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ABSTRACT
This paper addresses the problem of learning abstractions that boost
robot planning performance while providing strong guarantees of
reliability. Although state-of-the-art hierarchical robot planning
algorithms allow robots to e�ciently compute long-horizon motion
plans for achieving user desired tasks, these methods typically rely
upon environment-dependent state and action abstractions that
need to be hand-designed by experts.

We present a new approach for bootstrapping the entire hierar-
chical planning process. This allows us to compute abstract states
and actions for new environments automatically using the critical
regions predicted by a deep neural network with an auto-generated
robot-speci�c architecture. We show that the learned abstractions
can be used with a novel multi-source bi-directional hierarchical
robot planning algorithm that is sound and probabilistically com-
plete. An extensive empirical evaluation on twenty di�erent set-
tings using holonomic and non-holonomic robots shows that (a) our
learned abstractions provide the information necessary for e�cient
multi-source hierarchical planning; and that (b) this approach of
learning, abstractions, and planning outperforms state-of-the-art
baselines by nearly a factor of ten in terms of planning time on test
environments not seen during training.
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1 INTRODUCTION
Autonomous robots need to be able to e�ciently compute long-
horizon motion plans for achieving user desired tasks [11, 24, 27].
E.g., consider a scenario where a robot ' in a household envi-
ronment is tasked to reach kitchen  from its current location
⌫1 (Fig. 1). State-of-the-art motion planning algorithms such as
PRM [17] and RRT [22] use random sampling of low-level con�gu-
rations to compute a path from the robot’s current location ⌫1 to its
target location  . Such sampling-based methods fail to e�ciently
sample con�gurations from con�ned spaces such as doorways and
corridors under uniform sampling [28].
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Figure 1: (a) An illustrative environment for a motion plan-
ning problem. The robot (R) is tasked to reach the kitchen (K).
Red blobs in (b) show a set of candidate critical regions in the
environment. Lastly, (c) shows an example of state abstrac-
tion. Each colored cell represents an abstract state. White
arrows show a few abstract actions that takes the robot from
one abstract state to another abstract states.

On the other hand, humans tend to reason using abstract, high-
level actions. E.g., in the same scenario, we would use high-level
(abstract) actions such as “go out of the room B1”, “pass through the
corridor”, and “enter the kitchen K”. These abstract actions allow
us to reason over a long-horizon easily. Currently, domain experts
need to create such abstractions by hand. This limits the scope and
scalability of approaches for hierarchical planning (e.g., [7, 12, 31])
to situations and domains where experts are available and able to
correctly intuit the required abstractions.

This paper shows that the required abstractions can be learned by
identifying regions in the environment that are important to solve
motion planning problems (loosely similar to landmarks in task
planning). Molina et al. [28] de�ne such regions as critical regions.
Critical regions are analogous to landmarks in automated planning
but unlike landmarks, critical regions do not necessarily have to be
reached to achieve the goal. Fig. 1(b) shows a few candidate critical
regions for the environment in Fig. 1(a).

In this paper, we investigate two major questions: 1) Can we use
deep learning to automatically generate such abstractions for new
environments? And 2) how can we use them to enable safe and
more e�cient planning algorithms? The main contributions of this
paper are: a formal foundation for hierarchical (state and action)
abstractions based on the critical regions (similar to Fig. 1(c)) and
a novel algorithm for on-the-�y construction of such hierarchical
abstraction using predicted critical regions. Abstractions computed
using learning in this manner can be di�cult to use. In fact, our
preliminary experiments showed that they do not help in standard
single-source goal-directed search due to collision with obstacles
in the environment.
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An additional contribution of this work is the �nding that these
abstractions empower e�ectivemulti-source, multi-directional search
algorithms. In general, such search algorithms can be di�cult to
use due to the absence of information about states that may lie
close to a path to the goal. However, we found that when used with
our auto-discovered abstract states, these algorithms signi�cantly
outperform existing baselines.

Our formal framework provides a way to generate sound abstrac-
tions that satisfy downward re�nement property [1] for holonomic
robots along with probabilistic completeness in the general case.
Our exhaustive empirical evaluation shows that our approach out-
performs state-of-the-art sampling and learning-based motion plan-
ners and requires signi�cantly less time. This evaluation includes
evaluation on a total of twenty di�erent settings with four di�erent
robots, which include holonomic and non-holonomic robots.

The rest of the paper is organized as follows: Sec. 2 discusses
some of the existing related approaches, Sec. 3 introduces some
concepts required to understand our approach, Sec. 4 de�nes the
formal framework for our algorithm, Sec. 5 presents our approach
and theoretical results in detail. Finally, Sec. 6 presents our extensive
empirical evaluation.

2 RELATEDWORK
Much of the prior work on the topic is focused on decomposing
a motion planning problem into smaller subproblems to reduce
its complexity. Several approaches have been proposed that use
state decomposition to reduce the complexity of a motion planning
problem. Vertical cell decomposition [5] partitions the state space
into a collection of vertical cells and computes a roadmap that
passes through all of these cells. Brock and Kavraki [3] propose a
hierarchical method that uses wavefront expansion to compute the
decomposition of the state space. While these approaches establish
the foundation of decomposition-based motion planning, partitions
generated through such approaches are arbitrary and do not provide
any guarantees of completeness.

Zhang et al. [37] use rejection sampling to reject unrelated
samples to speed up SBMPs.They use reinforcement learning to
learn a policy that decides to accept or reject a new sample to expand
the search tree. While their approach reduces the search space to
compute the path, it still needs to process samples generated from
regions that are irrelevant for the current problem. On the other
hand, our hierarchical approach re�nes abstract plans into low-level
motion plans which reduces the number of unnecessary samples.
TogglePRM [8] maintains roadmaps for free space and obstacle
space in the con�guration space to estimate the narrow passages
and sample points from these narrow passages. This approach
works well for environments with U-n-separable passages, even
though it does not compute high-level abstractions.

Multiple approaches have used statistical learning to boost mo-
tion planning. Wang et al. [35] present a comprehensive survey
of methods that utilize a variety of learning methods to improve
the e�ciency of SBMPs. Multiple approaches discussed by Wang
et al. [35] use end-to-end deep learning to learn low-level reactive
policies. End-to-end approaches are attractive given if they succeed,
they can compute solutionsmuch faster than traditional approaches,
but it is not exactly clear under which conditions these algorithms

would succeed. Formally, these end-to-end deep learning-based
approaches lack the guarantees about completeness and sound-
ness that our approach provides. Wang et al. [35] also discuss ap-
proaches that use learning to aid sampling-based motion planning.
We discuss a few of these approaches that are relevant to this work.
Kurutach et al. [20] uses InfoGAN [6] to learn state-space partition-
ing for simple SE2 robots. While their empirical evaluation shows
promising results, similarly to previous decomposition-based ap-
proaches, they do not provide any proof of completeness. It is also
not clear how their approach would scale to con�guration spaces
that had more than two dimensions. On the other hand, our ap-
proach provides formal guarantees of completeness and soundness
(for holonomic robots) and scales to high-dimensional spaces.

Ichter et al. [14] and Kumar et al. [19] use a conditional varia-
tional autoencoder (CVAE) [33] to learn sampling distributions for
the motion planning problems. Ichter et al. [15] use betweenness cen-
trality to learn criticality score for low-level con�gurations. They
uniformly sample a set of con�gurations from the environment and
use con�gurations with higher criticality from this set to generate a
roadmap. Their results show signi�cant improvement over vanilla
PRM but it is unclear how their approach would perform if the
environment had regions that are important to compute motion
plans yet di�cult to sample under uniform sampling. On the other
hand, our approach would identify such important regions to over-
come these challenges. While these approaches [14, 15, 19] focus
on biasing the sampling distribution towards narrow areas in the
environment, our approach aims to build more general high-level
abstractions for the con�guration space.

Molina et al. [28] use an image-based approach to learn and
infer the sampling distribution using demonstrations. They use top-
view images of the environment with critical regions highlighted
in the image to learn to identify critical regions. While they de-
velop a method for predicting critical regions and using them with
a low-level motion planner, they do not use these critical regions
for learning abstractions and performing hierarchical planning.
Our empirical results (Sec. 6) show that our hierarchical approach
is much more e�ective than their non-hierarchical approach and
yields signi�cantly better performance. Additionally, their approach
is also restricted to navigational problems and does not scale to con-
�guration spaces with more than two degrees of freedom (DOFs).

Deep learning has also been used for learning heuristics for
high-level symbolic planning. Shen et al. [32] use hypergraph net-
works for learning heuristics for symbolic planning in the form of
delete-relaxation representation of the actual planning problems.
Karia and Srivastava [16] learn generalizable heuristics for high-
level planning without explicit action representations in symbolic
logic. In contrast, we focus on learning critical regions and creating
high-level abstractions along with algorithms that work with these
learned high-level abstractions.

Liu et al. [23] use semantic information to bias the sampling
distribution for navigational problems in partially known environ-
ments. Compared to it, our approach is not navigational problems
and does not require semantic information explicitly but aims to
learn such a notion in the form of critical regions. SPARK and
FLAME [4] use state decomposition to store past experience and
use it when queried for similar state decompositions. While their
approach e�ciently uses the experience from previous iterations,
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it requires carefully crafted state decompositions in order to cover
a large number of scenarios, whereas our approach generates state
abstraction automatically using the predicted critical regions.

3 BACKGROUND
Motion Planning Problem. Let X = Xfree [Xobs be the con�g-

uration space of a given robot [21]. Here Xfree represents the set of
con�gurations where the robot is not in collision with any obstacle
and Xobs represents con�gurations in collision with an obstacle.
Let G8 2 Xfree and G6 2 Xfree be the initial and goal con�gurations
of the robot. A motion planning problem is de�ned as follows:

D��������� 1. A motion planning problem M is de�ned as a
4-tuple hX,D, G8 , G6i. where X = Xfree [ Xobs is the con�guration
space and G8 , G6 2 Xfree are the robot’s initial and goal con�gurations.
D : X ! {0, 1} is a collision function that determines collisions for
con�gurations: D (G) = 1 i� G 2 Xobs.

A solution to a motion planning problem is a collision-free tra-
jectory g : [0, 1] ! X such that g (0) = G8 and g (1) = G6 . We abuse
the notation to de�ne membership in a trajectory as follows: For a
con�guration G 2 X, G 2 g i� there a exists a C 2 [0, 1] such that
g (C) = G . A trajectory is collision free i� 8G 2 g,D (G) = 0.

Connectivity. A pair of low-level con�gurations G8 , G 9 2 X is
said to be connected i� there exists a collision-free motion plan
between G8 and G 9 . We represent this using a connectivity func-
tion ⇠ : Xfree ⇥ Xfree ! {0, 1}: ⇠ (G8 , G 9 ) = 1 i� G8 and G 9 are
connected. Intuitively, the connectivity function ⇠ represents Eu-
clidean connectivity inXfree. This is equivalent to path connectivity
in con�guration space for holonomic robots as each degree of free-
dom can be controlled independently. However, this may not be the
case for non-holonomic robots as some of the motion plans may
not be realizable due to their motion constraints.

We use this to de�ne strong connectivity for the set of low-level
con�gurations as follows:

D��������� 2. Let X̄ ✓ Xfree be a set of con�gurations. X̄ is a
strongly connected set i� for every pair of con�gurations (G8 , G 9 ) 2
Xfree ⇥ Xfree, ⇠ (G8 , G 9 ) = 1 and there exists a trajectory g8 9 such that
g8 9 (0) = G8 , g8 9 (1) = G 9 , and 8 C 2 [0, 1], g8 9 (C) 2 X̄,

Critical Regions. Our approach uses critical regions (CRs) to
generate abstractions. Intuitively, critical regions are regions in
the con�guration space that have a high density of valid motion
plans passing through them for the given class of motion planning
problems. Molina et al. [28] de�ne critical regions as follows:

D��������� 3. Given a robot ', a con�guration space X, and a
class of motion planning problems" , the measure of criticality of a
Lebesgue-measurable open set A ✓ X is de�ned as limB=!+A

5 (A )
E (B= ) ,

where 5 (A ) is the fraction of observed motion plans solving tasks from
" that pass through B= , E (B=) is the measure of B= under a reference
density (usually uniform), and!+ denotes the limit from above along
any sequence {B=} of sets containing A (A ✓ B= , 8=).

Beam Search. Lowerre [25] introduced beam search as an op-
timization over breadth-�rst search (BFS) that explores the state
space by expanding only a subset of nodes to compute a path from
one node to another node in the graph. Beam search prunes the

fringe to reduce the size of OPEN set. We include pseudocode for
the beam search in the extended version of the paper [30].

4 FORMAL FRAMEWORK
We begin describing our formal framework with an example. Fig.
1(b) shows a set of critical regions for a given environment. Ideally,
we would like to predict these critical regions and generate a state
and action abstraction similar to the one shown in Fig. 1(c). The
state abstraction shown in Fig. 1(c), similar to a Voronoi diagram,
generates cells around each critical region such that the distance
from each point in a cell to its corresponding critical regions is less
than that from every other critical region. We call this structure a
region-based Voronoi diagram (RBVD). Each cell in this region-based
Voronoi diagram is considered an abstract state and transitions
between these Voronoi cells (abstract states) de�ne abstract actions.

Let d be the set of critical regions for the given con�guration
space X. First we introduce distance metrics 32 and 3A . Here, 32
de�nes distance between a low-level con�guration G 2 X and a
critical region A 2 d such that 32 (G, A ) = minG8 2A 3 (G, G8 ) and 3A
de�nes the distance between two critical regions A1, A2 such that
the distance 3A = minG8 2A1,G 9 2A2 3 (G8 , G 9 ) where 3 is the Euclidean
distance. Now, we de�ne region-based Voronoi diagram as follows:

D��������� 4. Let d = {A1, ..., A: } be a set of critical regions for
the con�guration space X. A region-based Voronoi diagram (RBVD)
is a partition  (d,X) = {k1, ...,k<} of X such that for everyk8 2  
there exists a critical regions A such that forall G 2 k8 and forall A 9 < A ,
32 (G, A )  32 (G, A 9 ) and eachk8 is strongly connected.

State Abstraction. We de�ne abstract states as the Voronoi
cells of an RBVD. Given an RBVD  , labelling function ✓ :  ! S
maps each cell in the RBVD to a unique abstract state B 2 S where
|S| = | |. We use this to de�ne the state abstraction function U as
follows:

D��������� 5. Let ' be the robot and X = Xfree [ Xobs be the
con�guration space of the robot ' with set of critical regions d . Let
 (d,X) = {k1, ..k: } be an RBVD for the robot ', con�guration space
X, and the set of critical regions d and let S = {B1, .., B: } be a set of
high-level, abstract states. We de�ne abstraction function U : Xfree !
S such that U (G) = B where G 2 k and ✓ (k ) = B .

We extend this notation to de�ne membership in abstract states
as follows: Given a con�guration space X = Xfree [ Xobs and its
set of abstract states S as de�ned above, a con�guration G 2 Xfree
is said to be a member of an abstract state B 2 S (denoted G 2 B)
i� U (G) = B . We also extend the notion of strong connectivity
to abstract states as follows: An abstract state B 2 S is strongly
connected i� ✓�1 (B) is strongly connected.We now de�ne adjacency
for Voronoi cells in a region-based Voronoi diagram as follows.
Recall that ⇠ denotes Euclidean connectivity for con�gurations.

D��������� 6. Letk8 ,k 9 be Voronoi cells of an RBVD  . Voronoi
cellsk8 andk 9 are adjacent i� there exist con�gurations G8 , G 9 such
that G8 2 k8 , G 9 2 k 9 , ⇠ (G8 , G 9 ) = 1, and there exists a trajectory g
between G8 and G 9 such that 8C 2 [0, 1], g (C) 2 k8 or g (C) 2 k 9 .

We extend the above de�nition to de�ne the neighborhood for
an abstract state. Two abstract states B8 , B 9 2 S are neighbors i�
✓�1 (B8 ) and ✓�1 (B 9 ) are adjacent.

Main Track AAMAS 2022, May 9–13, 2022, Online

1185



We de�ne abstract actions as transitions between abstract states.
Let S be the set of abstract states. We de�ne the set of abstract
actions A using S such that A = {08 9 |8 (B8 , B 9 ) 2 S ⇥ S}.

We now use this formulation of RBVD and state abstraction to
prove the soundness of the generated abstractions .

T������ 4.1. Let X = Xfree [ Xobs be a con�guration space
and d be a set of critical regions for X. Let  be an RBVD for the
critical regions d and the con�guration spaceX and let S be the set of
abstract states corresponding to  with a mapping function ✓ . Let G0
and G6 be the initial and goal con�gurations of a holonomic robot '.
If every state B 2 S is strongly connected and there exists a sequence
of abstract states % = hBk0 , ..., Bk6

i such that G0 2 Bk0 , G6 2 Bk6
, and

all consecutive states Bk8
, Bk8+1 2 % are neighbors, then there exists a

motion plan for ' that reaches G6 from G0 with a trajectory g such
that g (0) = G0, g (1) = G6 , and 8G8 2 g, G8 2 Bk:

such that Bk:
2 % .

P����. For two consecutive abstract states B8 , B8+1 2 % , letk8 ,k8+1
2  be Voronoi cells such that ✓�1 (B8 ) = k8 and ✓�1 (B8+1) = k8+1.
If B8 and B8+1 are neighbors, then according to Def. 6 there exists
a pair of low-level con�gurations G8 , G8+1 2 Xfree such that there
exists a collision free trajectory between G8 to G8+1. Def. 4 de�nes
every Voronoi cell as a strongly connected set. Thus, for every
low-level con�guration G 9 2 B8 , there exists a collision-free tra-
jectory between G 9 and G8 and for every low-level con�guration
G: 2 B8+1, there exists a collision-free trajectory between G: and
G8+1. For a holonomic robot ' these trajectories should be realizable
as all degrees of freedom of ' can be controlled independently. This
implies that there exists a motion plan for ' between each pair of
con�gurations in Bk8

and Bk8+1 .
⇤

Theorem 4.1 proves that the computed abstractions would be
sound as well as satisfy downward re�nement property for holo-
nomic robots. The proof does not hold for non-holonomic robots as
the low-level trajectories may not be realizable given their motion
constraints. However, the algorithm developed below is probabilisti-
cally complete for all robots and performed well for non-holonomic
robots in our empirical evaluation.

5 LEARNING ABSTRACTIONS AND
PLANNING

Our approach computes hierarchical state and action abstractions
using predicted critical regions and uses them e�ciently for hierar-
chical planning. Now, we �rst discuss our approach for generating
and using hierarchical abstractions using critical regions (Sec. 5.1)
and then we discuss how we learn these critical regions (Sec. 5.2).

5.1 Generating and Using Abstractions
In this section, we describe our approach --HierarchicalAbstraction-
guided Robot Planner (HARP) -- for generating abstract states and
actions and using them to e�ciently perform hierarchical planning.
A naíve approach would be to generate a complete RBVD and
then extract abstract states and actions from it. This would require
iterating over all con�gurations in the con�guration space and
computing a large number of motion plans to identify executable
abstract actions. This is expensive (and practically infeasible) for

Algorithm 1: Hierarchical Abstraction-guided Robot Plan-
ner (HARP)
Input: Con�guration space X, a region predictor �, an

initial con�guration G0 2 X, goal con�guration
G6 2 X, a custom heuristic ⌘, low-level
sampling-based motion planner MP

Output: A motion plan g
1 d  predict_critical_regions(�, X, G0, G6)
2 S,A  generate_state_action_abstractions(d , X )
3 B0, B6  get_HL_state(S, d , G0), get_HL_state(S, d , G6)
4 P  multi-source_bi-directional_beam_search(S, A, B0, B6)
5 g  re�ne_path(P, MP)
6 ⌘  update_heuristic(g , S)
7 return g

continuous low-level con�guration spaces. Instead, we use the
RBVD as an implicit concept. We generate abstractions on-the-�y
by computing membership of low-level con�gurations in abstract
states only when needed.

Vanilla high-level planning using the set of all abstract actions
A would be ine�cient as it may yield plans for which low-level
re�nement may not exist as we do not know the applicability of
these abstract actions at low-level. To overcome this challenge,
we develop a hierarchical multi-source bi-directional planning al-
gorithm that performs high-level planning from multiple abstract
states. Generally, a multi-source approach would not work for robot
planning because it is not clear what the intermediate states are. In
this paper, we use critical regions as abstract intermediate states
and utilize a multi-source search. This utilizes learned information
better than single source and single direction beam search. Our
high-level planner generates a set of candidate high-level plans
from the abstract initial state to the abstract goal state using a
custom heuristic (which is continually updated). These paths are
then simultaneously re�ned by a low-level planner to compute
a trajectory from the initial low-level con�guration to the goal
con�guration while updating the heuristic function.

Algorithm 1 describes our approach for generating and using
hierarchical abstractions. Given the con�guration space X and
initial and goal con�gurations (G0 and G6) of the robot ', HARP
uses a learned DNN � to generate a set of critical regions d (Sec. 5.2
discusses how we learn this model �) (line 1). The remainder of
Alg. 1 can be broken down into three important steps: 1) computing
a set of candidate high-level plans, 2) re�ning candidate high-level
plans into a low-level trajectory, and 3) updating the heuristic for
abstract states. We now explain each of these steps in detail.

Computing High-Level Plans. To compute high-level plans that
reach the goal con�guration G6 from the initial con�guration G0,
�rst we determine abstract initial and goal states B0 and B6 corre-
sponding to the initial and goal con�gurations G0 and G6 (line 3).
To do this e�ciently, we store sampled points from each critical
region in a k-d-tree and query it to determine the abstract state for
the given low-level con�gurations without explicitly constructing
the complete RBVD. This allows us to dynamically and e�ciently
determine high-level states for low-level con�gurations.
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(E) (F) (G)

(I) (J)

Figure 2: Test environments for our approach. Dimensions
of environments (A)-(D) are 5m ⇥ 5m and dimensions of envi-
ronments (E)-(G) are 25m ⇥ 25m. (A)-(G) are used for naviga-
tional problems while (H) and (I) are used for manipulation
problems.

Once we determine initial and goal states B0 and B6 , we use our
high-level planner to compute a set of candidate high-level plans
going from B0 to B6 (line 4). To compute these candidate high-level
plans, we develop a multi-source bi-directional variant of beam
search [25] that yields multiple high-level candidate plans.

We call this multi-source bi-directional beam search. We include
the pseudocode for vanilla and multi-source bi-directional beam
search in the extended version of the paper [30].

Intuitively, this algorithm works as follows: we use a priority
queue to maintain a fringe to keep track of the current state of the
search. We initialize this fringe with multiple randomly sampled
abstract states to allow the beam search to start from multiple
sources. We select and expand these nodes in a speci�c order to
compute paths that reach from the initial state to the goal state.

Formally, the nodes in the fringe are expanded as follows: Let
= be a node in the fringe. We select the node to expand using
5 (=) = 6(=) + ⌘(=), where 6(=) is the cost of the path heading to
= (unit cost for each action) and ⌘(=) is a custom heuristic that is
de�ned as follows. Let< be the parent of = and let B= and B< be the
abstract states corresponding to the nodes = and<. The heuristic
⌘(=) is computed as:

⌘(=) = ⌘0 (B<, B=) +<8={⌘0 (B=, B8 ),⌘0 (B=, B6)}
Here, ⌘0 (B1, B2) = n123A (A1, A2) de�nes the estimated distance be-
tween abstract high-level states B1 and B2 with corresponding critical

regions A1 and A2 respectively. B8 is the initial abstract state and B6
is the goal abstract state.
n8 9 2 (0, 1] is a constant that accounts for imprecise abstract

actions. Alg. 1 dynamically changes it to update the heuristic func-
tion (line 6) and making it more accurate. Initially, n8 9 is set to 1
for all 8 and 9 . Once a low-level trajectory g is computed (explained
later), we compute the abstraction ḡ of this trajectory. For each
consecutive pair of abstract states hB8 , B 9 i in ḡ , we decrease the
value of n8 9 by n8 9/2 . This allows HARP to use experience from
previously computed trajectories to prioritize abstract actions that
have low-level re�nements to compute accurate high-level plans.

After an abstract state B 9 is selected from the fringe, its successors
are created by applying abstract actions on it and adding these
successors to the fringe. This process continues until : high-level
plans are found or the fringe is empty.

Once we generate a set of candidate high-level plans from multi-
source bi-directional beam search, we use a low-level planner to
re�ne these plans into a low-level collision-free trajectory from
initial low-level con�guration G0 to goal con�guration G6 (line 5).

Refining High-level Plans. While any probabilistically complete
motion planner can be used to re�ne the computed high-level plans
into a low-level trajectory between given two con�gurations, we
use Learn and Link Planner (LLP) [28] as a low-level planner in
HARP (MP in Alg. 1) as it allows us to easily use the abstract states
and their critical regions to e�ciently compute motion plans. LLP is
a sampling-based motion planner that initializes exploration trees
rooted at # samples from the con�guration space and extends these
exploration trees until they connect and form a single tree. Once a
single tree is formed, the planner uses Dijkstra’s Algorithm [10] to
compute a path from the initial state to the goal state.

In order to use LLP to re�ne a set of candidate high-level plans
simultaneously, we �rst select a subset of critical regions d̄ ✓ d
that includes all critical regions corresponding to all high-level
states in candidate plans. We use this subset of critical regions d̄
to provide initial samples to initialize exploration trees of LLP. In
this work, we generate" samples from the set of critical regions d̄
and generate the rest of the # �" samples using uniform random
sampling. Similarly, to expand these exploration trees, we generate
a �xed number of samples from the set critical regions d and then
continue with uniform sampling.

We use these characteristics of our algorithm to show that our
approach is probabilistic complete.

T������ 5.1. If the low-level motion planner (MP in Alg. 1) is
probabilistically complete, then HARP is probabilistically complete.

P����. (Sketch) While re�ning high-level plans to a low-level
motion plan (line 5 in Alg. 1), HARP uses a �xed number of samples
from the critical regions along the high-level plans to initialize
a low-level motion planner. This does not reduce the set of sup-
port (regions with a non-zero probability of being sampled) of the
sampling distribution being used by the motion planner. ⇤

5.2 Learning to Predict Critical Regions
We now present our approach for learning a model � that pre-
dicts critical regions for a given environment. We explain how our
approach is able to generate a robot-speci�c architecture of the
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(a) (b) (c)

Figure 3: CRs and generated abstraction for a 4-DOF hinged
robot. (a) and (b) shows the CRs predicted by the model. Blue
regions in (a) show that model predicted the robot’s base link
to be horizontal while green regions show that the model
predicted the robot’s base link to be vertical. Blue regions in
(b) show that the network predicted the hinge to be closer to
180� and green regions show that the network predicted it
to be closer to 90� or 270�. (c) shows state abstraction gener-
ated by our approach though our approach does not need to
explicitly generate these abstractions.

network. We include speci�cs about data generation and network
training in the extended version of the paper [30].

Deriving Robot Specific Network Architectures. We use the
standard fully convolutional UNet architecture [29] as our base
network. The extended paper [30] includes network architecture
for this network. We use the robot’s geometry and its number of
DOFs to derive a robot speci�c architecture as follows:

Let = be the number of DOFs of the robot and let : be the number
of DOFs that are not determined by the location of the robot’s end-
e�ector in the workspace. For manipulation problems, we consider
gripper of the robot as the its end-e�ector and for navigational
problems, we consider the robot’s base link as its end e�ector. First,
we use these parameters to update the base UNet architecture.
We use the last layer of the base architecture to predict critical
regions for the end-e�ector’s location and include : additional
convolutional layers to predict critical regions for each : DOFs that
are not determined by the location of the robot’s end e�ector.

The input to the network is a tensor of dimension four. The size
of the �rst three dimensions of the input tensor depends on the
number of bins used to discretize the environment (which can be
arbitrary). The number of channels in the input tensor is determined
using the parameter=. If the robot has= DOFs, then the input tensor
would have a total of = + 1 channels. The �rst channel in the input
represents the occupancy matrix of the environment. It is generated
by performing a raster scan of the environment. The rest of the =
channels represent goal values for each DOF of the robot -- one for
each DOF of the robot.

Similarly, each label is a tensor of dimension four. The size of the
�rst three dimensions is similar to the input tensor. The number
of channels in the label tensor is also computed using the robot’s
geometry. For a robot with : DOFs that are not determined by the
location of robot’s end e�ector in the workspace, the label tensor
would have a total of : + 1 channels. The �rst channel represents
critical regions for the end-e�ector’s location in the workspace and
the rest of the : channels represent critical regions for the : DOFs

(a) (b)

Figure 4: Critical regions for armmanipulation task using an
8-DOF Fetch. The green region in (a) shows the goal location
for the end e�ector. (b) shows the critical regions generated
by the learnedmodel. Although the network predicts CRs for
all the joints, only CRs for end-e�ector’s location are shown.

that are not determined by this location -- one channel for each of
the : DOFs of the robot.

E.g, consider a 5-DOF hinged robot. The robot’s 5 DOFs are
(G,~, I, \ ,l) where G , ~, and I represent the location of the robot’s
base link in the workspace, \ represents the rotation of the base
link, and l represents the hinged angle. So for this robot, = would
equal to 5 and : would equal to 2 as only the base rotation \ and the
hinged anglel are not determined by the location of the robot’s end-
e�ector (base link in this case) in the workspace. So according to the
previous discussion, the network would contain : = 2 additional
layers to predict critical regions for \ andl . The input tensor would
have a total of = + 1 = 6 channels and the label tensor would have
a total of : + 1 = 3 channels.

6 EMPIRICAL EVALUATION
We extensively evaluate our approach in twenty di�erent scenarios
with four di�erent robots. All experiments were conducted on
a system running Ubuntu 18.04 with 8-core i9 processor, 32 GB
RAM, and an Nvidia 2060 GPU (our approach uses only a single
core) OpenRAVE robot simulator [9]. We compare our approach
with state-of-the-art motion planners such as RRT [22], PRM [17],
and BiRRT [18]. As LLP is implemented using Python, we use the
Python implementation of the baseline algorithms available at https:
//ompl.kavrakilab.org/ for comparison. Our training data, code,
trained model, and results are available with the extended version
of the paper [30] at https://aair-lab.github.io/harp.html.

3-DOF Rectangular Robot (R). For the �rst set of experiments,
the objective is to solve motion planning problems for a 3-DOF
rectangular robot. The robot can move along the G and ~ axes and
it can rotate around the I axis.

3-DOF Non-Holonomic Rectangular Car Robot (Car). For the
second set of experiments, we evaluated our approach with a rect-
angular non-holonomic robot similar to a simple car. Controls avail-
able to operate the robot were linear velocity E 2 [�0.2, 0.2] and
the steering angle \ 2 [�c4 , c4 ] while three degrees of freedom
(location along G-axis, location along ~-xis, and rotation around
I-axis) were required to represent the robot’s transformation.

4-DOF Hinged Robot (H). For the third set of experiments, we
used a robot with a hinge joint to evaluate our approach. The robot’s
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Figure 5: Each plot shows the fraction of 100 independently generated motion planning tasks solved (y-axis) in the given time
(x-axis) for all the test environments and robots. The title of each subplot represents the robot and the environment. E.g., “R -
A” stands for rectangular robot in environment A (Fig. 2(A)).

4 DOFs are its location along G and ~ axes, rotation along I-axis (\ ),
and the hinge joint (l) with the range [�c2 , c2 ].

8-DOF Fetch Robot. For the last set of experiments, we used our
approach with a mobile manipulator named Fetch [36] to perform
arm manipulation. The goal of this experiment is to evaluate the
scalability of our approach to robots with high degrees of freedom.

Figures 2 and 4 show the test environments (unseen by the
model while training) for our system. Environments shown in Fig.
2 are inspired by the indoor o�ce and household environments.
Our training data consisted of 20 environments similar to the ones
shown in Fig. 2(A)-(D) with dimensions 5< ⇥ 5<. We investigate
the scalability of our approach by conducting experiments in en-
vironments shown in Fig. 2(E)-(G) with dimensions 25< ⇥ 25<
(much larger than training environments). To handle such large
environments without making any changes to the DNN, we use the
standard approach of sliding windows with stride equal to window-
width [2, 13, 26, 34]. This crops the larger environment into pieces
of the size of the training environments. Individual predictions are
then combined to generate a set of critical regions for arbitrary
large environments. We also evaluate the applicability of our ap-
proach to non-holonomic robots in environments shown in Fig.
2(A)-(D).

6.1 Analysis of the Results
As discussed in the introduction (Sec. 1), our objective is to show
whether 1) state and action abstractions can be derived automati-
cally and 2) whether auto-generated state and action abstractions
can be e�ciently used in a hierarchical planning algorithm. Ad-
ditionally, we also investigate 3) does dynamically updating the
heuristic function (line 6 in Alg. 1) improve Alg. 1’s e�ciency?

1) CanWe Learn State and Action Abstractions? Our approach
learns critical regions for each DOF of the robot. Fig. 3 shows critical
regions predicted by our learned model for the hinged robot � .
We can see that our model was able to identify critical regions
in the environment such as doorways and narrow hallways. Fig.
3(a) shows critical regions for orientation of the robot’s base link
(captured by DOF \ ). The blue regions in the �gure represent the
horizontal orientation of the robot and the green regions represent
the vertical orientation of the robot. Fig. 3(b) shows critical regions
for the hinge joint l for the robot � . Here, blue regions show that
the network predicted the hinge joint to be �at (close to 0�) and
green regions represent con�gurations where the model predicted
"L" con�gurations of the robot (l close to 90� or 270�). Fig. 3 shows
that our approach was able to predict the correct orientation of
the robot accurately most of the time. Our approach was able to
scale to robots with a high number of degrees of freedom. Fig. 4(a)
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(a) (b)

Figure 6: (a) Solving 20 randomly generated problems repeat-
edly 110 times. x-axis show the problem iteration and y-axis
shows the average time over 20 problem instances. (b) Time
taken to solve 100 randomly generated problem instances. X-
axis shows the problem number and y-axis shows the taken
to solve each problem.

shows one of the test environments used for these experiments and
Fig. 4(b) shows the predicted critical regions. This shows that our
model was able to learn critical regions in the environment that
can be used to generate e�cient abstractions. We include similar
results for other environments in the extended version [30].

Now we answer the second question on whether using abstrac-
tions to compute motion plans helps improve the planner’s e�-
ciency by qualitatively comparing our approach with a few existing
sampling-based motion planners.

1) Can Learned Abstractions be Used E�iciently for Hierar-
chical Planning? We compare our approach against widely used
SBMPs such as RRT [22], PRM [17], and BiRRT [18].

Fig. 5 shows the comparison of our approachwith other sampling-
based motion planners. The x-axis shows the time limit in seconds
and the y-axis shows the percentage of motion planning problems
solved in that time limit. For each time limit on x-axis, we randomly
generate 100 new motion planning problems to thoroughly test our
approach and reduce statistical inconsistencies. Fig. 5 shows that
our approach signi�cantly outperforms all of the existing sampling-
based motion planners. Speci�cally for environments ⇠ , ⇡ , and ⇢,
uniform sampling-based approaches were not able to solve a single
problem in a time threshold of 600B .

Our approach also outperforms the learning-based planner
LLP [28] (Fig. 5), which uses learned critical regions but does not
use state and action abstractions and does not perform hierarchical
planning. This illustrates the value of learning abstractions and
using them e�ciently for hierarchical planning.

Similarly, we also evaluate our approach against TogglePRM [8].
TogglePRM is written in C++ and accepts only discrete SE2 con�g-
uration space for a simple dot robot. We created discrete variants
of environments shown in Fig. 2(A) and 2(B) with a total of 50176
states and compare the total number of nodes sampled. For 100
random trials, on an average our approach generated 631± 278 and
496±175 states compared to TogglePRMwhich generated 4234±532
and 19234 ± 4345 states for discrete variants of the environments
shown in Fig. 2(A) and 2(B) respectively. Our approach was able
to outperform TogglePRM since these environments do not have
U-n-separable passages [8].

2) Does Dynamically Updating Heurstic Function Improve
E�iciency? We carried out two sets of experiments. In the �rst set
of experiments, we generated 20 randommotion planning problems
and solved each problem repeatedly for 10 times while updating
the heuristic function. We maintained separate copies of high-level
heuristic functions for each problem. Fig. 6(a) shows the results for
this set of experiments in the environment ⇢ (Fig. 2(E)) with the 4-
DOF hinged robot. The x-axis shows the planning iteration and the
y-axis shows the average time over randomly generated 20 problem
instances. We can see how planning time reduces drastically once
costs for abstract actions are updated.

In the second set of experiments, we generated 100 random pairs
of initial and goal states and computed motion plans for each of
them. This time, we maintained a single heuristic function across all
problems and updated it after each motion planning query. Fig. 6(b)
shows the result of the experiment in the environment ⇢ (Fig. 2(E))
with the 4-DOF hinged robot � . The x-axis shows the problem
number and the y-axis shows the time taken by our approach to
compute a solution. The red line in the plot shows the moving aver-
age of planning time. Fig. 6(b) shwows that dynamically updating
the heuristic function for high-level planning helps to increase the
e�ciency of HARP and decrease motion planning times.

Empirical evaluation using these experiments validates our hy-
pothesis that learning abstractions and e�ectively using them im-
proves motion planning e�ciency.

7 CONCLUSION
In this paper, we presented a probabilistically complete approach
HARP, that uses deep learning to identify abstractions for the in-
put con�guration space. It learns state and action abstractions in a
bottom-up fashion and uses them to perform e�cient hierarchical
robot planning. We developed a new multi-source bi-directional
planning algorithm that uses learned state and action abstractions
along with a custom dynamically maintained cost function to gen-
erate candidate high-level plans. A low-level motion planner re�nes
these high-level plans into a trajectory that achieves the goal con-
�guration from the initial con�guration.

Our formal framework provides a way to generate sound abstrac-
tions that satisfy the downward re�nement property for holonomic
robots. Our empirical evaluation on a large variety of problem
settings shows that our approach is able to signi�cantly outper-
form state-of-the-art sampling and learning-based motion planners.
Through our empirical evaluation, we show that our approach is ro-
bust and can be scaled to large environments and to robots that have
high degrees of freedom. Our work presents a foundation for learn-
ing high-level, abstractions from low-level trajectories. Currently,
our approach works for deterministic robot planning problems. We
aim to extend our approach to support stochastic settings and learn
abstractions for task and motion planning problems.
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