Main Track

AAMAS 2022, May 9-13, 2022, Online

Using Deep Learning to Bootstrap Abstractions for
Hierarchical Robot Planning

Naman Shah
Arizona State University
Tempe, USA
namanshah@asu.edu

ABSTRACT

This paper addresses the problem of learning abstractions that boost
robot planning performance while providing strong guarantees of
reliability. Although state-of-the-art hierarchical robot planning
algorithms allow robots to efficiently compute long-horizon motion
plans for achieving user desired tasks, these methods typically rely
upon environment-dependent state and action abstractions that
need to be hand-designed by experts.

We present a new approach for bootstrapping the entire hierar-
chical planning process. This allows us to compute abstract states
and actions for new environments automatically using the critical
regions predicted by a deep neural network with an auto-generated
robot-specific architecture. We show that the learned abstractions
can be used with a novel multi-source bi-directional hierarchical
robot planning algorithm that is sound and probabilistically com-
plete. An extensive empirical evaluation on twenty different set-
tings using holonomic and non-holonomic robots shows that (a) our
learned abstractions provide the information necessary for efficient
multi-source hierarchical planning; and that (b) this approach of
learning, abstractions, and planning outperforms state-of-the-art
baselines by nearly a factor of ten in terms of planning time on test
environments not seen during training.

KEYWORDS

Learning Abstractions for Planning; Deep Learning, Hierarchical
Planning; Motion Planning; Learning for Motion Planning

ACM Reference Format:

Naman Shah and Siddharth Srivastava. 2022. Using Deep Learning to Boot-
strap Abstractions for Hierarchical Robot Planning. In Proc. of the 21st
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), Online, May 9-13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION

Autonomous robots need to be able to efficiently compute long-
horizon motion plans for achieving user desired tasks [11, 24, 27].
E.g., consider a scenario where a robot R in a household envi-
ronment is tasked to reach kitchen K from its current location
B1 (Fig. 1). State-of-the-art motion planning algorithms such as
PRM [17] and RRT [22] use random sampling of low-level configu-
rations to compute a path from the robot’s current location B1 to its
target location K. Such sampling-based methods fail to efficiently
sample configurations from confined spaces such as doorways and
corridors under uniform sampling [28].

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9-13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

1183

Siddharth Srivastava
Arizona State University
Tempe, USA
siddharths@asu.edu

Figure 1: (a) An illustrative environment for a motion plan-
ning problem. The robot (R) is tasked to reach the kitchen (K).
Red blobs in (b) show a set of candidate critical regions in the
environment. Lastly, (c) shows an example of state abstrac-
tion. Each colored cell represents an abstract state. White
arrows show a few abstract actions that takes the robot from
one abstract state to another abstract states.

On the other hand, humans tend to reason using abstract, high-
level actions. E.g., in the same scenario, we would use high-level
(abstract) actions such as “go out of the room B1”, “pass through the
corridor”, and “enter the kitchen K”. These abstract actions allow
us to reason over a long-horizon easily. Currently, domain experts
need to create such abstractions by hand. This limits the scope and
scalability of approaches for hierarchical planning (e.g., [7, 12, 31])
to situations and domains where experts are available and able to
correctly intuit the required abstractions.

This paper shows that the required abstractions can be learned by
identifying regions in the environment that are important to solve
motion planning problems (loosely similar to landmarks in task
planning). Molina et al. [28] define such regions as critical regions.
Critical regions are analogous to landmarks in automated planning
but unlike landmarks, critical regions do not necessarily have to be
reached to achieve the goal. Fig. 1(b) shows a few candidate critical
regions for the environment in Fig. 1(a).

In this paper, we investigate two major questions: 1) Can we use
deep learning to automatically generate such abstractions for new
environments? And 2) how can we use them to enable safe and
more efficient planning algorithms? The main contributions of this
paper are: a formal foundation for hierarchical (state and action)
abstractions based on the critical regions (similar to Fig. 1(c)) and
a novel algorithm for on-the-fly construction of such hierarchical
abstraction using predicted critical regions. Abstractions computed
using learning in this manner can be difficult to use. In fact, our
preliminary experiments showed that they do not help in standard
single-source goal-directed search due to collision with obstacles
in the environment.

Main Track

An additional contribution of this work is the finding that these
abstractions empower effective multi-source, multi-directional search
algorithms. In general, such search algorithms can be difficult to
use due to the absence of information about states that may lie
close to a path to the goal. However, we found that when used with
our auto-discovered abstract states, these algorithms significantly
outperform existing baselines.

Our formal framework provides a way to generate sound abstrac-
tions that satisfy downward refinement property [1] for holonomic
robots along with probabilistic completeness in the general case.
Our exhaustive empirical evaluation shows that our approach out-
performs state-of-the-art sampling and learning-based motion plan-
ners and requires significantly less time. This evaluation includes
evaluation on a total of twenty different settings with four different
robots, which include holonomic and non-holonomic robots.

The rest of the paper is organized as follows: Sec. 2 discusses
some of the existing related approaches, Sec. 3 introduces some
concepts required to understand our approach, Sec. 4 defines the
formal framework for our algorithm, Sec. 5 presents our approach
and theoretical results in detail. Finally, Sec. 6 presents our extensive
empirical evaluation.

2 RELATED WORK

Much of the prior work on the topic is focused on decomposing
a motion planning problem into smaller subproblems to reduce
its complexity. Several approaches have been proposed that use
state decomposition to reduce the complexity of a motion planning
problem. Vertical cell decomposition [5] partitions the state space
into a collection of vertical cells and computes a roadmap that
passes through all of these cells. Brock and Kavraki [3] propose a
hierarchical method that uses wavefront expansion to compute the
decomposition of the state space. While these approaches establish
the foundation of decomposition-based motion planning, partitions
generated through such approaches are arbitrary and do not provide
any guarantees of completeness.

Zhang et al. [37] use rejection sampling to reject unrelated
samples to speed up SBMPs.They use reinforcement learning to
learn a policy that decides to accept or reject a new sample to expand
the search tree. While their approach reduces the search space to
compute the path, it still needs to process samples generated from
regions that are irrelevant for the current problem. On the other
hand, our hierarchical approach refines abstract plans into low-level
motion plans which reduces the number of unnecessary samples.
TogglePRM [8] maintains roadmaps for free space and obstacle
space in the configuration space to estimate the narrow passages
and sample points from these narrow passages. This approach
works well for environments with a-e-separable passages, even
though it does not compute high-level abstractions.

Multiple approaches have used statistical learning to boost mo-
tion planning. Wang et al. [35] present a comprehensive survey
of methods that utilize a variety of learning methods to improve
the efficiency of SBMPs. Multiple approaches discussed by Wang
et al. [35] use end-to-end deep learning to learn low-level reactive
policies. End-to-end approaches are attractive given if they succeed,
they can compute solutions much faster than traditional approaches,
but it is not exactly clear under which conditions these algorithms

1184

AAMAS 2022, May 9-13, 2022, Online

would succeed. Formally, these end-to-end deep learning-based
approaches lack the guarantees about completeness and sound-
ness that our approach provides. Wang et al. [35] also discuss ap-
proaches that use learning to aid sampling-based motion planning.
We discuss a few of these approaches that are relevant to this work.
Kurutach et al. [20] uses InfoGAN [6] to learn state-space partition-
ing for simple SE? robots. While their empirical evaluation shows
promising results, similarly to previous decomposition-based ap-
proaches, they do not provide any proof of completeness. It is also
not clear how their approach would scale to configuration spaces
that had more than two dimensions. On the other hand, our ap-
proach provides formal guarantees of completeness and soundness
(for holonomic robots) and scales to high-dimensional spaces.

Ichter et al. [14] and Kumar et al. [19] use a conditional varia-
tional autoencoder (CVAE) [33] to learn sampling distributions for
the motion planning problems. Ichter et al. [15] use betweenness cen-
trality to learn criticality score for low-level configurations. They
uniformly sample a set of configurations from the environment and
use configurations with higher criticality from this set to generate a
roadmap. Their results show significant improvement over vanilla
PRM but it is unclear how their approach would perform if the
environment had regions that are important to compute motion
plans yet difficult to sample under uniform sampling. On the other
hand, our approach would identify such important regions to over-
come these challenges. While these approaches [14, 15, 19] focus
on biasing the sampling distribution towards narrow areas in the
environment, our approach aims to build more general high-level
abstractions for the configuration space.

Molina et al. [28] use an image-based approach to learn and
infer the sampling distribution using demonstrations. They use top-
view images of the environment with critical regions highlighted
in the image to learn to identify critical regions. While they de-
velop a method for predicting critical regions and using them with
a low-level motion planner, they do not use these critical regions
for learning abstractions and performing hierarchical planning.
Our empirical results (Sec. 6) show that our hierarchical approach
is much more effective than their non-hierarchical approach and
yields significantly better performance. Additionally, their approach
is also restricted to navigational problems and does not scale to con-
figuration spaces with more than two degrees of freedom (DOFs).

Deep learning has also been used for learning heuristics for
high-level symbolic planning. Shen et al. [32] use hypergraph net-
works for learning heuristics for symbolic planning in the form of
delete-relaxation representation of the actual planning problems.
Karia and Srivastava [16] learn generalizable heuristics for high-
level planning without explicit action representations in symbolic
logic. In contrast, we focus on learning critical regions and creating
high-level abstractions along with algorithms that work with these
learned high-level abstractions.

Liu et al. [23] use semantic information to bias the sampling
distribution for navigational problems in partially known environ-
ments. Compared to it, our approach is not navigational problems
and does not require semantic information explicitly but aims to
learn such a notion in the form of critical regions. SPARK and
FLAME [4] use state decomposition to store past experience and
use it when queried for similar state decompositions. While their
approach efficiently uses the experience from previous iterations,

Main Track

it requires carefully crafted state decompositions in order to cover
a large number of scenarios, whereas our approach generates state
abstraction automatically using the predicted critical regions.

3 BACKGROUND

Motion Planning Problem. Let X = X U Xops be the config-
uration space of a given robot [21]. Here Xfe represents the set of
configurations where the robot is not in collision with any obstacle
and X, represents configurations in collision with an obstacle.
Let x; € Xfree and x4 € Xfyee be the initial and goal configurations
of the robot. A motion planning problem is defined as follows:

DEFINITION 1. A motion planning problem M is defined as a
4-tuple (X, u, xi, xg). where X = Xfee U Xops is the configuration
space and xi, xg € Xfree are the robot’s initial and goal configurations.
u : X — {0, 1} is a collision function that determines collisions for
configurations: u(x) = 1 iff x € Xyps.

A solution to a motion planning problem is a collision-free tra-
jectory 7 : [0,1] — X such that 7(0) = x; and 7(1) = x4. We abuse
the notation to define membership in a trajectory as follows: For a
configuration x € X, x € 7 iff there a exists a t € [0, 1] such that
7(t) = x. A trajectory is collision free iff Vx € 7,u(x) = 0.

Connectivity. A pair of low-level configurations x;,x; € X is
said to be connected iff there exists a collision-free motion plan
between x; and x;. We represent this using a connectivity func-
tion C : Xpee X Xfree — {0,1}: C(xj,x;j) = 1iff x; and x; are
connected. Intuitively, the connectivity function C represents Eu-
clidean connectivity in Xfee. This is equivalent to path connectivity
in configuration space for holonomic robots as each degree of free-
dom can be controlled independently. However, this may not be the
case for non-holonomic robots as some of the motion plans may
not be realizable due to their motion constraints.

We use this to define strong connectivity for the set of low-level
configurations as follows:

DEFINITION 2. Let X C Xpe, be a set of configurations. X is a
strongly connected set iff for every pair of configurations (x;, x;) €
Xfree X Xfee, Cxi, xj) = 1 and there exists a trajectory ;j such that
Tij(O) = Xj, Tij(l) =xj,andVt € [o, l],‘[,'j(t) e X,

Critical Regions. Our approach uses critical regions (CRs) to
generate abstractions. Intuitively, critical regions are regions in
the configuration space that have a high density of valid motion
plans passing through them for the given class of motion planning
problems. Molina et al. [28] define critical regions as follows:

DEFINITION 3. Given a robot R, a configuration space X, and a

class of motion planning problems M, the measure of criticality of a
£

" o(sn)’

where f(r) is the fraction of observed motion plans solving tasks from

M that pass through sp, v(sp) is the measure of s, under a reference
density (usually uniform), and —* denotes the limit from above along
any sequence {sp} of sets containing r (r C sp, ¥V n).

Lebesgue-measurable open setr C X is defined as limg, _,+

Beam Search. Lowerre [25] introduced beam search as an op-
timization over breadth-first search (BFS) that explores the state
space by expanding only a subset of nodes to compute a path from
one node to another node in the graph. Beam search prunes the

1185

AAMAS 2022, May 9-13, 2022, Online

fringe to reduce the size of OPEN set. We include pseudocode for
the beam search in the extended version of the paper [30].

4 FORMAL FRAMEWORK

We begin describing our formal framework with an example. Fig.
1(b) shows a set of critical regions for a given environment. Ideally,
we would like to predict these critical regions and generate a state
and action abstraction similar to the one shown in Fig. 1(c). The
state abstraction shown in Fig. 1(c), similar to a Voronoi diagram,
generates cells around each critical region such that the distance
from each point in a cell to its corresponding critical regions is less
than that from every other critical region. We call this structure a
region-based Voronoi diagram (RBVD). Each cell in this region-based
Voronoi diagram is considered an abstract state and transitions
between these Voronoi cells (abstract states) define abstract actions.

Let p be the set of critical regions for the given configuration
space X. First we introduce distance metrics d° and d". Here, d°
defines distance between a low-level configuration x € X and a
critical region r € p such that d°(x,r) = minye, d(x,x;) and d”
defines the distance between two critical regions r1, r2 such that
the distance d” = miny, er x;er, d(xi, x;j) where d is the Euclidean
distance. Now, we define region-based Voronoi diagram as follows:

DEFINITION 4. Let p = {ry,...,ri} be a set of critical regions for
the configuration space X. A region-based Voronoi diagram (RBVD)
is a partition ¥(p, X) = {Y1, Ym} of X such that for every y; € ¥
there exists a critical regions r such that forallx € ; and forallr; # r,
d°(x,r) < d°(x,rj) and each y; is strongly connected.

State Abstraction. We define abstract states as the Voronoi
cells of an RBVD. Given an RBVD ¥, labelling function £ : ¥ — S
maps each cell in the RBVD to a unique abstract state s € S where
|S| = |¥|. We use this to define the state abstraction function « as
follows:

DEFINITION 5. Let R be the robot and X = Xfee U Xops be the
configuration space of the robot R with set of critical regions p. Let
Y (p, X) = {y1, ..y} be an RBVD for the robot R, configuration space
X, and the set of critical regions p and let S = {s1, .., sx} be a set of
high-level, abstract states. We define abstraction function & : Xfree —
S such that a(x) = s wherex € Y and £(y) = s.

We extend this notation to define membership in abstract states
as follows: Given a configuration space X = Xpee U Xops and its
set of abstract states S as defined above, a configuration x € Xfee
is said to be a member of an abstract state s € S (denoted x € s)
iff a(x) = s. We also extend the notion of strong connectivity
to abstract states as follows: An abstract state s € S is strongly
connected iff £~ (s) is strongly connected. We now define adjacency
for Voronoi cells in a region-based Voronoi diagram as follows.
Recall that C denotes Euclidean connectivity for configurations.

DEFINITION 6. Let 3, be Voronoi cells of an RBVD ¥. Voronoi
cells ; and y/; are adjacent iff there exist configurations x;, xj such
that x; € Y3, xj € ¥j, C(x3,x;) = 1, and there exists a trajectory T
between x; and x;j such thatVt € [0,1],7(t) € y; or 7(t) € y;.

We extend the above definition to define the neighborhood for
an abstract state. Two abstract states s;,s; € S are neighbors iff
£71(s;) and t’_l(s]-) are adjacent.

Main Track

We define abstract actions as transitions between abstract states.
Let S be the set of abstract states. We define the set of abstract
actions A using S such that A = {a;;|V (si,s;) € S x S}.

We now use this formulation of RBVD and state abstraction to
prove the soundness of the generated abstractions .

THEOREM 4.1. Let X = Xpe U Xops be a configuration space
and p be a set of critical regions for X. Let ¥ be an RBVD for the
critical regions p and the configuration space X and let S be the set of
abstract states corresponding to ¥ with a mapping function {. Let xo
and x4 be the initial and goal configurations of a holonomic robot R.
If every states € S is strongly connected and there exists a sequence
of abstract states P = (s%, e 31//g> such that xy € Syy» Xg € Sy 0 and
all consecutive states Sy S € P are neighbors, then there exists a
motion plan for R that reaches x4 from xo with a trajectory T such
that 7(0) = xo, 7(1) = Xg andVx; € 1,x; € Sy such that Sy € P.

Proor. For two consecutive abstract states s;, si+1 € P, let i, Yis1
€ ¥ be Voronoi cells such that £71(s;) = ¢; and €71 (s;41) = Vi41.
If s; and sj41 are neighbors, then according to Def. 6 there exists
a pair of low-level configurations x;, xj41 € Xfee such that there
exists a collision free trajectory between x; to x;;;. Def. 4 defines
every Voronoi cell as a strongly connected set. Thus, for every
low-level configuration x; € s;, there exists a collision-free tra-
jectory between x; and x; and for every low-level configuration
Xj € sit+1, there exists a collision-free trajectory between x; and
xit+1. For a holonomic robot R these trajectories should be realizable
as all degrees of freedom of R can be controlled independently. This
implies that there exists a motion plan for R between each pair of
configurations in sy, and sy, .

]

Theorem 4.1 proves that the computed abstractions would be
sound as well as satisfy downward refinement property for holo-
nomic robots. The proof does not hold for non-holonomic robots as
the low-level trajectories may not be realizable given their motion
constraints. However, the algorithm developed below is probabilisti-
cally complete for all robots and performed well for non-holonomic
robots in our empirical evaluation.

5 LEARNING ABSTRACTIONS AND
PLANNING

Our approach computes hierarchical state and action abstractions
using predicted critical regions and uses them efficiently for hierar-
chical planning. Now, we first discuss our approach for generating
and using hierarchical abstractions using critical regions (Sec. 5.1)
and then we discuss how we learn these critical regions (Sec. 5.2).

5.1 Generating and Using Abstractions

In this section, we describe our approach -- Hierarchical Abstraction-
guided Robot Planner (HARP) -- for generating abstract states and
actions and using them to efficiently perform hierarchical planning.
A naive approach would be to generate a complete RBVD and
then extract abstract states and actions from it. This would require
iterating over all configurations in the configuration space and
computing a large number of motion plans to identify executable
abstract actions. This is expensive (and practically infeasible) for

1186

AAMAS 2022, May 9-13, 2022, Online

Algorithm 1: Hierarchical Abstraction-guided Robot Plan-
ner (HARP)

Input: Configuration space X, a region predictor ®, an
initial configuration x¢ € X, goal configuration
xg € X, a custom heuristic h, low-level
sampling-based motion planner MP

Output: A motion plan ¢

1 p « predict_critical_regions(®, X, xo, x4)

)

S, A « generate_state_action_abstractions(p, X)

3 S0, Sg < get_HL_state(S, p, xo), get_HL_state(S, p, xy)

4 P « multi-source_bi-directional_beam_search(S, A, s, sq)
5 7 « refine_path($, MP)

6 h « update_heuristic(z, S)

7 return

continuous low-level configuration spaces. Instead, we use the
RBVD as an implicit concept. We generate abstractions on-the-fly
by computing membership of low-level configurations in abstract
states only when needed.

Vanilla high-level planning using the set of all abstract actions
A would be inefficient as it may yield plans for which low-level
refinement may not exist as we do not know the applicability of
these abstract actions at low-level. To overcome this challenge,
we develop a hierarchical multi-source bi-directional planning al-
gorithm that performs high-level planning from multiple abstract
states. Generally, a multi-source approach would not work for robot
planning because it is not clear what the intermediate states are. In
this paper, we use critical regions as abstract intermediate states
and utilize a multi-source search. This utilizes learned information
better than single source and single direction beam search. Our
high-level planner generates a set of candidate high-level plans
from the abstract initial state to the abstract goal state using a
custom heuristic (which is continually updated). These paths are
then simultaneously refined by a low-level planner to compute
a trajectory from the initial low-level configuration to the goal
configuration while updating the heuristic function.

Algorithm 1 describes our approach for generating and using
hierarchical abstractions. Given the configuration space X and
initial and goal configurations (xo and x4) of the robot R, HARP
uses a learned DNN @ to generate a set of critical regions p (Sec. 5.2
discusses how we learn this model ®) (line 1). The remainder of
Alg. 1 can be broken down into three important steps: 1) computing
a set of candidate high-level plans, 2) refining candidate high-level
plans into a low-level trajectory, and 3) updating the heuristic for
abstract states. We now explain each of these steps in detail.

Computing High-Level Plans. To compute high-level plans that
reach the goal configuration x, from the initial configuration xj,
first we determine abstract initial and goal states sy and s; corre-
sponding to the initial and goal configurations xo and x4 (line 3).
To do this efficiently, we store sampled points from each critical
region in a k-d-tree and query it to determine the abstract state for
the given low-level configurations without explicitly constructing
the complete RBVD. This allows us to dynamically and efficiently
determine high-level states for low-level configurations.

Main Track

| L]

N e

e
D =H =
=11 =l |

)

)

Figure 2: Test environments for our approach. Dimensions
of environments (A)-(D) are 5m X 5m and dimensions of envi-
ronments (E)-(G) are 25m X 25m. (A)-(G) are used for naviga-
tional problems while (H) and (I) are used for manipulation
problems.

Once we determine initial and goal states sg and sy, we use our
high-level planner to compute a set of candidate high-level plans
going from sp to s4 (line 4). To compute these candidate high-level
plans, we develop a multi-source bi-directional variant of beam
search [25] that yields multiple high-level candidate plans.

We call this multi-source bi-directional beam search. We include
the pseudocode for vanilla and multi-source bi-directional beam
search in the extended version of the paper [30].

Intuitively, this algorithm works as follows: we use a priority
queue to maintain a fringe to keep track of the current state of the
search. We initialize this fringe with multiple randomly sampled
abstract states to allow the beam search to start from multiple
sources. We select and expand these nodes in a specific order to
compute paths that reach from the initial state to the goal state.

Formally, the nodes in the fringe are expanded as follows: Let
n be a node in the fringe. We select the node to expand using
f(n) = g(n) + h(n), where g(n) is the cost of the path heading to
n (unit cost for each action) and h(n) is a custom heuristic that is
defined as follows. Let m be the parent of n and let s,, and s, be the
abstract states corresponding to the nodes n and m. The heuristic
h(n) is computed as:

h(n) = B (sm, sn) + min{h’ (sn, si), b (sn, s¢) }

Here, h'(s1,s2) = €12d" (r1,r2) defines the estimated distance be-
tween abstract high-level states s; and s, with corresponding critical

1187

AAMAS 2022, May 9-13, 2022, Online

regions r1 and ry respectively. s; is the initial abstract state and s,
is the goal abstract state.

€ij € (0,1] is a constant that accounts for imprecise abstract
actions. Alg. 1 dynamically changes it to update the heuristic func-
tion (line 6) and making it more accurate. Initially, €;; is set to 1
for all i and j. Once a low-level trajectory 7 is computed (explained
later), we compute the abstraction 7 of this trajectory. For each
consecutive pair of abstract states (s;,s;) in 7, we decrease the
value of €;; by €;j/2 . This allows HARP to use experience from
previously computed trajectories to prioritize abstract actions that
have low-level refinements to compute accurate high-level plans.

After an abstract state s; is selected from the fringe, its successors
are created by applying abstract actions on it and adding these
successors to the fringe. This process continues until k high-level
plans are found or the fringe is empty.

Once we generate a set of candidate high-level plans from multi-
source bi-directional beam search, we use a low-level planner to
refine these plans into a low-level collision-free trajectory from
initial low-level configuration x¢ to goal configuration x, (line 5).

Refining High-level Plans. While any probabilistically complete
motion planner can be used to refine the computed high-level plans
into a low-level trajectory between given two configurations, we
use Learn and Link Planner (LLP) [28] as a low-level planner in
HARP (MP in Alg. 1) as it allows us to easily use the abstract states
and their critical regions to efficiently compute motion plans. LLP is
a sampling-based motion planner that initializes exploration trees
rooted at N samples from the configuration space and extends these
exploration trees until they connect and form a single tree. Once a
single tree is formed, the planner uses Dijkstra’s Algorithm [10] to
compute a path from the initial state to the goal state.

In order to use LLP to refine a set of candidate high-level plans
simultaneously, we first select a subset of critical regions p C p
that includes all critical regions corresponding to all high-level
states in candidate plans. We use this subset of critical regions
to provide initial samples to initialize exploration trees of LLP. In
this work, we generate M samples from the set of critical regions p
and generate the rest of the N — M samples using uniform random
sampling. Similarly, to expand these exploration trees, we generate
a fixed number of samples from the set critical regions p and then
continue with uniform sampling.

We use these characteristics of our algorithm to show that our
approach is probabilistic complete.

THEOREM 5.1. If the low-level motion planner (MP in Alg. 1) is
probabilistically complete, then HARP is probabilistically complete.

Proor. (Sketch) While refining high-level plans to a low-level
motion plan (line 5 in Alg. 1), HARP uses a fixed number of samples
from the critical regions along the high-level plans to initialize
a low-level motion planner. This does not reduce the set of sup-
port (regions with a non-zero probability of being sampled) of the
sampling distribution being used by the motion planner. O

5.2 Learning to Predict Critical Regions

We now present our approach for learning a model ® that pre-
dicts critical regions for a given environment. We explain how our
approach is able to generate a robot-specific architecture of the

Main Track

el v [* 0" v_l_v_l v_
LY IT= o o = = }
- 9 Ila L v 4
il = [=] b= — I —
[We [sl=1—=1 [
—I o= | - || @ J|* _lh.— | Y
;—| L, [+ :Ig L
Illb T :l‘ SRR RS
(a) (b)

Figure 3: CRs and generated abstraction for a 4-DOF hinged
robot. (a) and (b) shows the CRs predicted by the model. Blue
regions in (a) show that model predicted the robot’s base link
to be horizontal while green regions show that the model
predicted the robot’s base link to be vertical. Blue regions in
(b) show that the network predicted the hinge to be closer to
180° and green regions show that the network predicted it
to be closer to 90° or 270°. (c) shows state abstraction gener-
ated by our approach though our approach does not need to
explicitly generate these abstractions.

network. We include specifics about data generation and network
training in the extended version of the paper [30].

Deriving Robot Specific Network Architectures. We use the
standard fully convolutional UNet architecture [29] as our base
network. The extended paper [30] includes network architecture
for this network. We use the robot’s geometry and its number of
DOFs to derive a robot specific architecture as follows:

Let n be the number of DOFs of the robot and let k be the number
of DOFs that are not determined by the location of the robot’s end-
effector in the workspace. For manipulation problems, we consider
gripper of the robot as the its end-effector and for navigational
problems, we consider the robot’s base link as its end effector. First,
we use these parameters to update the base UNet architecture.
We use the last layer of the base architecture to predict critical
regions for the end-effector’s location and include k additional
convolutional layers to predict critical regions for each kK DOFs that
are not determined by the location of the robot’s end effector.

The input to the network is a tensor of dimension four. The size
of the first three dimensions of the input tensor depends on the
number of bins used to discretize the environment (which can be
arbitrary). The number of channels in the input tensor is determined
using the parameter n. If the robot has n DOFs, then the input tensor
would have a total of n + 1 channels. The first channel in the input
represents the occupancy matrix of the environment. It is generated
by performing a raster scan of the environment. The rest of the n
channels represent goal values for each DOF of the robot -- one for
each DOF of the robot.

Similarly, each label is a tensor of dimension four. The size of the
first three dimensions is similar to the input tensor. The number
of channels in the label tensor is also computed using the robot’s
geometry. For a robot with k DOFs that are not determined by the
location of robot’s end effector in the workspace, the label tensor
would have a total of k + 1 channels. The first channel represents
critical regions for the end-effector’s location in the workspace and
the rest of the k channels represent critical regions for the kK DOFs

1188

AAMAS 2022, May 9-13, 2022, Online

@)

(b)

Figure 4: Critical regions for arm manipulation task using an
8-DOF Fetch. The green region in (a) shows the goal location
for the end effector. (b) shows the critical regions generated
by the learned model. Although the network predicts CRs for
all the joints, only CRs for end-effector’s location are shown.

that are not determined by this location -- one channel for each of
the k DOFs of the robot.

E.g, consider a 5-DOF hinged robot. The robot’s 5 DOFs are
(x,y,z,0,w) where x, y, and z represent the location of the robot’s
base link in the workspace, 0 represents the rotation of the base
link, and w represents the hinged angle. So for this robot, n would
equal to 5 and k would equal to 2 as only the base rotation 6 and the
hinged angle w are not determined by the location of the robot’s end-
effector (base link in this case) in the workspace. So according to the
previous discussion, the network would contain k = 2 additional
layers to predict critical regions for 6 and w. The input tensor would
have a total of n + 1 = 6 channels and the label tensor would have
a total of k + 1 = 3 channels.

6 EMPIRICAL EVALUATION

We extensively evaluate our approach in twenty different scenarios
with four different robots. All experiments were conducted on
a system running Ubuntu 18.04 with 8-core i9 processor, 32 GB
RAM, and an Nvidia 2060 GPU (our approach uses only a single
core) OpenRAVE robot simulator [9]. We compare our approach
with state-of-the-art motion planners such as RRT [22], PRM [17],
and BiRRT [18]. As LLP is implemented using Python, we use the
Python implementation of the baseline algorithms available at https:
//ompl.kavrakilab.org/ for comparison. Our training data, code,
trained model, and results are available with the extended version
of the paper [30] at https://aair-lab.github.io/harp.html.

3-DOF Rectangular Robot (R). For the first set of experiments,
the objective is to solve motion planning problems for a 3-DOF
rectangular robot. The robot can move along the x and y axes and
it can rotate around the z axis.

3-DOF Non-Holonomic Rectangular Car Robot (Car). For the
second set of experiments, we evaluated our approach with a rect-
angular non-holonomic robot similar to a simple car. Controls avail-
able to operate the robot were linear velocity v € [—0.2,0.2] and
the steering angle 6 € [-7, 7] while three degrees of freedom
(location along x-axis, location along y-xis, and rotation around

z-axis) were required to represent the robot’s transformation.

4-DOF Hinged Robot (H). For the third set of experiments, we
used a robot with a hinge joint to evaluate our approach. The robot’s

https://ompl.kavrakilab.org/
https://ompl.kavrakilab.org/
https://aair-lab.github.io/harp.html

Main Track

AAMAS 2022, May 9-13, 2022, Online

—— HARP (ours) —— VanillaLLP —— RRT —— BiRRT —— PRM
R-B R-D R-E R-F
100 q b b

75 - - -

50 b b R

25 - - BE
- [
(0] T T T T T T T T T T T T
% 5 10 15 20 5 10 15 20 150 175 200 150 175 200 150 175 200
3 H-A H-B H-C H-D H-E H-F H-G
= g J q J J
Q
e}
o
—_
o . —~ 4 4 . .
Y—
o —1 A 4 o 4 4
[} - e — .
o r— - A |~ — —
S T T T T T T T T T T T T T T T T T T
GCJ 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 150 175 200 150 175 200 150 175 200
g Car-R-A Car-R-B Car-R-C Car-R-D Fetch - | Fetch -
o

100 A 1
75 A 1
50 1 1

25 A J 1

—

1] /’;

s

50

T T T T T T
25 50 75 100 100 150 25 50

T T T
75 100 25 50 75 100 5

T T T T
10 15 20 5 10 15 20

Time (in seconds)

Figure 5: Each plot shows the fraction of 100 independently generated motion planning tasks solved (y-axis) in the given time
(x-axis) for all the test environments and robots. The title of each subplot represents the robot and the environment. E.g., “R -

A” stands for rectangular robot in environment A (Fig. 2(A)).

4 DOFs are its location along x and y axes, rotation along z-axis (),
Iz

and the hinge joint (w) with the range [~ 7, 7].

8-DOF Fetch Robot. For the last set of experiments, we used our
approach with a mobile manipulator named Fetch [36] to perform
arm manipulation. The goal of this experiment is to evaluate the
scalability of our approach to robots with high degrees of freedom.

Figures 2 and 4 show the test environments (unseen by the
model while training) for our system. Environments shown in Fig.
2 are inspired by the indoor office and household environments.
Our training data consisted of 20 environments similar to the ones
shown in Fig. 2(A)-(D) with dimensions 5m X 5m. We investigate
the scalability of our approach by conducting experiments in en-
vironments shown in Fig. 2(E)-(G) with dimensions 25m X 25m
(much larger than training environments). To handle such large
environments without making any changes to the DNN, we use the
standard approach of sliding windows with stride equal to window-
width [2, 13, 26, 34]. This crops the larger environment into pieces
of the size of the training environments. Individual predictions are
then combined to generate a set of critical regions for arbitrary
large environments. We also evaluate the applicability of our ap-
proach to non-holonomic robots in environments shown in Fig.
2(A)-(D).

6.1 Analysis of the Results

As discussed in the introduction (Sec. 1), our objective is to show
whether 1) state and action abstractions can be derived automati-
cally and 2) whether auto-generated state and action abstractions
can be efficiently used in a hierarchical planning algorithm. Ad-
ditionally, we also investigate 3) does dynamically updating the
heuristic function (line 6 in Alg. 1) improve Alg. 1’s efficiency?

1) Can We Learn State and Action Abstractions? Our approach
learns critical regions for each DOF of the robot. Fig. 3 shows critical
regions predicted by our learned model for the hinged robot H.
We can see that our model was able to identify critical regions
in the environment such as doorways and narrow hallways. Fig.
3(a) shows critical regions for orientation of the robot’s base link
(captured by DOF 6). The blue regions in the figure represent the
horizontal orientation of the robot and the green regions represent
the vertical orientation of the robot. Fig. 3(b) shows critical regions
for the hinge joint w for the robot H. Here, blue regions show that
the network predicted the hinge joint to be flat (close to 0°) and
green regions represent configurations where the model predicted
"L" configurations of the robot (w close to 90° or 270°). Fig. 3 shows
that our approach was able to predict the correct orientation of
the robot accurately most of the time. Our approach was able to
scale to robots with a high number of degrees of freedom. Fig. 4(a)

1189

Main Track

m m
400
g 200 'g
§ 150 §
c 100 c 200
o 50)
£ 5 E o
= 2 4 6 8 10 = 0 50 100

Problem Iteration Problem Iteration

@ (b

Figure 6: (a) Solving 20 randomly generated problems repeat-
edly 110 times. x-axis show the problem iteration and y-axis
shows the average time over 20 problem instances. (b) Time
taken to solve 100 randomly generated problem instances. X-
axis shows the problem number and y-axis shows the taken
to solve each problem.

shows one of the test environments used for these experiments and
Fig. 4(b) shows the predicted critical regions. This shows that our
model was able to learn critical regions in the environment that
can be used to generate efficient abstractions. We include similar
results for other environments in the extended version [30].

Now we answer the second question on whether using abstrac-
tions to compute motion plans helps improve the planner’s effi-
ciency by qualitatively comparing our approach with a few existing
sampling-based motion planners.

b) Can Learned Abstractions be Used Efficiently for Hierar-
chical Planning? We compare our approach against widely used
SBMPs such as RRT [22], PRM [17], and BiRRT [18].

Fig. 5 shows the comparison of our approach with other sampling-
based motion planners. The x-axis shows the time limit in seconds
and the y-axis shows the percentage of motion planning problems
solved in that time limit. For each time limit on x-axis, we randomly
generate 100 new motion planning problems to thoroughly test our
approach and reduce statistical inconsistencies. Fig. 5 shows that
our approach significantly outperforms all of the existing sampling-
based motion planners. Specifically for environments C, D, and E,
uniform sampling-based approaches were not able to solve a single
problem in a time threshold of 600s.

Our approach also outperforms the learning-based planner
LLP [28] (Fig. 5), which uses learned critical regions but does not
use state and action abstractions and does not perform hierarchical
planning. This illustrates the value of learning abstractions and
using them efficiently for hierarchical planning.

Similarly, we also evaluate our approach against TogglePRM [8].
TogglePRM is written in C++ and accepts only discrete SE? config-
uration space for a simple dot robot. We created discrete variants
of environments shown in Fig. 2(A) and 2(B) with a total of 50176
states and compare the total number of nodes sampled. For 100
random trials, on an average our approach generated 631 + 278 and
496+ 175 states compared to TogglePRM which generated 4234+532
and 19234 + 4345 states for discrete variants of the environments
shown in Fig. 2(A) and 2(B) respectively. Our approach was able
to outperform TogglePRM since these environments do not have
a-e-separable passages [8].

1190

AAMAS 2022, May 9-13, 2022, Online

c) Does Dynamically Updating Heurstic Function Improve
Efficiency? We carried out two sets of experiments. In the first set
of experiments, we generated 20 random motion planning problems
and solved each problem repeatedly for 10 times while updating
the heuristic function. We maintained separate copies of high-level
heuristic functions for each problem. Fig. 6(a) shows the results for
this set of experiments in the environment E (Fig. 2(E)) with the 4-
DOF hinged robot. The x-axis shows the planning iteration and the
y-axis shows the average time over randomly generated 20 problem
instances. We can see how planning time reduces drastically once
costs for abstract actions are updated.

In the second set of experiments, we generated 100 random pairs
of initial and goal states and computed motion plans for each of
them. This time, we maintained a single heuristic function across all
problems and updated it after each motion planning query. Fig. 6(b)
shows the result of the experiment in the environment E (Fig. 2(E))
with the 4-DOF hinged robot H. The x-axis shows the problem
number and the y-axis shows the time taken by our approach to
compute a solution. The red line in the plot shows the moving aver-
age of planning time. Fig. 6(b) shwows that dynamically updating
the heuristic function for high-level planning helps to increase the
efficiency of HARP and decrease motion planning times.

Empirical evaluation using these experiments validates our hy-
pothesis that learning abstractions and effectively using them im-
proves motion planning efficiency.

7 CONCLUSION

In this paper, we presented a probabilistically complete approach
HARP, that uses deep learning to identify abstractions for the in-
put configuration space. It learns state and action abstractions in a
bottom-up fashion and uses them to perform efficient hierarchical
robot planning. We developed a new multi-source bi-directional
planning algorithm that uses learned state and action abstractions
along with a custom dynamically maintained cost function to gen-
erate candidate high-level plans. A low-level motion planner refines
these high-level plans into a trajectory that achieves the goal con-
figuration from the initial configuration.

Our formal framework provides a way to generate sound abstrac-
tions that satisfy the downward refinement property for holonomic
robots. Our empirical evaluation on a large variety of problem
settings shows that our approach is able to significantly outper-
form state-of-the-art sampling and learning-based motion planners.
Through our empirical evaluation, we show that our approach is ro-
bust and can be scaled to large environments and to robots that have
high degrees of freedom. Our work presents a foundation for learn-
ing high-level, abstractions from low-level trajectories. Currently,
our approach works for deterministic robot planning problems. We
aim to extend our approach to support stochastic settings and learn
abstractions for task and motion planning problems.

ACKNOWLEDGMENTS

We thank Abhyudaya Srinet for his help in implementing a prim-
itive version of the presented work. We thank Kyle Atkinson for
his help with creating test environments. This work is supported
in part by the NSF under grants 1909370 and 1942856.

Main Track AAMAS 2022, May 9-13, 2022, Online

REFERENCES [19] Rahul Kumar, Aditya Mandalika, Sanjiban Choudhury, and Siddhartha S. Srini-

[1] Fahiem Bacchus and Qiang Yang. 1991. The Downward Refinement Property. In vasa. 2019. LEGO: Leveraging Experience in Roadmap Generation for Sampling-
Proc. IJCAL 1991. Based Planning. In Proc. IROS, 2019.

[2] Taibou Birgui Sekou, Moncef Hidane, Julien Olivier, and Hubert Cardot. 2018. [20] Thanerd Kurutach, Aviv Tamar,A Ge Ya.ng, Stuart Russell, and Pieter Abbeel. 2018.
Retinal Blood Vessel Segmentation Using a Fully Convolutional Network — Trans- Learning Plannable Representatlon.s with Ca‘usal InfoGANiln Proc. Neur{P S, 2018.
fer Learning from Patch- to Image-Level. In Proc. MLMI, 2015. [21] Steven .M. LaValle. 2006. Planning Algorithms. Cambridge University Press,

[3] Oliver Brock and Lydia E. Kavraki. 2001. Decomposition-based Motion Planning: Cambridge, UK. Available at http:/planning.cs.uiuc.edu/.

~
£,

A Framework for Real-Time Motion Planning in High-Dimensional Configuration Steven M LaValle. 1998. Rapidly-Exploring Random Trees: A New Tool for Path

Spaces. In Proc. ICRA, 2001. Planning. (1998).) o
[4] Constantinos Chamzas, Zachary Kingston, Carlos Quintero-Pefia, Anshumali Katherlne Liu, Marltna Sta.dlerf and N1.cholas RoyA.2020. Lea}rned Sampling Distri-

Shrivastava, and Lydia E Kavraki. 2020. Learning Sampling Distributions Using b'utlons for Efficient Planning in Hybrid Geometric and Object-Level Representa-

Local 3D Workspace Decompositions for Motion Planning in High Dimensions. thT‘S' In Proc. ICRA 2020. . .

In Proc. ICRA, 2021, Shih-Yun Lo, Shiqi Zhang, and Peter Stone. 2018. PETLON: Planning Efficiently

[5] Bernard Chazelle. 1985. Approximation and Decomposition of Shapes. Algorith- for Task-Level-Optimal Navigation. In Proc. MMS, 2018. .
mic and Geometric Aspects of Robotics 1 (1985), 145-185. [25] Bruce T Lowerre. 1976. The Harpy Speech Recognition System. Carnegie Mellon

[6] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Ul'niversity. o . .
Abbeel. 2016. InfoGAN: Interpretable Representation Learning by Information [26] Xin Lu, Zhe Lin, Xlaohul Shen, Radomir Mech, and James Z Wang. 2015. Deep
Maximizing Generative Adversarial Nets. In Proc. NeurIPS, 2016. Multi-Patch Aggregation Network for Image Style, Aesthetics, and Quality Esti-

[7] Neil T Dantam, Zachary K Kingston, Swarat Chaudhari, and Lydia E Kavraki. mation. In Proc. ICCV, 2015.

I
3

™
=)

2018. An incremental constraint-based framework for task and motion planning. [27] Matteo Luperto, Luca Fochetta, and Francesco Amigoni. 2021. Exploration of
The International Journal of Robotics Research 37, 10 (2018), 1134-1151. Indoor Environments Predicting the Layout of Partially Observed Rooms. In Proc.

[8] Jory Denny and Nancy M. Amato. 2013. Toggle PRM: A Coordinated Mapping AAMAS’ 20?1'
of C-Free and C-Obstacle in Arbitrary Dimension. Algorithmic Foundations of (28] Daniel Molina, Kislay Kumar, and Siddharth Srivastava. 2020. Learn and Link:
Robotics X. Springer Tracts in Advanced Robotics (STAR) 86, 297-312. Learning Critical Reg}?‘ls fqr Efficient Planning. In Proc. ICRA, 2020.)

[9] Rosen Diankov. 2010. Automated Construction of Robotic Manipulation Programs. [29] Olaf Ronnebergg, P h‘!lpp Fischer, and Thon'las Brox. 2015. U-Net: Convolutional
Ph.D. Dissertation. Carnegie Mellon University. Networks for Biomedical Image Segmentation. In Proc. MICCAI, 2015.

[10] Edsger W Dijkstra. 1959. A Note on Two Problems in Connexion with Graphs. [30] Naman Shah and Siddharth Srivastava. 2022. Using Deep Learning to Bootstrap

Abstractions for Hierarchical Robot Planning. arXiv:2202.00907 [cs.RO] https:

Numerische mathematik 1, 1 (1959), 269-271. '
//arxiv.org/abs/2202.00907

[11] Paul Duckworth, Yiannis Gatsoulis, Ferdian Jovan, Nick Hawes, David C Hogg,

and Anthony G Cohn. 2016. Unsupervised Learning of Qualitative Motion [31] Naman Shah, Deepak Kala Vasudevan, Kislay Kumar, Pranav Kamojjhala, and

Behaviours by a Mobile Robot. In Proc. AAMAS, 2016, Siddharth Srivastava. 2020. Anytime Integrated Task and Motion Policies for
[12] Caelan Reed Garrett, Tomas Lozano-Pérez, and Leslie Pack Kaelbling. 2020. PDDL- StQChaSth Envxrogments. If“ Proc. ICRA, 24020' ., . .

Stream: Integrating Symbolic Planners and Blackbox Samplers via Optimistic (32] William Shen, Fehpe Trev1zz}n,l and Sylwe Thiébaux. 2020. Learning Domain-

Adaptive Planning. In Proc. ICAPS, 2020. Independent Planning Heuristics with Hypergraph Networks. In Proc. ICAPS,
[13] Le Hou, Dimitris Samaras, Tahsin M Kurc, Yi Gao, James E Davis, and Joel H 2920' i .

Saltz. 2016. Patch-Based Convolutional Neural Network for Whole Slide Tissue (33] Kihyuk Sohn, H. Lee, and Xinchen Yan. 2015. Learning Structured OQutput

Image Classification. In Proc. CVPR, 2016. Representation using Deep Conditional Generative Models. In Proc. NIPS, 2015.

[34] Chaohui Tang, Qingxin Zhu, Wenjun Wu, Wenlin Huang, Chaoqun Hong, and
Xinzheng Niu. 2020. PLANET: Improved Convolutional Neural Networks with Im-
age Enhancement for Image Classification. Mathematical Problems in Engineering

[14] Brian Ichter, James Harrison, and Marco Pavone. 2018. Learning Sampling
Distributions for Robot Motion Planning. In Proc. ICRA, 2018.

Brian Ichter, Edward Schmerling, Tsang-Wei Edward Lee, and Aleksandra Faust.
2020. Learned Critical Probabilistic Roadmaps for Robotic Motion Planning. In 2'020 (2020). . X X i

Proc. ICRA, 2020. Jiankun Wang, Tianyi Zhang, Nachuan Ma, Zhaoting Li, Han Ma, Fei Meng, and

[16] Rushang Karia and Siddharth Srivastava. 2021. Learning Generalized Relational Max Q-H Meng. 2021. A survey of Learning-Based Robot Motion Planning. IET

[15

@
2

Heuristic Metworks for Model-Agnostic Planning. In Proc. AAAL 2021. Cyber-Sy stems anfi Robotics (2021).
[17] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. 1996. Proba- [36] Melonee Wise, Mlc}}ael Ferguson, Derek King, Eric D¥ehr, and Dav1d' Dy'mesmh.
bilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces. 2016. Fetch and Freight: Standard Platforms for Serwce Robot Applications. In
IEEE transactions on Robotics and Automation 12, 4 (1996), 566—580. IjCAI 2016 Woﬂcshop on Autonomous Mobile Service RObOtSj L. .
[18] James J Kuffner and Steven M LaValle. 2000. RRT-connect: An Efficient Approach (37] C!ark Zha}ng,]1nwook Huh, an‘% Daniel D Lee. 2018. Learning Implicit Sampling
to Single-Query Path Planning. In Proc. ICRA, 2000. Distributions for Motion Planning. In Proc. IROS, 2018.

1191

https://arxiv.org/abs/2202.00907
https://arxiv.org/abs/2202.00907
https://arxiv.org/abs/2202.00907

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Formal Framework
	5 Learning Abstractions and Planning
	5.1 Generating and Using Abstractions
	5.2 Learning to Predict Critical Regions

	6 Empirical Evaluation
	6.1 Analysis of the Results

	7 Conclusion
	Acknowledgments
	References

