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Abstract

We establish the first tight lower bound of ⌦(log log ) on the query complexity of sampling from
the class of strongly log-concave and log-smooth distributions with condition number  in one
dimension. Whereas existing guarantees for MCMC-based algorithms scale polynomially in , we
introduce a novel algorithm based on rejection sampling that closes this doubly exponential gap.
Keywords: sampling, query complexity, lower bound, rejection sampling

1. Introduction

The task of sampling from a target probability distribution known up to a normalizing constant is
of fundamental importance in fields such as Bayesian statistics, randomized algorithms, and online
learning. Recently, there has been a resurgence of interest in sampling and its interplay with the
more well-developed field of optimization. On the one hand, the extensive optimization toolkit
has inspired the development of novel sampling algorithms (Bernton, 2018; Wibisono, 2018, 2019;
Chewi et al., 2020; Salim et al., 2020; Ding et al., 2021a,b; Ma et al., 2021); on the other hand,
the theory of optimization has motivated researchers to provide quantitative and non-asymptotic
convergence guarantees for sampling methods, which depend on parameters that describe the problem
complexity (e.g., the condition number and the dimension) (Durmus and Moulines, 2017; Dalalyan
and Karagulyan, 2019; Chewi et al., 2021).

Conspicuously absent from this interplay, however, are lower complexity bounds for sampling,
in analogy to the oracle lower bounds initiated in the seminal work by Nemirovsky and Yudin for
optimization (Nemirovsky and Yudin, 1983). Besides charting the fundamental limits of optimization,
such lower bounds have been instrumental in the development of faster algorithms, most notably
Nesterov’s acceleration, which was “found mainly because the investigating of complexity enforced
to believe that such a method should exist” (Nemirovski, 1994, Ch. 10).

A canonical structured class of distributions is that of strongly log-concave and log-smooth
distributions on Rd, i.e., the class of distributions with a density p / exp(�V ), where the potential
V : Rd

! R is twice continuously differentiable, ↵-strongly convex, and �-smooth. The relevant
parameters of this class are the dimension d, as well as the condition number  := �/↵, and we seek
to understand the number of queries to V (and its derivatives) necessary to generate a sample close
in total variation distance to p. We call a solution to this problem a general sampling lower bound.
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Related works. Despite several attempts at establishing query complexity lower bounds for sam-
pling, we are not aware of a general sampling lower bound. Whereas sampling upper bounds are
derived using techniques that are close to those employed in optimization (Dalalyan, 2017; Durmus
et al., 2019), it is unclear how to use lower bound techniques for optimization (Nesterov, 2013) to
derive general sampling lower bounds. Note that sampling upper bounds typically assume that the
minimizer of V is known a priori; thus, a direct reduction of the sampling task to apply existing
optimization lower bounds would likely capture the complexity of finding the mode of V rather
than the intrinsic difficulty of the sampling task itself. In lieu of a direct reduction, it is possible to
envision, at least in principle, an approach which adapts the optimization lower bound constructions
to the sampling setting, but we are not aware of any successful results in this direction.

Another family of approaches is based on information-theoretic ideas which have been highly
successful for developing a minimax theory of statistics (Le Cam, 1986; Le Cam and Yang, 2000;
Tsybakov, 2009); however, prior works applying these ideas have largely focused on various adjacent
questions which do not imply a lower bound for the sampling task itself. A notable example is the
estimation of the normalizing constant of a strongly log-concave distribution, for which a lower
bound was established in Ge et al. (2020). However, this lower bound does not yield a general
sampling lower bound; in fact, the two problems differ in difficulty. Indeed, the randomized midpoint
discretization of the underdamped Langevin dynamics (Shen and Lee, 2019) obtains samples in
O(d1/3) queries, whereas the lower bound for estimating the normalizing constant in Ge et al. (2020)
grows as ⌦̃(d). Another example is the paper Chatterji et al. (2022), which studies sampling with
access to stochastic gradient queries. However, the resulting lower bound arises primarily out of
the need to overcome the noise in the gradient queries, and it again does not yield sampling lower
bounds for our setting of precise gradient queries.

To circumvent the difficulties in establishing general sampling lower bounds, various works have
focused on establishing lower bounds for specific and popular algorithms such as the Underdamped
Langevin Algorithm (ULA) (Cao et al., 2021) and the Metropolis-Adjusted Langevin Algorithm
(MALA) (Chewi et al., 2021; Lee et al., 2021; Wu et al., 2021). In particular, the last three papers
establish that the minimax query complexity for MALA over the class of strongly log-concave and
log-smooth distributions is e⇥(d) from a “cold start” and ⇥(

p
d) from a “warm start”.

A lower complexity bound in one dimension. Recall that for convex optimization, there are two
relevant regimes (see, e.g., Bubeck, 2015): (1) the low-dimension regime, in which algorithms such as
the cutting plane method achieve the rate O(d log(1/")) (where " is the accuracy parameter), and (2)
the high-dimensional regime, in which algorithms such as gradient descent achieve dimension-free
rates at the cost of inverse polynomial dependency on the accuracy. In this paper, we study the
low-dimensional regime for sampling; in particular, we consider d = 1.

We prove that for the class of ↵-strongly log-concave and �-log-smooth distributions in one
dimension (with mode at 0), any algorithm, which can produce a sample that is at total variation
distance at most 1

64 from the target distribution p (uniformly over p belonging to the class), must
make at least ⌦(log log ) queries to V or any of its derivatives. To our knowledge, this is the first
lower complexity bound for this problem class.

Achievability of the lower bound. The lower bound of ⌦(log log ) is surprisingly small, and
existing guarantees for standard algorithms such as the Langevin algorithm (or its variants), the
Metropolis-Adjusted Langevin Algorithm, or Hamiltonian Monte Carlo, all have a dependence that
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scales polynomially with the condition number  (see for instance the comparison in Shen and Lee,
2019).

To provide an algorithm which matches the lower bound, we return to the fundamental idea
of rejection sampling, developed by Stan Ulam and John von Neumann (von Neumann, 1951;
Eckhardt, 1987). We develop an algorithm which uses O(log log ) queries in order to build a
proposal distribution. Once the proposal distribution is constructed, new samples which are "-close
to p in total variation distance can be generated using O(log(1/")) additional queries per sample.

Although our algorithm is tailored to distributions in one dimension, the task of sampling
from a one-dimensional log-concave distribution is an important subroutine for higher dimensional
algorithms, such as the Hit-and-Run algorithm. We describe the application of our algorithm to
Hit-and-Run in Section 4.

2. Lower bound

We begin by formally defining the class of strongly log-concave and log-smooth distributions in one
dimension, which is the focus of this paper.

Definition 1 The class of univariate ↵-strongly log-concave and �-log-smooth distributions, for

constants 0 < ↵  �, is the class of continuous distributions p supported on R, whose density

is of the form p(x) = exp(�V (x)), for a potential function V : R ! R [ {1} which is twice

continuously differentiable and satisfies

↵  V 00(x)  � , 8x 2 R . (1)

In addition, we always assume
1

that the mode of the distribution is at 0, or equivalently V 0(0) = 0.

We study the query complexity of sampling from this class. Formally, suppose that the target
distribution is p = exp(�V ). The sampling algorithm is allowed to make queries to the following
oracle: given a point x 2 R, the oracle returns some or all of (1) the evaluation of the potential
V (x) + C up to a constant C, which is unknown to the algorithm but does not change from query
to query; (2) the evaluation of the gradient V 0(x); or (3) the evaluation of the Hessian V 00(x).
Depending on what information the oracle returns, it may be described as providing 0th-, 1st-, or
2nd-order information. For instance, the Langevin algorithm uses 1st-order information, whereas the
Metropolis-Adjusted Langevin Algorithm uses both 0th-order and 1st-order information. Our lower
bound will in fact apply to the strongest of these oracles, namely the one that returns all three pieces
of information.

We now state our lower bound.

Theorem 2 Consider the class P of univariate ↵-strongly log-concave and �-log-smooth distri-

butions as defined in Definition 1, and let  := �/↵ denote the condition number. Suppose that an

algorithm satisfies the following guarantee: for any p 2 P , the algorithm makes n queries to the

oracle providing 0th-, 1st-, and 2nd-order information for p, and outputs a random variable whose

law is at most
1
64 away from p in total variation distance. Then, n & log log .

1. This localization assumption is common in the sampling literature; without some knowledge of the mode (e.g. that the
mode is contained in an interval) it is impossible to even find the mode in the query model.
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We now give some intuition for the lower bound construction, and defer the proof to Appendix A.
The strategy is to construct a family of distributions {p1. . . . , pm} which forms a packing of the class
P in total variation distance. Because the family is well-separated, if an algorithm can accurately
sample from each pi, it can also identify pi. We construct the family {pi}

m
i=1 in such a way that

identifying pi from queries to low-order oracles requires at least ⌦(logm) queries, e.g., via bisection.
With the strategy in place, we now describe motivation for the construction of the family {pi}

m
i=1.

Suppose that we have a distribution p / exp(�V ) which is rescaled to satisfy 1  V 00
 . The

bound V 00
� 1 implies that a substantial fraction of the mass of p is supported on the interval [�1, 1].

On the other hand, the bound V 00
  allows for the density p to suddenly drop from ⇡ 1 to nearly 0

over an interval of much smaller length, ⇣ 1/
p
. Hence, as a first approximation, we can imagine

dividing the interval [�1, 1] into ⇣
p
 bins, and thinking of each pi as piecewise constant on each

bin. While keeping the log-concavity constraint in mind, for the purpose of this heuristic discussion
we will consider the family {pi}

m
i=1 of m ⇣

p
 distributions, where pi is the uniform distribution

on [�i/
p
, i/

p
]; see Figure 1.

Figure 1: A family of uniform distributions.

However, this family is not well-separated in total variation distance. Indeed, it can be checked
that for i < j, in order for the total variation distance between pi and pj to be appreciable, we
require j � 2i. This motivates us to consider the subfamily {p2i , 1  i  log2

p
}, of which there

are O(log ) elements. For this subfamily, we can hope to reduce the task of sampling to that of
identifying p2i via queries, and binary search for this problem requires only O(log log ) queries.
This is the basis for our somewhat unusual lower bound.

The uniform distributions involved in this informal discussion do not belong to the class P , as
they are neither strongly log-concave nor log-smooth. The main technical challenge in our lower
bound is to produce distributions which lie in P but still behaves similarly to uniform distributions,
in the sense of requiring ⌦(log log ) oracle queries to identify a distribution via queries. We defer
these details to the appendix.

3. Upper bound

In this section, we show that the ⌦(log log ) lower bound in the previous section is achievable. Note
that the existing guarantees for standard sampling algorithms (c.f. the comparison in Shen and Lee
(2019)) usually scale polynomially in the condition number , so they are not optimal for our setting.

Moreover, the heuristic discussion of the lower bound construction motivates choosing the query
points according to a binary search strategy. In order to implement this idea, we turn towards
the classical idea of rejection sampling: first, we make queries in order to construct a proposal

distribution q. To generate new samples from p, we repeatedly draw samples from q, and each sample
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is accepted with a carefully chosen acceptance probability (which can be computed via additional
queries to the oracle for the density up to normalization).

Algorithm 1: ENVELOPE

Use binary search to find the first index i+ 2 {0, 1, . . . , d12 log2 e} with V (2i+/
p
) � 1

2 .
Use binary search to find the first index i� 2 {0, 1, . . . , d12 log2 e} with V (�2i�/

p
) � 1

2 .
Set x� := �2i�/

p
 and x+ := 2i+/

p
.

return

q̃(x) :=

8
>>>>><

>>>>>:

exp
h
�

x� x�
2x�

�
(x� x�)2

2

i
, x  x� ,

1 , x�  x  x+ ,

exp
h
�

x� x+
2x+

�
(x� x+)2

2

i
, x � x+ .

We give the high-level pseudocode for building an upper envelope in Algorithm 1, and for
generating new samples in Algorithm 2. Note that while our lower bound applies to algorithms
using 0th-, 1st-, and 2nd-order information, our upper bound algorithm in fact only requires 0th-order
information. We next proceed to discuss details of the algorithms.

Algorithm 2: SAMPLE

Normalize q̃ to form q.
while sample is not accepted

do

Sample X ⇠ q.
Accept X w.p.
p̃(X)/q̃(X).

end

return X

Before implementing Algorithm 1, we first perform several
preprocessing steps. Recall that the mode of the distribution
p is assumed to be at 0, and that p / exp(�V ). We also
assume that 1  V 00

 . To reduce to this case, say we
start with ↵  V 00

 �, and the bounds ↵, � are known.
Then, observe that the rescaled potential V̄ (x) := V (x/

p
↵)

satisfies 1  V̄ 00
  = �/↵. Given access to an oracle for

V (up to additive constant), we can simulate an oracle to V̄
(up to additive constant) and apply our algorithm to generate
a sample X̄ from the density p̄ / exp(�V̄ ); it can be checked
that X̄/

p
↵ is a sample from p. Finally, we assume that the

oracle, when given a query point x, returns V (x), where V is
normalized to satisfy V (0) = 0; this is achieved by replacing the output V (x) of the oracle by
V (x)� V (0).

Implementing the first step of Algorithm 1 requires performing binary search over an array of
size O(log ), which requires only O(log log ) queries; similar comments apply to the second step.
We prove in Appendix B that the indices i� and i+ always exist under our assumptions. We prove in
Appendix B that the output q̃ of Algorithm 1 is an upper envelope for the oracle, i.e., q̃ � exp(�V ).
The upper envelope q̃ constructed in Algorithm 1 is the input to Algorithm 2; see Figure 2.

In Algorithm 2, we normalize q̃ to a probability distribution q, which requires computing a
one-dimensional integral for the normalizing constant:

R
R q̃. Once normalized, we must also be able

to draw samples from the distribution q. These steps can be implemented with low computational
burden, but we do not dwell on this point here because we are primarily interested in the query

complexity in this work. Note that the steps of normalizing q and drawing new samples from q do not
require additional queries to the oracle.
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x

q̃(x)

0x� x+

Figure 2: The upper envelope q̃ constructed in Algorithm 1.

The framework of rejection sampling provides a flexible guarantee: if we desire an exact sample
from p, then we can continue drawing samples from q until one is accepted, yielding an exact sample
with a guarantee on the expected total number of queries. On the other hand, if we are content with
producing a sample whose law is at a fixed distance " away from p in total variation distance, then
we can force the algorithm to stop after a prespecified number of iterations, declaring failure if no
sample from q is accepted, and achieve the total variation guarantee. We describe both of these
guarantees in the following theorem, which summarizes the query complexity of our algorithm.

Theorem 3 Suppose that the target distribution p belongs to the class of univariate strongly log-

concave and log-smooth distributions (Theorem 1). Algorithm 1 uses O(log log ) queries to build

the upper envelope q̃. Once q̃ is constructed, we can use it for either of the following tasks.

1. (exact sampling) Algorithm 2 returns an exact sample from p after an additional O(1) expected

queries to the oracle.

2. (approximate sampling) Fix an accuracy parameter 0 < " < 1. If we limit Algorithm 2 to use

at most O(log(1/")) queries, then the output of Algorithm 2 (or ‘FAILURE’, if Algorithm 2

fails to accept a sample within the allowed number of queries) has a distribution which is at

total variation distance at most " away from p.

We give the proof in Appendix B.

4. Application to Hit-and-Run

Although our upper bound algorithm applies only to univariate distributions, in this section we
demonstrate how to use our algorithm as a subroutine for the well-known Hit-and-Run algorithm for
sampling from high-dimensional log-concave distributions.

Hit-and-Run algorithms form a class of Markov chain Monte Carlo methods (Bélisle et al., 1993).
Given a target distribution with density p : Rd

! R and a distribution ⌫ on the sphere Sd�1, one can
construct a Markov chain with stationary distribution p as follows. If the current point of the Markov
chain is at the point xt 2 Rd at iteration t, we

1. choose a random direction u ⇠ ⌫,

2. choose a random step size � from the distribution with density / p(xt + �u),
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3. and set xt+1 = xt + �u.

It is not hard to see that the above dynamics are reversible with respect to p. Lovász and Vempala
(Lovász, 1999; Lovász and Vempala, 2003) study this algorithm when p is log-concave, and establish
rapid mixing of the chain when the direction distribution is uniform. However, they only partially
addressed the issue of implementation, suggesting the use of an approximate algorithm for Step 2. In
the case when p is strongly log-concave and log-smooth, our methods allow us to resolve this issue
and provide an efficient and exact sampling algorithm.

Proposition 4 If p is 1-strongly log-concave and -log-smooth, then Step 2 can be implemented

exactly, with amortized query and time complexity O(log(d)).

We defer the description of the algorithm, and the proof of Proposition 4 to Appendix C. We remark
that the query complexity is actually dominated by the cost of finding the maximum of p when
restricted to the line, and the sampling step is comparatively cheap.

5. Conclusion and outlook

In this paper, we established the oracle complexity of sampling from the class of univariate strongly
log-concave and log-smooth distributions, in analogy with the now pervasive oracle lower bounds
for optimization initiated by Nemirovsky and Yudin (Nemirovsky and Yudin, 1983). A clear future
direction suggested by this work is to extend this result to higher dimensions, and to ultimately
develop a theory of lower complexity bounds and optimal algorithms for sampling.

Recently, an intense amount of research has been devoted to the use of Markov chain Monte
Carlo-based methods for sampling, and it may come as a surprise that the complexity lower bound
we have proven in this paper is attained by an entirely different type of algorithm, namely rejection
sampling. Our result highlights that standard algorithms may not be optimal, and that the search for
optimal algorithms goes hand-in-hand with lower bound constructions.

In particular, our work motivates revisiting the idea of rejection sampling through the modern
lens of minimax optimality.
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Appendix A. Proof of the lower bound

A.1. The construction

Let m be the largest integer such that

exp
�
�
22m�2

2

�
�

1

2
. (2)

Define two auxiliary functions

�(x) :=

8
>>>><

>>>>:

 , 1/2  x < 1 ,

1 , 1  x < 2 ,

 , 2  x < 5/2 ,

0 otherwise ,

 (x) :=

8
><

>:

1 , 5/2  x < 4 ,

 , 4  x < 5 ,

0 , otherwise .

We define a family (Vi)
m
i=1 of 1-strongly convex and -smooth potentials as follows. We require

that Vi(0) = V 0
i (0) = 0 and that Vi be an even function, so it suffices to specify V 00

i on R+. The
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second derivative is given by

V 00
i (x) := {x  �

1
2 2i�1

}+ �
� x

�
1
2 2i

�
+

m�1X

j=i

 
� x

�
1
2 2j

�
+ {x � 5�

1
2 2m�1

} , x � 0 .

Observe that all of the terms in the above summation have disjoint supports, see Figure 3.

x
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Figure 4: We plot V 00
i (in blue) and V 00

i+1 (in orange). In this figure, we do not distort the horizontal
axis lengths to make it easier to visually compare the relative lengths of intervals on which
the second derivatives are constant.

The following lemma provides intuition for the construction.

Lemma 5 We have the equalities

Vi = Vi+1 ,

V 0
i = V 0

i+1 ,

V 00
i = V 00

i+1 ,

outside of the set {x 2 R : �
1
2 2i�1

 |x|  5
4

� 1
2 2i+1

}.

Proof Refer to Figure 4 for a visual aid for the proof.
Clearly the potentials and derivatives match when |x|  �

1
2 2i�1. Since the second derivatives

match when |x| �
5
4

� 1
2 2i+1, it suffices to show that V 0

i (
5
4

� 1
2 2i+1) = V 0

i+1(
5
4

� 1
2 2i+1) and

Vi(
5
4

� 1
2 2i+1) = Vi+1(

5
4

� 1
2 2i+1).

To that end, note that for x � 0,

V 00
i+1(x)� V 00

i (x) = {�
1
2 2i�1 < x  �

1
2 2i}� �

� x

�
1
2 2i

�
+ �

� x

�
1
2 2i+1

�
�  

� x

�
1
2 2i

�

=

8
>>>><

>>>>:

�(� 1) , �
1
2 2i�1

 x  �
1
2 2i ,

+(� 1) , �
1
2 2i  x  �

1
2 2i+1 ,

�(� 1) , �
1
2 2i+1

 x 
5
4

� 1
2 2i+1 ,

0 , otherwise .

11
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A little algebra shows that the above expression integrates to zero, hence we deduce the equality
V 0
i (

5
4

� 1
2 2i+1) = V 0

i+1(
5
4

� 1
2 2i+1). Also, by integrating this expression twice, we see that

Vi+1
�5
4
�

1
2 2i+1

�
� Vi

�5
4
�

1
2 2i+1

�
= �

� 1

2
(�

1
2 2i�1)

2

| {z }
integral on [� 1

2 2i�1,� 1
2 2i]

�(� 1)�
1
2 2i�1 �

1
2 2i +

� 1

2
(�

1
2 2i)

2

| {z }
integral on [� 1

2 2i,� 1
2 2i+1]

+(� 1)�
1
2 2i�1 1

4
�

1
2 2i+1

�
� 1

2

�1
4
�

1
2 2i+1

�2
| {z }

integral on [� 1
2 2i+1, 54

� 1
2 2i+1]

=
� 1


{�22i�3

� 22i�1 + 22i�1 + 22i�2
� 22i�3

}

= 0 ,

as desired.

We also need a lemma showing that each probability distribution pi / exp(�Vi) places a
substantial amount of mass on the interval (�

1
2 2i�2,�

1
2 2i�1].

Lemma 6 For each i 2 [m],

pi
�
(�

1
2 2i�2,�

1
2 2i�1]

�
�

1

32
.

Proof According to the definition of pi, we have

pi
�
(�

1
2 2i�2,�

1
2 2i�1]

�
=

R � 1
2 2i�1

� 1
2 2i�2

exp(�x2/2) dx

Zpi
, Zpi :=

Z

R
exp(�Vi) .

Recalling that m is chosen so that exp(�x2/2) � 1/2 whenever |x|  �
1
2 2m�1 (see (2)), we can

conclude that

Z � 1
2 2i�1

� 1
2 2i�2

exp
�
�
x2

2

�
dx �

1

2
�

1
2 2i�2 .

For the normalizing constant, observe that

Z 1

0
exp(�Vi) =

Z � 1
2 2i

0
exp(�Vi) +

Z 1

� 1
2 2i

exp(�Vi)  �
1
2 2i +

Z 1

� 1
2 2i

exp(�Vi) .

Since V 00
i =  on [�

1
2 2i�1,�

1
2 2i], it follows that V 0

i (
� 1

2 2i) � 
1
2 2i�1, and so

Vi(x) � 
1
2 2i�1 (x� �

1
2 2i) +

(x� �
1
2 2i)

2

2
, x � �

1
2 2i .

12
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Therefore,
Z 1

� 1
2 2i

exp(�Vi) 

Z 1

� 1
2 2i

exp
�
�

1
2 2i�1 (x� �

1
2 2i)�

(x� �
1
2 2i)

2

2

�
dx 

1


1
2 2i�1


1
p

,

where we applied a standard tail estimate for Gaussian densities (Theorem 8). Putting it together,

pi
�
(�

1
2 2i�2,�

1
2 2i�1]

�
�

2i�3

2 (2i + 1)
�

1

32
,

which proves the result.

A.2. Lower bound via Fano’s inequality

In this section, we use the densities {pi}mi=1 constructed in the previous section together with Fano’s
inequality from information theory in order to prove the lower bound.

Proof [Proof of Theorem 2] Let Z ⇠ unif([m]) be an index chosen uniformly at random. Suppose
that an algorithm makes n queries to the oracle for pZ , and given Z = i, outputs a sample Y whose
law qi is at total variation distance at most 1

64 from pi. In light of Lemma 6, a good candidate
estimator for Z from the observation of Y is given by

bZ := {k 2 N : Y 2 (�
1
2 2k�2,�

1
2 2k�1]} .

On the one hand, the probability that the estimator is correct is bounded by

P{ bZ = Z} =
1

m

mX

i=1

P{ bZ = i | Z = i} =
1

m

mX

i=1

P{Y 2 (�
1
2 2i�2,�

1
2 2i�1] | Z = i}

=
1

m

mX

i=1

qi
�
(�

1
2 2i�2,�

1
2 2i�1]

�
�

1

m

mX

i=1

pi
�
(�

1
2 2i�2,�

1
2 2i�1]

�
�

1

64
�

1

64
,

(3)

where the last inequality uses Lemma 6.
On the other hand, we can lower bound P{ bZ 6= Z} using Fano’s inequality. Let x1, . . . , xn

denote the query points of the algorithm, and let Wi be a shorthand for the triple (Vi, V 0
i , V

00
i ). We

will first prove the lower bound for deterministic algorithms, i.e., assuming that each query point xj
is a deterministic function of the previous query points and query values. Since

Z ! {xj ,WZ(xj), j 2 [n]} ! bZ

forms a Markov chain, Fano’s inequality (Cover and Thomas, 2006) yields

P{ bZ 6= Z} � 1�
I({xj ,WZ(xj)}j2[n];Z) + log 2

logm
,

where I denotes the mutual information. By the chain rule for mutual information (Cover and
Thomas, 2006),

I
�
{xj ,WZ(xj)}j2[n];Z

�
=

nX

j=1

I
�
xj ,WZ(xj);Z

�� x1,WZ(x1), . . . , xj�1,WZ(xj�1)
�
.

13
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Observe that, conditioned on {xi,WZ(xi)}
j�1
i=1 , the query point xj is deterministic. Also, from the

construction of the family of potentials, we know that WZ(xj) = W1(xj) if xj  �
1
2 2Z�1, and

WZ(xj) = Wm(xj) if xj � 5
4

� 1
2 2Z+1. It yields that:

• for Z  log2(
4
5

p
xj)� 1, WZ(xj) takes a unique value given by Wm(xj),

• for Z � log2(
p
xj) + 1, WZ(xj) takes a unique value given by W1(xj),

and otherwise, Z lives in an interval of size at most log2(
p
xj) + 1 � (log2(

4
5

p
xj) � 1) 

2 + log2(5/4) which covers at most three integers, say z0 � 1, z0, z0 + 1. Hence, the conditional
distribution of WZ(xj) can be supported on at most 5 points given respectively by

W1(xj),Wm(xj),Wz0�1(xj),Wz0(xj), and Wz0+1(xj) .

Since the mutual information is upper bounded by the conditional entropy of WZ(xj), we can
conclude

I
�
{xj ,WZ(xj)}j2[n];Z

�
 n log 5 .

Substituting this into Fano’s inequality yields

P{ bZ 6= Z} � 1�
n log 5 + log 2

logm
. (4)

In general, if the algorithm is randomized, then we can apply the inequality (4) conditioned on
the random seed ⇠ of the algorithm, since ⇠ is independent of Z. It yields

P{ bZ 6= Z | ⇠} � 1�
n log 5 + log 2

logm
,

and upon taking expectations we see that (4) holds for randomized algorithms as well.
Combined with (3), we obtain n & logm & log log  as desired.

Appendix B. Proof of the upper bound

Let p be the target distribution and let p̃ = pZp denote the unnormalized distribution which we
access via oracle queries. We recall our preprocessing steps: we assume that the query values take
the form p̃(x) = exp(�V (x)), with V (0) = V 0(0) = 0 and V satisfying (1). This is without loss of
generality because we can query p̃(0) and replace subsequent queries p̃(x) with p̃(x)/p̃(0), thereby
normalizing V to satisfy V (0) = 0. By rescaling the distribution, we can assume that 1  V 00

 .
Also, we can assume that the target distribution is only supported on the positive reals R+, because
we can then construct an upper envelope on all of R by repeating our algorithm on the negative reals,
which only doubles the number of queries and does not change the complexity.

Proof [Proof of Theorem 3] Our goal is to use the oracle queries to construct an upper envelope q̃
that satisfies q̃ � p̃, and Zq . Zp, where

Zp :=

Z

R
p̃ , Zq :=

Z

R
q̃

14
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are the normalizing constants. The guarantees of Theorem 3 will then follow from standard results
on rejection sampling. For completeness, we state and prove the relevant result as Theorem 7 in
Appendix D.

Let i0 denote the smallest integer such that V (2i0/
p
) � 1/2. Note that x2/2  V (x)  x2/2

implies that 0  i0  (log2 )/2. Using binary search over an array of size O(log ), we can find i0
using only O(log log ) queries to p̃.

Let x0 := 2i0/
p
. We first claim that

Z x0

0
p̃ & x0 . (5)

When i0 = 0, this holds because
Z x0

0
p̃ =

Z 1/
p


0
exp(�V ) �

Z 1/
p


0
exp

�
�
x2

2

�
dx �

1

3
p

=

x0
3

.

When i0 > 0, this holds because, by definition of i0, we have V (x0/2)  1/2, and so
Z x0

0
p̃ �

Z x0/2

0
exp(�V ) & x0 .

Next, define the upper envelope as follows:

q̃(x) =

(
1 , x  x0 ,

exp{�(x� x0)/(2x0)� (x� x0)
2/2} , x > x0 .

To see that q̃ � p̃ and hence that q̃ is a valid upper envelope, observe first that since p̃(0) = 1, and p̃
is decreasing, we get that p̃(x)  1 = q̃(x) for all x 2 [0, x0].

Next, if x > x0, using the fact that V is convex and V (x0) � 1/2 by the definition of x0,

V 0(x0) �
V (x0)� V (0)

x0
�

1

2x0
.

Hence, for any x > x0 we have

V (x) � V (x0) + V 0(x0) (x� x0) +
1

2
(x� x0)

2

�
1

2x0
(x� x0) +

1

2
(x� x0)

2 .

It implies that p̃(x)  q̃(x) also for the tail x > x0.
To complete the proof, we show that Zq . Zp. In light of (5) it is sufficient to show that Zq . x0.

To see this, observe that by Theorem 8, we have

Zq =

Z x0

0
q̃ +

Z 1

x0

q̃  x0 +

Z 1

x0

exp
�
�

1

2x0
(x� x0)�

1

2
(x� x0)

2� dx  3x0 .

This completes the proof.
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Appendix C. Proof for the hit-and-run algorithm

In this section, we prove Proposition 4.
Let p / exp(�V ) where V : Rd

! R is 1-strongly convex and -smooth with V (0) =
rV (0) = 0. We are given a line ` = {x? + �u : � 2 R} where x? is the closest point of ` to the
origin and u is a unit vector. Note that

1  uTr2V (x? + �u)u =
d2V (x? + �u)

d�2
 

so that V restricted to ` is also 1-strongly convex and -smooth.
First, we need to find the minimum of V on `. To that end, we restrict the line ` to the subset of

points x? + �u with
|�|  2 |x?|2 , (6)

where we write |·|2 for the Euclidean norm on Rd.
To prove (6), note that by strong convexity of V on `, if x? + �u is a minimizer of V on `, then

we must have
�rV (x?)Tu+

1

2
�2  V (x? + �u)� V (x?)  0 .

The above yields |�|  2 |rV (x?)Tu|. Moreover, by -smoothness of V we have

|rV (x?)Tu|  |rV (x?)|2  |x?|2 ,

which completes the proof of (6).
To ease notation, from here on we write V for its one-dimensional restriction to `. We modify

our rejection sampling algorithm from Theorem 3 so that it works when (i) the minimizer m 2 R of
V is only known approximately and (ii) the value V (m) is known only approximately. To make this
precise, suppose that we know a, b 2 R such that a  m  b. By (6), such a, b can be found using
O(log( |x?|2/(b� a))) queries via bisection. Strong convexity and smoothness give us

V (m) +
1

2
(b�m)2  V (b)  V (m) +



2
(b�m)2 , (7)

V (m) +
1

2
(m� a)2  V (a)  V (m) +



2
(m� a)2 . (8)

In particular,
V (a) _ V (b)�



2
(b� a)2  V (m)  V (a) ^ V (b) .

Relabel V � (V (a) _ V (b)) as V , so that we may assume

�


2
(b� a)2  V (m)  0 .

Assume from here on that  (b� a)2/2 = 1 (this means we used O(log( |x?|2)) queries). Define

ib := min
�
i 2 N : V

�
b+

2i
p


�
� 3

 
,

ia := min
�
i 2 N : V

�
a�

2i
p


�
� 3

 
.
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Let xb = b + 2ib/
p
 and xa = a � 2ia/

p
. Note that 1  ia, ib . log . Indeed, for the lower

bound observe that by (7), we have

V
�
b+

1
p


�
 V (m) +



2

�
b+

1
p

� a

�2
 0 + 1 +

1

2
+

p
2 < 3 ,

so that ib � 1.
For the upper bound, we have

V
�
b+

2
1
2 (log2 +3)

p


�
� V (m) +

1

2

�
b+

2
1
2 (log2 +3)

p


�m
�2

� �1 +
2log2 +2


= 3 .

It yields ib . log . Similarly (8) yields the desired bounds for ia.
Thus, ia, ib may be found via binary search in O(log log ) queries to p̃.
We now move to the definition of the upper envelope q̃. To that end, note first that

V 0(xb) �
V (xb)� V (m)

xb �m
�

3

xb � a

so that for x � xb we can write

V (x) � V (xb) + V 0(xb)(x� xb) +
1

2
(x� xb)

2

� 3 + 3
x� xb
xb � a

+
1

2
(x� xb)

2 .

Similarly, we also have

V (x) � 3 + 3
x� xa
xa � b

+
1

2
(x� xa)

2

for x  xa. We are ready for the definition of q̃.

q̃(x); =

8
><

>:

e , for x 2 [xa, xb] ,

exp(�3� 3 x�xb
xb�a �

1
2 (x� xb)2) , for x � xb ,

exp(�3� 3 x�xa
xa�b �

1
2 (x� xa)2) , for x  xa .

By our above calculations we know that p̃  q̃ on all of R. We further have

Zp �

Z xb

xa

p̃ �

Z b+2ib�1/
p


a�2ia�1/
p

exp(�V ) �

exp(�3)

2
(xb � xa).

Thus, to conclude, it suffices to show that Zq =
R
R q̃ . xb � xa. This follows by Theorem 8.

Given that the chain is at point xt at some time t, we have described an algorithm that constructs
an efficient rejection envelope with number of queries bounded by

O
�
log( |xt|2) _ 1 + log log 

�
.

To bound the amortized query complexity, it remains to control the time average of |xt|2. To that end,
recall that the Hit-and-Run chain is geometrically ergodic by Lovász and Vempala (2003) so that,

1

T

TX

t=1

log( |xt|2) _ 1
a.s.
�! Ex⇠p log( |x|2) _ 1.
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By Jensen’s inequality we further have

Ex⇠p log( |x|2) _ 1 . log(Ex⇠p |x|2) _ 1 . log(d) ,

since p is 1-sub-Gaussian. Noting that log log   log(d), the result follows.

Appendix D. Auxiliary results

The following result on rejection sampling is standard, and we include it for the sake of completeness.

Theorem 7 Suppose we have query access to the unnormalized target p̃ = pZp supported on X ,

and that we have an upper envelope q̃ � p̃. Let q denote the corresponding normalized probability

distribution and write Zq for the normalizing constant, i.e., q̃ = qZq. Then, rejection sampling with

acceptance probability p̃/q̃ outputs a point distributed according to p, and the number of samples

drawn from q until a sample is accepted follows a geometric distribution with mean Zq/Zp.

Proof Since q̃ is an upper envelope for p̃, then p̃(X)/q̃(X)  1 is a valid acceptance probability.
Clearly, the number of rejections follows a geometric distribution. The probability of accepting a
sample is given by

P(accept) =
Z

X

p̃(x)

q̃(x)
q(dx) =

Zp

Zq

Z

X
p(dx) =

Zp

Zq
.

Let X1, X2, X3 . . . be a sequence of i.i.d. samples from q and let U1, U2, U3 . . . be i.i.d. unif[0, 1].
Let A ✓ X be a measurable set, and let X be the output of the rejection sampling algorithm.
Partitioning by the number of rejections, we may write

P(X 2 A) =
1X

n=0

P
⇣
Xn+1 2 A, Ui >

p̃(Xi)

q̃(Xi)
8 i 2 [n], Un+1 

p̃(Xn+1)

q̃(Xn+1)

⌘

=
1X

n=0

P
⇣
Xn+1 2 A, Un+1 

p̃(Xn+1)

q̃(Xn+1)

⌘
P
⇣
U1 >

p̃(X1)

q̃(X1)

⌘n

=
1X

n=0

⇣Z

A

p̃(x)

q̃(x)
q(dx)

⌘⇣Z

X

�
1�

p̃(x)

q̃(x)

�
q(dx)

⌘n

= p(A)
Zp

Zq

1X

n=0

�
1�

Zp

Zq

�n
= p(A) .

We also use the following elementary lemma about Gaussian integrals.

Lemma 8 Let a, x0 > 0. Then,

Z 1

x0

exp
�
�a (x� x0)�

1

2
(x� x0)

2� dx 
1

a
.
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Proof Completing the square,
Z 1

x0

exp
�
�a (x� x0)�

1

2
(x� x0)

2� dx =

Z 1

0
exp

�
�ax�

1

2
x2
�
dx

=
p
2⇡ exp

�a2

2

�
P(Z > a) ,

where Z ⇠ N (0, 1). The result follows from the Mills ratio inequality (Gordon, 1941).
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