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1. Introduction

During language learning, children come to know what thematic relations
hold between verbs and their syntactic arguments. In a prepositional dative (PD)
construction like (1a), the first object is assigned the THEME role, while the second
(prepositional) object is assigned RECIPIENT. In contrast, in double object (DO)
constructions like (1b), it is the first object that is assigned RECIPIENT, while the
second is assigned THEME.

(1) a. I gave [the ball] to [the dog].

b. I gave [the dog] [the ball].

When such sentences are passivized, the position-role mapping changes yet
again: for PDs, the subject of the sentence now takes the role of THEME, while for
DOs, the subject takes the role of RECIPIENT.

(2) a. [The ball] was given to [the dog].

b. [The dog] was given [the ball].

Such patterns raise a learning problem: how do learners come to know which
thematic role to assign to a given syntactic argument? We might, for instance,
expect that a learner who has acquired the position-role mapping for a DO sentence
would generalize her knowledge of the considerably more frequent passives of
transitive verbs to passives of DO sentences. In passives of sentences with transitive
verbs, it is the THEME role, as opposed to the RECIPIENT, that is assigned to the
passive subject.

(3) a. I threw [the ball].

b. [The ball] was thrown.
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Since THEMEs are the subjects of passives in these simpler structures, a learner
might be tempted to (erroneously) accept examples like the following:

(4) *[The ball] was given [the dog].

Strikingly, this pattern of raising the THEME but not the RECIPIENT in DO sentences
is cross-linguistically unattested.1 Such a gap calls out for explanation in terms of
the process of language learning.

One way a learner could avoid such a faulty generalization would be if the
primary linguistic data included evidence that directed a learner away from it.
Indeed, given sufficient evidence about the thematic properties of the arguments
of verbs in both active and passive DO structures, a learner might eschew any
generalization between active and passive entirely, favoring instead a structurally
specific mapping for each sentence type. Such an approach would however fail to
capture the systematicity of the relationship across argument structure alternations
like dative shift in (1) and different syntactic variants like the voice alternations
between active and passive. Further, if generalization is eschewed entirely, we
might expect the properties of individual verbs to be learned separately (e.g.,
Tomasello, 1992). While verbs exhibit well-known variability in their participation
in argument structure alternations (e.g., give participates in dative shift but donate
does not), the relationship between the active and passive forms is entirely regular:
if a verb can appear in an active DO sentence, it can also appear in a passivized
DO sentence, with thematic properties that are entirely predictable. Verb- and
structure-specific learning would not provide an account of such systematicity
and would not support generalization to forms that are sparsely represented in the
learning data.

An alternative approach, widely adopted in work in generative grammar, posits
the presence of an innate language-specific learning bias that constrains position-
role mappings. For example, in work on the acquisition of argument structure,
whether rooted in semantic bootstrapping (Pinker, 1989) or syntactic bootstrapping
(Gleitman, 1990), the child is assumed to know the relationship between the
thematic roles of events of transfer on the one hand, and syntactic positions in a
double object or prepositional dative sentence on the other. Similarly, syntactic
theories derive the fact that passivization of a DO structure necessarily allows the
promotion of the the argument occupying the highest (indirect) object to subject
position from properties of the syntactic representation of such constructions (cf.
Alsina, 1996; McGinnis, 2002; Holmberg et al., 2019 inter alia).

1Bresnan and Moshi (1990) (and much subsequent work) explore languages like Kichega
which allow “symmetric” passives, where either argument in a DO construction can be raised
to subject position. Certain English dialects also permit symmetric passives (Woolford,
1993). Such languages and dialects still raise the learning problem we discuss here, though
in a modified form. We leave the exploration of this variation for the future.

658



A final possible account of this learning problem, which constitutes a middle
ground between these two approaches, would attempt to derive constraints on the
acquisition of position-role mappings from the combination of domain-general
learning biases and the evidence present in the learning data. Such an approach
to language learning is now widespread in work in NLP, where contemporary
language models have little in the way of hard-wired linguistic structure, but the
linguistic generalizations they learn are indeed guided by the properties of their
architectures and the data to which they are exposed (McCoy et al., 2020; Min
et al., 2020; Mulligan et al., 2021). Most often these models are evaluated on the
basis of their performance on some extrinsic task like question answering or natural
language inference (NLI), and such results do not shed light directly on the nature
of linguistic generalizations that they encode. Here, we consider the linguistic gen-
eralization question more directly by studying the degree to which a widely-used
language model, the Bidirectional Encoder Representations from Transformers
model (BERT, Devlin et al. (2019)), exhibits knowledge of position-role mappings
across variations in argument structure, syntactic structure, and lexical identity.
BERT is a general purpose neural network architecture that composes multiple
Transformer layers (Vaswani et al., 2017) each with a bidirectional attention mech-
anism. It is trained to perform a masked language modeling task (i.e., to predict
the identity of masked tokens within a sentence) using a data set consisting of the
800M words of the BooksCorpus and the 2,500M words of English Wikipedia.2

Quite clearly, BERT lacks explicit linguistic bias on what can constitute possible
position-role mappings and how these mappings can vary across structures. As
a result, any knowledge in this domain that it demonstrates must derive from the
combination of its training data and domain-general biases that stem from the
transformer architecture.

2. Experiment 1: Probing Position-Role Mappings Through Distributional
Similarity

Our first experiment tests BERT’s knowledge of the position-role mappings
for the THEME and RECIPIENT arguments of ditransitive predicates. To do this,
we make use of constraints imposed by the selectional restrictions of verbs: the
limitations that a verb imposes on the content of its arguments. Though such
restrictions are verb specific (e.g., a verb like drink will take different direct objects
than a verb like read), there are nonetheless general distributional patterns that can
be associated with more coarse-grained thematic roles. If a verb assigns the role
like AGENT or RECIPIENT to an argument, we would expect the distribution of that
argument’s head nouns to favor animate nouns. In contrast, for arguments assigned

2BERT’s training regimen also includes a next sentence prediction task, in which it must
be determined whether or not two sentences were originally adjacent to one another in the
source text. Subsequent work with a BERT-variant called RoBERTa (Liu et al., 2019) has
found this component of training to be unnecessary to its success.
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the THEME role, we might expect a higher proportion of inanimates (or at least the
absence of a strong animacy preference).

Because BERT is trained to perform masked language modeling, it can be
used to extract distributional predictions directly. For this experiment, then, we
presented BERT with sentences containing ditransitive predicates with the head
nouns of the THEME and RECIPIENT arguments masked out:

(5) Alice sent the [MASK] a [MASK] .

If the predicted distributions of nouns in multiple argument positions of a single
sentence, say an active double object example, are distinct, this provides a first bit
of evidence of BERT’s knowledge of the distinctive properties of these arguments.
We use this approach to systematically assess BERTs knowledge of selectional
restrictions by performing two calculations. First, for each positions predicted
distribution, we compare the total probability assigned to a small set of (frequent)
animate nouns A with the probability assigned to a small set of (frequent) inanimate
nouns I.3 We call the result the animacy confidence (aconf) of position wi:

aconf(wi) = log
∑v∈A p(wi = v)
∑v′∈I p(wi = v′)

By computing mean aconf across comparable positions in a set of sentences of the
same type, we can get a measure of the model’s overall preference for animate
nouns in a given position. Reliable differences between means in different positions
will point to a representation of the different roles. A more interesting question
that aconf scores allow us to ask is the degree to which they are consistent across
different syntactic realizations of the same argument: do THEMEs and RECIPIENTs
in double object structures have the same profile as THEMEs and RECIPIENTs in
prepositional datives? And does the passivized version of each structure show the
right pattern of aconf scores for the corresponding argument positions?

One limitation of aconf scores is their dependence on the specific sets of nouns
A and I we use to evaluate the preference. To assess the distribution in a more
neutral fashion, we also compute the entropy of position wi.

H(wi) =−∑
v

p(wi = v) log p(wi = v)

3We use the following sets of nouns. Animate: person, man, woman, student, teacher,
king, queen, prince, princess, writer, author, builder, driver, human, dog, bird, dancer, player,
angel, actor, actress, singer, director, bee, friend, wolf, lion, scholar, pirate, spirit, fox.
Inanimate: apple, book, chair, table, phone, shoe, water, earth, land, light, sun, moon, plate,
eye, ear, branch, tree, time, energy, bottle, can, mask, leaf, tile, couch, button, box, cap, wire,
paper.
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Higher entropy is associated with a more diffuse set of predictions, i.e., cases where
the language model is less certain about the identity of the words that can fill a
position. Different thematic roles impose varying degrees of selectivity on their
associated arguments, and consequently, entropy measures can provide us with a
diagnostic of such selectivity that we can compare across arguments of the same
role in different syntactic constructions and voices.4 Using the tregex tool (Levy
and Andrew, 2006), we extracted sentences from the Wall Street Journal portion of
the Penn Treebank (PTB, Marcus et al. (1993)) containing ditransitive predicates,
using both double object and prepositional dative structures, in both active and
passive voice. For each structure-voice pairing, we selected 50 sentences, and
masked the head noun of the THEME and RECIPIENT arguments. We evaluated
these data on the BERT model. In order to examine what effect, if any, variations
in model architecture and training regimen had on performance, we also examined
the behavior of two recently developed variants, RoBERTa (Liu et al., 2019) and
DistilBERT (Sanh et al., 2019). RoBERTa utilizes the same architecture as BERT
while modifying the pretraining regimen. DistilBERT, by contrast, uses a different,
smaller architecture with roughly 40% fewer parameters, while retaining high
levels of performance. For space considerations, we only report results from the
BERT model, but results were consistent between all three model architectures.

Both animacy confidence (Figure 1) and entropy (Figure 2) show consistent
differences between THEME-expecting and RECIPIENT-expecting positions across
double object and prepositional dative constructions, as well as across active and
passive variants. In each case, the mean animacy confidence is negative for THEMEs
(meaning a preference for inanimate nouns) and positive for RECIPIENTs (meaning
a preference for animates), and the mean entropy value is higher for RECIPIENTs
than it is for THEMEs. The difference in means between THEME- and RECIPIENT-
positions is statistically significant under a two-sided Welch’s unequal variances
t-test with p < .001 for animacy confidence and p < 0.05 for entropy.

4One potential pitfall with this approach stems from the variability in the selectivity
associated with individual roles (Resnik, 1996). For example, while some transitive verbs
like ‘drink’ restrict their THEME arguments to words denoting liquids, others like ‘see’ are
much less limiting on their themes. Nonetheless, our goal here is exploring the possibility
that entropy measures support systematic differences at the thematic role level.
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Figure 1. Animacy Confidence for DO and PD Sentences (BERT)
Animacy confidence of THEME- and RECIPIENT-expecting positions in active
and passive double object sentences (left) and prepositional dative sentences
(right) from the Penn Treebank. Vertical lines indicate mean values.
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Figure 2. Entropy for DO and PD Sentences (BERT)
Entropy of THEME- and RECIPIENT-expecting positions in active and passive
double object sentences (left) and prepositional dative sentences (right) from
the Penn Treebank. Vertical lines indicate mean values.

This consistently distinct treatment of THEME and RECIPIENT arguments
across different argument structures and across active and passive constructions
is suggestive of the fact that pretrained language models have knowledge of how
thematic relations are realized across different syntactic structures in ditransitive
constructions. This is notable not only for the sensitivity it requires to grammatical
context but also because the alternation between active and passive voice in double
object constructions exhibits the unusual property discussed above, where the
RECIPIENT which is promoted to subject position under passivization, rather than
the THEME. It appears then that language models trained on massive corpora are
not only capable of learning role restrictions across syntactic contexts but that
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they are able to put aside widely supported generalizations in specific cases, in the
absence of an explicit bias to do so.

3. Experiment 2: Syntactic and Structural Generalization

The results of Experiment 1 show that BERT (and its variants) exhibits latent
knowledge of the connection between argument structure and thematic role across
voice (that is, in both active and passive constructions) in ditransitive sentences.
Yet there is no guarantee that the model has any shared knowledge connecting
the alternative structures (DO or PD) or the active and passive constructions. For
example, does the model understand that the RECIPIENT position in an active DO
sentence (the indirect object) corresponds to the RECIPIENT position in the passive
one (the subject), or has it simply learned the thematic role/argument structure
correspondences in these two sentence types independently?

To test whether the knowledge is shared or independent, we adapt the method
proposed by Kim and Smolensky (2021) to diagnose linguistic generalization in
language models: fine-tuning an already trained language model on sentences that
include novel words that are associated with some linguistic property. During fine
tuning, these words are only presented to the model in a single syntactic context.
We then test the model’s ability to generalize its knowledge of these novel words
to structures in which they had not been seen during fine-tuning.

Our adaptation of this methodology involves the use of novel nouns that occur
uniquely in positions associated with specific thematic roles: thax as a theme and
ricket as a goal. We take our three BERT variants and fine-tune separate models
using one or two paradigms: DO ‘give’ and PD ‘give’. The DO paradigm contains
hand-constructed sentences containing only DO examples, and likewise for the PD
paradigm.5 Example (6) below gives the full set of tuning data for the DO ‘give’
paradigm.

(6) a. I gave the ricket a box.

b. I gave a ricket the camera.

c. I gave the teacher a thax.

d. I gave a student the thax.

The intuition behind this set-up is similar to what we explored in Experiment 1:
the semantic classes of nouns appropriate for the different thematic roles differ in
systematic ways, and such selectivity will vary systematically across the different
position-role mappings. Our expectation is that fine-tuning will lead the language

5Importantly, each training sentence contains only a single novel token, either ricket or
thax. These novel tokens never appear together in the same training example to prevent the
model from learning any association between them. Thus the model will never learn that if
it sees ricket in one position, it should expect thax in another.
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model to identify the relevant properties of these nouns. If the language model rep-
resents position-role mappings in a way that generalizes across argument structure
alternations and variations in syntactic structure, we should see generalization of
its predictions of the novel items to other syntactic structures.

Following Kim and Smolensky (2021), we freeze all of the model weights prior
to fine-tuning except for the word embeddings of two unused items in the model’s
vocabulary.6 We then fine-tune the model on a minimal synthetic dataset such as
the one in (6) until the predicted log probability of either of the novel tokens in a
masked position begins to sharply decrease. We use this early-stopping criterion in
an attempt to avoid the model becoming overly confident in the prediction of the
novel tokens at the expense of the rest of its vocabulary. We use unused tokens in
BERT’s vocabulary to represent the nonce words.

We evaluated the tuned models’ performance on a number of synthetic test sets
containing masked THEME-expecting and RECIPIENT-expecting positions, as in (7)
below. Examples in these sets varied with respect to the choice of determiners, non-
masked nouns, syntactic frame (DO vs. PD), voice (active vs. passive), and verb.
In each masked position, we compute the log of the probability ratio (so-called log
odds) of the two novel words; if the log-odds of the novel thax tokens are higher
than those of the ricket tokens in THEME-expecting positions, and vice-versa for the
RECIPIENT-expecting positions, we infer that the model has learned to distinguish
the distributions of these nonce words.

(7) a. The teacher gave a [MASK] the [MASK].

b. A [MASK] was given the [MASK].

(8) a. A teacher gave the [MASK] to the [MASK].

b. The [MASK] was given to the [MASK].

(9) a. The teacher sent a [MASK] a [MASK].

b. A [MASK] was sent a [MASK].

(10) a. The teacher sent the [MASK] to a [MASK].

b. The [MASK] was sent to a [MASK].

This regimen of training and evaluation allows us to measure a model’s procliv-
ity for generalization in syntactic (voice) and structural (frame) contexts. Table 1
summarizes the performance of our 3 BERT-variants models by reporting the
percentage of novel tokens which are correctly predicted in evaluation sentences

6BERT-variant models utilize shared input and output embeddings, so the model is able
to learn to predict novel words even though all weights except for two input embeddings
have been frozen.
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across voice and frame. DO and PD rows in the table correspond to different
training regimens.

Table 1. Voice & frame generalization on ‘give’ sentences

Double Object Prepositional Dative
Active Passive Active Passive

TH. RE. TH. RE. TH. RE. TH. RE.

BERT
DO 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PD 100.0 95.0 100.0 100.0 100.0 100.0 100.0 100.0

RoBERTa
DO 85.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PD 78.8 82.5 100.0 100.0 100.0 100.0 100.0 100.0

DistilBERT
DO 90.0 98.8 97.5 100.0 97.5 100.0 80.0 100.0
PD 100.0 62.5 100.0 100.0 100.0 93.8 100.0 100.0

Performance of various models on placing novel tokens (thax or ricket) in the
correct position (THEME- or RECIPIENT-expecting) within active and passive
sentences in DO and PD frames. Columns represent evaluation data while
rows represent training contexts. Shaded cells indicate in-domain evaluation
results; unshaded cells report generalization results. All training and evalu-
ation sets reported here used a single verb, ‘give’. Each reported value is an
average over 10 different model runs.

3.1. Voice Generalization

Voice generalization measures a model’s ability to infer the placement of
the novel thax and ricket tokens in a passive sentence for a model trained only
on active sentences, or vice-versa. We know from Experiment 1 that BERT
performs analogously (as measured by entropy and animacy confidence) across
corresponding positions in active and passive constructions. By testing BERT on
novel token prediction, we can determine whether knowing how to place tokens
in one construction suffices to know where to place tokens in another (in essence,
whether BERT can make use of this knowledge of distributional similarity). Our
results, reported in Table 1, show that BERT models do indeed exhibit robust
voice generalization and are able to accurately predict token placement in passive
sentences when trained on corresponding active sentences.7

7Throughout, ‘corresponding’ means that we’ve held other relevant parameters constant,
so we might train on active DO ‘give’ sentences and test on passive DO ‘give’ sentences.
Furthermore, the active and passive sentences correspond to each other as they do, for
example, in (7).
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All models evaluated showed equal or improved performance on the passive
variants of their active training data. Indeed, all models achieved nearly perfect
performance on the passive complements to their active training data. This gener-
alization is supported across frames as well, where models trained on active DO
sentences perform well on passive PD sentences.

3.2. Frame Generalization

Frame generalization measures a model’s ability to infer the distribution of
novel tokens on sentences whose frame (DO versus PD) differs from those in the
model’s training data. We trained models on DO and PD data separately, allowing
us to test generalization from DO to PD frames and from PD to DO frames. Just
as with voice generalization, we find that all models exhibit good generalization
between frames, although there is some variance in the directionality of this success.
Models trained on DO data exhibited excellent generalization to PD data, attaining
at- or near-ceiling performance. Models trained on PD data perform slightly less
well, though still substantially above chance, on DO data.

3.3. Distributional Restrictions on Roles

In all but three cases in Table 1, we find that models accurately predict ricket
in RECIPIENT positions more often than they accurately predict thax in THEME
positions. This pattern holds across models, frames, voice contexts, and training
regimes. This is consistent with our results from Experiment 1, where we found
that BERT, RoBERTa, and DistilBERT models had higher animacy confidence for
RECIPIENT positions than for THEME positions. Thus, the higher animacy confi-
dence associated with RECIPIENT positions travels together with higher accuracy.
Under our hypothesis, this is no accident: the more restricted distribution of words
that can appear in RECIPIENT positions (namely, words in RECIPIENT positions
are more likely to be animate than words in THEME positions) supports the models’
ability to predict the correct token in these positions.

3.4. Lexical Generalization

Lexical generalization measures a model’s ability to predict novel token place-
ment in sentences whose ditransitive verb differs from the verb in the model’s
tuning data. Here, we fine-tune models on ‘give’ sentences and evaluate them sen-
tences with other ditransitives, namely ‘teach’, ‘send’, and ‘tell’. We have carried
out this analysis on the best performing of our models, namely RoBERTa. Our
results, shown in Tables 2 to 4, show that RoBERTa’s performance on lexical gener-
alization tasks is lexically conditioned, with high performance on some ditransitive
verbs, but quite poor performance on others. Furthermore, the frames on which
models fail to generalize are not consistent between target verbs. Test data involv-
ing the ditransitive verb ‘teach’, for instance, is associated with reasonably good
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performance on both DO and PD constructions in both active and passive forms,
regardless of training context. In contrast, models evaluated on data involving
‘send’ as the ditransitive verb show reasonably high performance on prepositional
dative constructions (in both active and passive forms), but show much worse
performance on double object constructions (of both voices), regardless of training
context. Finally, the opposite pattern holds for test data involving ‘tell’, where the
prepositional dative constructions yield worse results than the double object ones.

Table 2. Lexical generalization to ‘teach’ frames

Double Object Prepositional Dative
Active Passive Active Passive

TH. RE. TH. RE. TH. RE. TH. RE.

RoBERTa
DO 97.5 100.0 100.0 100.0 97.5 98.8 97.5 100.0
PD 92.5 100.0 90.0 100.0 90.0 100.0 95.0 100.0

Table 3. Lexical generalization to ‘send’ frames

Double Object Prepositional Dative
Active Passive Active Passive

TH. RE. TH. RE. TH. RE. TH. RE.

RoBERTa
DO 77.5 100.0 77.5 95.0 91.3 98.8 90.0 100.0
PD 71.3 91.25 72.5 92.5 100.0 100.0 97.5 100.0

Table 4. Lexical generalization to ‘tell’ frames

Double Object Prepositional Dative
Active Passive Active Passive

TH. RE. TH. RE. TH. RE. TH. RE.

RoBERTa
DO 78.5 100.0 97.5 100.0 23.8 98.8 45.0 92.5
PD 62.5 100.0 65.0 100.0 26.3 100.0 15.0 100.0

Performance of various models on placing novel tokens (thax or ricket) in the
correct position (THEME- or RECIPIENT-expecting) within active and passive
sentences in DO and PD frames. Columns represent evaluation data while
rows represent training contexts. All models were trained on active ‘give’
sentences, while evaluation data contains ‘send’, ‘teach’, and ‘tell’ sentences.
Each reported value is an average over 10 different model runs.

667



In all such cases, it is notable that the same pattern of performance holds
vis-à-vis the accuracy of the models placing ricket in a RECIPIENT context relative
to their placing thax in a THEME context. Indeed, this effect is pronounced in cases
where the models exhibit a stark failure of generalization, as in the ‘tell’ frames of
Table 4, where the models’ performance in RECIPIENT-expecting positions was
near ceiling while their performance on THEME-expecting positions was far lower.
In all cases observed, a failure of generalization for the whole frame is due almost
entirely to a failure to place thax tokens in THEME-expecting positions.

Compared to in-domain test cases, evaluation on sentences with novel verbs
shows a greater distinction in accuracy between RECIPIENT- and THEME-expecting
positions, with mean accuracy for THEME-expecting positions substantially less-
ened while that of RECIPIENT-expecting positions remained roughly at ceiling.
This further highlights the impact of the distributional restrictions placed on the
RECIPIENT position as observed in Experiment 1 by measuring relative entropy
and animacy confidence.

One natural place to look as the source of these lexical distinctions is in the
training data. If the model’s experience with different verbs during training reveals
divergent distributional patterns, we might expect the network to generalize less
well. Because of the infeasibility of assessing the distributions in the BERT or
RoBERTa training data, we instead explored the relative abundance of the different
structures in parsed PTB data.8 Though the syntactic annotation provided in the
PTB does not allow us to perfectly identify double object structures (argument
and adverbial NPs are parsed identically), the resulting patterns are robust enough
to allow us to identify interesting patterns for the verbs ‘send’ and ‘tell’: ‘send’
appears far more often in prepositional dative constructions than in double object
constructions, while the opposite is true for ‘tell’ (which occurs almost never in the
prepositional dative construction). The verb ‘teach’ shows a strong bias towards the
double object construction, but it is considerably rarer than the other three verbs.
This suggests that its corpus statistics are less reliable indicators of the training data
used for the language models and therefore not predictive of lexical generalization
performance. If taken as a proxy for the relative abundance of these forms in the
training corpus for the language models, this could suggest that the points of failure
for lexical generalization tasks are correlated with the frequency with which dative
verbs appear in the various construction types in the training data.

We find that pretrained language models exhibit robust generalization across
voice and construction type in ditransitive constructions when introducing novel
THEME- and RECIPIENT-like tokens into their vocabularies. This ability holds
across model type, though we do find evidence that performance is lexically
conditioned by the ditransitive verb used during the fine-tuning process. This

8We recognize that the PTB data is not identically distributed to the BooksCorpus and
Wikipedia that forms the BERT training set, we expect that the usages of different structures
would be reasonably consistent across them, at least at the coarse-grained level we are
considering here.
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suggests that while the knowledge of the relationship between syntactic position
and thematic role is not learned wholly independently for each construction type, it
is dependent on the identity of the ditransitive verb involved.

4. Conclusion

We began by raising the question of how children might acquire position-role
mappings, and outlined three possibilities: verb- and syntax-specific learning,
innate language-specific biases, and a combination of domain-general biases and
evidence in their linguistic input. We have demonstrated here that the third option
is a feasible explanation: three language models that contain no explicit linguistic
biases regarding possible position-role mappings nevertheless successfully demon-
strate knowledge of position-role mappings that largely generalizes across verbs
and syntactic structures. The limitations we find do not invalidate this larger
conclusion, though they do suggest the importance of further research in this area.

We have shown that pretrained language models (BERT, RoBERTa, and Dis-
tilBERT) recognize distributional differences between THEME- and RECIPIENT-
expecting positions. This distinction is stable across syntactic (i.e., voice) and
structural (i.e., direct object vs prepositional dative) alternations, showing that
these well-performing pretrained language models appear to have knowledge of
position-role mappings which are preserved between construction type and voice
alternations in ditransitive constructions. We have further shown that this knowl-
edge is, in some sense, ‘shared’ across syntactic and structural alternations. Models
that are fine-tuned to learn the novel thax (theme-like) and ricket (recipient-like)
tokens within a single paradigm (e.g., active prepositional dative constructions or
active double object constructions) make robust generalizations across voice and
construction alternations.

We do however find limitations in the performance of these models with
respect to lexical generalization. When the model is exposed to a novel token
as the argument of one verb, it generalizes this knowledge to other verbs in an
inconsistent fashion. For instance, models trained on ‘give’-containing sentences
poorly generalize their knowledge of THEME arguments in prepositional dative
structures containing the verb ‘tell’. Nonetheless, even in such case, models
perform well at generalizing knowledge of RECIPIENT arguments. This fits with
our earlier observation that RECIPIENT positions have higher animacy confidence
than THEME positions do, so that a model’s knowledge that a novel token has an
animate interpretation will license generalization.

This conclusion suggests a hypothesis concerning how the model may be
succeeding in our novel word learning experiments, namely by associating the
novel word with a portion of the word embedding space that is appropriate for
the selectional restrictions of the verb on which it is trained (i.e., ‘give’). This is
consistent with the network having learned a distinct and redundant representation
of the selectional restrictions across syntactic contexts, so long as they are all
characterized in terms of the abstract lexical semantic space represented through
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the word embeddings. In on-going work, we are exploring other experimental
methods to identify knowledge that cuts across structures.

Further directions for work include assessing whether the patterns of gener-
alization we have found here also hold within a broader array of syntactic (e.g.,
raising) and structural (e.g., causative-inchoative) alternations, as well as better
elucidating the computational mechanism by which these models are able to make
these kinds of generalizations.
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