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Abstract

This paper presents the first model-free,
simulator-free reinforcement learning algo-
rithm for Constrained Markov Decision Pro-
cesses (CMDPs) with sublinear regret and
zero constraint violation. The algorithm is
named Triple-Q because it includes three key
components: a Q-function (also called action-
value function) for the cumulative reward, a
Q-function for the cumulative utility for the
constraint, and a virtual-Queue that (over)-
estimates the cumulative constraint violation.
Under Triple-Q, at each step, an action is
chosen based on the pseudo-Q-value that is
a combination of the three “Q” values. The
algorithm updates the reward and utility Q-
values with learning rates that depend on
the visit counts to the corresponding (state,
action) pairs and are periodically reset. In
the episodic CMDP setting, Triple-Q achieves

Õ
(

1
δH

4S
1
2A

1
2K

4
5

)
regret1, where K is the

total number of episodes, H is the number
of steps in each episode, S is the number
of states, A is the number of actions, and
δ is Slater’s constant. Furthermore, Triple-
Q guarantees zero constraint violation, both
on expectation and with a high probability,
when K is sufficiently large. Finally, the com-
putational complexity of Triple-Q is similar
to SARSA for unconstrained MDPs, and is
computationally efficient.

1Notation: f(n) = Õ(g(n)) denotes f(n) =

O(g(n)logkn) with k > 0. The same applies to Ω̃. R+

denotes non-negative real numbers. [H] denotes the set
{1, 2, · · · , H}.
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1 INTRODUCTION

Reinforcement learning (RL), with its success in gaming
and robotics, has been widely viewed as one of the most
important technologies for next-generation, AI-driven
complex systems such as autonomous driving, digital
healthcare, and smart cities. However, despite the sig-
nificant advances (such as deep RL) over the last few
decades, a major obstacle in applying RL in practice is
the lack of “safety” guarantees. Here “safety” refers to
a broad range of operational constraints. The objective
of a traditional RL problem is to maximize the expected
cumulative reward, but in practice, many applications
need to be operated under a variety of constraints, such
as collision avoidance in robotics and autonomous driv-
ing Ono et al. (2015); Garcia and Fernández (2012);
Fisac et al. (2018), legal and business restrictions in
financial engineering Abe et al. (2010), and resource
and budget constraints in healthcare systems Yu et al.
(2021). These applications with operational constraints
can often be modeled as Constrained Markov Decision
Processes (CMDPs), in which the agent’s goal is to
learn a policy that maximizes the expected cumulative
reward subject to the constraints. We consider cumu-
lative constraints in episodic CMDPs in this paper,
which include budget constraints, energy constraints,
or structural fatigue in flexible UAVs.

Earlier studies on CMDPs assume the model is known.
A comprehensive study of these early results can be
found in Altman (1999). RL for unknown CMDPs
has been a topic of great interest recently because
of its importance in Artificial Intelligence (AI) and
Machine Learning (ML). The most noticeable advances
recently are model-based RL for CMDPs, where the
transition kernels are learned and used to solve the
linear programming (LP) problem for the CMDP Singh
et al. (2020); Brantley et al. (2020); Kalagarla et al.
(2021); Efroni et al. (2020); Liu et al. (2021b); Bura et al.
(2021), or the LP problem in the primal component
of a primal-dual algorithm Qiu et al. (2020); Efroni
et al. (2020); Liu et al. (2021b). If the transition kernel
is linear, then it can be learned in a sample efficient
manner even for infinite state and action spaces, and
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then be used in the policy evaluation and improvement
in a primal-dual algorithm Ding et al. (2021). Ding
et al. (2021) also proposes a model-based algorithm
(Algorithm 3) for the tabular setting (without assuming
a linear transition kernel).

The performance of a model-based RL algorithm de-
pends on how accurately a model can be estimated. For
some complex environments, building accurate models
is challenging computationally and data-wise Sutton
and Barto (2018). For such environments, model-free
RL algorithms often are more desirable. However, there
has been little development on model-free RL algo-
rithms for CMDPs with provable optimality or regret
guarantees, with the exceptions Ding et al. (2020); Xu
et al. (2021); Chen et al. (2021), all of which require
simulators. In particular, the sample-based NPG-PD al-
gorithm in Ding et al. (2020) requires a simulator which
can simulate the MDP from any initial state x, and the
algorithms in Xu et al. (2021); Chen et al. (2021) both
require a simulator for policy evaluation. It has been
argued in Azar et al. (2012, 2013); Jin et al. (2018) that
with a perfect simulator, exploration is not needed and
sample efficiency can be easily achieved because the
agent can query any (state, action) pair as it wishes.
Unfortunately, for complex environments, building a
perfect simulator often is as difficult as deriving the
model for the CMDP. For those environments, sam-
ple efficiency and the exploration-exploitation tradeoff
are critical and become one of the most important
considerations of RL algorithm design.

1.1 Main Contributions

In this paper, we consider the online learning problem
of an episodic CMDP with a model-free approach with-
out a simulator. We develop the first model-free RL
algorithm for CMDPs with sublinear regret and zero
constraint violation (for large K). The algorithm is
named Triple-Q because it has three key components:
(i) a Q-function (also called action-value function) for
the expected cumulative reward, denoted by Qh(x, a)
where h is the step index and (x, a) denotes a state-
action pair, (ii) a Q-function for the expected cumu-
lative utility for the constraint, denoted by Ch(x, a),
and (iii) a virtual-Queue, denoted by Z, which overes-
timates the cumulative constraint violation so far. At
step h in the current episode, when observing state x,
the agent selects action a∗ based on a pseudo-Q-value
that is a combination of the three “Q” values:

a∗ ∈ arg max
a

Qh(x, a) +
Z

η
Ch(x, a)︸ ︷︷ ︸

pseudo-Q-value of state (x, a) at step h

,

where η is a constant. Triple-Q uses UCB-exploration
when learning the Q-values, where the UCB bonus and

the learning rate at each update both depend on the
visit counts to the corresponding (state, action) pair as
in Jin et al. (2018)). Different from the optimistic Q-
learning for unconstrained MDPs (e.g. Jin et al. (2018);
Wang et al. (2020); Wei et al. (2020)), the learning
rates in Triple-Q need to be periodically reset at the
beginning of each frame, where a frame consists of Kα

consecutive episodes. The value of the virtual-Queue
(the dual variable) is updated once in every frame. So
Triple-Q can be viewed as a two-time-scale algorithm
where virtual-Queue is updated at a slow time-scale,
and Triple-Q learns the pseudo-Q-value for fixed Z at
a fast time scale within each frame. Furthermore, it is
critical to update the two Q-functions (Qh(x, a) and
Ch(x, a)) following a rule similar to SARSA Rummery
and Niranjan (1994) instead of Q-learning Watkins
(1989), in other words, using the Q-functions of the
action that is taken instead of using the max function.

We prove Triple-Q achieves Õ
(

1
δH

4S
1
2A

1
2K

4
5

)
reward

regret and guarantees zero constraint violation when
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,

where ι is logarithmic in K. Therefore, in terms of
constraint violation, our bound is sharp for large K.
To the best of our knowledge, this is the first model-
free, simulator-free RL algorithm with sublinear re-
gret and zero constraint violation. For model-based
approaches, it has been shown that a model-based
algorithm achieves both Õ(

√
H4SAK) regret and con-

straint violation (see, e.g. Efroni et al. (2020)). Two
concurrent papers Liu et al. (2021b); Bura et al. (2021)
developed model-based approaches that achieve zero
constraint violation assuming a strictly safe policy is
known a-prior. It remains open what is the funda-
mental lower bound on the regret under model-free
algorithms for CMDPs and whether the regret bound
under Triple-Q is order-wise sharp or can be further
improved. Table 1 summarizes the key results on the
exploration-exploitation tradeoff of CMDPs in the liter-
ature. We note that it is technically more challenging
to bound regret and constraint violation of model-free
algorithms for CMDPs than model-based algorithms.
Under a model-based algorithm, the regret and con-
straint violation are determined by the accuracy of the
estimated model (transition kernels, reward functions,
etc). The accuracy of estimated model improves as the
number of data samples increases, so does the perfor-
mance of the learned policy. Without maintaining a
model, the learning target (the pseudo-Q values) varies
over time, depending on the dual variables, which be-
comes a key difficulty in bounding regret and constraint
violation of model-free algorithms for CMDPs. Fur-
thermore, the optimal policy for a CMDP is stochastic
in general, so a greedy policy based on fixed pseudo-
Q-values will not be optimal, which makes it much
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Table 1: The Exploration-Exploitation Tradeoff in Episodic CMDPs.

Algorithm Regret Constraint Violation

OPDOP (Ding et al., 2021) Õ(H3
√
S2AK) Õ(H3

√
S2AK)

OptDual-CMDP (Efroni et al., 2020) Õ(H2
√
S3AK) Õ(H2

√
S3AK)

Model-based OptPrimalDual-CMDP (Efroni et al., 2020) Õ(H2
√
S3AK) Õ(H2

√
S3AK)

CONRL (Brantley et al., 2020) Õ(H3
√
S3A2K) Õ(H3

√
S3A2K)

OptPess-LP (Liu et al., 2021b) Õ(H3
√
S3AK) 0

OptPess–PrimalDual (Liu et al., 2021b) Õ(H3
√
S3AK) O(1)

OPSRL(Bura et al., 2021) Õ(
√
S4H7AK) 0

Model-free Triple-Q Õ
(

1
δH

4S
1
2A

1
2K

4
5

)
0

more challenging than bounding regret of model-free
algorithms for unconstrained MDPs like the optimistic
Q-learning Jin et al. (2018); Wang et al. (2020); Wei
et al. (2020).

As many other model-free RL algorithms, a major ad-
vantage of Triple-Q is its low computational complexity.
The computational complexity of Triple-Q is similar
to SARSA for unconstrained MDPs, so it retains both
its effectiveness and efficiency while solving a much
harder problem. While we consider a tabular setting in
this paper, Triple-Q can easily incorporate function ap-
proximations (linear function approximations or neural
networks) by replacing the Q(x, a) and C(x, a) with
their function approximation versions, making the al-
gorithm a very appealing approach for solving complex
CMDPs in practice. We note that safe exploration
is an active topic in reinforcement learning and sev-
eral heuristic methods, without provably guarantees,
have been developed over the past last years (see e.g.,
Wachi et al. (2018); Dalal et al. (2018); Cheng et al.
(2019); Grbic and Risi (2021); Liu et al. (2021a)). We
will compare the performance of Triple-Q and Deep
Triple-Q (Triple-Q with neural networks) with some of
these algorithms in Section F, and demonstrate signifi-
cant performance improvements (higher rewards, lower
costs, and faster convergence) under Triple-Q.

2 PROBLEM FORMULATION

We consider an episodic CMDP, denoted by
(S,A, H,P, r, g), where S is the state space with |S| =
S, A is the action space with |A| = A, H is the num-
ber of steps in each episode, and P = {Ph}Hh=1 is a
collection of transition kernels (transition probability
matrices). At the beginning of each episode, an ini-
tial state x1 is sampled from distribution µ0. Then
at step h, the agent takes action ah after observing
state xh. Then the agent receives a reward rh(xh, ah)
and incurs a utility gh(xh, ah). The environment then

moves to a new state xh+1 sampled from distribution
Ph(·|xh, ah). Similar to Jin et al. (2018), we assume that
rh(x, a)(gh(x, a)) : S ×A → [0, 1], are deterministic for
convenience.

Given a policy π, which is a collection of H functions
{πh : S → A}Hh=1, the reward value function V πh at
step h is the expected cumulative rewards from step h
to the end of the episode under policy π :

V πh (x) = E

[
H∑
i=h

ri(xi, πi(xi))

∣∣∣∣∣xh = x

]
.

The (reward) Q-function Qπh(x, a) at step h is the ex-
pected cumulative rewards when agent starts from a
state-action pair (x, a) at step h and then follows policy
π :

Qπh(x, a) = rh(x, a)+E

[
H∑

i=h+1

ri(xi, πi(xi))

∣∣∣∣∣ xh = x
ah = a

]
.

Similarly, we use Wπ
h (x) : S → R+ and Cπh (x, a) :

S ×A → R+ to denote the utility value function and
utility Q-function at step h:

Wπ
h (x) = E

[
H∑
i=h

gi(xi, πi(xi))

∣∣∣∣∣xh = x

]
,

Cπh (x, a) = gh(x, a) + E

[
H∑

i=h+1

gi(xi, πi(xi))

∣∣∣∣∣ xh = x
ah = a

]
.

For simplicity, we adopt the following notation (some
used in Jin et al. (2018); Ding et al. (2021)):

PhV πh+1(x, a) =Ex′∼Ph(·|x,a)V
π
h+1(x′),

Qπh(x, πh(x)) =
∑
a

Qπh(x, a)P(πh(x) = a),

PhWπ
h+1(x, a) =Ex′∼Ph(·|x,a)W

π
h+1(x′),

Cπh (x, πh(x)) =
∑
a

Cπh (x, a)P(πh(x) = a).
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From the definitions above, we have

V πh (x) =Qπh(x, πh(x)),

Qπh(x, a) =rh(x, a) + PhV πh+1(x, a),

Wπ
h (x) =Cπh (x, πh(x)),

Cπh (x, a) =gh(x, a) + PhWπ
h+1(x, a).

Given the model defined above, the objective of the
agent is to find a policy that maximizes the expected
cumulative reward subject to a constraint on the ex-
pected utility:

max
π∈Π

E [V π1 (x1)] subject to: E [Wπ
1 (x1)] ≥ ρ, (1)

where we assume ρ ∈ [0, H] to avoid triviality and
the expectation is taken with respect to the initial
distribution x1 ∼ µ0.

Remark 1. The results in the paper can be directly
applied to a constraint in the form of E [Wπ

1 (x1)] ≤ ρ.
Without loss of generality, assume ρ ≤ H. We define
g̃h(x, a) = 1 − gh(x, a) ∈ [0, 1] and ρ̃ = H − ρ ≥ 0,

E [Wπ
1 (x1)] ≤ ρ can be written as E

[
W̃π

1 (x1)
]
≥ ρ̃,

where

E
[
W̃π

1 (x1)
]

= E

[
H∑
i=1

g̃i(xi, πi(xi))

]
= H − E [Wπ

1 (x1)] .

Let π∗ denote the optimal solution to the CMDP prob-
lem defined in (1). We evaluate our model-free RL
algorithm using regret and constraint violation defined
below:

Regert(K) = E

[
K∑
k=1

(V ∗1 (xk,1)− V πk1 (xk,1))

]
, (2)

Violation(K) = E

[
K∑
k=1

(ρ−Wπk
1 (xk,1))

]
, (3)

where V ∗1 (x) = V π
∗

1 (x), πk is the policy used in episode
k and the expectation is taken with respect to the distri-
bution of the initial state xk,1 ∼ µ0 and the randomness
of πk. We further make the following assumption.

Assumption 1. (Slater’s Condition). Given initial
distribution µ0, there exist δ > 0 and policy π such that
E [Wπ

1 (x1)]− ρ ≥ δ.

In this paper, Slater’s condition simply means there
exists a feasible policy that can satisfy the constraint
with a slackness δ. This has been commonly used in
the literature Ding et al. (2021, 2020); Efroni et al.
(2020); Paternain et al. (2019). We call δ Slater’s
constant. While the regret and constraint violation
bounds depend on δ, our algorithm does not need to
know δ under the assumption that K is large (the

exact condition can be found in Theorem 1). This is
a noticeable difference from some of works in CMDPs
in which the agent needs to know the value of this
constant (e.g. Ding et al. (2021)) or alternatively a
feasible policy (e.g. Achiam et al. (2017)) .

3 TRIPLE-Q

In this section, we introduce Triple-Q for CMDPs. The
design of our algorithm is based on the primal-dual
approach in optimization. While RL algorithms based
on the primal-dual approach have been developed for
CMDPs (see. e.g. Ding et al. (2021, 2020); Qiu et al.
(2020); Efroni et al. (2020); Liu et al. (2021b)), a model-
free RL algorithm with sublinear regrets and zero con-
straint violation is new.

The design of Triple-Q is based on the primal-dual
approach in optimization. Given Lagrange multiplier
λ, we consider the Lagrangian of problem (1) from a
given initial state x1 :

max
π

V π1 (x1) + λ (Wπ
1 (x1)− ρ)

= max
π

E

[
H∑
h=1

rh(xh, πh(xh)) + λgh(xh, πh(xh))

]
− λρ,

which is an unconstrained MDP with reward
rh(xh, πh(xh)) + λgh(xh, πh(xh)) at step h. Assuming
we solve the unconstrained MDP and obtain the op-
timal policy, denoted by π∗λ, we can then update the
dual variable (the Lagrange multiplier) using a gradient
method:

λ←
(
λ+ ρ− E

[
W

π∗λ
1 (x1)

])+

. (4)

While primal-dual is a standard approach, analyzing
the finite-time performance such as regret or sample
complexity is particularly challenging. For example,
over a finite learning horizon, we will not be able to ex-
actly solve the unconstrained MDP for given λ. There-
fore, we need to carefully design how often the Lagrange
multiplier should be updated. If we update it too of-
ten, then the algorithm may not have sufficient time
to solve the unconstrained MDP, which leads to diver-
gence; and on the other hand, if we update it too slowly,
then the solution will converge slowly to the optimal
solution and will lead to large regret and constraint
violation. Another challenge is that when λ is given,
the primal-dual algorithm solves a problem with an
objective different from the original objective and does
not consider any constraint violation. Therefore, even
when the asymptotic convergence may be established,
establishing the finite-time regret is still difficult be-
cause we need to evaluate the difference between the
policy used at each step and the optimal policy.



Honghao Wei, Xin Liu, Lei Ying

Next we will show that a low-complexity primal-dual
algorithm can converge and have sublinear regret and
zero constraint violation when carefully designed. In
particular, Triple-Q includes the following key ideas:

• A sub-gradient algorithm for estimating the Lagrange
multiplier, which is updated at the beginning of each
frame (recall that a frame consists of Kα consecu-

tive episodes) as follows: Z ←
(
Z + ρ+ ε− C̄

Kα

)+

,

where (x)+ = max{x, 0} and C̄ is the summation of
all C1(x1, a1)s of the episodes in the previous frame.
We call Z a virtual queue because it is terminology
that has been widely used in stochastic networks
(see e.g. Neely (2010); Srikant and Ying (2014)). If
we view ρ + ε as the number of jobs that arrive at
a queue within each frame and C̄ as the number of
jobs that leave the queue within each frame, then Z
is the number of jobs that are waiting at the queue.
Note that we added extra utility ε to ρ. By choosing

ε = 8
√
SAH6ι3

K0.2 , the virtual queue pessimistically esti-
mates constraint violation so Triple-Q achieves zero
constraint violation when the number of episodes is
large.

• A carefully chosen parameter η = K0.2 so that when
Z
η is used as the estimated Lagrange multiplier, it
balances the trade-off between maximizing the cu-
mulative reward and satisfying the constraint.

• Carefully chosen learning rate αt and Upper Confi-
dence Bound (UCB) bonus bt to guarantee that the
estimated Q-value does not significantly deviate from
the actual Q-value. We remark that the learning rate
and UCB bonus proposed for unconstrained MDPs
Jin et al. (2018) do not work here. Our learning

rate is chosen to be K0.2+1
K0.2+t , where t is the number

of visits to a given (state, action) pair in a particu-
lar step. This decays much slower than the classic
learning rate 1

t or H+1
H+t used in Jin et al. (2018). The

learning rate is further reset from frame to frame, so
Triple-Q can continue to learn the pseudo-Q-values
that vary from frame to frame due to the change of
the virtual-Queue (the Lagrange multiplier).

We now formally introduce Triple-Q. A detailed de-
scription is presented in Algorithm 1. The algorithm
only needs to know the values of H, A, S and K, and
no other problem-specific values are needed. Further-
more, Triple-Q includes updates of two Q-functions
per step: one for Qh and one for Ch; and one simple
virtual queue update per frame. So its computational
complexity is similar to SARSA.

The next theorem summarizes the regret and constraint
violation bounds guaranteed under Triple-Q.

Algorithm 1: Triple-Q

1 Choose χ = η = K0.2, ι = 128 log
(√

2SAHK
)
,

α = 0.6, and ε = 8
√
SAH6ι3

K0.2 ;
2 Initialize Qh(x, a) = Ch(x, a)← H and

Z = C̄ = Nh(x, a) = VH+1(x) = WH+1(x)← 0
for all (x, a, h) ∈ S ×A× [H];

3 for episode k = 1, . . . ,K do
4 Sample the initial state for episode k : x1 ∼ µ0;
5 for step h = 1, . . . ,H + 1 do
6 if h ≤ H ; // take a greedy action based

on the pseudo-Q-function

7 then
8 Take action ah ←

arg maxa

(
Qh(xh, a) + Z

η Ch(xh, a)
)

;

9 Observe rh(xh, ah), gh(xh, ah), and xh+1

;
10 Nh(xh, ah)← Nh(xh, ah) + 1, Vh(xh)←

Qh(xh, ah),Wh(xh)← Ch(xh, ah);
11 if h ≥ 2 ; // update the Q-values for

(xh−1, ah−1) after observing (sh, ah)

12 then
13 Set t = Nh−1(xh−1, ah−1), bt =

1
4

√
H2ι(χ+1)
χ+t , αt = χ+1

χ+t ;

14 Update the reward Q-value:
Qh−1(xh−1, ah−1)←
(1− αt)Qh−1(xh−1, ah−1) +
αt (rh−1(xh−1, ah−1) + Vh(xh) + bt);

15 Update the utility Q-value:
Ch−1(xh−1, ah−1)←
(1− αt)Ch−1(xh−1, ah−1) +
αt (gh−1(xh−1, ah−1) +Wh(xh) + bt);

16 if h = 1 then
17 C̄ ← C̄ + C1(x1, a1) ; // add C1(x1, a1)

to C̄

18 if k mod (Kα) = 0 ; // reset visit counts

and Q-functions

19 then
20 Nh(x, a)← 0, Qh(x, a) = Ch(x, a)← H,

Z ←
(
Z + ρ+ ε− C̄

Kα

)+

, and C̄ ← 0 ;

// update the virtual-queue length

Theorem 1. Assume K ≥
(

16
√
SAH6ι3

δ

)5

, where

ι = 128 log(
√

2SAHK). Triple-Q achieves the follow-
ing regret and constraint violation bounds:

Regret(K) ≤ 13

δ
H4
√
SAι3K0.8 +

4H4ι

K1.2

Violation(K) ≤ 54H4ιK0.6

δ
log

16H2
√
ι

δ

+
4
√
H2ι

δ
K0.8 − 5

√
SAH6ι3K0.8.
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If we further have K ≥ e 1
δ , then Violation(K) ≤ 0 and

Pr

(
K∑
k=1

ρ−Wπk
1 (xk,1) ≤ 0

)
= 1− Õ

(
e−K

0.2+ +
1

K2

)
,

in other words, Triple-Q guarantees zero constraint
violation both on expectation and with a high probability.

We note that the theorem holds when K is sufficiently
large, and how large K needs to be depends on the
slackness δ.

4 PROOF OUTLINE

Due to the page limit, we will only present an outline
of the proof and the key intuitions in this section.
The complete proof can be found in the supplementary
material. Notation: In the proof, we explicitly include
the episode index in our notation. In particular, xk,h
and ak,h are the state and the action taken at step h
of episode k; Qk,h, Ck,h, Zk, and C̄k are the reward Q-
function, the utility Q-function, the virtual-Queue, and
the value of C̄ at the beginning of episode k; Nk,h, Vk,h
and Wk,h are the visit count, reward value-function,
and utility value-function after they are updated at step
h of episode k (i.e. after line 10 of Triple-Q). We also
use shorthand notation {f−g}(x) = f(x)−g(x), when
f(·) and g(·) take the same argument value. Similarly
{(f − g)q}(x) = (f(x)− g(x))q(x). In this shorthand
notation, we put functions inside { }, and the common
argument(s) outside. A summary of notations used
throughout this paper can be found in Table 2 in the
supplementary material.

4.1 Regret

To bound the regret, we consider an offline optimiza-
tion problem as our regret baseline Altman (1999);
Puterman (1994):

max
qh

∑
h,x,a

qh(x, a)rh(x, a) (5)

s.t.:
∑
h,x,a

qh(x, a)gh(x, a) ≥ ρ (6)

∑
a

qh(x, a) =
∑
x′,a′

Ph−1(x|x′, a′)qh−1(x′, a′), (7)

∑
a

q1(x, a) = µ0(x), qh(x, a) ≥ 0 (8)∑
x,a

qh(x, a) = 1, ∀h ∈ [H], ∀x ∈ S. (9)

Recall that Ph−1(x|x′, a′) is the probability of transi-
tioning to state x upon taking action a′ in state x′ at

step h − 1. This optimization problem is linear pro-
gramming (LP), where qh(x, a) is the probability of
(state, action) pair (x, a) occurs in step h,

∑
a qh(x, a)

is the probability the environment is in state x in step

h, and qh(x,a)∑
a′ qh(x,a′) is the probability of taking action

a in state x at step h, which defines the policy. We
can see that (6) is the utility constraint, (7) repre-
sents the global-balance equation for the MDP and the
initial state is sampled from µ0, (8)-(9) indicate the
normalization condition so that qh is a valid probability
distribution.Therefore, the optimal solution to this LP
solves the CMDP (if the model is known), so we use
the optimal solution to this LP as our baseline.

To analyze the performance of Triple-Q, we need to
consider a tightened version of the LP:

max
qh

∑
h,x,a

qh(x, a)rh(x, a)

s.t.:
∑
h,x,a

qh(x, a)gh(x, a) ≥ ρ+ ε, and (7)− (9), (10)

where ε > 0 is called a tightness constant. When ε ≤ δ,
this problem has a feasible solution due to Slater’s
condition. We use superscript ∗ to denote the optimal
value/policy related to the original CMDP (1) or the
solution to the corresponding LP (5) and superscript
ε,∗ to denote the optimal value/policy related to the
ε-tightened version of CMDP (defined in (10)).

Following the definition of the regret in (2), we have

Regret(K) = E

[
K∑
k=1

{V ∗1 − V
πk
1 } (xk,1)

]

=E

[
K∑
k=1

(∑
a

{Q∗1q∗1} (xk,1, a)

)
−Qπk1 (xk,1, ak,1)

]
.

Now by adding and subtracting the corresponding
terms, we obtain

Regret(K) =

E

[
K∑
k=1

(∑
a

{
Q∗1q

∗
1 −Q

ε,∗
1 qε,∗1

}
(xk,1, a)

)]
+ (11)

E

[
K∑
k=1

(∑
a

{
Qε,∗1 qε,∗1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]
+

(12)

E

[
K∑
k=1

{Qk,1 −Qπk1 } (xk,1, ak,1)

]
. (13)

Next, we establish the regret bound by analyzing the
three terms above. We first present a brief outline.
The complete proof is presented in the supplementary
material.
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• Step 1: First, by comparing the LP as-
sociated with the original CMDP (5) and
the tightened LP (10), Lemma 1 will show
E
[∑

a

{
Q∗1q

∗
1 −Q

ε,∗
1 qε,∗1

}
(xk,1, a)

]
≤ Hε

δ , which im-
plies that under our choices of ε, δ, and ι,

(11) ≤ KHε

δ
= Õ

(
1

δ
H4S

1
2A

1
2K

4
5

)
.

• Step 2: Note that Qk,h is an estimate of Qπkh , and
the estimation error (13) is controlled by the learning
rates and the UCB bonuses. In Lemma 2, we will
show that the cumulative estimation error over one
frame(Kα consecutive episodes) is upper bounded
by

H2SA+
H3
√
ιKα

χ
+
√
H4SAιKα(χ+ 1).

So under our choices of α, χ, and ι, the cumulative
estimation error over K episodes satisfies

(13) ≤H2SAK1−α +
H3
√
ιK

χ
+
√
H4SAιK2−α(χ+ 1)

=Õ
(
H3S

1
2A

1
2K

4
5

)
.

The proof of Lemma 2 is based on a recursive formula
that relates the estimation error at step h to the
estimation error at step h+ 1.

• Step 3: Bounding (12) is the most challenging part
of the proof. For unconstrained MDPs, the opti-
mistic Q-learning in Jin et al. (2018) guarantees that
Qk,h(x, a) is an overestimate of Q∗h(x, a) (so also an
overestimate of Qε,∗h (x, a)) for all (x, a, h, k) simulta-
neously with a high probability. However, this result
does not hold under Triple-Q because Triple-Q takes
greedy actions with respect to the pseudo-Q-function
instead of the reward Q-function. To overcome this
challenge, we first add and subtract additional terms
to obtain

E

[
K∑
k=1

(∑
a

{
Qε,∗1 qε,∗1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]

= E

[∑
k

∑
a

({
Qε,∗1 qε,∗1 +

Zk
η
Cε,∗1 qε,∗1

}
(xk,1, a)

−
{
Qk,1q

ε,∗
1 +

Zk
η
Ck,1q

ε,∗
1

}
(xk,1, a)

)]
(14)

+ E

[∑
k

(∑
a

{
Qk,1q

ε,∗
1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]
(15)

+ E

[∑
k

Zk
η

∑
a

{(
Ck,1 − Cε,∗1

)
qε,∗1

}
(xk,1, a)

]
.

(16)

We can see (14) is the difference of two pseudo-
Q-functions. Using a two-dimensional induction
on step and episode, we will prove in Lemma

3 that
{
Qk,h + Zk

η Ck,h

}
(x, a) is an overestimate

of
{
Qε,∗h + Zk

η C
ε,∗
h

}
(x, a) (i.e. (14) ≤ 0) for all

(x, a, h, k) simultaneously with a high probability.
To guarantee this overestimation, Triple-Q resets the
reward and cost Q-functions to H at the beginning
of each frame. Finally, to bound (15)+(16), we use
the Lyapunov-drift method and consider Lyapunov
function LT = 1

2Z
2
T , where T is the frame index and

ZT is the value of the virtual queue at the beginning
of the T th frame. We will show in Lemma 4 that
the Lyapunov-drift satisfies

E[LT+1 − LT ] ≤ a negative drift

+H4ι+ ε2 − η

Kα

(T+1)Kα∑
k=TKα+1

Φk, (17)

where

Φk =E

[(∑
a

{
Qk,1q

ε,∗
1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]

+E

[
Zk
η

∑
a

{(
Ck,1 − Cε,∗1

)
qε,∗1

}
(xk,1, a)

]
,

and we note that (15)+(16) =
∑
k Φk. Inequality (17)

will be established by showing that Triple-Q takes
actions to almost greedily reduce virtual-Queue Z
when Z is large, which results in the negative drift
in (17). From (17), we observe that

E[LT+1 − LT ] ≤ H4ι+ ε2 − η

Kα

(T+1)Kα∑
k=TKα+1

Φk.

So we can bound (15)+(16) by applying the telescop-
ing sum over the K1−α frames

(15) + (16) =
∑
k

Φk ≤
KαE [L1 − LK1−α+1]

η

+
K(H4ι+ ε2)

η
≤ K(H4ι+ ε2)

η
,

where the last inequality holds because L1 = 0 and
LT ≥ 0 for all T. Combining the bounds on (14) and
(15)+(16), we conclude that under our choices of ι,
ε and η,

(12) = Õ(H4S
1
2A

1
2K

4
5 ).

Combining the results in the three steps above, we
obtain the regret bound in Theorem 1,

Regret(K) ≤ KHε

δ
+H2SAK1−α +

H3
√
ιK

χ
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+
√
H4SAιK2−α(χ+ 1) +

K
(
H4ι+ ε2

)
η

+
4H4ι

ηK
.

By choosing α = 0.6, i.e each frame has K0.6 episodes,

χ = K0.2, η = K0.2, and ε = 8
√
SAH6ι3

K0.2 , we conclude

that when K ≥
(

8
√
SAH6ι3

δ

)5

, which guarantees that

ε < δ/2, we have

Regret(K) ≤13

δ
H4
√
SAι3K0.8 +

4H4ι

K1.2

=Õ
(

1

δ
H4S

1
2A

1
2K0.8

)
. (18)

4.2 Constraint Violation

We present a brief outline of the proof. The details are
in the supplementary material. Again, we use ZT to
denote the value of virtual-Queue in frame T. According
to the virtual-Queue update defined in Triple-Q, we
have

ZT+1 =

(
ZT + ρ+ ε− C̄T

Kα

)+

≥ZT + ρ+ ε− C̄T
Kα

, (19)

which implies that

TKα∑
k=(T−1)Kα+1

(−Cπk1 (xk,1, ak,1) + ρ) ≤ Kα (ZT+1 − ZT )

+
TKα∑

k=(T−1)Kα+1

({Ck,1 − Cπk1 } (xk,1, ak,1)− ε) .

Summing the inequality above over all frames, taking
expectation on both sides, and using the fact Z1 = 0,
we obtain the following upper bound on the constraint
violation:

E

[
K∑
k=1

ρ− Cπk1 (xk,1, ak,1)

]
≤ −Kε+KαE [ZK1−α+1]

+ E

[
K∑
k=1

{Ck,1 − Cπk1 } (xk,1, ak,1)

]
, (20)

Lemma 2 in the supplementary material will establish
an upper bound on the estimation error of Ck,1 :

E

[
K∑
k=1

{Ck,1 − Cπk1 } (xk,1, ak,1)

]
≤ H2SAK1−α

+
H3
√
ιK

χ
+
√
H4SAιK2−α(χ+ 1). (21)

Next, we study the moment generating function of ZT ,
i.e. E

[
erZT

]
for some r > 0. Based on a Lyapunov

drift analysis of this moment generating function and
Jensen’s inequality, we will establish the following upper
bound on ZT that holds for any 1 ≤ T ≤ K1−α + 1

E[ZT ] ≤ 54H4ι

δ
log

(
16H2

√
ι

δ

)
+

16H2ι

K2δ
+

4η
√
H2ι

δ
. (22)

Under our choices of ε, α, χ, η and ι, it can be easily
verified that Kε dominates the upper bounds in (21)
and (22), which leads to the conclusion that the con-
straint violation becomes zero when K is sufficiently
large in Theorem 1.

Substituting the results from (21) and (22) into (20),

under assumption K ≥
(

16
√
SAH6ι3

δ

)5

, which guaran-

tees ε ≤ δ
2 . Then by using the facts that ε = 8

√
SAH6ι3

K0.2 ,

we can easily verify that if further we have K ≥ e
1
δ ,

Violation(K) = 0. This shows zero constraint violation
on expectation. We can further prove that under the
same assumptions,

∑K
k=1 ρ − Wπk

1 (xk,1) ≤ 0 with a
high probability. The details can be found at the end
of Section B in the supplementary material.

4.3 Novelty of the Proof Technique

We remark that a key difference between our analy-
sis and the analysis of the optimistic Q-learning for
unconstrained MDPs Jin et al. (2018); Wang et al.
(2020); Wei et al. (2020); Vial et al. (2021); Jin et al.
(2020) is that our proof relies heavily on the Lyapunov-
drift analysis of virtual-Queue Z. The drift analysis
on Lyapunov function Z2 relates the difference be-
tween the optimal reward Q-function and the learned
reward Q-function to the difference between the optimal
pseudo-Q-function and the learned pseudo-Q-function.
For fixed Z, Triple-Q can be regarded as optimistic
SARSA for the pseudo-Q-function, so the relationship
enables us to establish the regret bound by analyzing
the pseudo-Q-function. Furthermore, the Lyapunov-
drift analysis on the moment generating function of
Z, i.e. E[erZ ] yields an upper bound on Z that holds
uniformly over the entire learning horizon. This up-
per bound, together with a fundamental relationship
between Z and constraint violation, leads to the con-
straint violation bound. The Lyapunov drift analysis
has been used to establish sublinear regret and zero
constraint violation in constrained linear bandits Liu
et al. (2021c). Some of the proofs were inspired by
Liu et al. (2021c). Compared with bandit problems,
CMDPs, however, is a much more challenging problem
due to its sequential nature.
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5 CONVERGENCE and ε-OPTIMAL
POLICY

The Triple-Q algorithm is an online learning algorithm
and is not a stationary policy. In theory, we can obtain
a near-optimal, stationary policy following the idea
proposed in Jin et al. (2018). Assume the agent stores
all the policies used during learning. Note that each
policy is defined by the two Q tables and the value of
the virtual queue. At the end of learning horizon K,
the agent constructs a stochastic policy π̄ such that
at the beginning of each episode, the agent uniformly
and randomly selects a policy from the K policies, i.e.
π̄ = πk with probability 1

K . We note that given any
initial state x,

1

K

K∑
k=1

V πk1 (x) = V π̄1 (x), (23)

1

K

K∑
k=1

Wπk
1 (x) = W π̄

1 (x). (24)

Therefore, under policy π̄, we have

E
[
V ∗1 (xk,1)− V π̄1 (xk,1)

]
=E

[
1

K

K∑
k=1

(
V ∗1 (xk,1)− V π̄1 (xk,1

)]

=E

[
1

K

K∑
k=1

(V ∗1 (xk,1)− V πk1 (xk,1)

]

=Õ

(
H4
√
SA

δK0.2

)
, (25)

and

E
[
ρ−W π̄

1 (xk,1)
]

= E

[
1

K

K∑
k=1

(
ρ−W π̄

1 (xk,1
)]

= E

[
1

K

K∑
k=1

(ρ−Wπk
1 (xk,1))

]
≤ 0. (26)

Therefore, given any ε, π̄ is an ε-optimal policy when
K is sufficiently large.

While π̄ is a near-optimal policy, in practice, it may not
be possible to store all policies during learning due to
memory constraint, so extracting the stationary policy
based on output randomization is not ideal. A heuristic
approach to obtain a near optimal, stationary policy
is to fix the two Q functions (reward and utility) after
learning horizon K and continue to adapt the virtual
queue with frame size

√
K. The virtual queue needs to

be continuously updated because an optimal policy for
a CMDP is stochastic in general and a greedy policy
based on a fixed virtual queue will not be optimal.

By adapting the virtual queue with fixed Q functions,
Triple-Q outputs a stochastic policy. When the virtual
queue reaches its steady state, we obtain a stationary
policy. The resulted policy has great performance in
our experiment (see Section F in the supplementary
material).

6 EVALUATION

We evaluated Triple-Q using a grid-world environment
(Chow et al., 2018). We further implemented Triple-Q
with neural network approximations for environments
with continuous state and action spaces, called Deep
Triple-Q. We compared the performance of Deep Triple-
Q with existing safe RL algorithms, including WCSAC
in the Dynamic Gym benchmark (Yang et al., 2021),
CBF in the Pendulum environment Cheng et al. (2019),
and DDPG+Safety Layter in the Ball-1d environment
Dalal et al. (2018). The details can be found in section
F in the supplementary material. The code for the
simulations is available found at: https://github.

com/honghaow/Triple-Q.

7 CONCLUSIONS

This paper considered CMDPs and proposed a model-
free RL algorithm without a simulator, named Triple-Q.
From a theoretical perspective, Triple-Q achieves sub-
linear regret and zero constraint violation. We believe
it is the first model-free RL algorithm for CMDPs
with provable sublinear regret, without a simulator.
From an algorithmic perspective, Triple-Q has simi-
lar computational complexity with SARSA, and can
easily incorporate recent deep Q-learning algorithms
to obtain a deep Triple-Q algorithm, which makes our
method particularly appealing for complex and chal-
lenging CMDPs in practice. While we only considered
a single constraint in the paper, it is straightforward
to extend the algorithm and the analysis to multiple
constraints. Assuming there are J constraints in total,
Triple-Q can maintain a virtual queue and a utility Q-
function for each constraint, and then selects an action
at each step by solving the following problem:

max
a

Qh(xh, a) +
1

η

J∑
j=1

Z(j)C
(j)
h (xh, a)

 .
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Supplementary Material

Part 1: Proof of Theorem 1

In this part of the supplementary material, we present the complete proof of the main theorem. For the convenience
of the reader, we restate Theorem 1 and the proof outlines.

Theorem 1. Assume K ≥
(

16
√
SAH6ι3

δ

)5

, where ι = 128 log(
√

2SAHK). Triple-Q achieves the following regret

and constraint violation bounds:

Regret(K) ≤ 13

δ
H4
√
SAι3K0.8 +

4H4ι

K1.2

Violation(K) ≤ 54H4ιK0.6

δ
log

16H2
√
ι

δ
+

4
√
H2ι

δ
K0.8 − 5

√
SAH6ι3K0.8.

If we further have K ≥ e 1
δ , then Violation(K) ≤ 0 and

Pr

(
K∑
k=1

ρ−Wπk
1 (xk,1) ≤ 0

)
= 1− Õ

(
e−K

0.2+ +
1

K2

)
,

in other words, Triple-Q guarantees zero constraint violation both on expectation and with a high probability.

A REGRET

To bound the regret, we consider the following offline optimization problem as our regret baseline Altman (1999);
Puterman (1994):

max
qh

∑
h,x,a

qh(x, a)rh(x, a) (27)

s.t.:
∑
h,x,a

qh(x, a)gh(x, a) ≥ ρ (28)

∑
a

qh(x, a) =
∑
x′,a′

Ph−1(x|x′, a′)qh−1(x′, a′) (29)

∑
x,a

qh(x, a) = 1, ∀h ∈ [H] (30)

∑
a

q1(x, a) = µ0(x) (31)

qh(x, a) ≥ 0, ∀x ∈ S, ∀a ∈ A, ∀h ∈ [H]. (32)

Recall that Ph−1(x|x′, a′) is the probability of transitioning to state x upon taking action a′ in state x′ at step
h− 1. This optimization problem is linear programming (LP), where qh(x, a) is the probability of (state, action)
pair (x, a) occurs in step h,

∑
a qh(x, a) is the probability the environment is in state x in step h, and

qh(x, a)∑
a′ qh(x, a′)

is the probability of taking action a in state x at step h, which defines the policy. We can see that (28) is the
utility constraint, (29) is the global-balance equation for the MDP, (30) is the normalization condition so that
qh is a valid probability distribution, and (31) states that the initial state is sampled from µ0. Therefore, the
optimal solution to this LP solves the CMDP (if the model is known), so we use the optimal solution to this LP
as our baseline.

To analyze the performance of Triple-Q, we need to consider a tightened version of the LP, which is defined below:

max
qh

∑
h,x,a

qh(x, a)rh(x, a) (33)
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s.t.:
∑
h,x,a

qh(x, a)gh(x, a) ≥ ρ+ ε

(29)− (32),

where ε > 0 is called a tightness constant. When ε ≤ δ, this problem has a feasible solution due to Slater’s
condition. We use superscript ∗ to denote the optimal value/policy related to the original CMDP (1) or the
solution to the corresponding LP (27) and superscript ε,∗ to denote the optimal value/policy related to the
ε-tightened version of CMDP (defined in (33)).

Following the definition of the regret in, we have

Regret(K) = E

[
K∑
k=1

V ∗1 (xk,1)− V πk1 (xk,1)

]
= E

[
K∑
k=1

(∑
a

{Q∗1q∗1} (xk,1, a)

)
−Qπk1 (xk,1, ak,1)

]
.

Now by adding and subtracting the corresponding terms, we obtain

Regret(K)

=E

[
K∑
k=1

(∑
a

{
Q∗1q

∗
1 −Q

ε,∗
1 qε,∗1

}
(xk,1, a)

)]
+ (34)

E

[
K∑
k=1

(∑
a

{
Qε,∗1 qε,∗1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]
+ (35)

E

[
K∑
k=1

{Qk,1 −Qπk1 } (xk,1, ak,1)

]
. (36)

Next, we establish the regret bound by analyzing the three terms above. We first present a brief outline.

A.1 Outline of the Regret Analysis

• Step 1: First, by comparing the LP associated with the original CMDP (27) and the tightened LP (33),
Lemma 1 will show

E

[∑
a

{
Q∗1q

∗
1 −Q

ε,∗
1 qε,∗1

}
(xk,1, a)

]
≤ Hε

δ
,

which implies that under our choices of ε, δ, and ι,

(34) ≤ KHε

δ
= Õ

(
1

δ
H4S

1
2A

1
2K

4
5

)
.

• Step 2: Note that Qk,h is an estimate of Qπkh , and the estimation error (36) is controlled by the learning rates
and the UCB bonuses. In Lemma 2, we will show that the cumulative estimation error over one frame is upper
bounded by

H2SA+
H3
√
ιKα

χ
+
√
H4SAιKα(χ+ 1).

Therefore, under our choices of α, χ, and ι, the cumulative estimation error over K episodes satisfies

(36) ≤ H2SAK1−α +
H3
√
ιK

χ
+
√
H4SAιK2−α(χ+ 1) = Õ

(
H3S

1
2A

1
2K

4
5

)
.

The proof of Lemma 2 is based on a recursive formula that relates the estimation error at step h to the
estimation error at step h+ 1, similar to the one used in Jin et al. (2018), but with different learning rates and
UCB bonuses.

• Step 3: Bounding (35) is the most challenging part of the proof. For unconstrained MDPs, the optimistic
Q-learning in Jin et al. (2018) guarantees that Qk,h(x, a) is an overestimate of Q∗h(x, a) (so also an overestimate
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of Qε,∗h (x, a)) for all (x, a, h, k) simultaneously with a high probability. However, this result does not hold under
Triple-Q because Triple-Q takes greedy actions with respect to the pseudo-Q-function instead of the reward
Q-function. To overcome this challenge, we first add and subtract additional terms to obtain

E

[
K∑
k=1

(∑
a

{
Qε,∗1 qε,∗1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]

=E

[∑
k

∑
a

({
Qε,∗1 qε,∗1 +

Zk
η
Cε,∗1 qε,∗1

}
(xk,1, a)−

{
Qk,1q

ε,∗
1 +

Zk
η
Ck,1q

ε,∗
1

}
(xk,1, a)

)]
(37)

+ E

[∑
k

(∑
a

{
Qk,1q

ε,∗
1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]
+ E

[∑
k

Zk
η

∑
a

{(
Ck,1 − Cε,∗1

)
qε,∗1

}
(xk,1, a)

]
.

(38)

We can see (37) is the difference of two pseudo-Q-functions. Using a two-dimensional induction on step and

episode, we will prove in Lemma 3 that
{
Qk,h + Zk

η Ck,h

}
(x, a) is an overestimate of

{
Qε,∗h + Zk

η C
ε,∗
h

}
(x, a)

(i.e. (37) ≤ 0) for all (x, a, h, k) simultaneously with a high probability. To guarantee this overestimation,
Triple-Q resets all Q-values to H at the beginning of each frame.

Finally, to bound (38), we use the Lyapunov-drift method and consider Lyapunov function LT = 1
2Z

2
T , where

T is the frame index and ZT is the value of the virtual queue at the beginning of the T th frame. We will show
in Lemma 4 that the Lyapunov-drift satisfies

E[LT+1 − LT ]

≤a negative drift +H4ι+ ε2 − η

Kα

(T+1)Kα∑
k=TKα+1

Φk, (39)

where

Φk = E

[(∑
a

{
Qk,1q

ε,∗
1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]
+ E

[
Zk
η

∑
a

{(
Ck,1 − Cε,∗1

)
qε,∗1

}
(xk,1, a)

]
,

and we note that (38) =
∑
k Φk. Inequality (39) will be established by showing that Triple-Q takes actions to

almost greedily reduce virtual-Queue Z when Z is large, which results in the negative drift in (39). From (39),
we observe that

E[LT+1 − LT ] ≤ H4ι+ ε2 − η

Kα

(T+1)Kα∑
k=TKα+1

Φk. (40)

So we can bound (38) by applying the telescoping sum over the K1−α frames on the inequality above:

(38) =
∑
k

Φk ≤
KαE [L1 − LK1−α+1]

η
+
K(H4ι+ ε2)

η
≤ K(H4ι+ ε2)

η
,

where the last inequality holds because L1 = 0 and LT ≥ 0 for all T. Combining the bounds on (37) and (38),
we conclude that under our choices of ι, ε and η,

(35) = Õ(H4S
1
2A

1
2K

4
5 ).

Combining the results in the three steps above, we obtain the regret bound in Theorem 1.

A.2 Detailed Proof

We next present the detailed proof. The first lemma bounds the difference between the original CMDP and
its ε-tightened version. The result is intuitive because the ε-tightened version is a perturbation of the original
problem and ε ≤ δ.
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Lemma 1. Given ε ≤ δ, we have

E

[∑
a

{
Q∗1q

∗
1 −Q

ε,∗
1 qε,∗1

}
(xk,1, a)

]
≤ Hε

δ
.

�

Proof. Given q∗h(x, a) is the optimal solution, we have∑
h,x,a

q∗h(x, a)gh(x, a) ≥ ρ.

Under Assumption 1, we know that there exists a feasible solution {qξ1h (x, a)}Hh=1 such that∑
h,x,a

qξ1h (x, a)gh(x, a) ≥ ρ+ δ.

We construct qξ2h (x, a) = (1− ε
δ )q∗h(x, a) + ε

δ q
ξ1
h (x, a), which satisfies that∑

h,x,a

qξ2h (x, a)gh(x, a) =
∑
h,x,a

(
(1− ε

δ
)q∗h(x, a) +

ε

δ
qξ1h (x, a)

)
gh(x, a) ≥ ρ+ ε,

∑
h,x,a

qξ2h (x, a) =
∑
x′,a′

ph−1(x|x′, a′)qξ2h−1(x′, a′),

∑
h,x,a

qξ2h (x, a) = 1.

Also we have qξ2h (x, a) ≥ 0 for all (h, x, a). Thus {qξ2h (x, a)}Hh=1 is a feasible solution to the ε-tightened optimization
problem (33). Then given {qε,∗h (x, a)}Hh=1 is the optimal solution to the ε-tightened optimization problem, we have∑

h,x,a

(
q∗h(x, a)− qε,∗h (x, a)

)
rh(x, a)

≤
∑
h,x,a

(
q∗h(x, a)− qξ2h (x, a)

)
rh(x, a)

≤
∑
h,x,a

(
q∗h(x, a)−

(
1− ε

δ

)
q∗h(x, a)− ε

δ
qξ1h (x, a)

)
rh(x, a)

≤
∑
h,x,a

(
q∗h(x, a)−

(
1− ε

δ

)
q∗h(x, a)

)
rh(x, a)

≤ ε
δ

∑
h,x,a

q∗h(x, a)rh(x, a)

≤Hε
δ
,

where the last inequality holds because 0 ≤ rh(x, a) ≤ 1 under our assumption. Therefore the result follows
because ∑

a

Q∗1(xk,1, a)q∗1(xk,1, a) =
∑
h,x,a

q∗h(x, a)rh(x, a)

∑
a

Qε,∗1 (xk,1, a)qε,∗1 (xk,1, a) =
∑
h,x,a

qε,∗h (x, a)rh(x, a).

The next lemma bounds the difference between the estimated Q-functions and actual Q-functions in a frame.
The bound on (36) is an immediate result of this lemma.
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Lemma 2. Under Triple-Q, we have for any T ∈ [K1−α],

E

 TKα∑
k=(T−1)Kα+1

{Qk,1 −Qπk1 } (xk,1, ak,1)

 ≤ H2SA+
H3
√
ιKα

χ
+
√
H2SAιKα(χ+ 1),

E

 TKα∑
k=(T−1)Kα+1

{Ck,1 − Cπk1 } (xk,1, ak,1)

 ≤ H2SA+
H3
√
ιKα

χ
+
√
H2SAιKα(χ+ 1).

Proof. We will prove the result on the reward Q-function. The proof for the utility Q-function is almost identical.
We first establish a recursive equation between a Q-function with the value-functions in the earlier episodes in the
same frame. Recall that under Triple-Q, Qk+1,h(x, a), where k is an episode in frame T, is updated as follows:

Qk+1,h(x, a) =

{
(1− αt)Qk,h(x, a) + αt (rh(x, a) + Vk,h+1(xk,h+1) + bt) if (x, a) = (xk,h, ak,h)

Qk,h(x, a) otherwise
,

where t = Nk,h(x, a). Define kt to be the index of the episode in which the agent visits (x, a) in step h for the tth
time in the current frame. The update equation above can be written as:

Qk,h(x, a) =(1− αt)Qkt,h(x, a) + αt (rh(x, a) + Vkt,h+1(xkt,h+1) + bt) .

Repeatedly using the equation above, we obtain

Qk,h(x, a) =(1− αt)(1− αt−1)Qkt−1,h(x, a) + (1− αt)αt−1

(
rh(x, a) + Vkt−1,h+1(xkt−1,h+1) + bt−1

)
+ αt (rh(x, a) + Vkt,h+1(xkt,h+1) + bt)

= · · ·

=α0
tQ(T−1)Kα+1,h(x, a) +

t∑
i=1

αit (rh(x, a) + Vki,h+1(xki,h+1) + bi) (41)

≤α0
tH +

t∑
i=1

αit (rh(x, a) + Vki,h+1(xki,h+1) + bi) , (42)

where α0
t =

∏t
j=1(1− αj) and αit = αi

∏t
j=i+1(1− αj). From the inequality above, we further obtain

TKα∑
k=(T−1)Kα+1

Qk,h(x, a) ≤
TKα∑

k=(T−1)Kα+1

α0
tH +

TKα∑
k=(T−1)Kα+1

Nk,h(x,a)∑
i=1

αiNk,h (rh(x, a) + Vki,h+1(xki,h+1) + bi) .

(43)

The notation becomes rather cumbersome because for each (xk,h, ak,h), we need to consider a corresponding
sequence of episode indices in which the agent sees (xk,h, ak,h). Next we will analyze a given sample path (i.e. a
specific realization of the episodes in a frame), so we simplify our notation in this proof and use the following
notations:

Nk,h =Nk,h(xk,h, ak,h)

k
(k,h)
i =ki(xk,h, ak,h),

where k
(k,h)
i is the index of the episode in which the agent visits state-action pair (xk,h, ak,h) for the ith time.

Since in a given sample path, (k, h) can uniquely determine (xk,h, ak,h), this notation introduces no ambiguity.

Furthermore, we will replace
∑TKα

k=(T−1)Kα+1 with
∑
k because we only consider episodes in frame T in this proof.

We note that

∑
k

Nk,h∑
i=1

αiNk,hVk(k,h)i ,h+1

(
x
k
(k,h)
i ,h+1

)
≤
∑
k

Vk,h+1(xk,h+1)
∞∑

t=Nk,h

α
Nk,h
t ≤

(
1 +

1

χ

)∑
k

Vk,h+1(xk,h+1), (44)
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where the first inequality holds because because Vk,h+1(xk,h+1) appears in the summation on the left-hand side
each time when in episode k′ > k in the same frame, the environment visits (xk,h, ak,h) again, i.e. (xk′,h, ak′,h) =
(xk,h, ak,h), and the second inequality holds due to the property of the learning rate proved in Lemma 7-(d). By

substituting (44) into (43) and noting that
∑Nk,h(x,a)
i=1 αiNk,h = 1 according to Lemma Lemma 7-(b), we obtain∑

k

Qk,h(xk,h, ak,h)

≤
∑
k

α0
tH +

∑
k

(rh(xk,h, ak,h) + Vk,h+1(xk,h+1)) +
1

χ

∑
k

Vk,h+1(xk,h+1) +
∑
k

Nk,h∑
i=1

αiNk,hbi

≤
∑
k

(rh(xk,h, ak,h) + Vk,h+1(xk,h+1)) +HSA+
H2
√
ιKα

χ
+

1

2

√
H2SAιKα(χ+ 1),

where the last inequality holds because (i) we have∑
k

α0
Nk,h

H =
∑
k

HI{Nk,h=0} ≤ HSA,

(ii) Vk,h+1(xk,h+1) ≤ H2
√
ι by using Lemma 8, and (iii) we know that

∑
k

Nk,h∑
i=1

αiNk,hbi =
1

4

TKα∑
k=(T−1)Kα+1

Nk,h∑
i=1

αiNk,h

√
H2ι(χ+ 1)

χ+ i
≤ 1

2

TKα∑
k=(T−1)Kα+1

√
H2ι(χ+ 1)

χ+Nk,h

=
1

2

∑
x,a

NTKα,h(x,a)∑
n=1

√
H2ι(χ+ 1)

χ+ n
≤ 1

2

∑
x,a

NTKα,h(x,a)∑
n=1

√
H2ι(χ+ 1)

n

(1)

≤
√
H2SAιKα(χ+ 1),

where the last inequality above holds because the left hand side of (1) is the summation of Kα terms and√
H2ι(χ+1)
χ+n is a decreasing function of n.

Therefore, it is maximized when NTKα,h = Kα/SA for all x, a, i.e. by picking the largest Kα terms. Thus we
can obtain∑

k

Qk,h(xk,h, ak,h)−
∑
k

Qπkh (xk,h, ak,h)

≤
∑
k

(
Vk,h+1(xk,h+1)− PhV πkh+1(xk,h, ak,h)

)
+HSA+

H2
√
ιKα

χ
+
√
H2SAιKα(χ+ 1)

≤
∑
k

(
Vk,h+1(xk,h+1)− PhV πkh+1(xk,h, ak,h) + V πkh+1(xk,h+1)− V πkh+1(xk,h+1)

)
+HSA+

H2
√
ιKα

χ
+
√
H2SAιKα(χ+ 1)

=
∑
k

(
Vk,h+1(xk,h+1))− V πkh+1(xk,h+1)− PhV πkh+1(xk,h, ak,h) + P̂khV

πk
h+1(xk,h, ak,h)

)
+HSA+

H2
√
ιKα

χ
+
√
H2SAιKα(χ+ 1)

=
∑
k

(
Qk,h+1(xk,h+1, ak,h+1)−Qπkh+1(xk,h+1, ak,h+1)− PhV πkh+1(xk,h, ak,h) + P̂khV

πk
h+1(xk,h, ak,h

)
+HSA+

H2
√
ιKα

χ
+
√
H2SAιKα(χ+ 1).

Taking the expectation on both sides yields

E

[∑
k

Qk,h(xk,h, ak,h)−
∑
k

Qπkh (xk,h, ak,h)

]
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≤E

[∑
k

(
Qk,h+1(xk,h+1, ak,h+1))−Qπkh+1(xk,h+1, ak,h+1)

)]
+HSA+

H2
√
ιKα

χ
+
√
H2SAιKα(χ+ 1).

Then by using the inequality repeatably, we obtain for any h ∈ [H],

E

[∑
k

Qk,h(xk,h, ak,h)−
∑
k

Qπkh (xk,h, ak,h)

]
≤H2SA+

H3
√
ιKα

χ
+
√
H4SAιKα(χ+ 1),

so the lemma holds.

From the lemma above, we can immediately conclude:

E

[
K∑
k=1

{Qk,1 −Qπk1 } (xk,1, ak,1)

]
≤ H2SAK1−α +

H3
√
ιK

χ
+
√
H4SAιK2−α(χ+ 1)

E

[
K∑
k=1

{Ck,1 − Cπk1 } (xk,1, ak,1)

]
≤ H2SAK1−α +

H3
√
ιK

χ
+
√
H4SAιK2−α(χ+ 1).

We now focus on (35), and further expand it as follows:

(35)

=E

[
K∑
k=1

(∑
a

{
Qε,∗1 qε,∗1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]

=E

[∑
k

∑
a

{(
F ε,∗k,1 − Fk,1

)
qε,∗1

}
(xk,1, a)

]
(45)

+ E

[∑
k

(∑
a

{
Qk,1q

ε,∗
1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]
+ E

[∑
k

Zk
η

∑
a

{(
Ck,1 − Cε,∗1

)
qε,∗1

}
(xk,1, a)

]
, (46)

where

Fk,h(x, a) = Qk,h(x, a) +
Zk
η
Ck,h(x, a)

F ε,∗h (x, a) = Qε,∗h (x, a) +
Zk
η
Cε,∗h (x, a).

We first show (45) can be bounded using the following lemma. This result holds because the choices of the UCB
bonuses and the reset at the beginning of each frame guarantee that Fk,h(x, a) is an over-estimate of F ε,∗h (x, a)
for all k, h and (x, a) with a high probability.

Lemma 3. With probability at least 1− 1
K3 , the following inequality holds simultaneously for all (x, a, h, k) ∈

S ×A× [H]× [K] :
{Fk,h − Fπh } (x, a) ≥ 0, (47)

which further implies that

E

[
K∑
k=1

∑
a

{(
F ε,∗k,1 − Fk,1

)
qε,∗1

}
(xk,1, a)

]
≤ 4H4ι

ηK
. (48)

Proof. Consider frame T and episodes in frame T. Define Z = Z(T−1)Kα+1 because the value of the virtual queue
does not change during each frame. We further define/recall the following notations:

Fk,h(x, a) = Qk,h(x, a) +
Z

η
Ck,h(x, a), Uk,h(x) = Vk,h(x) +

Z

η
Wk,h(x),
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Fπh (x, a) = Qπh(x, a) +
Z

η
Cπh (x, a), Uπh (x) = V πh (x) +

Z

η
Wπ
h (x).

According to Lemma 9 in the appendix, we have

{Fk,h − Fπh }(x, a)

=α0
t

{
F(T−1)Kα+1,h − Fπh

}
(x, a)

+
t∑
i=1

αit

({
Uki,h+1 − Uπh+1

}
(xki,h+1) + {(P̂kih − Ph)Uπh+1}(x, a) +

(
1 +

Z

η

)
bi

)

≥(a)α
0
t

{
F(T−1)Kα+1,h − Fπh

}
(x, a) +

t∑
i=1

αit
{
Uki,h+1 − Uπh+1

}
(xki,h+1)

=(b)α
0
t

{
F(T−1)Kα+1,h − Fπh

}
(x, a) +

t∑
i=1

αit

(
max
a

Fki,h+1(xki,h+1, a)− Fπh+1(xki,h+1, π(xki,h+1))
)

≥α0
t

{
F(T−1)Kα+1,h − Fπh

}
(x, a) +

t∑
i=1

αit
{
Fki,h+1 − Fπh+1

}
(xki,h+1, π(xki,h+1)), (49)

where inequality (a) holds because of the concentration result in Lemma 10 in the appendix and

t∑
i=1

αit(1 +
Z

η
)bi =

1

4

t∑
i=1

αit(1 +
Z

η
)

√
H2ι(χ+ 1)

χ+ t
≥ η + Z

4η

√
H2ι(χ+ 1)

χ+ t

by using Lemma 7-(c), and equality (b) holds because Triple-Q selects the action that maximizes Fki,h+1(xki,h+1, a)
so Uki,h+1(xki,h+1) = maxa Fki,h+1(xki,h+1, a).

The inequality above suggests that we can prove {Fk,h − Fπh }(x, a) for any (x, a) if (i){
F(T−1)Kα+1,h − Fπh

}
(x, a) ≥ 0,

i.e. the result holds at the beginning of the frame and (ii){
Fk′,h+1 − Fπh+1

}
(x, a) ≥ 0 for any k′

and (x, a), i.e. the result holds for step h+ 1 in all the episodes in the same frame.

It is straightforward to see that (i) holds because all reward and cost Q-functions are set to H at the beginning of
each frame (line 20 in Algorithm 1).

We now prove condition (ii) using induction, and consider the first frame, i.e. T = 1. The proof is identical for
other frames. Consider h = H i.e. the last step. In this case, inequality (49) becomes

{Fk,H − FπH}(x, a) ≥ α0
t

{
H +

Z1

η
H − FπH

}
(x, a) ≥ 0, (50)

i.e. condition (ii) holds for any k in the first frame and h = H. By applying induction on h, we conclude that

{Fk,h − Fπh }(x, a) ≥ 0. (51)

holds for any k, h, and (x, a), which completes the proof of (47).

Let E denote the event that (47) holds for all k, h and (x, a). Then based on Lemma 8, we conclude that

E

[
K∑
k=1

∑
a

{(
F ε,∗k,1 − Fk,1

)
qε,∗1

}
(xk,1, a)

]

=E

[
K∑
k=1

∑
a

{(
F ε,∗k,1 − Fk,1

)
qε,∗1

}
(xk,1, a)

∣∣∣∣∣ E
]

Pr(E) + E

[
K∑
k=1

∑
a

{(
F ε,∗k,1 − Fk,1

)
qε,∗1

}
(xk,1, a)

∣∣∣∣∣ Ec
]

Pr(Ec)

≤2K

(
1 +

K1−αH2
√
ι

η

)
H2
√
ι

1

K3
≤ 4H4ι

ηK
. (52)
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Next we bound (46) using the Lyapunov drift analysis on virtual queue Z. Since the virtual queue is updated
every frame, we abuse the notation and define ZT to be the virtual queue used in frame T. In particular,
ZT = Z(T−1)Kα+1. We further define

C̄T =
TKα∑

k=(T−1)Kα+1

Ck,1(xk,1, ak,1).

Therefore, under Triple-Q, we have

ZT+1 =

(
ZT + ρ+ ε− C̄T

Kα

)+

(53)

Define the Lyapunov function to be

LT =
1

2
Z2
T .

The next lemma bounds the expected Lyapunov drift conditioned on ZT .

Lemma 4. Assume ε ≤ δ. The expected Lyapunov drift satisfies

E [LT+1 − LT |ZT = z]

≤ 1

Kα

TKα∑
k=(T−1)Kα+1

(
−ηE

[∑
a

{
Qk,1q

ε,∗
1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]

+zE

[∑
a

{(
Cε,∗1 − Ck,1

)
qε,∗1

}
(xk,1, a)

∣∣∣∣∣ZT = z

])
+H4ι+ ε2. (54)

Proof. Based on the definition of LT , the Lyapunov drift is

LT+1 − LT ≤ZT
(
ρ+ ε− C̄T

Kα

)
+

(
C̄T
Kα + ε− ρ

)2

2

≤ZT
(
ρ+ ε− C̄T

Kα

)
+H4ι+ ε2

≤ ZT
Kα

(T+1)Kα∑
k=TKα+1

(ρ+ ε− Ck,1(xk,1, ak,1)) +H4ι+ ε2

where the first inequality is a result of the upper bound on |Ck,1(xk,1, ak,1)| in Lemma 8.

Let {qεh}Hh=1 be a feasible solution to the tightened LP (33). Then the expected Lyapunov drift conditioned on
ZT = z is

E [LT+1 − LT |ZT = z]

≤ 1

Kα

TKα∑
k=(T−1)Kα+1

(E [z (ρ+ ε− Ck,1(xk,1, ak,1))− ηQk,1(xk,1, ak,1)|ZT = z] + ηE [Qk,1(xk,1, ak,1)|ZT = z])

+H4ι+ ε2. (55)

Now we focus on the term inside the summation and obtain that

(E [z (ρ+ ε− Ck,1(xk,1, ak,1))− ηQk,1(xk,1, ak,1)|ZT = z] + ηE [Qk,1(xk,1, ak,1)|ZT = z])

≤(a)z(ρ+ ε)− E

[
η

(∑
a

{
z

η
Ck,1q

ε
1 +Qk,1q

ε
1

}
(xk,1, a)

)∣∣∣∣∣ZT = z

]
+ ηE [Qk,1(xk,1, ak,1)|ZT = z]

=E

[
z

(
ρ+ ε−

∑
a

Ck,1(xk,1, a)qε1(xk,1, a)

)∣∣∣∣∣ZT = z

]
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− E

[
η
∑
a

Qk,1(xk,1, a)qε1(xk,1, a)− ηQk,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]

=E

[
z

(
ρ+ ε−

∑
a

Cε1(xk,1, a)qε1(xk,1, a)

)∣∣∣∣∣ZT = z

]

− E

[
η
∑
a

Qk,1(xk,1, a)qε1(xk,1, a)− ηQk,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]
+ E

[
z
∑
a

{(Cε1 − Ck,1)qε1} (xk,1, a)

∣∣∣∣∣ZT = z

]

≤− ηE

[∑
a

Qk,1(xk,1, a)qε1(xk,1, a)−Qk,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]
+ E

[
z
∑
a

{(Cε1 − Ck,1)qε1} (xk,1, a)

∣∣∣∣∣ZT = z

]
,

where inequality (a) holds because ak,h is chosen to maximize Qk,h(xk,h, a) + ZT
η Ck,h(xk,h, a) under Triple-Q,

and the last equality holds due to that {qεh(x, a)}Hh=1 is a feasible solution to the optimization problem (33), so(
ρ+ ε−

∑
a

Cε1(xk,1, a)qε1(xk,1, a)

)
=

ρ+ ε−
∑
h,x,a

gh(x, a)qεh(x, a)

 ≤ 0.

Therefore, we can conclude the lemma by substituting qεh(x, a) with the optimal solution qε,∗h (x, a).

After taking expectation with respect to Z, dividing η on both sides, and then applying the telescoping sum, we
obtain

E

[
K∑
k=1

(∑
a

{
Qk,1q

ε,∗
1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]
+ E

[
K∑
k=1

Zk
η

∑
a

{(
Ck,1 − Cε,∗1

)
qε,∗1

}
(xk,1, a)

]

≤K
αE [L1 − LK1−α+1]

η
+
K
(
H4ι+ ε2

)
η

≤
K
(
H4ι+ ε2

)
η

, (56)

where the last inequality holds because that L1 = 0 and LT+1 is non-negative.

Now combining Lemma 3 and inequality (56), we conclude that

(35) ≤
K
(
H4ι+ ε2

)
η

+
4H4ι

ηK
.

Further combining inequality above with Lemma 1 and Lemma 2,

Regret(K) ≤ KHε

δ
+H2SAK1−α +

H3
√
ιK

χ
+
√
H4SAιK2−α(χ+ 1) +

K
(
H4ι+ ε2

)
η

+
4H4ι

ηK
. (57)

By choosing α = 0.6, i.e each frame has K0.6 episodes, χ = K0.2, η = K0.2, and ε = 8
√
SAH6ι3

K0.2 , we conclude that

when K ≥
(

8
√
SAH6ι3

δ

)5

, which guarantees that ε < δ/2, we have

Regret(K) ≤ 13

δ
H4
√
SAι3K0.8 +

4H4ι

K1.2
= Õ

(
1

δ
H4S

1
2A

1
2K0.8

)
. (58)

B CONSTRAINT VIOLATION

B.1 Outline of the Constraint Violation Analysis

Again, we use ZT to denote the value of virtual-Queue in frame T. According to the virtual-Queue update defined
in Triple-Q, we have

ZT+1 =

(
ZT + ρ+ ε− C̄T

Kα

)+

≥ ZT + ρ+ ε− C̄T
Kα

,
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which implies that

TKα∑
k=(T−1)Kα+1

(−Cπk1 (xk,1, ak,1) + ρ) ≤ Kα (ZT+1 − ZT ) +
TKα∑

k=(T−1)Kα+1

({Ck,1 − Cπk1 } (xk,1, ak,1)− ε) .

Summing the inequality above over all frames and taking expectation on both sides, we obtain the following
upper bound on the constraint violation:

E

[
K∑
k=1

ρ− Cπk1 (xk,1, ak,1)

]
≤ −Kε+KαE [ZK1−α+1] + E

[
K∑
k=1

{Ck,1 − Cπk1 } (xk,1, ak,1)

]
, (59)

where we used the fact Z1 = 0.

In Lemma 2, we already established an upper bound on the estimation error of Ck,1 :

E

[
K∑
k=1

{Ck,1 − Cπk1 } (xk,1, ak,1)

]
≤ H2SAK1−α +

H3
√
ιK

χ
+
√
H4SAιK2−α(χ+ 1). (60)

Next, we study the moment generating function of ZT , i.e. E
[
erZT

]
for some r > 0. Based on a Lyapunov drift

analysis of this moment generating function and Jensen’s inequality, we will establish the following upper bound
on ZT that holds for any 1 ≤ T ≤ K1−α + 1

E[ZT ] ≤54H4ι

δ
log

(
16H2

√
ι

δ

)
+

16H2ι

K2δ
+

4η
√
H2ι

δ
. (61)

Under our choices of ε, α, χ, η and ι, it can be easily verified that Kε dominates the upper bounds in (60) and
(61), which leads to the conclusion that the constraint violation because zero when K is sufficiently large in
Theorem 1.

B.2 Detailed Proof

To complete the proof, we need to establish the following upper bound on E[ZT+1] based on a bound on the
moment generating function.

Lemma 5. Assuming ε ≤ δ
2 , we have for any 1 ≤ T ≤ K1−α

E[ZT ] ≤54H4ι

δ
log

(
16H2

√
ι

δ

)
+

16H2ι

K2δ
+

4η
√
H2ι

δ
. (62)

The proof will also use the following lemma from Neely (2016).

Lemma 6. Let St be the state of a Markov chain, Lt be a Lyapunov function with L0 = l0, and its drift
∆t = Lt+1 − Lt. Given the constant γ and v with 0 < γ ≤ v, suppose that the expected drift E[∆t|St = s] satisfies
the following conditions:

(1) There exists constant γ > 0 and θt > 0 such that E[∆t|St = s] ≤ −γ when Lt ≥ θt.

(2) |Lt+1 − Lt| ≤ v holds with probability one.

Then we have

E[erLt ] ≤ erl0 +
2er(v+θt)

rγ
,

where r = γ
v2+vγ/3 . �

Proof of Lemma 5. We apply Lemma 6 to a new Lyapunov function:

L̄T = ZT .
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To verify condition (1) in Lemma 6, consider L̄T = ZT ≥ θT =
4( 4H2ι

K2 +η
√
H2ι+H4ι+ε2)

δ and 2ε ≤ δ. The conditional
expected drift of

E [ZT+1 − ZT |ZT = z]

=E
[√

Z2
T+1 −

√
z2
∣∣∣ZT = z

]
≤ 1

2z
E
[
Z2
T+1 − z2

∣∣ZT = z
]

≤(a) −
δ

2
+

4H2ι
K2 + η

√
H2ι+H4ι+ ε2

z

≤− δ

2
+

4H2ι
K2 + η

√
H2ι+H4ι+ ε2

θT

=− δ

4
,

where inequality (a) is obtained according to Lemma 11; and the last inequality holds given z ≥ θT .

To verify condition (2) in Lemma 6, we have

ZT+1 − ZT ≤ |ZT+1 − ZT | ≤
∣∣ρ+ ε− C̄T

∣∣ ≤ (H2 +
√
H4ι) + ε ≤ 2

√
H4ι,

where the last inequality holds because 2ε ≤ δ ≤ 1.

Now choose γ = δ
4 and v = 2

√
H4ι. From Lemma 6, we obtain

E
[
erZT

]
≤ erZ1 +

2er(v+θT )

rγ
, where r =

γ

v2 + vγ/3
. (63)

By Jensen’s inequality, we have

erE[ZT ] ≤ E
[
erZT

]
,

which implies that

E[ZT ] ≤ 1

r
log

(
1 +

2er(v+θT )

rγ

)
=

1

r
log

(
1 +

6v2 + 2vγ

3γ2
er(v+θT )

)
≤1

r
log

(
1 +

8v2

3γ2
er(v+θT )

)
≤1

r
log

(
11v2

3γ2
er(v+θT )

)
≤4v2

3γ
log

(
11v2

3γ2
er(v+θT )

)
≤3v2

γ
log

(
2v

γ

)
+ v + θT

≤3v2

γ
log

(
2v

γ

)
+ v +

4( 4H2ι
K2 + η

√
H2ι+H4ι+ ε2)

δ

=
48H4ι

δ
log

(
16H2

√
ι

δ

)
+ 2
√
H4ι+

4( 4H2ι
K2 + η

√
H2ι+H4ι+ ε2)

δ

≤54H4ι

δ
log

(
16H2

√
ι

δ

)
+

16H2ι

K2δ
+

4η
√
H2ι

δ
= Õ

(
ηH

δ

)
, (64)

which completes the proof of Lemma 5.
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Substituting the results from Lemmas 2 and 5 into (59), under assumption K ≥
(

16
√
SAH6ι3

δ

)5

, which guarantees

ε ≤ δ
2 . Then by using the facts that ε = 8

√
SAH6ι3

K0.2 , we can easily verify that

Violation(K) ≤ 54H4ιK0.6

δ
log

16H2
√
ι

δ
+

4
√
H2ι

δ
K0.8 − 5

√
SAH6ι3K0.8.

If further we have K ≥ e 1
δ , we can obtain

Violation(K) ≤ 54H4ιK0.6

δ
log

16H2
√
ι

δ
−
√
SAH6ι3K0.8 = 0.

Now to prove the high probability bound, recall that from inequality (53), we have

K∑
k=1

ρ− Cπk1 (xk,1, ak,1) ≤ −Kε+KαZK1−α+1 +
K∑
k=1

{Ck,1 − Cπk1 } (xk,1, ak,1). (65)

According to inequality (63), we have

E
[
erZT

]
≤ erZ1 +

2er(v+θT )

rγ
≤ 11v2

3γ2
er(v+θT ),

which implies that

Pr

(
ZT ≥

1

r
log

(
11v2

3γ2

)
+ 2(v + θT )

)
= Pr(erZT ≥ elog

(
11v2

3γ2

)
+2r(v+θT )

)

≤ E[erZT ]
11v2

3γ2 e2r(v+θT )

≤ 1

er(v+θT )
= Õ

(
e−η
)
, (66)

where the first inequality is from the Markov inequality.

In the proof of Lemma 2, we have shown∣∣∣∣∣∣
TKα∑

k=(T−1)Kα+1

Ck,h(xk,h, ak,h)− Cπkh (xk,h, ak,h)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
TKα∑

k=(T−1)Kα+1

Ck,h+1(xk,h+1, ak,h+1)− Cπkh+1(xk,h+1, ak,h+1)

∣∣∣∣∣∣+

∣∣∣∣∣∣
TKα∑

k=(T−1)Kα+1

(P̂kh − Ph)V πkh+1(xk,h, ak,h)

∣∣∣∣∣∣
+HSA+

H2
√
ιKα

χ
+
√
H2SAιKα(χ+ 1) (67)

Following a similar proof as the proof of Lemma 10, we can prove that∣∣∣∣∣∣
TKα∑

k=(T−1)Kα+1

(P̂kh − Ph)V πkh+1(xk,h, ak,h)

∣∣∣∣∣∣ ≤ 1

4

√
H2ιKα

holds with probability at least 1 − 1
K3 . By iteratively using inequality (67) over h and by summing it over all

frames, we conclude that with probability at at least 1 − 1
K2 ,∣∣∣∣∣

K∑
k=1

{Ck,1 − Cπk1 }(xk,1, ak,1)

∣∣∣∣∣ ≤K1−αH2SA+
H3
√
ιK

χ
+
√
H4SAιK2−α(χ+ 1) +

1

4

√
H4ιK2−α
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≤4
√
H4SAιK0.8, (68)

where the last inequality holds because α = 0.6 and χ = K0.2.

Now, by combining inequalities (66) and (68), and using the union bound, we can show that when K ≥

max

{(
8
√
SAH6ι3

δ

)5

, e
1
δ

}
, with probability at least 1 − Õ

(
e−K

0.2

+ 1
K2

)
K∑
k=1

ρ− Cπk1 (xk,1, ak,1)

≤ −Kε+Kα

(
1

r
log

(
11v2

3γ2

)
+ 2(v + θT )

)
+ 4
√
H4SAιK0.8

≤ −
√
SAH6ι3K0.8 ≤ 0, (69)

which completes the proof of our main result.

C THE CHOICES OF THE HYPER-PARAMETERS IN TRIPLE-Q

Recall that the regret upper bound in (57) and the constraint violation bound in (59):

Regret(K) =O
(
Kε+K1−α +

K

χ
+
√
K2−αχ+

K

η

)
Violation(K) ≤−Kε+O

(
Kαη +K1−α +

K

χ
+
√
K2−αχ

)
.

Note that we simplify the bounds above by keeping only K and the hyper-parameters χ, α, ε and η, which should
be chosen as functions of K. Letting χ = Kβ , in order to have O(K/χ) and O(

√
K2−αχ) be of the same order,

we should choose α = 3β. Therefore,

Regret(K) =O
(
Kε+K1−3β +K1−β +K1−β +

K

η

)
= O

(
Kε+K1−β +

K

η

)
Violation(K) ≤−Kε+O

(
K3βη +K1−3β +K1−β +K1−β) = −Kε+O

(
K3βη +K1−β) .

To guarantee zero constraint violation, we need to have Kε, Kβη and K1−β of the same order, so we set

ε = O
(
K−β

)
and η = O

(
K1−4β

)
.

To minimize the regret upper bound, K1−β and K
η = K4β should be of the same order, so β = 0.2, which leads

to the choices of α = 0.6, χ = K0.2, ε = O(K−0.2), and η = O(K0.2).

D NOTATION TABLE

The notations used throughout this paper are summarized in Table 2.

E AUXILIARY LEMMAS

In this section, we state several lemmas that used in our analysis. The first lemma establishes some key properties
of the learning rates used in Triple-Q. The proof closely follows the proof of Lemma 4.1 in Jin et al. (2018).

Lemma 7. Recall that the learning rate used in Triple-Q is αt = χ+1
χ+t , and

α0
t =

t∏
j=1

(1− αj) and αit = αi

t∏
j=i+1

(1− αj). (70)

The following properties hold for αit :
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Table 2: Notation Table

Notation Definition

K The total number of episodes
S The number of states
A The number of actions
H The length of each episode

[H] Set {1, 2, . . . ,H}
Qk,h(x, a) The estimated reward Q-function at step h in episode k
Qπh(x, a) The reward Q-function at step h in episode k under policy π
Vk,h(x) The estimated reward value-function at step h in episode k
V πh (x) The value-function at step h in episode k under policy π

Ck,h(x, a) The estimated utility Q-function at step h in episode k
Cπh (x, a) The utility Q-function at step h in episode k under policy π
Wk,h(x) The estimated utility value-function at step h in episode k
Wπ
h (x) The utility value-function at step h in episode k under policy π

Fk,h(x, a) Fk,h(x, a) = Qk,h(x, a) + Zk
η Ck,h(x, a)

Uk,h(x) Uk,h(x) = Vk,h(x) + Zk
η Wk,h(x)

rh(x, a) The reward of (state, action) pair (x, a) at step h.
gh(x, a) The utility of (state, action) pair (x, a) at step h.
Nk,h(x, a) The number of visits to (x, a) when at step h in episode k (not including k)

Zk The dual estimation (virtual queue) in episode k.
q∗h The optimal solution to the LP of the CMDP (5).
qε,∗h The optimal solution to the tightened LP (10).
δ Slater’s constant.
bt the UCB bonus for given t
I(·) The indicator function

(a) α0
t = 0 for t ≥ 1, α0

t = 1 for t = 0.

(b)
∑t
i=1 α

i
t = 1 for t ≥ 1,

∑t
i=1 α

i
t = 0 for t = 0.

(c) 1√
χ+t
≤
∑t
i=1

αit√
χ+i
≤ 2√

χ+t
.

(d)
∑∞
t=i α

i
t = 1 + 1

χ for every i ≥ 1.

(e)
∑t
i=1(αit)

2 ≤ χ+1
χ+t for every t ≥ 1.

�

Proof. The proof of (a) and (b) are straightforward by using the definition of αit. The proof of (d) is the same as
that in Jin et al. (2018).

(c): We next prove (c) by induction.

For t = 1, we have
∑t
i=1

αit√
χ+i

=
α1

1√
χ+1

= 1√
χ+1

, so (c) holds for t = 1.

Now suppose that (c) holds for t− 1 for t ≥ 2, i.e.

1√
χ+ t− 1

≤
t−1∑
i=1

αit√
χ+ i− 1

≤ 2√
χ+ t− 1

.
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From the relationship αit = (1− αt)αit−1 for i = 1, 2, . . . , t− 1, we have

t∑
i=1

αit
χ+ i

=
αt√
χ+ t

+ (1− αt)
t−1∑
i=1

αit−1√
χ+ i

.

Now we apply the induction assumption. To prove the lower bound in (c), we have

αt√
χ+ t

+ (1− αt)
t−1∑
i=1

αit−1√
χ+ i

≥ αt√
χ+ t

+
1− αt√
χ+ t− 1

≥ αt√
χ+ t

+
1− αt√
χ+ t

≥ 1√
χ+ t

.

To prove the upper bound in (c), we have

αt√
χ+ t

+ (1− αt)
t−1∑
i=1

αit−1√
χ+ i

≤ αt√
χ+ t

+
2(1− αt)√
χ+ t− 1

=
χ+ 1

(χ+ t)
√
χ+ t

+
2(t− 1)

(χ+ t)
√
χ+ t− 1

,

=
1− χ− 2t

(χ+ t)
√
χ+ t

+
2(t− 1)

(χ+ t)
√
χ+ t− 1

+
2√
χ+ t

≤ −χ− 1

(χ+ t)
√
χ+ t− 1

+
2√
χ+ t

≤ 2√
χ+ t

. (71)

(e) According to its definition, we have

αit =
χ+ 1

i+ χ
·
(

i

i+ 1 + χ

i+ 1

i+ 2 + χ
· · · t− 1

t+ χ

)
=
χ+ 1

t+ χ
·
(

i

i+ χ

i+ 1

i+ 1 + χ
· · · t− 1

t− 1 + χ

)
≤ χ+ 1

χ+ t
. (72)

Therefore, we have
t∑
i=1

(αit)
2 ≤ [max

i∈[t]
αit] ·

t∑
i=1

αit ≤
χ+ 1

χ+ t
,

because
∑t
i=1 α

i
t = 1.

The next lemma establishes upper bounds on Qk,h and Ck,h under Triple-Q.

Lemma 8. For any (x, a, h, k) ∈ S ×A× [H ]× [K], we have the following bounds on Qk,h(x, a) and Ck,h(x, a) :

0 ≤ Qk,h(x, a) ≤ H2
√
ι

0 ≤ Ck,h(x, a) ≤ H2
√
ι.

Proof. We first consider the last step of an episode, i.e. h = H. Recall that Vk,H+1(x) = 0 for any k and x by its
definition and Q0,H = H ≤ H

√
ι. Suppose Qk′,H(x, a) ≤ H

√
ι for any k′ ≤ k − 1 and any (x, a). Then,

Qk,H(x, a) = (1− αt)Qkt,H(x, a) + αt (rH(x, a) + bt) ≤ max

{
H
√
ι, 1 +

H
√
ι

4

}
≤ H
√
ι,

where t = Nk,H(x, a) is the number of visits to state-action pair (x, a) when in step H by episode k (but not
include episode k) and kt is the index of the episode of the most recent visit. Therefore, the upper bound holds
for h = H.

Note that Q0,h = H ≤ H(H − h + 1)
√
ι. Now suppose the upper bound holds for h + 1, and also holds for

k′ ≤ k − 1. Consider step h in episode k :

Qk,h(x, a) =(1− αt)Qkt,h(x, a) + αt (rh(x, a) + Vkt,h+1(xkt,h+1) + bt) ,
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where t = Nk,h(x, a) is the number of visits to state-action pair (x, a) when in step h by episode k (but not
include episode k) and kt is the index of the episode of the most recent visit. We also note that Vk,h+1(x) ≤
maxaQk,h+1(x, a) ≤ H(H − h)

√
ι. Therefore, we obtain

Qk,h(x, a) ≤ max

{
H(H − h+ 1)

√
ι, 1 +H(H − h)

√
ι+

H
√
ι

4

}
≤ H(H − h+ 1)

√
ι.

Therefore, we can conclude that Qk,h(x, a) ≤ H2
√
ι for any k, h and (x, a). The proof for Ck,h(x, a) is identical.

Next, we present the following lemma from Jin et al. (2018), which establishes a recursive relation between Qk,h
and Qπh for any π. We include the proof so the paper is self-contained.

Lemma 9. Consider any (x, a, h, k) ∈ S ×A× [H]× [K], and any policy π. Let t=Nk,h(x, a) be the number of
visits to (x, a) when at step h in frame T before episode k, and k1, . . . , kt be the indices of the episodes in which
these visits occurred. We have the following two equations:

(Qk,h −Qπh)(x, a) =α0
t

{
Q(T−1)Kα+1,h −Qπh

}
(x, a)

+

t∑
i=1

αit

({
Vki,h+1 − V πh+1

}
(xki,h+1) +

{
P̂kih V

π
h+1 − PhV πh+1

}
(x, a) + bi

)
, (73)

(Ck,h − Cπh )(x, a) =α0
t

{
C(T−1)Kα+1,h − Cπh

}
(x, a)

+
t∑
i=1

αit

({
Wki,h+1 −Wπ

h+1

}
(xki,h+1) +

{
P̂kih W

π
h+1 − PhWπ

h+1

}
(x, a) + bi

)
, (74)

where P̂khVh+1(x, a) := Vh+1(xk,h+1) is the empirical counterpart of PhV πh+1(x, a) = Ex′∼Ph(·|x,a)V
π
h+1(x′). This

definition can also be applied to Wπ
h as well.

Proof. We will prove (73). The proof for (74) is identical. Recall that under Triple-Q, Qk+1,h(x, a) is updated as
follows:

Qk+1,h(x, a) =

{
(1− αt)Qk,h(x, a) + αt (rh(x, a) + Vk,h+1(xh+1,k) + bt) if (x, a) = (xk,h, ak,h)

Qk,h(x, a) otherwise
.

From the update equation above, we have in episode k,

Qk,h(x, a) =(1− αt)Qkt,h(x, a) + αt (rh(x, a) + Vkt,h+1(xkt,h+1) + bt) .

Repeatedly using the equation above, we obtain

Qk,h(x, a) =(1− αt)(1− αt−1)Qkt−1,h(x, a) + (1− αt)αt−1

(
rh(x, a) + Vkt−1,h+1(xkt−1,h+1) + bt−1

)
+ αt (rh(x, a) + Vkt,h+1(xkt,h+1) + bt)

= · · ·

=α0
tQ(T−1)Kα+1,h(x, a) +

t∑
i=1

αit (rh(x, a) + Vki,h+1(xki,h+1) + bi) , (75)

where the last equality holds due to the definition of αit in (70) and the fact that all Q1,h(x, a)s are initialized to

be H. Now applying the Bellman equation Qπh(x, a) =
{
rh + PhV πh+1

}
(x, a) and the fact that

∑t
i=1 α

i
t = 1, we

can further obtain

Qπh(x, a) = α0
tQ

π
h(x, a) + (1− α0

t )Q
π
h(x, a)

= α0
tQ

π
h(x, a) +

t∑
i=1

αit
(
r(x, a) + PhV πh+1(x, a) + V πh+1(xki,h+1)− V πh+1(xki,h+1)

)
= α0

tQ
π
h(x, a) +

t∑
i=1

αit

(
rh(x, a) + PhV πh+1(x, a) + V πh+1(xki,h+1)− P̂kih V

π
h+1(x, a)

)
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= α0
tQ

π
h(x, a) +

t∑
i=1

αit

(
rh(x, a) + V πh+1(xki,h+1) +

{
PhV πh+1 − P̂kih V

π
h+1

}
(x, a)

)
. (76)

Then subtracting (76) from (75) yields

(Qk,h −Qπh)(x, a) =α0
t

{
Q(T−1)Kα+1,h −Qπh

}
(x, a)

+
t∑
i=1

αit

({
Vki,h+1 − V πh+1

}
(xki,h+1) +

{
P̂kih V

π
h+1 − PhV πh+1

}
(x, a) + bi

)
.

Lemma 10. Consider any frame T. Let t=Nk,h(x, a) be the number of visits to (x, a) at step h before episode k
in the current frame and let k1, . . . , kt < k be the indices of these episodes. Under any policy π, with probability
at least 1− 1

K3 , the following inequalities hold simultaneously for all (x, a, h, k) ∈ S ×A× [H]× [K]∣∣∣∣∣
t∑
i=1

αit

{
(P̂kih − Ph)V πh+1

}
(x, a)

∣∣∣∣∣ ≤1

4

√
H2ι(χ+ 1)

(χ+ t)
,∣∣∣∣∣

t∑
i=1

αit

{
(P̂kih − Ph)Wπ

h+1

}
(x, a)

∣∣∣∣∣ ≤1

4

√
H2ι(χ+ 1)

(χ+ t)
.

Proof. Without loss of generality, we consider T = 1. Fix any (x, a, h) ∈ S ×A× [H]. For any n ∈ [Kα], define

X(n) =
n∑
i=1

αiτ · I{ki≤K}
{

(P̂kih − Ph)V πh+1

}
(x, a).

Let Fi be the σ−algebra generated by all the random variables until step h in episode ki. Then

E[X(n+ 1)|Fn] = X(n) + E
[
αn+1
τ I{kn+1≤K}

{
(P̂kn+1

h − Ph)V πh+1

}
(x, a)|Fn

]
= X(n),

which shows that X(n) is a martingale. We also have for 1 ≤ i ≤ n,

|X(i)−X(i− 1)| ≤ αiτ
∣∣∣{(P̂kn+1

h − Ph)V πh+1

}
(x, a)

∣∣∣ ≤ αiτH
Then let σ =

√
8 log

(√
2SAHK

)∑τ
i=1(αiτH)2. By applying the Azuma-Hoeffding inequality, we have with

probability at least 1− 2 exp
(
− σ2

2
∑τ
i=1(αiτH)2

)
= 1− 1

SAHK4 ,

|X(τ)| ≤

√√√√8 log
(√

2SAHK
) τ∑
i=1

(αiτH)2 ≤

√√√√ ι

16
H2

τ∑
i=1

(αiτ )2 ≤ 1

4

√
H2ι(χ+ 1)

χ+ τ
,

where the last inequality holds due to
∑τ
i=1(αiτ )2 ≤ χ+1

χ+τ from Lemma 7.(e). Because this inequality holds for any

τ ∈ [K], it also holds for τ = t = Nk,h(x, a) ≤ K, Applying the union bound, we obtain that with probability at
least 1− 1

K3 the following inequality holds simultaneously for all (x, a, h, k) ∈ S ×A× [H]× [K],:∣∣∣∣∣
t∑
i=1

αit

{
(P̂kih − Ph)V πh+1

}
(x, a)

∣∣∣∣∣ ≤ 1

4

√
H2ι(χ+ 1)

(χ+ t)
.

Following a similar analysis we also have that with probability at least 1 − 1
K3 the following inequality holds

simultaneously for all (x, a, h, k) ∈ S ×A× [H]× [K],:∣∣∣∣∣
t∑
i=1

αit

{
(P̂kih − Ph)Wπ

h+1

}
(x, a)

∣∣∣∣∣ ≤ 1

4

√
H2ι(χ+ 1)

(χ+ t)
.
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This lemma bound the conditional expected Lyapunov drift.

Lemma 11. Given δ ≥ 2ε, under Triple-Q, the conditional expected drift is

E [LT+1 − LT |ZT = z] ≤ −δ
2
ZT +

4H2ι

K2
+ η
√
H2ι+H4ι+ ε2 (77)

Proof. Recall that LT = 1
2Z

2
T , and the virtual queue is updated by using

ZT+1 =

(
ZT + ρ+ ε− C̄T

Kα

)+

.

From inequality (55), we have

E [LT+1 − LT |ZT = z]

≤ 1

Kα

TKα∑
k=(T−1)Kα+1

E [ZT (ρ+ ε− Ck,1(xk,1, ak,1))− ηQk,1(xk,1, ak,1)

+ηQk,1(xk,1, ak,1)|ZT = z] +H4ι+ ε2

≤(a)
1

Kα

TKα∑
k=(T−1)Kα+1

E

[
ZT

(
ρ+ ε−

∑
a

{Ck,1qπ1 } (xk,1, a)

)

−η
∑
a

{Qk,1qπ1 }(xk,1, a) + ηQk,1(xk,1, ak,1)|ZT = z

]
+ ε2 +H4ι

≤ 1

Kα

TKα∑
k=(T−1)Kα+1

E

[
ZT

(
ρ+ ε−

∑
a

{Cπ1 qπ1 } (xk,1, a)

)

−η
∑
a

{Qk,1qπ1 }(xk,1, a) + ηQk,1(xk,1, ak,1)|ZT = z

]

+
1

Kα

TKα∑
k=(T−1)Kα+1

E

[
ZT
∑
a

{Cπ1 qπ1 } (xk,1, a)− ZT
∑
a

{Ck,1qπ1 } (xk,1, a)|ZT = z

]

+
1

Kα

TKα∑
k=(T−1)Kα+1

E

[
η
∑
a

{Qπ1 qπ1 } (xk,1, a)− η
∑
a

{Qπ1 qπ1 } (xk,1, a)|ZT = z

]
+H4ι+ ε2

≤(b) −
δ

2
z +

1

Kα

TKα∑
k=(T−1)Kα+1

E

[
η
∑
a

{(Fπ1 − Fk,1)qπ1 } (xk,1, a) + ηQk,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]
+H4ι+ ε2

≤(c) −
δ

2
z +

4H2ι

K2
+ η
√
H2ι+H4ι+ ε2.

Inequality (a) holds because of our algorithm. Inequality (b) holds because
∑
a {Qπ1 qπ1 } (xk,1, a) is non-negative,

and under Slater’s condition, we can find policy π such that

ε+ ρ− E

[∑
a

Cπ1 (xk,1, a)qπ1 (xk,1, a)

]
= ρ+ ε− E

∑
h,x,a

qπh(x, a)gh(x, a)

 ≤ −δ + ε ≤ −δ
2
.

Finally, inequality (c) is obtained due to the fact that Qk,1(xk,1, ak,1) is bounded by using Lemma 8, and the fact
that

E

 TKα∑
k=(T−1)Kα+1

∑
a

{(Fπ1 − Fk,1)qπ1 } (xk,1, a)

∣∣∣∣∣∣ZT = z
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can be bounded as (52) (note that the overestimation result and the concentration result in frame T hold regardless
of the value of ZT ).

Part 2: Simulations

F EVALUATION

We remark that when implementing Triple-Q, we do not need to reset all the Qh(x, a) and Ch(s, a) to H. Instead,
we added extra “bonuses” to the learned values at the beginning of each frame to ensure overestimation. This
allows Triple-Q continues to learn across frames. In particular, at the beginning of each frame, we update all
Q-values as follows to replace lines 18-20.

Algorithm 2: Replacing Lines 18-20 of Triple-Q

1 if k mod (Kα) = 0 ; // reset visit counts and add bonuses to Q-functions

2 then

3 Nh(x, a)← 0 and Qh(x, a)← Qh(x, a) + 2H3√ι
η , ∀(x, a, h).

4 if Qh(x, a) ≥ H or Ch(x, a) ≥ H then
5 Qh(x, a)← H and Ch(x, a)← H;

6 Z ←
(
Z + ρ+ ε− C̄

Kα

)+

, and C̄ ← 0 ; // update the virtual-queue length

Consider frame T + 1. Note that if Q+
TKα+1,h(x, a) = C+

TKα+1,h(x, a) = H, then condition (i) in the proof of

Lemma 3 holds. Otherwise, with the extra bonus, we have Q+
TKα+1,h(x, a) = Q−TKα+1,h(x, a) + 2H3√ι

η < H and

C+
TKα+1,h(x, a) = C−TKα+1,h(x, a) < H. Here, we use superscript − and + to indicate the Q-values before and

after adding the extra bonus and thresholding. Suppose that the overestimation holds at the end of frame T, i.e.
{F−TKα+1,h − FπTKα+1,h}(x, a) ≥ 0 for any π, h and (x, a). Then, at the beginning of frame T + 1, we have

{FTKα+1,h − Fπh } (x, a) =Q−TKα+1,h(x, a) +
ZTKα

η
C−TKα+1,h(x, a)−Qπh(x, a)− ZTKα

η
Cπh (x, a)

+
2H3
√
ι

η
+
ZTKα+1 − ZTKα

η
C−TKα+1,h(x, a)− ZTKα+1 − ZTKα

η
Cπh (x, a)

≥2H3
√
ι

η
− 2
|ZTKα+1 − ZTKα |

η
H

≥0, (78)

where the last inequality holds because according to Lemma 8,

|ZTKα+1 − ZTKα | ≤ max

{
ρ+ ε,

∑TKα

k=(T−1)Kα+1 Ck,1(xk,1, ak,1)

Kα

}
≤ H2

√
ι.

In a summary, condition (i) in the proof of Lemma 3 continues to hold under this modified algorithm, assuming
the overestimation result holds in the previous frame, so does the overestimation result in frame T + 1. The
advantage of this method is that the algorithm does need to learn the Q-functions from scratch in each frame.

F.1 A Tabular Case

We first evaluated our algorithm using a grid-world environment studied in Chow et al. (2018). The environment
is shown in Figure 1-(a). The objective of the agent is to travel to the destination as quickly as possible while
avoiding obstacles for safety. Hitting an obstacle incurs a cost of 1. The reward for the destination is 100, and
for other locations are the Euclidean distance between them and the destination subtracted from the longest
distance. The cost constraint is set to be 6 (we transferred utility to cost as we discussed in the paper), which
means the agent is only allowed to hit the obstacles as most six times. To account for the statistical significance,
all results were averaged over 25 trials, same for later simulations.
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The result is shown in Figure 2, from which we can observe that Triple-Q can quickly learn a well performed
policy (with about 20, 000 episodes) while satisfying the safety constraint. Triple-Q-stop is a stationary policy
obtained by stopping learning (i.e. fixing the Q tables) at 40, 000 training steps (note the virtual-Queue continues
to be updated so the policy is a stochastic policy). We can see that Triple-Q-stop has similar performance as
Triple-Q, and show that Triple-Q yields a near-optimal, stationary policy after the learning stops.

Figure 1: Grid World and DynamicEnv1 with Safety Constraints

Figure 2: The average reward and cost under Triple-Q during training. The shaded region represents the 95%
confidence interval.

Ablation Study

We investigate Triple-Q’s sensitivity to hyperparameter η via an ablation study. As shown in Figure 3, a smaller
η, which represents a higher weight on constraint, results in a lower cost while maintaining a similar performance
in terms of reward.

F.2 Triple-Q with Neural Networks

We also evaluated our algorithm on the Dynamic Gym benchmark (DynamicEnv) Yang et al. (2021) as shown in
Figure. 1-(b). In this environment, a point agent (one actuator for turning and another for moving) navigates on
a 2D map to reach the goal position while trying to avoid reaching hazardous areas. The initial state of the agent,
the goal position and hazards are randomly generated in each episode. At each step, the agents get a cost of 1 if
it stays in the hazardous area; and otherwise, there is no cost. The constraint is that the expected cost should not
exceed 15. In this environment, both the states and action spaces are continuous, we implemented the key ideas
of Triple-Q with neural network approximations and the actor-critic method. In particular, two Q functions are
trained simultaneously, the virtual queue is updated slowly every few episodes, and the policy network is trained
by optimizing the combined three “Q”s (Triple-Q). The implementation details can be found in Table 3. These
hyperparameters are used in two later environments, pendulum and Ball-1D, as well. We call this algorithm Deep
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Figure 3: Performance of Triple-Q under different choices of η in the Grid World

Triple-Q. The simulation results in Figure 4 show that Deep Triple-Q learns a safe-policy with a high reward
much faster than WCSAC Yang et al. (2021). In particular, it took around 0.45 million training steps under
Deep Triple-Q, but it took 4.5 million training steps under WCSAC.

Figure 4: The rewards and costs of Deep Triple-Q versus WCSAC during Training

Table 3: Hyperparameters

Parameter Value
optimizer Adam
learning rate 3× 1−3

discount 0.99
replay buffer size 106

number of hidden layers (all networks) 2
batch Size 256
nonlinearity ReLU
number of hidden units per layer (Critic and Actor) 256
virtual queue update frequency 3 episode

We further compared Deep Triple-Q with several existing safe exploration RL algorithms. We first compared
Triple-Q with CBF Cheng et al. (2019) on the Pendulum environment.(https://gym.openai.com/envs/Pendulum-
v0/) In this environment, the constraint is that the maximum angle (rad) of the pendulum cannot exceed 1
radian, otherwise the episode ends. Since Triple-Q was designed to address cumulative constraints, we set the
threshold of angel to be 0.5 so that the angel will not exceed 1 radian with a high probability. The result was
averaged over 25 trials. As shown in Figure 5, we observed that Triple-Q achieved a higher reward. Although

1Image Sorce: The environment is generated using safety-gym: https://github.com/openai/safety-gym.
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Triple-Q violated the constrained at the early stage and cannot guarantee an strictly safe policy during learning,
it can learn a relatively safe policy very quickly without violating the hard constraint. We remark that CBF
requires the physical model of the pendulum as a prior knowledge while Deep Triple-Q does not.

Figure 5: Comparison with CBF

Finally, we compared Triple-Q with DDPG+Safety Layer in Dalal et al. (2018) on Ball-1D environment (Figure
6a), where the goal of the RL agent is to keep the green ball as close to the target (pink ball) as possible by
controlling its velocity. The safe region is [0, 1]. If the green ball steps out of it, the episode terminates. The
threshold in this environment was set to be 0.3. We can observed that Deep Triple-Q converged much faster than
DDPG+Safety Layer as shown in Figure 6b.

(a) Ball1d Environment

(b) Performance during training

Figure 6: Comparison with DDPG+Safety Layer


