Learning Deep Neural Networks under Agnostic Corrupted Supervision

Boyang Liu' Mengying Sun '

Abstract

Training deep neural network models in the pres-
ence of corrupted supervision is challenging as
the corrupted data points may significantly im-
pact generalization performance. To alleviate
this problem, we present an efficient robust al-
gorithm that achieves strong guarantees without
any assumption on the type of corruption and pro-
vides a unified framework for both classification
and regression problems. Unlike many existing
approaches that quantify the quality of the data
points (e.g., based on their individual loss val-
ues), and filter them accordingly, the proposed
algorithm focuses on controlling the collective
impact of data points on the average gradient.
Even when a corrupted data point failed to be ex-
cluded by our algorithm, the data point will have
a very limited impact on the overall loss, as com-
pared with state-of-the-art filtering methods based
on loss values. Extensive experiments on multi-
ple benchmark datasets have demonstrated the
robustness of our algorithm under different types
of corruption. Our code is available at https:
//github.com/illidanlab/PRL.

1. Introduction

Corrupted supervision is a common issue in real-world
learning tasks, where the target variables are potentially
noisy due to errors in the data collection or labeling process.
Such corruptions can have severe consequences especially
in deep learning models, whose large degree-of-freedom
makes them easier to memorize the corrupted examples, and
thus, susceptible to overfitting (Zhang et al., 2016).

There have been extensive efforts to achieve robustness
against corrupted supervision. A natural approach to deal
with corrupted supervision in deep neural networks (DNN5s)
is to reduce the model exposure to corrupted data points

"Department of Computer Science and Engineering, Michi-
gan State University, USA. Correspondence to: Boyang Liu <li-
uboya2 @msu.edu>, Jiayu Zhou <jiayuz@msu.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Ding Wang! Pang-Ning Tan! Jiayu Zhou'

during training. By detecting and filtering (or re-weighting)
the possible corrupted samples, the learning algorithm is
expected to deliver a model that is similar to the one trained
on clean (uncorrupted) data (Han et al., 2018; Zheng et al.,
2020). There are various criteria designed to identify the cor-
rupted samples in training. For example, Han et al. (2018);
Jiang et al. (2018) leveraged the loss function values of the
data points; Zheng et al. (2020) considered prediction uncer-
tainty for filtering data; Malach & Shalev-Shwartz (2017)
used the disagreement between two deep networks; while
Reed et al. (2014) utilized the prediction consistency of
neighboring iterations. The success of these methods highly
depends on the effectiveness of the detection criteria in cor-
rectly identifying the corrupted data points. Since the actual
corrupted points remain unknown throughout the learning
process, such “unsupervised” methods may not be effective,
either lacking in theoretical guarantees of robustness (Han
et al., 2018; Reed et al., 2014; Li et al., 2017) or providing
guarantees only under the assumption that prior knowledge
is available about the type of corruption present (Zheng
et al., 2020; Shah et al., 2020; Malach & Shalev-Shwartz,
2017; Patrini et al., 2017; Yi & Wu, 2019). Most existing
theoretical guarantees under agnostic corruption during op-
timization are focused on convex losses (Prasad et al., 2018)
or linear models (Bhatia et al., 2015; 2017), and thus cannot
be directly applied to DNNs. Diakonikolas et al. (2019)
developed a generalized non-convex optimization algorithm
against agnostic corruptions. However, it is not optimized
for the label/supervision corruption problem and has a high
space complexity, which is prohibitively costly when ap-
plied to typical DNNs with a large amount of parameters.
Furthermore, many existing approaches are exclusively de-
signed for classification problems (e.g., Malach & Shalev-
Shwartz (2017); Reed et al. (2014); Menon et al. (2019);
Zheng et al. (2020)); extending them to solving regression
problems is not straightforward.

To tackle these challenges, this paper presents a unified op-
timization framework with robustness guarantees, without
any assumptions on how supervisions are corrupted, and is
applicable to both classification and regression problems.
Instead of designing a criterion for accurate detection of cor-
rupted samples, we focus on limiting the collective impact
of corrupted samples during the learning process through
robust mean estimation of the gradients. Specifically, if our

https://github.com/illidanlab/PRL
https://github.com/illidanlab/PRL

Submission and Formatting Instructions for ICML 2021

estimated average gradient is close to the expected gradient
from the clean data during the learning iterations, then the
final model will be close to the model trained on clean data.
As such, a corrupted data point can still be used during the
training as long as it does not significantly alter the aver-
age gradient. This observation has remarkably impacted
our algorithm design: instead of explicitly quantifying (and
identifying) individual corrupted data points, which is a hard
problem in itself, we are now dealing with an easier task, i.e.,
eliminating training data points that significantly distort the
mean gradient estimation. One immediate consequence of
this design is that, even when a corrupted data point failed to
be excluded by the proposed algorithm, the data point will
likely have very limited impact on the overall gradient, un-
like existing approaches that filter data points based on their
loss values. Compared to state-of-the-art robust optimiza-
tion methods (Prasad et al., 2018; Diakonikolas et al., 2019)
that require the more expensive SVD computation on the
gradient matrix, we fully utilize the gradient structure when
the corruptions are restricted to the target variable to make
our algorithm applicable to DNNs. Moreover, when only
the target variable is corrupted, we improve the error bound
from O(v/€) to O(e), where € is the corruption rate. We per-
form experiments on both regression and classification tasks
with corrupted supervision on multiple benchmark datasets.
The results show that the proposed method outperforms
various state-of-the-art baseline methods.

2. Background

Learning from corrupted data (Huber, 1992) has attracted
considerable attention in the machine learning community
(Natarajan et al., 2013). Many recent studies have inves-
tigated robustness of classification tasks with noisy labels.
For example, Kumar et al. (2010) proposed a self-paced
learning (SPL) approach, which assigns higher weights to
examples with smaller loss. A similar idea was used in cur-
riculum learning (Bengio et al., 2009), in which the model
learns the easy concept first before the harder ones. Alterna-
tive methods inspired by SPL include weight learning (Jiang
et al., 2018) and collaborative learning (Han et al., 2018;
Yu et al., 2019) approaches. Label correction (Patrini et al.,
2017; Lietal., 2017; Yi & Wu, 2019) is another approach,
which attempts to revise the original labels of the data to
recover clean labels from corrupted ones. However, since
we do not have access to which data points are corrupted, it
is harder to obtain provable guarantees for label correction
without strong assumptions about the corruption type.

Accurate estimation of the gradient is a key step for suc-
cessful optimization. The relationship between gradient
estimation and its final convergence has been widely studied
in the optimization community. Since computing an ap-
proximated (and potentially biased) gradient is often more

efficient than computing the exact gradient, many studies
used approximated gradients to optimize their models and
showed that they suffer from the biased estimation prob-
lem if there is no assumption on the gradient estimation
(d’ Aspremont, 2008; Schmidt et al., 2011; Bernstein et al.,
2018; Hu et al., 2020; Ajalloeian & Stich, 2020).

A closely related topic is robust estimation of the mean.
Given corrupted data, robust mean estimation aims at gener-
ating an estimated mean /i such that the difference between
the estimated mean on corrupted data and the mean of clean
data ||t — |2 is minimized. The median or trimmed mean
have been shown to be optimal statistics for mean estimation
in one-dimensional data (Huber, 1992). However, robust-
ness in high dimension is more challenging since applying
the coordinate-wise optimal robust estimator would lead to
an error factor O(v/d) that scales with dimensionality of
the data. Although classical methods such as Tukey me-
dian (Tukey, 1975) have successfully designed algorithms
to eliminate the O(v/d) error, the algorithms cannot run in
polynomial-time. More recently, Diakonikolas et al. (2016);
Lai et al. (2016) successfully designed polynomial-time al-
gorithms with dimension-free error bounds. The results
have been widely applied to improve algorithmic efficiency
in various scenarios (Dong et al., 2019; Cheng et al., 2020).

Robust optimization is designed to improve algorithm ro-
bustness in the presence of corrupted data. Most existing ef-
forts have focused on linear regression and its variants (Bha-
tia et al., 2015; 2017; Shen & Sanghavi, 2019) or convex
problems (Prasad et al., 2018). Thus, their results cannot be
directly generalized to DNNs. Although Diakonikolas et al.
(2019) presented a generalized non-convex optimization
method with an agnostic corruption guarantee, the space
complexity of the algorithm is high, and thus, cannot be
applied to DNNs with large number of parameters. We will
discuss Diakonikolas et al. (2019) in the next section.

3. Methodology

Before introducing our algorithm, we first present our cor-
rupted supervision setting. To characterize agnostic corrup-
tions, we assume there is an adversary that tries to corrupt
the target variable of clean data. There is no restriction
on how the adversary corrupts the supervision, which can
either be randomly permuting the target, or in a way that
maximizes its negative impact on the model performance.
The adversary can choose up to € fraction of the clean target
D, € R"*9 and alters the selected rows of D, to arbitrary
valid numbers, generating Dy, € R"*9. The adversary then
returns the corrupted dataset D, Dj to our learning algo-
rithm A. The adversary can have full knowledge of the
data or even the learning algorithm .A. The only constraint
on the adversary is the corruption rate, €. A key question
is: Given a dataset D, € R"*P, D; € R"X9 with e-

Submission and Formatting Instructions for ICML 2021

fraction of corrupted supervision, and a learning objective
¢ : R? x R? x R* — R parameterized by 6 € RY, can
we output the parameters 0 such that |Vo¢(0; D, D,)|| is
minimized?

When € = 0, Dj = D, and the learning is performed on
clean data. The stochastic gradient descent algorithm may
converge to a stationary point where ||V$(0; D,, D,)|| =
0. However, this is no longer the case when the supervision
is corrupted as above due to the impact of the corrupted data
on #. We thus want an efficient algorithm to find a model
¢ that minimizes ||Vg¢(6; D,,D,)||. A robust model 0
should have a small value of |Vy¢(6; D, D,)||, and we
hypothesize that a smaller || Vy$(6; D, D,)|| leads to bet-
ter generalization.

3.1. Stochastic Gradient Descent with Biased Gradient

A direct consequence of corrupted supervision is biased
gradient estimation. In this section, we will first analyze
how such biased gradient estimation affects the robustness
of learning. The classical analysis of stochastic gradient
descent (SGD) requires access to the stochastic gradient
oracle, which is an unbiased estimation of the true gradient.
However, corrupted supervision leads to corrupted gradients,
which makes it difficult to get unbiased gradient estimation
without assumptions on how the gradients are corrupted.

The convergence of biased gradient has been studied via a
series of previous works (Schmidt et al., 2011; Bernstein
et al., 2018; Hu et al., 2020; Ajalloeian & Stich, 2020;
Scaman & Malherbe, 2020). For the sake of completeness,
we use the informal theorem below to show how biased
gradients affect the final convergence of SGD, and present a
more formal version and its proof in the appendix.

Theorem 1 (Convergence of Biased SGD (Informal)) Un-
der mild assumptions, denote C as the maximum £ norm of
the difference between the clean mini-batch gradient and
corrupted mini-batch gradient, i.e., ||g — g|| < ¢. By using
(-biased gradient , SGD converges to the (-approximated
stationary points: E (|[V¢(6,)]|?) = O(¢?).

The difference between the above theorem and the typical
convergence theorem for SGD is that we are using a biased
gradient estimation. According to Theorem 1, robust esti-
mation of the gradient g is the key to ensure a robust model
that converges to the clean solution. We also assume the loss
function has the form of £(y,¥), in which many commonly
used loss functions belong to this category.

3.2. Robust Gradient Estimation for General Data
Corruption

Before discussing the corrupted supervision setting, we first
review the general corruption setting, where the corruptions
may be present in both the supervision and input features. A

naive approach is to apply a robust coordinate-wise gradient
estimation approach such as coordinate-wise median for
gradient estimation. However, by using the coordinate-wise
robust estimator, the L2 norm of the difference between the
estimated and ground-truth gradients contains a factor of
O(V/d), where d is the gradient dimension. This error term
induces a high penalty for high dimensional models and thus
cannot be applied to DNNs. Recently, Diakonikolas et al.
(2016) proposed a robust mean estimator with dimension-
free error for general types of corruptions. Diakonikolas
et al. (2019) achieves an error rate of O(1/€) for general
corruption. This begs the question whether it is possible to
further improve the O(+/e€) error rate if we consider only
corrupted supervision.

To motivate our main algorithm (Alg. 2), we first introduce
and investigate Alg. 1 for general corruption with dimension-
dependent error. The algorithm excludes data points with
large gradient norms and uses the empirical mean of the
remaining points to update the gradient. Cor. 1 below de-
scribes its robustness property.

Algorithm 1 (PRL(G)) Provable Robust Learning for Gen-
eral Corrupted Data

input: Label corrupted dataset D, Dj, learning rate 7;;
return: model parameter ¢;
for t = 1 to maxiter do ~
Calculate the individual gradient G for sampled minibatch
M
For each row z; in G, calculate the 12 norm ||z;||
Choose the e-fraction rows with large ||z; ||
Remove those selected rows, and return the empirical mean
of the rest points as fi.
Update model 6441 = 6, — v+
end for

Corollary 1 (Robust Optimization For Corrupted
Data) Given the assumptions in Theorem 1, apply-
ing Algorithm 1 to e-fraction corrupted data yields
minse) E (|Vé(0:)||) = O(eVd) for large enough itera-
tion T, where d is the number of the parameters.

Remark 1 The term \/d is due to the upper bound of d-
dimensional gradient norm of clean data. The term can
be removed if we assume the gradient norm is uniformly
bounded by L. However, this assumption is too strong for
robust gradient estimation. We will show later that the
assumption can be relaxed (i.e. bounded maximum singular
value of gradient) under the corrupted supervision setting.

The error bound in the above corollary has several practical
issues. First, the bound grows with increasing dimension-
ality, and thus, is prohibitive when working with DNNss,
which have extremely large gradient dimensions due to their
massive number of parameters. Even though Cor. 1 can
improve the factor /e (Diakonikolas et al., 2019) to €, the
results remain impractical compared to the dimension-free

Submission and Formatting Instructions for ICML 2021

O(+/€) guarantee in (Diakonikolas et al., 2019), since above
bound involves the dimension related term v/d.

Efficiency is another main limitation of Alg. 1 since it re-
quires computing individual gradients. Although there are
advanced methods available to obtain the individual gradi-
ent, e.g., (Goodfellow, 2015), they are still relatively slow
compared to the commonly used back-propagation algo-
rithm. Moreover, many of them are not compatible with
other components of DNN such as batch normalization (BN).
Since the individual gradients are not independent within
the BN, they will lose the benefits of parallelization. We will
show below that the above issues can be addressed under
the corrupted supervision setting and propose a practical
solution that easily scales for DNNSs.

3.3. Robust Gradient Estimation for One Dimensional
Corrupted Supervision

In this section, we show that the robustness bound in Cor. 1
can be improved if we assume the corruption comes from
the supervision only. In addition, by fully exploiting the
gradient structure of the corrupted supervision, our algo-
rithm is much more efficient and is compatible with batch
normalization. We begin with a 1-dimensional supervision
setting (e.g., binary classification or single-target regres-
sion) to illustrate this intuition and will extend it more gen-
eral settings in the next section. Consider a supervised
learning problem with input features X € R"*P and su-
pervision y € R™. The goal is to learn a function f, pa-
rameterized by 6 € R?, by minimizing the following loss

ming >, ¢; = ming y ., L(ys, f(x;,0)). The gradient

for a data point ¢ is Vy¢; = g}? %fei = ;8.

In general, if the corrupted gradients drive the gradient
estimation away from the clean gradient, they are either
large in magnitude or systematically change the direction of
the gradient (Diakonikolas et al., 2019). However, our key
observation is that, when only the supervision is corrupted,
the corruption contributes only to the term a; = g—jfi, which
is a scalar in the one-dimensional setting. In other words,
given the clean gradient of i*" point, g; € R?, the corrupted
supervision only re-scales the gradient vector, changing the

gradient from «;g; to 9;g;, where §; = gij». As such, it
is unlikely for the corrupted supervision to systematically
change the gradient direction.

The fact that corrupted supervision re-scales the clean gra-
dient can be exploited to reshape the robust optimization
problem. Suppose we update our model in each iteration by
0% = 0 — yu(G), where y(-) denotes the empirical mean
function and G = [Vg¢T ..., Vyol] € R™* s the gra-
dient matrix for a mini-batch of size m. We consider the
following problem:

Problem 1 (Robust Gradient Estimation for One Dimen-

sional Corrupted Supervision) Given a clean gradient ma-
trix G € R™*4 gp e-corrupted matrix G with at most e-

fraction rows are corrupted from c;g; to §;g;, design an al-
gorithm A : R™*4 — RY that minimizes || 1(G) — A(G)].

Note that when ||§;]| is large, the corrupted gradient will
have a large effect on the empirical mean, and if ||J;| is
small, the corrupted gradient will have a limited effect on the
empirical mean. This motivates us to develop an algorithm
that filters out data points by the loss layer gradient || g% II
If the norm of the loss layer gradient of a data point is large
(in one-dimensional case, this gradient reduces to a scalar
and the norm becomes its absolute value), we exclude the
data point when computing the empirical mean of gradients
for this iteration. Note that this algorithm is applicable to
both regression and classification problems. In particular,
for the mean squared error (MSE) loss used in regression,
its gradient norm is exactly the loss itself, and the algorithm
reduces to self-paced learning or trim loss (Shen & Sanghavi,
2019). We summarize the procedure in Algorithm 2 and
will extend it to the more general multi-dimensional case in
the next section.

Algorithm 2 (PRL(L)) Efficient Provable Robust Learning
for Corrupted Supervision

input: dataset D, Dj, with corrupted supervision, learning
rate 7y,
return: model parameter ¢;
for ¢ = 1 to maxiter do
Randomly sample a mini-batch M from D, Dy,
Compute the predicted label Y from M
Calculate the gradient norm for the loss layer, (e.g., ||y — y||
for mean square error or cross entropy)
M« M- M, where M is the top-7 fraction of data
points with largest ||y — y||
Update model 641 = 60: — 7yfi, where [i is the empirical
mean gradient of M
end for

3.4. Extension to Multi-Dimensional Corrupted
Supervision

To extend our approach to multi-dimensional case, let g

be the output dimension of y. The gradient for each data

point ¢ is Vgop; = g}f %f@"' , where g—;ﬁ; € RY is the gradient

of the loss with respect to model output, and % € Raxd
is the gradient of the model output with respect to model
parameters. When the supervision is corrupted, the cor-

ruption affects the term gjj_, which is now a vector. Let

0; = glfi € R, o = gfij e R, W, = % ERqu,
and m be the mini-batch size. Denote the clean gradient
matrix as G € R™*?, where the i,;, row of gradient ma-
trix g; = a; W,. The multi-dimensional robust gradient

estimation problem is defined as follows.

Submission and Formatting Instructions for ICML 2021

Problem 2 (Robust Gradient Estimation for Multi-
Dimensional Corrupted Supervision) Given a clean gra-
dient matrix G, an e-corrupted matrix G with at most e-
fraction rows corrupted from a; W ; to 6; W, design an al-
gorithm A : R™*4 — RY that minimizes || 1(G) — A(G)]].

We begin our analysis by examining the effect of random-
ized filtering-based algorithms, i.e., using the empirical
mean gradient of randomly selected (1 — €)-fraction of the
data to estimate the clean averaged gradient. Randomized
filtering-based algorithm is not a robust learning approach,
but its analysis leads to important insights into designing
one. We have the following lemma for any randomized
filtering-based algorithm (proof is given in supplementary
materials:

Lemma 1 (Gradient Estimation Error for Randomly
Dropping e-fraction Data) Let G € R"*? be a corrupted
matrix generated as in Problem 2 and G € R™*? be
the original, clean gradient matrix. Suppose an arbitrary
(1 — €)-fraction rows are selected from G 10 form the matrix
N € R"*%. Let ;i be the empirical mean function. Assume
the clean gradient before loss layer has a bounded operator
norm, i.e., ||W||o, < C, the maximum clean gradient in
loss layer max;cq ||| = k, and the maximum corrupted
gradient in loss layer max;eN ||6;|| = v, then we have:

3e — 4¢? €
—u(N)| < .
I1(@) = (N < CR=5 4 Cor

Lemma 1 explains the factors affecting the robustness of
filtering-based algorithm. Note that v is the only term that
is related to the corrupted supervision. If v is large, the
right-hand side can be arbitrarily large since an adversary
can change the supervision in such a way that v becomes ex-
tremely large. Thus controlling the magnitude of v provides
a way to effectively reduce the bound. For example, if we
manage to control v < k, then the right-hand side cannot
be too large. This can be achieved by sorting the gradient
norms at the loss layer, and then discarding those belonging
to the largest e-fraction data points. Motivated by Lemma 1,
we proposed Alg. 2, whose robustness guarantee is given by
Thm. 2 and Cor. 2.

Theorem 2 (Robust Gradient Estimation For Supervi-
sion Corruption) Let Gbea corrupted matrix generated
as in Problem 2, q be the output dimension, and | be the em-
pirical mean of the clean gradient matrix G. Assuming the
maximum clean gradient before loss layer has bounded oper-
ator norm: ||W ||, < C, then the output of gradient estima-
tion in Algorithm 2, [i, satisfies || pn— 1| = O(e\/q) = O(e).

Thm. 2 can be obtained from Lemma 1 by substituting v by
k. The following robustness guarantee can then be obtained
by applying Thm. 1.

Corollary 2 (Robust Optimization For Corrupted Su-
pervision Data) Given the assumptions used in Thm. I,
applying Algorithm. 2 to any e-fraction supervision cor-
rupted data, yields min,c) E (|[|[Vo(x¢)|) = O(e\/q) for
large enough T, where q is the dimension of the supervision.

Comparing Cor. 1 and Cor. 2, we see that when the corrup-
tion only comes from supervision, the dependence on d is
reduced to ¢, where ¢ < d in most deep learning problems.

At first glance, the error bound O(e,/q) appears to suggest
that learning a model for 10,000 classes with only 10%
noise is more challenging than training a model for 100
classes with 80% noise. This statement seems to contradict
existing results for many benchmark noisy-label tasks, and
thus, needs to be clarified. First, the O(e,/q) bound is for
any loss function, including both regression and classifi-
cation. Second, the /g term came from the norm of the
g-dimensional loss layer gradient. For cross-entropy loss, its
loss-layer gradient norm is ||y — y||. In classification, y is a
one-hot encoding vector and ¥ is a probability vector. Thus,
|y — y|l is at most v/2 and we can remove ,/q out of the
big-O notation for cross-entropy loss. This explains why we
can achieve good results in classification tasks even when
the target dimension is high. However, if it is regression
or multi-task classification, then a higher target dimension
increases the difficulty in achieving robust performance.

3.5. Comparison against Other Robust Optimization
Methods

SEVER (Diakonikolas et al., 2019) provides state-of-the-art
theoretical results for general corruptions, with a promising
O(+/€) dimension-free guarantee. Compared to Diakoniko-
las et al. (2019), we have two contributions: a) When cor-
ruption comes only from the supervision, we show a better
error rate if the supervision dimension can be treated as a
small constant. b) Our algorithm can scale to DNNs un-
like Diakonikolas et al. (2019), which is important as DNN
models are currently state-of-the-art learning methods.

Despite the impressive theoretical results in Diakonikolas
et al. (2019), it cannot be applied to DNNs even with the cur-
rent best hardware configuration. Diakonikolas et al. (2019)
used dimension-free robust mean estimation techniques to
design the learning algorithm, while most robust mean esti-
mation approaches rely on filtering data by computing the
score of projection to the maximum singular vector. For
example, the approach in Diakonikolas et al. (2019) requires
applying expensive SVD on n X d individual gradient ma-
trix, where n is the sample size and d is the number of
parameters. This method works well for smaller datasets
and smaller models when both n and d are small enough
for current memory limitation. However, for DNNS, this
matrix size is far beyond current GPU memory capability.
For example, in our experiment, n is 60,000 and d is in the

Submission and Formatting Instructions for ICML 2021

order of millions (network parameters). It is impractical
to store 60,000 copies of networks in a single GPU card.
In contrast, our algorithm does not need to store the full
gradient matrix. By only considering the loss-layer gradient
norm, it can be easily extended to DNNs, and we show that
this simple strategy works well in theory and challenging
empirical tasks. We note that better robustness guarantee
can be achieved in linear (Bhatia et al., 2015; 2017) or con-
vex (Prasad et al., 2018) cases, but they cannot be directly
applied to DNNGs.

The strongest assumption behind our proof is that the max-
imum singular value of the gradient before loss layer is
bounded. We also treat the clean gradient loss layer norm
(k in Lemma 1) as a constant, which is particularly true for
DNNs due to their overparameterization. In practice, our
algorithm slowly increases the dropping ratio 7 at first few
epochs, which guarantees that & is a small number.

3.6. Relationship to Self-Paced Learning (SPL)

Many state-of-the-art methods with noisy labels depend
on SPL (Han et al., 2018; Song et al., 2019; Yu et al.,
2019; Shen & Sanghavi, 2019; Wei et al., 2020; Sun et al.,
2020; Kolesnikov et al., 2019; Liang et al., 2016; Jiang
et al., 2015; Meng et al., 2017; Fan et al., 2017; Jiang et al.,
2014; 2020). At first glance, our method looks very similar
to SPL. Instead of keeping data points with small gradi-
ent norms, SPL tries to keep those points with small loss.
The gradient norm and loss function are related via the
famous Polyak-t.ojasiewicz (PL) condition. The PL con-
dition assumes there exists some constant s > 0 such that
Vx 1 1|[Vo(x)[|> > s (6(x) — ¢*). As we can see, when
the neural network is highly over-parameterized, ¢* can
be assumed to be equal across different samples since the
neural networks can achieve zero training loss (Zhang et al.,
2016). By sorting the error ¢(x;) for every data point, SPL
is actually sorting the lower bound of the gradient norm if
the PL condition holds. However, the ranking of gradient
norm and the ranking of the loss can be very different since
there is no guarantee that the gradient norm is monotonically
increasing with the loss value. We provide an illustration
as to why SPL is not robust from a geometric perspective
in the supplementary materials. Here we show that the
monotonic relationship can be easily violated even for the
simple square loss function. One easy counter-example is
é(x1,m2) = 0.52% + 50x3. Take two points (1000, 1) and
(495, -49.5), we will find the monotonic relationship does
not hold for these two points. Nocedal et al. (2002) showed
that the monotonic relationship holds for square loss (i.e.
$(x) = 3(x—x*)TQ(x — x*)) if the condition number of
Q is smaller than 3 + 2+/2, which is quite a strong assump-
tion especially when x is in high-dimension. Thus, although
SPL sorts the lower bound of the gradient norm under mild
assumptions, our algorithm is significantly different from

SPL and its variations.

Next, we discuss the relationship between SPL and Algo-
rithm 2 under corrupted supervision. SPL has the same form
as Algorithm 2 when we are using mean square error to per-
form regression tasks since the loss layer gradient norm is
equal to loss itself. However, in classification, Algorithm 2
is different from the SPL. In order to better understand the
algorithm, we further analyze the difference between SPL
and our algorithm for cross-entropy loss.

For cross entropy, denote the output logit as o, we have

H(yi fi) = —(yi,log(softmax(0;))) = —(y:,log(f:)).
The gradient norm of cross entropy with respect to o; is:
%f; =y; — softmax(o;) = f; — y;. Thus, the gradient of
loss layer is the MSE between y; and f;. Next, we inves-
tigate when MSE and cross entropy has a non-monotonic
relationship. For simplicity, we only consider the sufficient
condition for the non-monotonic relationship, which is given

by Lemma 2.

Lemma2 Lety € RY wherey, = 1 andy; = 0 for
i # k. Suppose o and (8 are two g-dimensional vectors in
probability simplex. Without loss of generality, suppose o
has a smaller cross entropy loss and oy, > By, then the suffi-
cient condition for ||a —y|| = || =y is Variz,({a:}) —
Varize({B:}) > 2z (o — Be)(2 — ar — Bk))

As ay, > [y, the term on right-hand-side of the inequality
is non-negative. Thus, when MSE generates a result that
differs from cross-entropy, the variance in the probability
vector of the non-true class for the discarded data point is
larger. For example, consider the ground-truth vector y =
[0,1,0,0,0,0,0,0,0,0], and two prediction vectors, & =
[0.08,0.28,0.08,0.08, 0.08, 0.08, 0.08, 0.08,0.08,0.08]
and § = [0.1,0.3,0.34,0.05,0.05,0.1,0.03,0.03,0,0]. «
has a smaller MSE loss while 5 has a smaller cross-entropy
loss. 3 will more likely be noisy data since it has two
relatively large values of 0.3 and 0.34. Since cross entropy
loss considers only one dimension, corresponding to the
ground truth label, it cannot detect such a situation. Com-
pared to cross-entropy, the gradient (mse loss) considers all
dimensions, and thus, will consider the distribution of the
overall prediction.

3.7. Integration with Co-teaching Style Training

Co-teaching (Han et al., 2018) is one of the state-of-the-art
deep methods for learning with noisy labels. Motivated by
Co-teaching, we propose Co-PRL(L), which has the same
framework as co-teaching but uses the loss-layer gradient to
select the data. The full algorithm is shown in the supple-
mentary materials. The key difference between Co-PRL(L)
and algorithm 2 is that in Co-PRL(L), we optimize two net-
work by PRL(L). Also in every iteration, two networks will
exchange the selected data to update their own parameters.

Submission and Formatting Instructions for ICML 2021

4. Experimental Results

We have performed our experiments on various benchmark
regression and classification datasets. We compare PRL(G)
(Algorithm 1), PRL(L) (Algorithm 2), and Co-PRL(L) (Al-
gorithm 4 in supplementary materials) against the following
baselines. Standard: standard training without filtering
data (mse for regression, cross entropy for classification);
Normclip: training with norm clipping; Huber: training
with huber loss (for regression only); Decouple (Malach &
Shalev-Shwartz, 2017): decoupling network, update two
networks by using their disagreement (for classification
only); Bootstrap (Reed et al., 2014): uses a weighted com-
bination of predicted and original labels as the correct la-
bels, and then perform back propagation (for classification
only); Min-sgd (Shah et al., 2020): chooses the smallest
loss sample in minibatch to update model; SPL (Jiang et al.,
2018): self-paced learning (also known as the trimmed loss
or predefined curriculum) by dropping the data points with
large losses (same as PRL(L) in regression setting with
MSE loss); Ignormclip: clipping individual gradients and
then average them to update model (regression only); Co-
teaching (Han et al., 2018): collaboratively train a pair of
SPL models and exchange their selected data to another
model (for classification only).

Since it is hard to design experiments for agnostic cor-
rupted supervision, we analyzed the performance on a
broad class of corrupted supervision settings: linady: cor-
rupted supervision is generated from a random linear model:
Y. = X« W (regression); signflip: corrupted supervision
is obtained by Y. = —Y (regression); uninoise: corrupted
supervision is a random sample from uniform distribution,
Y. ~ [—5, 5] (regression); mixture: mixture of above types
of corruptions (regression); pairflip: shuffle the target val-
ues (e.g., coordinates for eyes to those for mouth in CelebA
or cat to dog in CIFAR) (regression and classification); sym-
metric: randomly assign wrong class label (classification).
We use accuracy as the evaluation metric for classification
and R-square for regression experiments. Due to space
limitation, we only show the average evaluation score on
testing data for the last 10 epochs. We also include part
of the training curves to show how the test evaluation met-
ric changes during the training phase. The whole training
curves are provided in the supplementary materials. Note
that the regression experiments are repeated 5 times while
the classification experiments are repeated 3 times.

4.1. Regression Results

For regression, we evaluated our method on the CelebA
dataset, which contains 162,770 training images, 19,867
validation images, and 19,962 test images. Given a human
face image, the goal is to predict the coordinates for 10
landmarks in the face image. Specifically, the target vari-
able is a ten-dimensional vector of coordinates for the left

eye, right eye, nose, left mouth, and right mouth. We added
different types of corruption to the landmark coordinates.
The CelebA dataset is preprocessed as follows: we use a
three-layer CNN to train 162770 training images to predict
clean coordinates (we use 19867 validation images to do the
early stopping). We then apply the network to extract a 512-
dimensional feature vector from the testing data. Thus, the
final dataset after preprocessing consists of the feature sets
X € R19962x512 an{ the target variable Y € R19962x10,
We further split the data into 80% training and 20% test
sets. We then manually add the linadv, signflip, uninoise,
pairflip, and mixture corruptions to the target variable in the
training set. For each type of corruption, the corruption rate
is varied from 0.1 to 0.4. We use a 3-layer fully connected
network for our experiments. The averaged r-square for the
last 10 epochs are shown in Table 1. The training curves
could be found in the second row of Figure 1. We can see
Co-PRL(L) performs best in most cases. Surprisingly, the
performance of PRL(G) is comparable to PRL(L). This is
partially due to the shallow network structure and initial-
ization. Another possible reason is that for this task, the
gradient norm is upper bounded by a small constant.

4.2. Classification Results

We perform our experiments on the CIFAR10 and CI-
FAR100 datasets to illustrate the effectiveness of our al-
gorithm in classification setting. We use a 9-layer convolu-
tional neural network, similar to the approach used in (Han
et al., 2018). Since most baselines include batch normaliza-
tion, it is difficult to get individual gradient efficiently, we
exclude the ignormclip and PRL baselines. In the appendix,
we attached the results if both co-teaching and Co-PRL(L)
excludes the batch normalization module. Our results sug-
gest that co-teaching cannot maintain robustness unlike our
proposed method. Also, to compare against the current state
of the art method, for symmetric noise, we use a corruption
rate higher than 0.5. Although our theoretical analysis as-
sumes the rate is less than 0.5, we empirically show that
our method can also deal with higher corruption rates. The
results for CIFAR10 and CIFAR100 are shown in Table 2.
The results suggest that our method performs significantly
better than the baselines irrespective of whether we are us-
ing one network (PRL vs SPL) or two networks (Co-PRL(L)
vs Co-teaching). The training curves are given in the first
row of Figure 1. Since the true corruption rate in real-world
data is often unknown, we perform sensitivity analysis to
show the effect of overestimating and underestimating € in
classification tasks. Based on the results in Table 3, we
observe that overestimating e leads to better performance
in most cases because the corruption rate may vary in each
mini-batch. Thus, overestimating e can guarantee that the
dangerous corrupted data points will be dropped.

Submission and Formatting Instructions for ICML 2021

Corruption Standard Normclip Huber Min-sgd Ignormclip PRL(G) PRL(L) Co-PRL(L)
linadv: 10 -2.33+0.84 -2.2240.74 0.868+0.01 | 0.103+0.03 0.68+0.07 0.876+£0.01 | 0.876+0.01 | 0.876+0.01
linadv: 20 -8.65+2.1 -8.55+2.2 0.817£0.015 | 0.120£0.02 | 0.367+0.28 0.871+£0.01 | 0.869+0.01 | 0.869+0.01
linadv: 30 -18.529+4.04 | -19.185+4.31 | 0.592+0.07 | 0.146+£0.03 | -0.944+0.51 || 0.865+0.01 | 0.861+0.01 | 0.860+0.01
linadv: 40 -32.22+46.32 -32.75£7.07 | -2.529+1.22 | 0.180+0.01 | -1.60 £0.80 || 0.857+ 0.01 | 0.847+0.02 | 0.847+0.02
signflip: 10 0.800+0.02 0.798+0.03 0.857£0.01 | 0.110+0.04 | 0.846+0.01 0.877£0.01 | 0.878+0.01 | 0.879+0.01
signflip: 20 0.641+0.05 0.638+0.04 0.786+0.02 | 0.105+0.07 0.82+0.02 0.875+£0.01 | 0.875+0.01 | 0.877+0.01
signflip: 30 0.422+0.04 0.421+0.04 0.629+0.03 | 0.124+0.05 | 0.795+0.02 || 0.871+0.01 | 0.873+0.01 | 0.875+0.01
signflip: 40 0.193+0.043 0.190+0.04 0.379+£0.05 | -0.028+0.25 | 0.759+0.01 0.872+0.01 | 0.872+0.01 | 0.871+0.01
uninoise: 10 | 0.845+0.01 0.844+0.01 0.875£0.01 | 0.103+0.03 | 0.859+0.01 0.879+£0.01 | 0.881+0.01 | 0.881+0.01
uninoise: 20 | 0.798+0.02 0.795+0.02 0.865+£0.01 | 0.120+0.02 | 0.844+0.01 0.878+0.01 | 0.880+0.01 | 0.880+0.01
uninoise: 30 | 0.728+0.02 0.725+0.02 0.847+£0.01 | 0.146+0.03 | 0.831+0.01 0.878+0.01 | 0.879+0.01 | 0.879+0.01
uninoise: 40 | 0.656+0.02 0.654+0.02 0.825+0.01 | 0.180+0.01 | 0.821+0.01 || 0.876+0.01 | 0.878+0.01 | 0.878+0.01
pairflip: 10 0.852+0.02 0.851+£0.02 0.870+£0.01 | 0.110+0.04 | 0.867+0.01 0.877£0.01 | 0.876+0.01 | 0.878+0.01
pairflip: 20 0.784+0.03 0.783+0.03 0.841+£0.02 | 0.120+0.03 | 0.849+0.01 0.874+0.01 | 0.873+0.01 | 0.874+0.01
pairflip: 30 0.688+0.04 0.686+0.04 0.770+£0.02 | 0.133+0.02 | 0.828+0.01 0.870+£0.01 | 0.872+0.01 | 0.873+0.01
pairflip: 40 0.556+0.06 0.553+0.06 0.642+0.06 | 0.134+0.03 | 0.810+0.02 || 0.863+0.01 | 0.870+0.01 | 0.870+0.01
mixture: 10 -0.212+0.6 -0.010£0.48 0.873£0.01 | 0.101+0.03 | 0.861+0.01 0.878+0.01 | 0.880+0.01 | 0.880+0.01
mixture: 20 -0.404+0.68 -0.463£0.67 0.855+£0.01 | 0.11940.03 | 0.855+0.01 0.877£0.01 | 0.878+0.01 | 0.879+0.01
mixture: 30 -0.716+0.57 -0.824+£0.39 | 0.823£0.01 | 0.148+0.02 | 0.847+0.01 0.875+£0.01 | 0.877+0.01 | 0.878+0.01
mixture: 40 -3.130+£1.51 -2.69+0.84 0.763+£0.01 | 0.175+£0.02 | 0.835+0.01 0.872+0.01 | 0.875 £0.01 | 0.876+0.01

Table 1. R-square on CelebA clean testing data, and the standard deviation is from last ten epochs and 5 random seeds.

Corruption Standard Normclip Bootstrap Decouple Min-sgd SPL PRL(L) Co-teaching | Co-PRL(L)
CF10-sym-30 | 63.2240.18 | 62.41£0.06 | 63.67+0.24 | 70.73£0.51 | 13.31£2.24 || 77.774£0.34 | 79.40+0.19 || 79.90+0.13 | 80.05+0.12
CF10-sym-50 | 44.63£0.18 | 43.99+0.28 | 46.13+£0.18 | 57.48+£1.98 | 13.334£2.85 || 72.2240.15 | 74.1740.15 || 74.25+0.41 | 75.43+0.09
CF10-sym-70 | 24.12+0.09 | 24.17+0.37 | 25.13+0.39 | 40.11+4.62 | 9.08+0.94 | 56.19+0.33 | 58.36+0.62 | 58.41+0.33 | 60.26+0.42
CF10-pf-25 68.34+0.30 | 67.92+0.43 | 68.71£0.32 | 75.59+0.35 | 10.45+0.60 || 75.79+0.44 | 80.54+0.07 | 80.18+0.21 | 81.51+0.13
CF10-pf-35 58.68+0.28 | 58.27+0.18 | 58.19+0.12 | 66.38+0.44 | 12.29+1.92 || 70.40+0.27 | 77.61%£0.35 | 77.97+0.03 | 79.01+0.14
CF10-pf-45 48.05£0.25 | 48.03+0.54 | 47.84+0.32 | 51.54+0.81 | 10.94£1.28 || 58.95+0.59 | 71.42+0.24 || 72.43+0.31 | 73.78+0.17
CF100-sym-30 | 32.83+0.39 | 32.10+£0.64 | 34.47+0.22 | 32.95+0.44 | 2.94+0.61 | 44.37+£0.44 | 46.40+0.18 | 45.02+0.29 | 47.51+0.47
CF100-sym-50 | 20.4740.44 | 19.73£0.29 | 21.59+0.44 | 21.02+£0.36 | 2.35+0.45 || 37.89+0.16 | 38.38+0.65 || 38.79+0.33 | 40.64+0.11
CF100-sym-70 | 9.93+0.07 | 9.93+x0.23 | 10.59+0.17 | 12.55+£0.46 | 2.32+0.24 | 24.10+£0.44 | 25.38+0.56 | 24.94+0.53 | 27.27+0.01
CF100-pf-25 40.374£0.55 | 39.34+0.35 | 40.2240.37 | 39.43+£0.27 | 2.62+0.26 | 40.48+0.72 | 47.57+0.37 || 42.97+0.10 | 48.06+0.26
CF100-pf-35 34.07+0.19 | 32.88+0.10 | 34.53+0.23 | 33.14+0.07 | 2.30+0.07 | 34.17+0.46 | 43.32+0.16 | 36.69+0.23 | 44.08+0.33
CF100-pf-45 27.66+0.50 | 27.35+0.61 | 27.56+0.23 | 26.83+£0.41 | 2.55+0.52 || 27.55+0.66 | 33.31+0.10 || 29.71+0.20 | 34.43+0.05

Table 2. Classification accuracy for clean testing data on CIFAR10 and CIFAR 100 with training on symmetric and pairflip label corruption.
The standard deviation is from last ten epochs and 3 random seeds.

poch

(c) CF10-sym-70

(e) CelebA-linadv-0.4

s 75 100 15 150 175 200

o
epochs

(f) CelebA-mixture-0.4

75 100 15 150 15
epochs.

(g) CelebA-uninoise-0.4

200 I

7 100 15
epochs

Figure 1. Testing accuracy/R-square for CIFAR10, CIFAR100, and CelebA during the training phase.

B0 175 200

(h) CelebA-pairflip-0.4

Submission and Formatting Instructions for ICML 2021

Data e—0.1 e —0.05 € €+ 0.05 e+ 0.1

CF10-Pair-45% 65.07+£0.83 | 70.07+0.67 | 73.78+0.17 | 77.56+0.55 | 79.36+0.43
CF10-Sym-50% 69.21+0.35 | 72.53£0.45 | 75.43 £0.09 | 77.65+0.27 | 78.10£0.31
CF10-Sym-70% 53.88+0.64 | 58.49+0.97 | 60.26 £0.42 | 60.89+0.43 | 54.91+0.68
CF100-Pair-45% | 32.60+£0.45 | 34.17+0.40 | 34.43 £0.05 | 36.87+0.41 | 38.34+0.78
CF100-Sym-50% | 37.74+0.41 | 39.72+0.36 | 40.64 £0.11 | 43.02+0.36 | 43.92+0.61
CF100-Sym-70% | 24.40+0.47 | 25.50+0.45 | 27.27 £0.10 | 27.80+0.50 | 28.20+0.97

Table 3. Sensitivity analysis for over-estimated/under-estimated e.

0
=1
L

@
=1
L

~
=]
L

=)
o
L

w
=]
L

Test Accuracy

method

S
=]
L

— PRL-L
PRL-resnet32-only
— PRL-resnet32-mixup

w
S
L

20

0 25 50 75 00 125 150 175 200
Epoch

Figure 2. Improvement of PRL(L) under sym-50 label noise in
CIFAR10 by using resnet32 and mixup for 3 random seeds.

4.3. PRL(L) on Residual Network with Mixup

The previous experiments focused on evaluating the effect
of the filtering step and did not consider its applicability
to more advanced deep learning techniques to boost model
performance. The simplicity of the PRL(L) framework
allows it to be easily implemented by many other methods
to boost model performance. To demonstrate this, we added
several advanced components to PRL(L) and evaluate the
performance improvement. Specifically, we added data
augmentation, mix-up (Zhang et al., 2018) (i.e. using mixup
on PRL(L) selected data), and a deeper network (resnet-32).
We test the model performance on symmetric 50% label
noise in CIFARI10, and the results are shown in Figure 2.
The model performance indeed improves after changing the
architecture from a 9-layer CNN to resnet-32. Furthermore,
by adding the mixup component, the performance is boosted
again, which is comparable to current state-of-the-art results.

4.4. Comparison between PRL(L) and PRL(G)

Our previous classification experiments did not include the
results of PRL-G on CIFAR data since both 9-layer CNN
and resnet-32 contain a batch normalization module, which
is not compatible with PRL(G). Our theory suggested that
PRL-L should outperform PRL-G when using a deeper net-
work. To validate our theorem, we replace all batch normal-
ization modules in resnet-32 with group normalization so
that the individual gradients can be calculated efficiently.

801

70 1

60

(i
50 - l\fw ll‘wvw ‘V'\'f‘r

1 y bkl
AR PR e VY

testing acc

40 1

30 4 —— PRL(G)-resnet32-GN

PRL{G)-resnet32-mixup-GN
—— PRL{L)-resnet32-mixup-GN
207 —— PRL(L)-resnet32-GN

T T T T T T T T T
[} 25 50 75 100 125 150 175 200
epoch

Figure 3. PRL(G) vs PRL(L) in resnet-32 under sym-50 label noise
in CIFAR10 for 3 random seeds.

We test PRL(G) and PRL(L) on CIFAR10 with 50% sym-
metric label noise. As shown by the results given in Fig-
ure 3, PRL(L) significantly outperforms PRL(G) regardless
of whether mixup is used. We also found that PRL(L) can
be boosted by adding mixup data augmentation while mixup
fails to improve PRL(G). These results further validate our
theorem and show the superiority of PRL(L) compared to
PRL(G).

5. Conclusion

In this paper, we proposed a simple yet effective algorithm
to defend against agnostic supervision corruptions. Both
the theoretical and empirical analysis showed the effective-
ness of our algorithm. For future research, there are two
questions that deserved further study. The first question is
whether we can further improve O(¢) error bound or show
that O(e) is tight. The second question is how we can utilize
more properties of neural networks, such as the sparse or
low-rank structure in gradient to design better algorithms.

Acknowledgements

This research was supported in part by the grant Na-
tional Science Foundation IIS-2006633, EF-1638679, IIS-
1749940, Office of Naval Research N00014-20-1-2382, Na-
tional Institute on Aging RF1AG(072449. Any use of trade,
firm or product names is for descriptive purposes only and
does not imply endorsement by the U.S. Government.

Submission and Formatting Instructions for ICML 2021

References

Ajalloeian, A. and Stich, S. U. Analysis of sgd with biased
gradient estimators. arXiv preprint arXiv:2008.00051,
2020.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
Curriculum learning. In Proceedings of the 26th annual

international conference on machine learning, pp. 41-48,
2009.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anand-
kumar, A. signsgd: Compressed optimisation for non-
convex problems. In International Conference on Ma-
chine Learning, pp. 560-569. PMLR, 2018.

Bhatia, K., Jain, P., and Kar, P. Robust regression via hard
thresholding. In Advances in Neural Information Process-
ing Systems, pp. 721-729, 2015.

Bhatia, K., Jain, P., Kamalaruban, P., and Kar, P. Consistent
robust regression. In Advances in Neural Information
Processing Systems, pp. 2110-2119, 2017.

Cheng, Y., Diakonikolas, I., Ge, R., and Soltanolkotabi, M.
High-dimensional robust mean estimation via gradient
descent. arXiv preprint arXiv:2005.01378, 2020.

d’Aspremont, A. Smooth optimization with approximate
gradient. SIAM Journal on Optimization, 19(3):1171-
1183, 2008.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra,
A., and Stewart, A. Robust estimators in high dimensions
without the computational intractability. In 2016 IEEE
57th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 655-664. IEEE, 2016.

Diakonikolas, I., Kamath, G., Kane, D., Li, J., Steinhardt,
J., and Stewart, A. Sever: A robust meta-algorithm for
stochastic optimization. In International Conference on
Machine Learning, pp. 1596-1606, 2019.

Dong, Y., Hopkins, S., and Li, J. Quantum entropy scoring
for fast robust mean estimation and improved outlier de-
tection. In Advances in Neural Information Processing
Systems, pp. 6067-6077, 2019.

Fan, Y., He, R., Liang, J., and Hu, B. Self-paced learning: an
implicit regularization perspective. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 31,
2017.

Goodfellow, 1. Efficient per-example gradient computations.
arXiv preprint arXiv:1510.01799, 2015.

Han, B., Yao, Q., Yu, X., Niu, G., Xu, M., Hu, W., Tsang,
I, and Sugiyama, M. Co-teaching: Robust training of
deep neural networks with extremely noisy labels. In

Advances in Neural Information Processing Systems, pp.
8527-8537, 2018.

Hu, Y., Zhang, S., Chen, X., and He, N. Biased stochastic
gradient descent for conditional stochastic optimization.
arXiv preprint arXiv:2002.10790, 2020.

Huber, P. J. Robust estimation of a location parameter. In
Breakthroughs in statistics, pp. 492-518. Springer, 1992.

Jiang, L., Meng, D., Yu, S.-I., Lan, Z., Shan, S., and Haupt-
mann, A. Self-paced learning with diversity. In Ad-
vances in Neural Information Processing Systems, pp.
2078-2086, 2014.

Jiang, L., Meng, D., Zhao, Q., Shan, S., and Hauptmann,
A. Self-paced curriculum learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 29,
2015.

Jiang, L., Zhou, Z., Leung, T., Li, L.-J., and Fei-Fei, L. Men-
tornet: Learning data-driven curriculum for very deep
neural networks on corrupted labels. In International
Conference on Machine Learning, pp. 2304-2313, 2018.

Jiang, L., Huang, D., Liu, M., and Yang, W. Beyond syn-
thetic noise: Deep learning on controlled noisy labels.
In International Conference on Machine Learning, pp.
4804-4815. PMLR, 2020.

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung,
J., Gelly, S., and Houlsby, N. Big transfer (bit):
General visual representation learning. arXiv preprint
arXiv:1912.11370, 6(2):8, 2019.

Kumar, M. P.,, Packer, B., and Koller, D. Self-paced learn-
ing for latent variable models. In Advances in neural
information processing systems, pp. 1189-1197, 2010.

Lai, K. A., Rao, A. B., and Vempala, S. Agnostic estimation
of mean and covariance. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS),
pp. 665-674. IEEE, 2016.

Li, Y., Yang, J., Song, Y., Cao, L., Luo, J., and Li, L.-J.
Learning from noisy labels with distillation. In Proceed-
ings of the IEEE International Conference on Computer
Vision, pp. 1910-1918, 2017.

Liang, J., Jiang, L., Meng, D., and Hauptmann, A. G. Learn-
ing to detect concepts from webly-labeled video data. In
1JCAI, volume 1, pp. 3—1, 2016.

Malach, E. and Shalev-Shwartz, S. Decoupling” when to
update” from” how to update”. In Advances in Neural
Information Processing Systems, pp. 960-970, 2017.

Submission and Formatting Instructions for ICML 2021

Meng, D., Zhao, Q., and Jiang, L. A theoretical understand-
ing of self-paced learning. Information Sciences, 414:
319-328, 2017.

Menon, A. K., Rawat, A. S., Reddi, S. J., and Kumar, S. Can
gradient clipping mitigate label noise? In International
Conference on Learning Representations, 2019.

Natarajan, N., Dhillon, I. S., Ravikumar, P. K., and Tewari,
A. Learning with noisy labels. In Advances in neural
information processing systems, pp. 1196-1204, 2013.

Nocedal, J., Sartenaer, A., and Zhu, C. On the behavior of
the gradient norm in the steepest descent method. Com-
putational Optimization and Applications, 22(1):5-35,
2002.

Patrini, G., Rozza, A., Krishna Menon, A., Nock, R., and
Qu, L. Making deep neural networks robust to label noise:
A loss correction approach. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 1944-1952, 2017.

Prasad, A., Suggala, A. S., Balakrishnan, S., and Ravikumar,
P. Robust estimation via robust gradient estimation. arXiv
preprint arXiv:1802.06485, 2018.

Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., and
Rabinovich, A. Training deep neural networks on noisy la-
bels with bootstrapping. arXiv preprint arXiv:1412.6596,
2014.

Scaman, K. and Malherbe, C. Robustness analysis of non-
convex stochastic gradient descent using biased expecta-
tions. Advances in Neural Information Processing Sys-
tems, 33, 2020.

Schmidt, M., Roux, N. L., and Bach, F. R. Convergence
rates of inexact proximal-gradient methods for convex op-
timization. In Advances in neural information processing
systems, pp. 1458-1466, 2011.

Shah, V., Wu, X., and Sanghavi, S. Choosing the sam-
ple with lowest loss makes sgd robust. In International
Conference on Artificial Intelligence and Statistics, pp.
2120-2130. PMLR, 2020.

Shen, Y. and Sanghavi, S. Learning with bad training
data via iterative trimmed loss minimization. In Interna-
tional Conference on Machine Learning, pp. 5739-5748.
PMLR, 2019.

Song, H., Kim, M., and Lee, J.-G. Selfie: Refurbishing
unclean samples for robust deep learning. In Interna-
tional Conference on Machine Learning, pp. 5907-5915.
PMLR, 2019.

Sun, M., Xing, J., Chen, B., and Zhou, J. Robust collabo-
rative learning with noisy labels. In 2020 IEEE Interna-
tional Conference on Data Mining (ICDM), 2020.

Tukey, J. W. Mathematics and the picturing of data. In
Proceedings of the International Congress of Mathemati-
cians, Vancouver, 1975, volume 2, pp. 523-531, 1975.

Wei, H., Feng, L., Chen, X., and An, B. Combating noisy
labels by agreement: A joint training method with co-
regularization. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
13726-13735, 2020.

Yi, K. and Wu, J. Probabilistic end-to-end noise correction
for learning with noisy labels. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp- 7017-7025, 2019.

Yu, X., Han, B., Yao, J., Niu, G., Tsang, L., and Sugiyama,
M. How does disagreement help generalization against la-
bel corruption? In International Conference on Machine
Learning, pp. 7164-7173. PMLR, 2019.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking general-
ization. arXiv preprint arXiv:1611.03530, 2016.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.
mixup: Beyond empirical risk minimization. In Interna-
tional Conference on Learning Representations, 2018.

Zheng, S., Wu, P., Goswami, A., Goswami, M., Metaxas, D.,
and Chen, C. Error-bounded correction of noisy labels.
In International Conference on Machine Learning, 2020.

Supplementary Materials

1. Co-PRL(L) Algorithm

We borrow the framework from the co-teaching framework(Han et al., 2018). The only difference is the filtering criteria.
Co-teaching uses loss value as the filtering criteria while Co-PRL(L) uses the loss-layer-gradient norm as the filtering
criteria.

Algorithm 1 Co-PRL(L)
input: initialize wy and wy, learning rate 7, fixed 7, epoch T}, and T}, 4z, iterations Ny, g,
Return: model parameter w; and w,
forT =1,2,...,Tq: do
for N =1,..., Npoo do
random sample a minibatch M from D, D; (noisy dataset)

get the predicted label Y ¢ and Yg from M by wy. w,
calculate the individual loss I; = £(Y, Y), l, = £(Y,Y,)

ol
calculate the gradient norm of loss layer score; = || aff ||, scorey = || a;q Il
f Yg
sample R(T")% small-loss-layer-gradient-norm instances by scorey and score, to get N, N,
update wy = wy — NV, LNy, wy), wy = wg — NV, L(Ng, wy) (selected dataset)
update model xX;41 = Xy — Y fb
end for
T
Update R(T) = 1 — min {T, T}
T,
end for

2. Further Illustration of the difference between SPL and PRL(G)

In this section, we will further illustrate the difference between SPL and PRL(G). In order to have a more intuitive
understanding of our algorithm, we could look at the Figure 1(a) and 1(b). Since we are in the agnostic label corruption
setting, it is difficult to filtering out the correct corrupted data. We showed two situations when loss filtering failed and
gradient filtering failed. As we could see that when loss filtering method failed, the remaining corrupted data could have
large impact on the overall loss surface while when gradient filtering method failed, the remaining corrupted data only have
limited impact on the overall loss surface, thus gaining robustness.

3. Networks and Hyperparameters

The hyperparameters are in Table 1. For Classification, we use the same hyperparameters in (Han et al., 2018). For CelebA,
we use 3-layer fully connected network with 256 hidden nodes in hidden layer and leakly-relu as activation function. We
also released our code in https://github.com/illidanlab/PRL.

Data\HyperParameter | BatchSize | Learning Rate | Optimizer | Momentum
CF-10 128 0.001 Adam 0.9
CF-100 128 0.001 Adam 0.9
CelebA 512 0.0003 Adam 0.9

Table 1. Main Hyperparmeters

https://github.com/illidanlab/PRL

Submission and Formatting Instructions for ICML 2021

Data e—0.1 e —0.05 € €+ 0.05 e+0.1

CF10-Pair-45% 65.07+0.83 | 70.07£0.67 | 73.78+0.17 77.562£0.55 | 79.36+0.43
CF10-Sym-50% 69.21+0.35 | 72.53+£0.45 | 75.43 £0.09 | 77.65+0.27 | 78.10+0.31
CF10-Sym-70% 53.88+0.64 | 58.49+0.97 | 60.26 £0.42 | 60.89+0.43 | 54.91+0.68
CF100-Pair-45% | 32.60+0.45 | 34.17+0.40 | 34.43 £0.05 | 36.87+0.41 | 38.34+0.78
CF100-Sym-50% | 37.74+0.41 | 39.72+0.36 | 40.64 £0.11 | 43.02+0.36 | 43.92+0.61
CF100-Sym-70% | 24.40+0.47 | 25.50+£0.45 | 27.27 £0.10 | 27.80+£0.50 | 28.20+0.97

Table 2. sensitivity analysis for estimated e

4. Learning Curve

We show how testing evaluation changes along the training process for both classifcation and regression tasks in this section.
The regression curve for CelebA data is showed in Figure 2. Note the for regression, the SPL and co-teaching are actually
equivalent to our algorithm (i.e. PRL(L) and (Co-PRL(L))). The classification curve is in Figure 3.

5. Sensitivity Analysis

Since in real-world problems, it is hard to know that the ground-truth corruption rate, we perform the sensitivity analysis
in classification tasks to show the effect of €. The results are in Table 2. As we could see, the performance is stable if we
overestimate the corruption rate, this is because only when we overestimate the €, we could guarantee that the gradient norm
of the remaining set is small. However, when we underestimate the corruption rate, in the worst case, there is no guarantee
that the gradient norm of the remaining set is small. By using the empirical mean, even one large bad individual gradient
would ruin the gradient estimation, and according to the convergence analysis of biased gradient descent, the final solution
could be very bad in terms of clean data. That explains why to underestimate the corruption rate gives bad results. Also,
from Table 2, we could see that using the ground truth corruption rate will lead to small uncertainty.

6. Empirical Results on Running Time

As we claimed in paper, the algorithm 2 (PRL(G)) is not efficient. In here we attached the execution time for one epoch for
three different methods: Standard, PRL(G), PRL(L). For fair comparison, we replace all batch normalization module to
group normalization for this comparison, since it is hard to calculate individual gradient when using batch normalization.
For PRL(G), we use opacus libarary to calculate the individual gradient. The results are showed in Table 3

|
	Clean data Clean data	
	Anomaly data Anomaly data	
	== Dangerous zone of gradient fillering === Dangerous zone of loss filtering	

()
o(6)

§

(a) When gradient filtering method failed to pick out right (b) When loss filtering method failed to pick out right cor-
corrupted data, the remaining corrupted data is relatively rupted data, the remaining corrupted data could be extremely
smooth, thus has limited impact on overall loss surface. sharp, thus has large impact on overall loss surface.

Figure 1. Further Illustration of difference between SPL and PRL(G)

Submission and Formatting Instructions for ICML 2021

5 5 N 10
08 08 o8
I Sandara
— Nomcin
06 s — huber 08
. — insga N
2 2 — iGNormClip =
04 04 — mue 04
L)
— cormi)
02 02 02
0o oo AN o
0 % @ b a0 B5 po s 20 F I S S S e O 25 s b w0 us 3o s 20 o % % s 1m0 @ B ms e
epochs epochs epochs

(a) € = 0.1 linadv noise

(b) € = 0.2 linadv noise

10 10
0] £ 08
— Standard
— NormClip
06 — Huber 06
— Minsod
? — KeNomclip
0s — rruE) 04
— AL el
— corRU — coPRL)
02 02
00 00

(c) € = 0.3 linadv noise

epochs.

(d) € = 0.4 linadv noise

© 25 0 75 100 15 10 175 200
epochs.

(e) € = 0.1 signflip noise

o 25 s 75 100 15 10 175 200
s

epochs

(f) e = 0.2 signflip noise

o 25 s 75 10 15 10 175 200
h

epochs

(g) € = 0.3 signflip noise

o 25 m 75 10 15 10 175 200
epochs

(h) € = 0.4 signflip noise

) . 10 p
08 s 08 08
— Standard
— Normeiip
us e us 0s 06
— winsga
E 2
2 — (GNomclip 2 — standard — standard
04 — e 04 04 — Nomclp 04 — nomclip
—mw — Huber — huber
— Rty — Minsgd — insgd
02 02 02| — roNomaip 02| — toNomciip
— L) — PG
— w0 —
— coPRLD — oo
00 00
0 25 = B 00 w5 10 15 200 0 5 s 00 w5 10 b5 20 T % m ok Bo 3 o 15 2k T % w k1 35 10 s 2%
epochs epochs epochs epochs

(i) € = 0.1 uninoise noise

() € = 0.2 uninoise noise

(k) € = 0.3 uninoise noise

(1) € = 0.4 uninoise noise

N 10 10
s 0s
— Standara — sandara
[—— — normcip
06 06 —— Huber 06 —— Huber
N — winsg — winsga
2 2 — ionomeiip | & — iGNommClip
e 04 — PrLG) 04 — PLG)
— PR — P
— cormL) — o)
02 02 02
- 00 A 00 00
o 25 0 s 100 125 150 175 200 o 5 50 s 100 125 150 175 200 o 25 50 75 100 125 150 175 200 o 25 50 75 100 125 150 175 200
epochs. epochs. epochs epochs

(m) € = 0.1 mixture noise

(n) € = 0.2 mixture noise

(0) € = 0.3 mixture noise

(p) € = 0.4 mixture noise

o o 10 L
o8 0 08 08
— standard
— Nomiip g :
06 Huber 06 23 06
N — winsgd N
2 — GNormClip g 2| = sandrs 2 sandad
04 — PrLG) 04 041 — Nomnciip 041 — Nommclip
— R vuber — buber
— cophLiL) — copru — insgd — Minsgd
0z 02 02| — 16Normciip 02 — 1oNomCip
— PRL(G) — PRU(G)
— L) — AL
— coprut) — copRLL)
00 00

IR
epochs.

@5 130 1s 200

(q) € = 0.1 pairflip noise

0 25 s 75 w0 s 10 15 200

epochs

(r) e = 0.2 pairflip noise

o 25 s 75 100 15 150
epochs.

s 200

(s) € = 0.3 pairflip noise

0 25 s 75 100 15 150
epochs.

(t) € = 0.4 pairflip noise

s 200

Figure 2. Testing R-square for CelebA during the training phase.

7. Proofs
7.1. Proof of Convergence of Biased SGD

We gave the proof of the theorem of how biased gradient affect the final convergence of SGD. We introduce several
assumptions and definition first:

Submission and Formatting Instructions for ICML 2021

80

80

70 60
70
60
60 50
method method

T s0 —— Standard g% —— Standard method
& % B — g4 —— Standard
f\ - SPL g. ~—— SPL = 9
g 40 —— Decouple i 40 —— Decouple gw
= —— Co-teaching = —— Co-teaching 830 — Decouple

30 —— PRLL) 30 —— PRLIL) — Coteaching 2

—— Co-PRL(L) —— Co-PRL(L) — PRUL N
20 —— Norm-clip 20 —— Norm-clip 20 — Co-PRL(L)
—— Bootstrapping —— Bootstrapping Norm-clip .
104 F Min-SGD 10 Min-SGD 10 —— Bootstrapping
Min-SGD
[10 20 30 40 50 0 10 20 30 40 50
epoch epoch 0 10 20 30 40 50
epoch

(a) CF10 € = 0.3 symmetric noise

(b) CF10 € = 0.5 symmetric noise

(c) CF10 € = 0.7 symmetric noisee

80 80 80
70 70 70
60 60 60
method method Thod /\’V\/\-’\«
o o metho
S s0 —— Standard T 50 —— Standard 5o ~
o —— SPL 5 —— SPL g —— Standard 2 SRR -
8 a0 —— Decouple % a0 —— Decouple 20 —— SPL
- —— Co-teaching = —— Co-teaching g —— Decouple
30 —— PRLL) 30 —— PRLL o —— Co-teaching
—— Co-PRL(L) —— Co-PRL(L) —— PRL(L)
20 Norm-clip 20 Norm-clip — Co-PRL(L)
~—— Bootstrapping —— Bootstrapping 20 Norm-clip)
10 Min-SGD 10 Min-SGD —— Bootstrapping
10 Min-SGD
0 10 20 30 40 50 0 10 20 30 40 50
epoch epoch 0 10 20 30 40 50

(d) CF10 e = 0.25 pairflip noise

(e) CF10 € = 0.35 pairflip noise

epoch

(f) CF10 € = 0.45 pairflip noise

50 30
40
a0 25
method 30 method 20
S 30 —— Standard) —— Standard - method
8 — spL ®, SPL S —— Standard
g —— Decouple g2 —— Decouple — o1 SPL N
20 —— Co-teaching —— Co-teaching g — Decouple .
— PRL(L) —— PRLL) —— Co-teaching e
10 — PRL(L)
—— Co-PRL(L) 10 —— Co-PRL(L) (L)
10 Norm-clip Norm-clip —— Co-PRL(L)
—— Bootstrapping —— Bootstrapping 5 Norm-clip
Min-SGD Min-SGD —— Bootstrapping
° 0 Min-SGD
0 10 40 50 0 10 20 30 40 50 0
epoch epoch 0 10 20 30 40 50
epoch

(g) CF100 € = 0.3 symmetric noise

(h) CF100 € = 0.5 symmetric noise

(i) CF100 € = 0.7 symmetric noise

50 50
35
0 a0 30
method method 25 .
T 30 —— Standard T 30 —— Standard - method
] — spL & s %20 — Standard
i P s —— spL
8 —— Decouple g —— Decouple o
“ 20 —— Co-teaching “20 — Co-teaching g —— Decouple
—— PRL(L) —— PRLL) —— Co-teaching
— Co-PRL(L) — Co-PRLIL) 1 —— PRLWL)
10 —— Norm-clip 10 —— Norm-clip —— Co-PRL(L)
—— Bootstrapping —— Bootstrapping s Norm-clip
Min-SGD Min-SGD —— Bootstrapping
° o Min-SGD
0 10 20 30 40 50 o 10 20 30 40 50 0
epoch epoch 0 10 20 30 40 50

(j) CF100 e = 0.25 pairflip noise

(k) CF100 € = 0.35 pairflip noise

epoch

(1) CF100 e = 0.45 pairflip noise

Figure 3. CIFAR10 and CIFAR100 Testing Curve During Training. X axis represents the epoch number, Y axis represents the testing
accuracy. The shadow represents the confidence interval, which is calculated across 3 random seed. As we see, PRL(L), and Co-PRL(L)
are robust against different types of corruptions.

Assumption 1 (L-smoothness) The function ¢: R? — R is differentiable and there exists a constant L > 0 such that for
all 91,02 € Rd, we have (25(62) < ¢(91) + <V¢(91),92 — 01> + %HGQ — 01”2

Definition 1 (Biased gradient oracle) A map g : R? x D — R, such that g(0, &) = V(0) +b(0,€) +n(0, &) for a bias
b : RY — R? and zero-mean noise n : RY x D — R, that is E¢n(0,) = 0.

Compared to standard stochastic gradient oracle, the above definition introduces the bias term b. In noisy-label settings, the
b is generated by the data with corrupted labels.

Assumption 2 (c-Bounded noise) There exists constants o > 0, such that E¢||n(0,€)|*> < o, V0 € R?

Submission and Formatting Instructions for ICML 2021

Method Standard | PRL(G) | PRL(L)
CF10-Pair-45% | 37.03s | 145.55s | 54.80s

Table 3. Execution Time of Single Epoch in CIFAR-10 Data

Assumption 3 (¢-Bounded bias) There exists constants (> 0, such that for any &, we have |b(6,&)||? < (2, V0 € R¢

For simplicity, assume the learning rate is constant -y, then in every iteration, the biased SGD performs update 6,11 <+
0 — v:g(6:, £). Then the following theorem showed the gradient norm convergence with biased SGD.

Theorem 1 (Convergence of Biased SGD(formal)) Under assumptions 1, 2, 3, define F' = ¢(6y) — ¢*and step size

1 LF
v =min<{ —, (1/—=) ¢, denote the desired accuracy as k, then
L ol

1 o2
T=0(-+2
o(;+7%)
iterations are sufficient to obtain minye () E (| Vo (60)[|?) = O(k + ¢?).

Remark 1 Letk=(% T =0 (C% + ‘C’—z) iterations is sufficient to get minye () E (| Vo (6;)||*) = O(¢?), and performing

more iterations does not improve the accuracy in terms of convergence.

Since this is a standard results, more general results are showed in (Hu et al., 2020; Ajalloeian & Stich, 2020). For the sake
of completeness, we provide the proof here.
Proof: by L-smooth, we have:

5(02) < 9(600) + (Vo(6r), 0 — 1) + 5 0 — b1

1
by using v < I we have

21,
E¢ (01,11) < 6 (61,) — 7 (Vé (01,) , Egy) + ~— (E |lg — Egy||* + E |[Egy ||
2

2
= 6(610) ~ 7 (V6 (02,), V0 (02,) + o) + L7 (ElInell* + E 96 (02,) + bl

2
<0 (01)+ 2 (~2(V0(01,), Y (61,) + b) + 96 (02,) +bel) + LLE [y

2
2
L

=6 (010) + 3 (= V6 (020) > + bel*) + T ||

Since we have ||b;|? < (2, ||n||? < 02, by plug in the learning rate constraint, we have

2L
E¢ (01141) < ¢ (01,) — 5 ||V¢ (1) + %C2 + 7702

2L
E¢ (B1011) — ¢ (1) < — Vo (01| + 2% + =0

Then, removing the gradient norm to left hand side, and sum it across different iterations, we could get

(~vLo?
ZEH¢ 61¢) | S ?“r 5

Take the minimum respect to t and substitute the learning rate condition will directly get the results.

Submission and Formatting Instructions for ICML 2021

7.2. Proof of Corollary 1
We first prove the gradient estimation error.

Denote G to be the set of corrupted minibatch, G to be the set of original clean minibatch and we have |G| = |G| =
Let N to be the set of remaining data and according to our algorithm, the remaining data has the size |[N| =n = (1 — ¢)m.
Define A to be the set of individual clean gradient, which is not discarded by algorithm 1. B to be the set of individual
corrupted gradient, which is not discarded. According to our definition, we have N = A UB. AD to be the set of individual
good gradient, which is discarded, AR to be the set of individual good gradient, which is replaced by corrupted data. We
have G = A U AD U AR. BD is the set of individual corrupted gradient, which is discarded by our algorithm. Denote the
good gradient to be g; = a; W, and the bad gradient to be g;, according to our assumption, we have ||g;|| < L.

Now, we have the 12 norm error:

1(G) ~ p(N) = - > - (i S +;Zgi> ||

ieG i€EA i€B
1= n 1 1
SR 5 oPRES v |
ni:lm niEA nieB
SED YRR D OE R D LT EO 2R
— || - Bt - — B - - Bt 7 7
n i€EA m n 1€AD m n iEAR iEA i€B
1 n—m 1 n 1 n 1 N
:”EZ(m)gi‘i'ﬁ Z Egﬁ_ﬁ Z Egi—gzgill
€A icAD i€cAR icB
1 n—m 1
S”EZ(m)gl“i’ﬁ Z *gz+ﬁ Z *gz”+Hizgz‘
€A i€AD i€AR i€B

<IX e +Z%gi +Z%giu +Z%ngiu
<Z” gz‘+Z”7gz|+Z”7gz|+ziugz”

By using the filtering algorithm, we could guarantee that ||g;|| < L. Let |A| = x, we have |B|=n—2 = (1 — ¢)m — z,
|[AR|=m —n=em, |AD|=m —|A|— |JAR|=m —z — (m —n) =n —x = (1 — ¢)m — z. Thus, we have:

m-n 1 1 1
G) — u(N)|| < L+(n—z)—L —n)—L+(n—2)-L
10G) — u(N)| < 2™ "L g (n—)Lt ()Lt (0)
m-—n 1
< — VL 4n—L —n)=L+ (n—a)-L
<ot L n Lt (m—n) Lt ()
1,21
= (= JrL+L+L—~xL
m-1—
2% — 2
—2L(Z—2) 2L

To minimize the upper bound, we need x to be as small as possible since 2¢ — 2 < 1. According to our problem setting, we
have z = n — me < (1 — 2¢)m, substitute back we have:

2¢ — 2
I1(G) — u(N)] < (1~ 29 Lm(* =2 o1
_ 1— 2e¢
—aL— S of
1—¢

. . € . . .
Since € < 0.5, we use tylor expansion on 1 , by ignoring the high-order terms, we have
—€

11(G) = u(N)|| = O(eL)

Submission and Formatting Instructions for ICML 2021

Note, if the Lipschitz continuous assumption does not hold, then L should be dimension dependent (i.e. v/d).

Combining above gradient estimation error upper bound and Theorem 1, we could get the results in Corollary 1.

7.3. Proof of Randomized Filtering Algorithm

Lemma 1 (Gradient Estimation Error for Randomized Filtering) Given a corrupted matrix G ¢ Rmxd generated in
Problem 2. Let G € R™*4 be the original clean gradient matrix. Suppose we are arbitrary select n = (1 — €)m rows from
G to get remaining set N € R"*%. Let 11 to be the empirical mean function, assume the clean gradient before loss layer has

bounded operator norm: |W||op < C, the maximum clean gradient in loss layer max; ||o;|| = k, the maximum corrupted
gradient in loss layer max; ||0;|| = v, assume € < 0.5, then we have:
3¢ — 4¢? €
[1(G) = p(N)| < Ch=——+ Cv—

7.4. Proof of lemma 1

Denote G to be the set of corrupted minibatch, G to be the set of original clean minibatch and we have |G| = |G| = m.
Let N to be the set of remaining data and according to our algorithm, the remaining data has the size |[N| =n = (1 — ¢)m.
Define A to be the set of individual clean gradient, which is not discarded by any filtering algorithm. B to be the set of
individual corrupted gradient, which is not discarded. According to our definition, we have N = A U B. AD to be the
set of individual good gradient, which is discarded, AR to be the set of individual good gradient, which is replaced by
corrupted data. We have G = A U AD U AR.. BD is the set of individual corrupted gradient, which is discarded by our
algorithm. Denote the good gradient to be g; = a; W, and the bad gradient to be g; = d; W, according to our assumption,
we have [|[W;||,, < C.

Now, we have the 12 norm error:

1(@) — p(N) | = - > (i e +;Zgi> ||

i€eG €A i€B
= II%Z%& - <izgi+i2§i> [
=1 €A i€B
le—n_ 1 1
=l=>"—gi+— > fgﬁ; y —8i — < > ei+— Z&)
i€EA i€AD EAR i€EA i€B
= ||% Z(n ;m)gi + % Z 8t % > %gi - %Zgiﬂ
€A i€EAD i€EAR i€B
S i M S) Dt A Y- M
i€EA i€AD icAR i€B

Let |A| =z, wehave |B| =n—2z = (1—¢)
n —x = (1 — €)m — x. Thus, we have:

14(G) = pMN)[| < Z

—n = em,

—|A|—-]AR|=m—-z—(m—n) =

g, +Z gﬂrz —gill +Z*||g7||
il +Z II—glll +Z ||*gz|| +Z*ng||

For individual gradient, according to the label corruption gradient definition in problem 2, assuming the |W||,, < C, we
have ||g; || < ||cu]|[|Willop < Clley]|. Also, denote max; ||, || = k, max; ||d;|| = v, we have ||g;|| < Ck, ||gi]| < Cw.

(G — u(N)]| < Cz "k 4 C(n — z)%k +C(m— n)%k +Cn— x)%v

nm

Submission and Formatting Instructions for ICML 2021

Note the above upper bound holds for any z, thus, we would like to get the minimum of the upper bound respect to x.
Rearrange the term, we have

n

m — 1 1 1 1

— (N < _ = il))=

Ii(G) = p(N)|| < Ca(=—= = —)k + Cn—k + C(m —n) —k + C(n —z)—v

i(Qe—l

m 1—e€

C’x(k(%_l)v>+0k+0v
m(l—e€) n

— Cx (k(f;(z PJ ”) +Ck+Cv

1
Yek + Ck + Cv — EOJZ’U

k(2¢e —1) — v
m(l —e€)
to our algorithm, we knew n — me = m(1 —e€) —me = (1 — 2e)m < x < n = (1 — €)m. Then, substitute x = (1 — 2¢)m,

we have

Since when € < 0.5, < 0, we knew that = should be as small as possible to continue the bound. According

2¢ -2
||M(G)—M(N)H§Ck:(1—26)1 —|—Ck:+Cv—CU ‘
*6
4.2
:Ck?)e 4de 4O €
1—¢€ 1—¢

7.5. Proof of Theorem 2

According to algorithm2, we could guarantee that v < k. By lemma 1, we will have:

3e — 4¢2 €
I1(G) = n(N)|| < Ck——— + Cv
—€ 1—¢€
<Ck4e—4e
1—¢
= 4eCk

~ O(e,/q)(C is constant, k is the norm of g-dimensional vector)

7.6. Proof of Lemma 2
Assume we have a d class label y € R?, where v, = 1,1; = 0,7 # k. We have two prediction p € R%, q € R<.

Assume we have a d class label y € R?, where 3, = 1,4; = 0,4 # k. With little abuse of notation, suppose we have two
prediction p € R?, q € R?. Without loss of generality, we could assume that p; has smaller cross entropy loss, which
indicates pr > qx

For MSE, assume we have opposite result

Ip—ylI* > lla—yl?
=Y i+ (1-p)? 2> @+ (1—)’ 2)

ik i#k

For each p;, i # k, We have

Var(p) = EG2) ~ B = 775 > — (L= po)® @

Submission and Formatting Instructions for ICML 2021

Then
St -p)? > @+ (11— q)?
i#k i#k
o 2 a2
=Variz(pi) + = 1)2(1 p)” = Varizr(ai) + = 1)2(1 k) “
=Varize(pi) — Varige(ai) > @1 (1—qu)® = (1 —pr)?)
=Varize(pi) — Varizr(qi) > @-12 ((px — ax)(2 — P — q1.))
References

Ajalloeian, A. and Stich, S. U. Analysis of sgd with biased gradient estimators. arXiv preprint arXiv:2008.00051, 2020.

Han, B., Yao, Q., Yu, X., Niu, G., Xu, M., Hu, W,, Tsang, 1., and Sugiyama, M. Co-teaching: Robust training of deep neural
networks with extremely noisy labels. In Advances in neural information processing systems, pp. 8527-8537, 2018.

Hu, Y., Zhang, S., Chen, X., and He, N. Biased stochastic gradient descent for conditional stochastic optimization. arXiv
preprint arXiv:2002.10790, 2020.

	2021-ICML-Boyang-Robust
	2021-ICML-Boyang-Robust-Supp

