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Abstract

This paper considers stochastic linear bandits with general nonlinear constraints.
The objective is to maximize the expected cumulative reward over horizon T
subject to a set of constraints in each round τ ď T . We propose a pessimistic-
optimistic algorithm for this problem, which is efficient in two aspects. First, the
algorithm yields Õ

´´

K0.75

δ ` d
¯?

τ
¯

(pseudo) regret in round τ ď T, where K
is the number of constraints, d is the dimension of the reward feature space, and
δ is a Slater’s constant; and zero constraint violation in any round τ ą τ 1, where
τ 1 is independent of horizon T. Second, the algorithm is computationally efficient.
Our algorithm is based on the primal-dual approach in optimization and includes
two components. The primal component is similar to unconstrained stochastic
linear bandits (our algorithm uses the linear upper confidence bound algorithm
(LinUCB)). The computational complexity of the dual component depends on the
number of constraints, but is independent of the sizes of the contextual space, the
action space, and the feature space. Thus, the computational complexity of our
algorithm is similar to LinUCB for unconstrained stochastic linear bandits.

1 Introduction

Stochastic linear bandits have a broad range of applications in practice, including online recommen-
dations, job assignments in crowdsourcing, and clinical trials in healthcare. Most existing studies on
stochastic linear bandits formulated them as unconstrained online optimization problems, limiting
their application to problems with operational constraints such as safety, fairness, and budget con-
straints. In this paper, we consider a stochastic linear bandit with general constraints. As in a standard
stochastic linear bandit, at the beginning of each round t P rT s, the learner is given a context cptq that
is randomly sampled from the context set C (a countable set), and takes an action Aptq P rJs. The
learner then receives a reward Rpcptq, Aptqq “ rpcptq, Aptqq ` ηptq, where rpc, jq “ xθ˚, φpc, jqy,
φpc, jq P Rd is a d-dimensional feature vector for (context, action) pair pc, jq, θ˚ P Rd is an unknown
underlying vector to be learned, and ηptq is a zero-mean random variable. For constrained stochastic
linear bandits, we further assume when action Aptq is taken on context cptq, it incurs K different
types of costs, denoted by W pkqpcptq, Aptqq. We assume W pkqpc, jq is a random variable with mean
wpkqpc, jq that is unknown to the learner. This paper considers general cost functions and does not
require wpkqpc, jq to have a linear form like rpc, jq.

Denote the action taken by policy π in round t by Aπptq. The learner’s objective is to learn a policy
π that maximizes the cumulative rewards over horizon T subject to anytime cumulative constraints:
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max
π

E

«

T
ÿ

t“1

Rpcptq, Aπptqq

ff

(1) E

«

τ
ÿ

t“1

W pkq pcptq, Aπptqq

ff

ď 0,@ τ P rT s, k P rKs. (2)

The constraint (2) above may represent different operational constraints including safety, fairness,
and budget constraints.

Anytime cumulative constraints

In the literature, constraints in stochastic bandits have been formulated differently. There are two
popular formulations. The first one is a cumulative constraint over horizon T, including knapsack
bandits [10, 9, 3, 4, 5, 17, 11] where the process terminates when the total budget has been consumed;
fair bandits where the number of times an action can be taken must exceed a threshold at the end
of the horizon [12]; and contextual bandits with a cumulative budget constraint [40, 14]. In these
settings, the feasible action set in each round depends on the history. In general, the learner has
more flexibility in the earlier rounds, close to that in the unconstrained setting. Another formulation
is anytime constraints, which either require the expected cost of the action taken in each round to
be lower than a threshold [6, 29] or the expected cost of the policy in each round is lower than a
threshold [32]. We call them anytime action constraints and anytime policy constraints, respectively.

cumulative constraints

anytime cumulative 
constraints

anytime policy 
constraints anytime action 

constraints

Figure 1: A conceptual description of feasi-
ble policy sets under different constraint for-
mulations.

Our constraint in the form of (2) is an anytime cumula-
tive constraint, i.e., it imposes a cumulative constraint in
every round. This anytime cumulative constraint is most
similar to the anytime policy constraint in [32] because
the average cost of a policy is close to its mean after the
policy has been applied for many rounds and the process
converges, so it can be viewed as a cumulative constraint
on actions over many rounds (like ours). Furthermore,
when our anytime cumulative constraint (2) is satisfied,
it is guaranteed that the time-average cost is below a
threshold in every round.

In summary, our anytime cumulative constraint is stricter
than a cumulative constraint over fixed horizon T but
is less restrictive than anytime action constraint in [6,
29]. Figure 1 provides a conceptual description of the
relationship between these different forms of constraints.

Main Contributions

This paper presents a pessimistic-optimistic algorithm based on the primal-dual approach in optimiza-
tion for the problem defined in (1)-(2). The algorithm is efficient in two aspects. First, the algorithm
yields Õ

´´

K0.75

δ ` d
¯?

τ
¯

regret in round τ ď T and achieves zero constraint violation in any

round τ ą τ 1 for a constant τ 1 independent of horizon T . Second, the algorithm is computationally
efficient.

For computational efficiency, the design of our algorithm is based on the primal-dual approach in
optimization. The computation of the primary component is similar to unconstrained stochastic linear
bandits [15, 33, 25, 1, 13]. The dual component includes a set of Lagrangian multipliers that are
updated in a simple manner to keep track of the levels of constraint violations so far in each round;
the update depends on the number of constraints, but it is independent of the sizes of the contextual
space, the action space, and the feature space. Thus, the overall computational complexity of our
algorithm is similar to that of LinUCB in the unconstrained setting. This results in a much more
efficient calculation comparing to OPLB proposed in [32]. OPLB needs to construct a safe policy set
in each round, hence, its computational complexity is prohibitively high as the authors acknowledged.

For constraint violation, our algorithm guarantees that for any τ ą τ 1, the constraint holds with
probability one. In other words, after a constant number of rounds, the constraint is always satisfied.
This is in contrast to prior works [32, 6], where anytime constraints are proven to hold over horizon
T with probability 1´ χ for a constant χ. In other words, the anytime constraints may be violated
with probability χ, and it is not clear how often they are violated when it happens. Furthermore,
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beyond mean cost constraints considered in (2) and in [32, 6], we prove that a sample-path version of

constraint (2) holds with probability 1´O
´

e´
δ
?
τ

50K2.5

¯

in round τ under our algorithm.

To summarize, our algorithm is computationally efficient and provides strong guarantees on both
regret and constraint violations. Additionally, our cost function is in a general form and does not need
to be linear as those in [32, 6]. We discuss more related work in the following.

Related Work

Stochastic linear bandits [2, 8] are a special class of contextual bandits [39, 23], which generalize
multi-armed bandits [22]. Besides [32], [12] considered an adversarial contextual bandit with anytime
policy constraint representing fairness. The proposed algorithm has Õp

a

|C|JT q regret when the
context distribution is known to the learner; otherwise it has Õp

a

|C|JT q regret and Õp
a

|C|T q
constraint violation. [24] studied a combinatorial sleeping bandits problem under cumulative fairness
constraints and proposed an algorithm based on UCB which they conjectured to have Õp

?
T q regret

and Õp
?
T q constraint violation. Recent work studied unconstrained structured bandits and proposed

primal-dual approach based on asymptotically lower bound problem in bandits [21, 35, 16]. However,
our algorithm is different from them in three aspects. Our primal component is a greedy algorithm
instead of a (sub-)gradient algorithm (as in [35]). Our dual component does not solve a best response
problem, which is a constrained optimization problem as in [21, 16]. Our analysis is based on the
Lyapunov-drift analysis for queueing systems, e.g., we establish a bound on the exponential moment
of the dual variable, which is not present in [21, 35, 16]. It is also worth mentioning that [20, 19, 30]
studied “conservative” bandits which require that the reward or the cumulative reward exceeds a
threshold at each step. Another line of related work is online convex optimization with constraints,
studied in [28, 27, 41, 42, 38, 36], where online primal-dual with proximal regularized algorithms
have been proposed to achieve Op

?
T q regret and Op1q violation for static constraints in [41] and

Op
?
T q violation for stochastic constraints in [42] .

Notation. fpnq “ Õpgpnqq denotes fpnq “ Opgpnqlogknq with k ą 0; rN s denotes the set
t1, 2, ¨ ¨ ¨ , Nu; x¨, ¨y denotes the inner product; p¨q: denotes the transpose of a vector or a matrix;
|| ¨ || “ || ¨ ||2, and ||x||Σ “

?
x:Σx.

2 A Pessimistic-Optimistic Algorithm

We consider a stochastic linear bandit over horizon T as described in the introduction. The learner’s
objective is to maximize the cumulative reward over time horizon T subject to K anytime cumulative
constraints as defined in (1)-(2). To address the challenges on the unknown reward and cost in con-
straint, as well as the anytime cumulative constraints, we develop a pessimistic-optimistic algorithm
based on the primal-dual approach for constrained optimization. We first give out the intuition of the
algorithm and then provide the formal statement of the algorithm.

To start, we consider a baseline, deterministic problem that replaces all the random variables with
their expectations. Different from the conventional setup, we introduce a “tightness” constant ε ą 0:

max
x

ÿ

cPC,jPrJs

pcrpc, jqxc,j (3)

s.t.
ÿ

jPrJs

xc,j “ 1, xc,j ě 0,@c P C, (4)

ÿ

cPC,jPrJs

pcw
pkqpc, jqxc,j ` ε ď 0, @k P rKs, (5)

where xc,j can be viewed as the probability of taking action j on context c, and pc is the probability
that context c is selected in each round. We will discuss in further details the importance of the
tightness constant ε in Section 4. The Lagrangian of the problem above is

max
x:
ř

j xc,j“1,xc,jě0

ÿ

c,j

pcrpc, jqxc,j ´
ÿ

k

λpkq

¨

˝

ÿ

cPC,jPrJs

pcw
pkqpc, jqxc,j ` ε

˛

‚, (6)
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where λpkq is the Lagrange multiplier associated with the kth constraint in (5). Fixing the values
of the Lagrange multipliers, solving the optimization problem is equivalent to solving |C| separate
subproblems (7), one for each context c, because the optimization variables x are coupled through j
only:

max
x:
ř

j xc,j“1,xc,jě0
pc

˜

ÿ

j

rpc, jqxc,j ´
ÿ

k

λpkq

˜

ÿ

j

wpkqpc, jqxc,j

¸¸

. (7)

Since the problem above is a linear programming, one of the optimal solutions is xc,j “ 1 for j “ j˚

and xc,j “ 0 otherwise, where

j˚ P arg max
j
rpc, jq ´

ÿ

k

λpkqwpkqpc, jq (8)

and a tie can be broken arbitrarily. If we call rpc, jq ´
ř

k λ
pkqwpkqpc, jq the action-value of context

c, then the solution for fixed values of Lagrange multipliers is to choose an action with the highest
action-value. We may view the action value here plays a similar role as the Q-value (also called
action-value function) in Q-learning [37].

Now the challenges to find a solution according to (8) include: (i) both rpc, jq and wpkqpc, jq are
unknown, and (ii) the optimal Lagrange multipliers λpkq are also unknown. To overcome these
challenges, we develop a pessimistic-optimistic algorithm that

• Uses LinUCB to estimate rpc, jq based on its linear structure.

• Uses observed W pkqpcptq, jq to replace wpkqpcptq, jq at each round t.
• Uses the following function to dynamically approximate the Lagrange multipliers (Xjptq “ 1 if
Aptq “ j; otherwise Xjptq “ 0):

Qpkqpt` 1q “

»

–Qpkqptq `
ÿ

jPrJs

W pkqpcptq, jqXjptq ` εt

fi

fl

`

,@k.

In other words, we increase its value when the current cost exceeds the current “budget,” and
decrease it otherwise. Therefore, Qpkqptq keeps track of the cumulative constraint violation by
round t.
• We further add a scaling parameter 1{Vt to Qpkqptq, i.e. Qpkqptq{Vt, to approximate λpkq. With a

carefully designed Vt, we can control the tradeoff between maximizing reward and minimizing
constraint violation in the policy and achieve the regret and constraint violation bounds to be
presented in the main theorem.

Next, we formally state our algorithm. This algorithm takes the following information as input at the
beginning of each round t: (i) historical observations

Ft´1 “ tcpsq, Apsq, Rpcpsq, Apsqq,W
pkqpcpsq, ApsqqusPrt´1s,kPrKs,

(ii) current observations cpsq and tW pkqpcpsq, jqukPrKs,jPrJs, and (iii) system parameters: the feature
map tφpc, jqucPC,jPrJs, time horizon T, and a pre-set constant δ. In the analysis of our algorithm, we
will reveal the connection of this constant δ with Slater’s condition. The algorithm outputs the action
in each round, observes reward Rpcptq, Aptqq, makes updates, and then moves to the next round t` 1.

A Pessimistic-Optimistic Algorithm

Initialization: Qpkqp1q “ 0, B1 “ tθ|||θ||Σ0
ď
?
β1u,Σ0 “ I and

?
β1 “ m`

?
2 log T .

For t “ 1, ¨ ¨ ¨ , T,

• Set: Vt “ δK0.25
b

2t
3 and εt “ K0.75

b

6
t .

• LinUCB (Optimistic): Use LinUCB to estimate rpcptq, jq for all j :

r̂pcptq, jq “ mint1, r̃pcptq, jqu with r̃pcptq, jq “ max
θPBt

xθ, φpcptq, jqy.
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• MaxValue: Compute pseudo-action-value of context cptq for all action j, and take the action
Aptq “ j˚ with the highest pseudo-action-value, breaking a tie arbitrarily

j˚ P arg max
j
r̂pcptq, jq ´

1

Vt

ÿ

k

W pkqpcptq, jqQpkqptq

loooooooooooooooooooooooomoooooooooooooooooooooooon

pseudo action value of pcptq, jq

.

• Dual Update (Pessimistic): Update the estimates of dual variables Qpkqptq as follows:

Qpkqpt` 1q “

«

Qpkqptq `
ÿ

j

W pkqpcptq, jqXjptq ` εt

ff`

,@k. (9)

• Confidence Set Update: Update Σt, θ̂t, βt`1 and Bt`1 by the received reward Rpcptq, j˚q :

Σt “ Σt´1 ` φpcptq, j
˚qφ:pcptq, j˚q, θ̂t “ Σ´1

t

t
ÿ

s“1

φpcpsq, ApsqqRpcpsq, Apsqq,

a

βt`1 “ m`

d

2 log T ` d log

ˆ

d` t

d

˙

, Bt`1 “ tθ | ||θ ´ θ̂t||Σt ď
a

βt`1u.

The complexity of our algorithm is similar to LinUCB. The additional complexity is proportional to
the number of constraints (for updating Qpkq), and it is much lower than OPLB in [32], where the
construction of a safe policy set in each round is a major computational hurdle. Our algorithm is
computationally efficient. Additionally, our algorithm does not estimate wpkqpc, jq, hence, we do not
need to make any specific assumption on wpkqpc, jq.

3 Main Results: Regret and Constraint Violation Bounds

To understand the performance of a given policy π, we will analyze both the regret and the constraint
violation. For that, we first define the baselines and state the assumptions made for the performance
analysis. Then, we present our main results on the regret bound and constraint violations – for the
latter, we present both results on expected violation and an additional high probability bound for
pathwise constraint violation.

3.1 Baselines and Assumptions

Regret baseline: We consider the following optimization problem:

max
x

ÿ

cPC,jPrJs

pcrpc, jqxc,j (10)

s.t.
ÿ

jPrJs

xc,j “ 1, xc,j ě 0,@c P C, (11)

ÿ

cPC,jPrJs

pcw
pkqpc, jqxc,j ď 0, @k P rKs. (12)

Constraint violation baseline: We choose zero (no violation) as our baseline.

It worth noting the baseline we use in the regret analysis is derived from relaxed cumulative constraints
instead of anytime cumulative constraints in the original problem. Since the cumulative constraint is
the least restrictive constraint, a learner obtains the highest cumulative rewards in such a setting. In
other words, our regret analysis is with respect to the best (the most relaxed) baseline.

We make the following assumptions for all the results present in this paper.

Assumption 1 The context cptq are i.i.d. across rounds. The mean reward rpc, jq “ xθ˚, φpc, jqy P
r0, 1s with ||φpc, jq|| ď 1, ||θ˚|| ď m for any c P C, j P rJs. ηptq is zero-mean 1-subGaussian
conditioned on tFt´1, Aptqu.
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Assumption 2 The costs in the constraints satisfy |W pkqpc, jq| ď 1. Furthermore, we assume
tW pkqpc, jquTt“1 are i.i.d. samples for given c and j.

Assumption 3 (Slater’s condition) There exists δ ą 0 such that there exists a feasible solution x
to optimization problem (10)-(12) that guarantees

ř

cPC,jPrJs pcw
pkqpc, jqxc,j ď ´δ,@k P rKs. We

assume δ ď 1 because if the condition holds for δ ą 1, it also holds for δ “ 1.

We call δ Slater’s constant because it comes from Slater’s condition in optimization – this is the
constant used as an input of our algorithm. This constant plays a similar role as the cost of a safe
action in [6, 32]. In fact, a safe action guarantees the existence of a Slater’s constant, and we can
estimate the constant by running the safe action for a period of time. However, the existence of a
Slater’s constant does not require the existence of a safe action. It is also a more relaxed quantity
than the safety gap in [6], which is defined under the optimal policy. Slater’s constant can be from a
feasible solution that is not necessarily optimal.

The next lemma shows that the optimal value of (10)-(12) is an upper bound on that of (1)-(2). The
proof of this lemma can be found in [26].

Lemma 1 Assume tcptqu are i.i.d. across rounds, and tRpc, jqu and tW pkqpc, jqu are i.i.d. samples
given action j and context c. Let π˚ be the optimal policy to problem (1)-(2) and x˚ be the solution
to (10)-(12) with entries tx˚c,jucPC,jPrJs. We have

E

»

–

T
ÿ

t“1

ÿ

jPrJs

Rpcptq, jqXπ˚

j ptq

fi

fl ď T
ÿ

cPC,jPrJs

pcrpc, jqx
˚
c,j .

The baseline problem (10)-(12) is the same as the one presented in Section 2 except that the tightness
constant ε “ 0 here. Any feasible solution for the tightened problem in Section 2 is a feasible
solution to the baseline problem. Under Slater’s condition, when ε ă δ, the tightened problem also
has feasible solutions.

3.2 Regret and Constraint Violation Bounds

Given the baselines above, we now define regret and constraint violation.

Regret: Given policy π, we define the (pseudo)-regret of the policy to be

Rpτq “τ
ÿ

cPC,jPrJs

pcrpc, jqx
˚
c,j ´ E

»

–

τ
ÿ

t“1

ÿ

jPrJs

Rpcptq, jqXπ
j ptq

fi

fl . (13)

Constraint violation: The constraint violation in round τ is defined to be

Vpτq “
ÿ

kPrKs

¨

˝E

»

–

τ
ÿ

t“1

ÿ

jPrJs

W pkqpcptq, jqXπ
j ptq

fi

fl

˛

‚

`

. (14)

Note that the operator p¨q` “ maxp¨, 0q is imposed so that different types of constraint violations
will not be canceled out.

Theorem 1 Under Assumptions 1-3, the pessimistic-optimistic algorithm achieves the following
regret and constraint violations bounds for any τ P rT s :

Rpτq ď60K3

δ3
`

4
?

6K0.75
?
τ

δ
` 2`

d

8dτβτ pT´1q log

ˆ

d` τ

d

˙

,

Vpτq ďK1.5

ˆ

48K2

δ
log

ˆ

16

δ

˙

`
24K1.5

δ2
`

30K1.5

δ
` 8K ´

?
τ

˙`

.

where
a

βτ pT´1q “ m`
a

2 log T ` d log p1` τ{dq.
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We make a few important observations from our theoretical results. First, for the reward regret, we
observe

Rpτq “ Õ
ˆˆ

K0.75

δ
` d

˙

?
τ

˙

.

So the regret is independent of the number of contexts, action space rJs and the dimension of cost
functions W pkqp¨, ¨q. It grows sub-linearly in τ and the number of constraints K, and linearly in the
dimension of reward feature d and the inverse of Slater’s constant δ.

Second, for the constraint violation, we observe

Vpτq “

#

Õ
´

K3.5

δ ` K3

δ2

¯

τ ď τ 1 “ Õ
´

K4

δ2 `
K3

δ4

¯

0 otherwise
. (15)

That is, the constraint violation is independent of horizon T and becomes zero when τ ą τ 1. The
constraint violation, however, has a strong dependence onK and δ when τ ď τ 1. This is not surprising
because K defines the number of constraints, and δ represents the tightness of the constraints (or size
of the feasible set).

Dependence on Slater’s constant. Both the regret and constraint violation increase in δ. To see the
intuition, note that δ determines the size of the feasible set for the optimization problem. A larger δ
implies a larger feasible set, so it is easier to find a feasible solution, vice versa. Therefore, both regret
and constraint violation increase as δ decreases because the problem becomes harder and requires
more accurate learning.

Sharpness of the bound. In terms of horizon T, the bounds in Theorem 1 are sharp because the
regret boundRpT q matches the instance-independent regret Ωp

?
T q in multi-armed bandit problems

without constraints [7, 18] up to logarithmic factors. Furthermore, zero constraint violation is the best
possible. Therefore, the bounds are sharp up to logarithmic factors in terms of horizon T . It is not
clear whether these bounds are sharp in terms of K, d, and δ, which are interesting open questions.

3.3 A High Probability Bound on Constraint Violation

The constraint (2) defined in the original problem and the constraint violation measure defined in
(14) are both in terms of expectation. An interesting, related question is what the probability is for a
sample-path version of the constraints to be satisfied. It turns out that our algorithm provides a high
probability guarantee on that as well. The proof can be found in [26].

Corollary 1 The pessimistic-optimistic algorithm guarantees that for any τ ě κK5

δ2

`

log
`

K
δ

˘˘2
,

where κ is a positive constant independent of τ, K, δ and d,

P

¨

˝

τ
ÿ

t“1

ÿ

jPrJs

W pkqpcptq, jqXjptq ą 0

˛

‚“ O
´

e´
δ
?
τ

50K2

¯

.

4 Proof of Theorem 1

We first explain the intuition behind the main result. Recall that the algorithm selects action j˚ such
that

j˚ P arg max
j

˜

r̂pcpτq, jq ´
1

Vτ

ÿ

k

W pkqpcpτq, jqQpkqpτq

¸

,

and Vτ “ Op
?
τq. Therefore, when Qpkqpτq “ op

?
τq, the reward term dominates the cost term,

and our algorithm uses LinUCB to maximize the reward. When Qpkqpτq “ ωp
?
τq, the cost term

dominates the reward term and our algorithm focuses on reducing Qpkq. Slater’s condition implies
that there exists a policy that can reduce Qpkq by a constant (related to δ) in each round. Therefore,
the algorithm takes Õp

?
τq rounds to reduce Qpkq to op

?
τq, which may add Õp

?
τq to the regret

7



during this period. The argument above also implies that Qpkqpτq “ Op
?
τq. Then, because

E

»

–

τ
ÿ

t“1

ÿ

jPrJs

W pkqpcptq, jqXjptq

fi

fl ď E
”

Qpkqpτ ` 1q
ı

´

τ
ÿ

t“1

εt.

we can further bound the constraint violation at time τ to be a constant or even zero via the bound on
ErQpkqpτ ` 1qs and a proper choice of εt.

4.1 Regret Bound

Now consider the regret defined in (13) and define xεt,˚ to be the optimal solution to the tightened
problem (3)-(5) with ε “ εt. We obtain the following decomposition by adding and subtracting
corresponding terms:

Rpτq paq“ τ
ÿ

c,j

pcrpc, jqx
˚
c,j ´ E

«

τ
ÿ

t“1

ÿ

j

rpcptq, jqXjptq

ff

“

τ
ÿ

t“1

ÿ

c,j

pcrpc, jq
`

x˚c,j ´ x
εt,˚
c,j

˘

looooooooooooooooomooooooooooooooooon

εt-tight

`E

«

τ
ÿ

t“1

ÿ

j

prpcptq, jq ´ r̂pcptq, jqqxεt,˚cptq,j

ff

looooooooooooooooooooooooomooooooooooooooooooooooooon

reward mismatch

` E

«

τ
ÿ

t“1

ÿ

j

´

r̂pcptq, jqxεt,˚cptq,j ´ r̂pcptq, jqXjptq
¯

ff

´

τ
ÿ

t“1

Kp1` ε2t q

Vt
loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon

Lyapunov drift

(16)

`

τ
ÿ

t“1

Kp1` ε2t q

Vt
looooooomooooooon

accumulated tightness

`E

«

τ
ÿ

t“1

ÿ

j

pr̂pcptq, jq ´ rpcptq, jqqXjptq

ff

looooooooooooooooooooooooomooooooooooooooooooooooooon

reward mismatch

, (17)

where paq holds because the random reward is revealed after action Aptq is taken so the noise is
independent of the action. We next present a sequence of lemmas that bounds the terms above. The
proofs of these lemmas are presented in [26].

First, we establish an upper bound on (16) by using the Lyapunov-drift analysis [31, 34]. We consider
a Lyapunov function Lptq “

ř

kQ
pkqptq and show that maximizing the pseudo action value in our

algorithm (MaxValue step) is equivalent to maximizing the following “reward minus Lyapunov drift”

Vt
ÿ

jPrJs
r̂pcptq, jqXjptq ´ pLpt` 1q ´ Lptqq.

Therefore, our algorithm outperforms a static policy xεtcptq,j and results in the following lower bound

VtE

»

–

ÿ

jPrJs

r̂pcptq, jqXjptq

fi

fl´ ErLpt` 1q ´ Lptqs ě Vt
ÿ

jPrJs

r̂pcptq, jqxεtcptq,j ´Kp1` ε
2
t q. (18)

Apply the telescoping sum on (18) provides an upper bound on (16) in Lemma 2.

Lemma 2 Under the Pessimistic-Optimistic Algorithm, we have

E

»

–

τ
ÿ

t“1

ÿ

jPrJs

r̂pcptq, jq
´

xεtcptq,j ´Xjptq
¯
ˇ

ˇ

ˇ
Hptq “ h

fi

fl´

τ
ÿ

t“1

Kp1` ε2t q

Vt
ď

τ
ÿ

t“1

Ktpεt ` ε
2
t qIpεt ą δq

Vt
.

Next, we present Lemma 3 which establishes an upper bound on the εt-tight term by comparing the
optimal solution to the original baseline problem and that to its εt´tightened version. It is based on
the intuition that adding εt-tightness to the feasible region only incurs Opεtq loss in the reward.
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Lemma 3 Under Assumptions 1-3, we can bound the difference between the baseline optimization
problem and its tightened version:

τ
ÿ

t“1

ÿ

c,j

pcrpc, jq
`

x˚c,j ´ x
εt,˚
c,j

˘

ď

τ
ÿ

t“1

εt
δ
.

Finally, we present Lemma 4 that provides an upper bound on the reward mismatch terms. The
proof is based on “self-normalized bound for vector-valued martingales” in [1] and shows that r̂pc, jq
over-estimates rpc, jq and converges to rpc, jq.

Lemma 4 Under the Pessimistic-Optimistic Algorithm, LinUCB guarantees that

E

«

τ
ÿ

t“1

ÿ

j

pr̂pcptq, jq ´ rpcptq, jqqXjptq

ff

ď1`

d

8dτβτ pT´1q log

ˆ

d` τ

d

˙

,

E

«

τ
ÿ

t“1

ÿ

j

prpcptq, jq ´ r̂pcptq, jqqxεt,˚cptq,j

ff

ď1.

Based on Lemmas 2, 3, and 4, we conclude that

Rpτq ď
τ
ÿ

t“1

Ktpεt ` ε
2
t qIpεt ą δq

Vt
`

τ
ÿ

t“1

εt
δ
`

τ
ÿ

t“1

Kp1` ε2t q

Vt
` 2`

d

8dτβτ pT´1q log

ˆ

d` τ

d

˙

.

By choosing εt “ K0.75
b

6
t and Vt “ δK0.25

b

2t
3 , we have

τ
ÿ

t“1

εt ď 2K0.75
?

6τ ,
τ
ÿ

t“1

1{Vt ď

?
6τ

K0.25
, and

τ
ÿ

t“1

Ktpεt ` ε
2
t qIpεt ą δq

Vt
ď

60K3

δ3
,

which yields the regret bound

Rpτq ď60K3

δ3
`

4
?

6K0.75
?
τ

δ
` 2`

d

8dτβτ pT´1q log

ˆ

d` τ

d

˙

.

4.2 Constraint Violation Bound

According to the dynamic defined in (9), we have

Qpkqpτ ` 1q ě
τ
ÿ

t“1

ÿ

j

W pkqpcptq, jqXjptq `
τ
ÿ

t“1

εt,

where we used the fact Qpkqp0q “ 0. This implies the constraint violation can be bounded as follows:

Vpτq ď
ÿ

k

˜

ErQpkqpτ ` 1qs ´
τ
ÿ

t“1

εt

¸`

. (19)

Next, we introduce a lemma on the upper bound ofQkpτq.Define τ 1 the first time such that ετ 1 ď δ{2,
that is, ετ ą δ{2,@1 ď τ ă τ 1.

Lemma 5 For any time τ P rT s such that τ ě τ 1, i.e., ετ ď δ{2, we have

E
”

Qpkqpτq
ı

ď
?
K

˜

48K2

δ
log

ˆ

16K

δ

˙

` 2K `
4pVτ `Kp1` ε

2
τ qq

δ
` τ 1 `

?
K

τ 1
ÿ

t“1

εt

¸

.

Based on our choices of εt “ K0.75
b

6
t and Vt “ δK0.25

b

2t
3 , we obtain

τ 1 “
24K1.5

δ2
and

τ
ÿ

t“1

εt
?
K
´

4Vτ`1

δ
ě
?
τ ´ 6K.

Note Vpτq ď Kτ 1 for any τ ď τ 1. Combine Lemma 5 into (19), we conclude

Vpτq ďK1.5

ˆ

48K2

δ
log

ˆ

16

δ

˙

`
24K1.5

δ2
`

30K1.5

δ
` 8K ´

?
τ

˙`

.
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5 Numerical Evaluations

In this section, we present numerical evaluations of the proposed algorithm, including 1) the con-
strained multi-armed bandit (MAB) example studied in [32]; 2) a constrained linear bandit example
based on a healthcare dataset. We briefly report the setting and results due to the page limit. More
details can be found in [26].

The Constrained MAB Example in [32]: To compare with OPA in [32], we studied the MAB
example in [32] with K “ 4-arms where the reward and cost distributions are Bernoulli with means
r̄ “ p0.1, 0.2, 0.4, 0.7q and c̄ “ p0, 0.4, 0.5, 0.2q and the total cost in each round should not exceed
0.5. The results are presented in Figure 2, where we can see that our algorithm has significant lower
regret than that under OPA while the cost constraint is satisfied under both algorithms.

(a) Regret (b) Reward (c) Cost

Figure 2: Our Algorithm versus OPA [32]

Constrained linear bandits for inpatient flow routing: We also evaluated our algorithm with a
real-world dataset on inpatient flow routing, where incoming patients have different features (context)
such as age, gender, medical history, etc, and incur different amounts of “rewards” when being
assigned to different wards (actions). We considered three types of constraints: capacity, fairness,
and resource. We chose different learning horizons. The regrets and constraint violations at the end
of the horizon are summarized in Table 1, which shows that our algorithm achieves a low regret and
zero violation. This experiment also confirms that our algorithm guarantees the anytime cumulative
constraints.

T 2,500 10,000 22,500 40,000 62,500
Regret 24.38 51.89 74.38 90.39 106.82

Largest constraint violation of the three types 0 0 0 0 0
Table 1: Regret and Constraint Violations under Our Algorithm for Inpatient Flow Routing

6 Conclusions and Extensions

In this paper, we study stochastic linear bandits with general anytime cumulative constraints. We
develop a pessimistic-optimistic algorithm that is computationally efficient and has strong guarantees
on both regret and constraint violations. We conclude this paper by mentioning an extension on the
case where the cost signals W pkqpcptq, Aptqq are revealed after action Aptq is taken. However, we
assume the costs can be linearly parameterized as in [32], i.e. W pcptq, Aptqq “ xµ˚, ψpc, jqy ` ξptq,
where ψpc, jq P Rd is a feature vector, µ˚ P Rd is an unknown underlying vector, and ξptq is a
zero-mean random variable. In this case, we also obtain an estimate W̌ pcptq, jq of W pcptq, jq with
LinUCB and replace W pcptq, jq with W̌ pcptq, jq in the steps of MaxValue and Dual Update in the
Pessimisitic-Optimistic Algorithm. This variation of Pessimisitic-Optimistic Algorithm has a similar
regret and constraint violation guarantees in Theorem 2 (the details are in [26]).

Theorem 2 (Informal) With linear costs as in [32], a variation of our algorithm achievesRpτq “
Õ
´

d
δ

?
τ ` d4

δ3

¯

for any τ P rT s and Vpτq “ 0 for τ ě τ2 “ O
´

d2

δ4 log2 T
¯

.
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