € D define
the polynomial

d—1
. zZ — Q;
1M (z) = § e = | | — (5)
j=0 i€D ah — @i

i#h

of degree at most d — 1. Then the set A transmits the [-vector

I+ a’;;lzl,f;_l
I+ a5t
ok
§HA) = gM(ay) . . ©
heA k L
lﬁ,—2 +ay lgk—?)

We show that (i) the failed node can recover its value based on
the vector £(f, D), and (ii) the intermediate nodes can save on
the repair bandwidth by processing the received information.
To show (i) we prove

Lemma IIL.1. The content of the failed node f coincides with
the vector £(f, D), ie., g\ (z) = Zé;é(g(ﬁ D)); 2%

Proof. Consider the polynomial H(z) = si(as,z) +
z#=1sy(ay,z) and note that deg(H) < 2k — 3 = d — 1. Thus
if we write H(z) = Zj;é g;#’, then the polynomial g(f)
defined above can be written as

k—2 - j
9N (z) = 095 + af g-145) 7
Rephrasing, the contents of the node f is

(90 + a?_lgk’—la g1+ a?_lgk, s Gk—2 + a{,fé_ngk—3)T-

At the same time, using (B) we can write H(z) in the Lagrange
form H(z) =3, cp 9" (ay)I™(2). The coefficient vector of
this polynomial is nothing but £(f, D). O

To show part (ii) we note that the polynomials {l1,(z)}ren
do not depend on .# and can be computed at any node in the
network. So what we care to receive from the helper nodes are
the multipliers {g")(as)}sep. Hence, for any set of helper
nodes with |A| < d—k+1, it is gainful to send {g™ (as)}nea
rather than the vector £(f, A) since the former requires fewer
than [ transmissions. To conclude, we see that when |A| >
d—k+ 1, we can transmit the vector £(f, A) of dimension [,
meeting the bound of Lemma I and reproducing the result
from [R].

Using multilinear algebra notation, explained in the next
section, we can rephrase the code description as follows.
The encoding is defined as a linear functional ¢ € (F? ®
S2FF=1)* where S?F*~! is the second symmetric power
(this is another way of saying that the encoding relies on
evaluations of symmetric polynomials). Node ¢ stores a re-
striction of ¢ to z; ® y; ® F*~1, where z; = [1,ar '], y; =

1,ai,...,a52

,a; ]. The contents of the failed node is a vector
in the [-dimensional subspace (7; ® y; ® F¥~1)*, and the
IP procedure recovers the coordinates of this vector in stages
that correspond to moving along the repair graph toward the
failed node. A general version of this idea underlies the repair

procedure in the following sections.

B. Linear-algebraic notation

In this section we introduce elements of notation used below
to define code families for which we design IP procedures of
node repair.

For a linear space U over F' we denote by U* its dual space;
its elements are linear functionals of the form ¢ : U — F'. The
spaces U and U* have the same dimension and (U*)* = U.
A restriction of ¢ to a subspace V C U is denoted as ¢ [ V.

Let U,V be linear spaces of dimensions m and n, re-
spectively, and let us fix bases {u;}*; and {v;}}_;. The
tensor product of U and V is a linear space U ® V =
{Zij a;;T; ® Uj,a;; € F'} where a;; € F' and the tensors
u; ® U; form a basis in U ® V' (thus dim(U ® V') = mn). By
definition, u®V = {>_; a;u®v;,a; € F'} and u®@V C URV
The dual of a tensor product is the tensor product of duals, i.e.,
(UaV)* =U*®V*. We denote by TPV :=VRV®---QV
the pth tensor power of V. The dimension of TPV is n?.

The symmetric power SPV is the linear space of symmetric
tensors, i.e., elements of 7PV invariant under transformations
of the form v ® -+ @ Uy = V(1) @ -+ @ Vy(py for any
permutation o. We write symmetric tensors as

>

i1,i9, " ,ip
1<i1<iz<-<ip<n

Qiyig-rip Uiy O Viy O OV,

where ® denotes the symmetric product. By definition,
dim(SPV) = ("2,

Finally, A y denotes the exterior (alternating) product of
vectors, characterized by x Ay = —yAz; hence Uy (1) AVUqg(2) A
© ANUg(n) = sgn(o)vy AUz A -+ AUy, where sgn(o) is the
signature of the permutation o. The exterior power APV is a
vector subspace of dimension (Z) spanned by elements of the
formiil/\ﬁiz/v--/\@p,lgil <dg < --- <ip§n.

C. Generalized PM Codes

An extension of the PM construction was recently proposed
in [3]. The construction of [3, Sec.4] yields a family of MSR
codes with parameters n, k,d = (k;;ll)t?Z = (I::ll),M = t(f)
for any ¢ > 2. In this section we follow the paradigm of
evaluation codes to introduce an IP node repair procedure for
this code family.

We start with a brief description of the code construction.
Let X = Ft and Y = FF=**! Let L := X ® S'Y and note
that dim(L) = M. The encoding ¢ : L — F™ is an F-linear
map. To define a concrete encoding procedure, we fix a basis
in L* and let the coordinates of ¢ be the contents of the stored
data.

To support the data reconstruction and node repair tasks,
we further choose, for each i € [n], a pair of vectors z; € X
and y; € Y such that

(1) Any t-subset of x;’s spans X.
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(i) Any (k — ¢+ 1)-subset of y;’s spans Y.

(iii) Any d subspaces z; ® y; ® S'~2Y span X ® S'~1Y.
The first two properties enable data reconstruction, while the
node repair property depends on the third condition [3].

With these assumptions, the contents of node 7 corresponds
to the restriction ¢ | 7;®@y; ©S*Y € (7;®y; ©@S~1Y)*. This
is consistent with the code parameters: indeed, an element in
(r; ®y; ©ST1Y)* is completely described by its evaluations
on a basis of the space z; ®y; ©.S*~1Y, which requires storing
exactly | = (%~}) evaluations.

As before, let f € [n] be (the index of) the failed node
and let D C [n]\ {f} be the helper set. Note that we wish to
recover the restriction ¢ | x5 ®y®S*~1Y. Choose a basis for
Ty ®yr©STY and let zy ®yj ©(¥;, ©®---©F,, ,) be one
of the basis vectors. Let {y oF @y ) 1< 51 <jg--- <
ji—2 < n} be a basis of St 2Y Slmllarly to the PM codes, the
helper node ¢ € D transmits to the failed node the restriction
of ¢ to the set of vectors {x; ®y; © (gjl - -- ®th72) Oyr}.

By (iii) above we can write

Ty Ry O W, O 0, ) =25 (>, OO, ) Oyy

= Z Z Ay g2 Ti @ Yi © @jla~-wjt—2 ©ys-

1€D J1,e 5 je—2

where we denoted %}, ., , = Y, © 0y, . Again
similarly to the PM codes, any set A C D with |A| > - k+1

can transmit the following single evaluation of ¢ along the path

to f:

¢<Z Z U«i,jl-ujt,zxi@yi@c@/jl,..‘,jt,z ny>

1€A j1,0 Jt—2
= § E a'i:jl"'jt—z(b(xi QY © @jlynwjt—Z © yf)'
1€A j1, 0, Jt—2

This can be done for all basis vectors of the chosen basis of
zp ®yy © S*'Y, and that requires I = (¥~]) transmissions
which matches the lower bound of Lemma 2. Note that the
AF repair would require any set A of helpers to transmit 5| A]
symbols of F', which is greater than [ for |A] > d — k + 1.

D. IP for Interior Point Codes

The intuition accumulated in the previous sections motivates
the IP protocol for linear regenerating codes of the evaluation
type. We exemplify this approach by using a family of non-
MSR exact repair codes introduced recently in [2] (see also
[9, Sec. 7.2]). Let s be an integer such that n — 1 > d >
k > s—1 > 1. The family of moulin codes that we discuss
(the name was given by the authors of [P]) has parameters
[n, k,d,l, 3, M] where

L= pigms 1 (d—=HRP(5)
B=3pigmea(d—kP(*")
M=%, o dd=kPC) =3, d=kP(E). O

LetV=Fi* W=FF andU =V®W = F'¢. We shall
be dealing with spaces of the form TPV ® U @ AYW where
p+q = s—1 and p,q > 0. While the general idea is the same as
before (node contents are given by restrictions of linear maps

to subspaces), the detailed description relies on two operations
on tensor products called co-wedge multiplication V and
coboundary operators 0, defined formally in the appendix

For a fixed s satisfying the constraints above, the file .7 is
chosen to be an element ¢ of the dual space

P Tvevsrw):
ptrq=s—1

®)

which satisfies the parity checks that place constraints on ¢
that guarantee that the diagram

TPV @ AW ¢ L F

~,

TPV @ W @ AW

commutes for all p > 1,q > 0 with p+q = s — 1 (plus
the boundary cases of p = 0,¢ = —1, not discussed for space
constraints). The file size is the dimension of the direct sum of
the vector spaces (B) minus the dimension of the parity check
space, which is exactly (@). To each node ¢ € [n] we associate
a vector u; € U such that any d of these vectors span U and
any k vectors span U/V under the quotient map U — U/V.
The -th node stores the following restriction of the mapping
@:
o1 P TV eu AW
p+g=s—1

The size ! of the node equals dim(7?V ® u; @ AIW).

Now suppose that node f € [n] fails and we are provided
with a set D C [n] \ {f} of d helpers. Each helper h € D
provides the restrictions of its contents to coboundaries:

¢ 10 (TPV @ up, @ ATW) )

for each pair p,q with p + ¢ = s — 2. We shall need the

following result.

Lemma IIL2 ( [2], Thm. 4.1). For all possible p,q > 0, such
thatp+q=s—1, forall v € TPV, w € AW, we have

30y, (V(r ®w))) = 60y, (v @ w)) = (1)’ (v @ uy @ w).

The right-hand side of the above equation is one coordinate
of the failed node, and the left-hand side can be computed
from (H). The statement of next lemma appears in [2] without
a proof. We include it here to set up the notation.

Lemma IIL.3. /) For all possible p > 1,q > 0, such that
p+qgq=s—1, forall v e TPV ,w € AW, the tensor v @ w
is contained in the linear span of the union of the spaces
{T?V @ up, @ AW b hep ptg=s—2-

2) For all possible p,q > 0, such that p+ q = s — 1, for all
veTPV,we MW, V(vQuw) is contained in the linear span
of the union of the spaces {TPV & up, @ AW }pep ptg=s—2-

Proof: 1) Fix p1 > 1,¢1 > 0 such that py +¢; = s — L.
Let v € TPV and w € AW. Fix a basis {7; ® up ®

(d=k)"1 71 (g,) 1 -
Wity voof TP~V ® up ® AYW. Since the set
{up}rep spans U, we can write
7tV AW
VOW=(1®  @Vp 1)@ Vp, ® w
—

U
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and hence v ® w is an element of TP~V @ U @ AW. So
we can write v @ w = ZZ b i h (T @ up ® ;).

d—k)P1( *
2) Similarly, for a basis {1/ ® up @ w, }( 7 (%)

of TPV ® up ® AT~'W, we can write V(u ® w)
Zj, b.]a (7] ® Uh ®£j)

Lemma II1.4. Let A C D. The nodes in A need to transmit
only | symbols for the repair of f.

Proof. Fix p,q > O suchthat p+qg=s—1.Letv € TPV,w €
ANW. Ifp > 1,

(0., (V(vaw))) =60, (vaw))

- Zaz‘,hcb 0y (7 © up ©wy)).

ih

If p = 0 then the second term on the LHS is already 0. If
p > 0, then by Lemma T2, the LHS is (—1)P¢(r @ us @w),
and we have recovered one symbol of the failed node. For
this, the set A need to transmit the element

Z {Zbﬂ no(9 ”f

heA j

v @up @w,))
=2 aind@ (7 @un @ @)

Doing this for any fixed {v,w} basis of TPV ® uy ® AW,
for all values of p, g, requires the set A to transmit a total of
l symbols. O

Observe that whenever |A| > [%], the IP protocol given by
this lemma results in communication savings compared to the
AF repair.

IV. PARTIAL NODE REPAIR

In this section we briefly consider the node repair problem
for the situation when only a part, say 7,0 < v < 1, of
node’s symbols are erased. One of the first works devoted to
this question was [B] which derived a bound on the file size
of the form (I) that accounts for the parameter ~.

This problem gives rise to a number of open questions, start-
ing with MSR code constructions, that have not been addressed
in the literature. Without attempting a comprehensive analysis,
we point out that partial repair can be implemented under the
IP approach discussed here. The underlying idea is that the
helper nodes need to transmit only the linear combinations
corresponding to the failed coordinates.

Example IV.1. Consider the [n =7,k =4,d=6,1=3,8=
1, M = 12] PM MSR code, placed on the following graph.

Suppose that the root node is erased, and the remaining 6
nodes form the helper set. If the entire contents of the root node

V;QupQw;

Z by,h =j

is lost, both the AF strategy and the IP strategy of Lemma [II=A
require a total transmission of 10 symbols. At the same time, if
only the first coordinate of the root node needs to be recovered,
then the two immediate neighbors of the root node can transmit

just the first row of equation (B), and 6 transmissions suffice.

Let T be a rooted tree of G5 p rooted at f. Let D(v) be the
descendants of node v € Vy p and let D*(v) = D(v) U {v}.

We have the following lemma that generalizes our earlier result

(Theorem III.1 in [K]).

Lemma IV.1. Given an [n,k,d,l, 3, F] linear regenerating

))code There exists a repair procedure that recovers ay € (0, 1)
raction of the failed node using the repair bandwidt
he failed nod h bandwidth

" min{rl, [D* (v)|8}.

veD

This result entails savings in communication when the
erased fraction of the node contents -y is small, namely vl < S.

APPENDIX

Here we define operations on tensor product spaces used in
Sec. MI=0. The notation below was introduced in Sec. MI=0
and MI=B. Below p,q > 0.

Co-wedge multiplication:

VTPV @ A'W — TPV @ W
rew — v uw
VTPV @AW = TPVeoW e AW
VRQuwiANwy =V RQWw Wz —VRQws K wy
V: TPV @ ATT'W — TPV @ W @ AW
vwAw =V @w)Aw + (-1)Tv @ w @w.

Coboundary operators (differentials). For any v € V:
oY AW — U @ AW
w—0
A UQANW - TW @U@ AW
URW —=>VRURw
oY TPV @U@ AW — TPV @ U @ AW
rou@w—0Y () Ruewt (—1)Prevdudw
and for every w € W:
oW TPV QU - TPV U @ A'W
reu— (—1)'reuw
OV TPV QU @ AW = TPV @ U @ ATHW
reu®w— (1P uew A w.

Finally for v € U such that u = v +w,v € V,w € W, define

oYV = oY +alv.
ACKNOWLEDGMENT: We are grateful to a reviewer of our
paper [8] for suggesting to study the repair problem for non-
MSR codes on graphs.
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