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Abstract—State-of-the-art neural network architectures con-
tinue to scale in size and deliver impressive generalization results,
although this comes at the expense of limited interpretability.
In particular, a key challenge is to determine when to stop
training the model, as this has a significant impact on generaliza-
tion. Convolutional neural networks (ConvNets) comprise high-
dimensional feature spaces formed by the aggregation of multiple
channels, where analyzing intermediate data representations and
the model’s evolution can be challenging owing to the curse
of dimensionality. We present channel-wise DeepNNK (CW-
DeepNNK), a novel channel-wise generalization estimate based
on non-negative kernel regression (NNK) graphs with which
we perform local polytope interpolation on low-dimensional
channels. This method leads to instance-based interpretability
of both the learned data representations and the relationship
between channels. Motivated by our observations, we use CW-
DeepNNK to propose a novel early stopping criterion that (i) does
not require a validation set, (ii) is based on a task performance
metric, and (iii) allows stopping to be reached at different
points for each channel. Our experiments demonstrate that our
proposed method has advantages as compared to the standard
criterion based on validation set performance.

I. INTRODUCTION

Graphs play an important role in many machine learning
applications and are used to model data structures and sim-
ilarities in a dataset [1], [2]. The ability of graphs to define
relationships between different types of entities allows us to
describe and analyze complex patterns in data [3]. Recently,
graphs have been used to understand and improve intermediate
representations of deep learning models with application to
various tasks, such as model regularization [4] and robustness
[5], model distillation [6], and model interpretation [7], [8].
Since no graph is given a priori, these methods typically begin
with a graph construction phase, where each graph node corre-
sponds to an item in the training set, and the weight of an edge
between two nodes is a function of the distance between their
respective intermediate layer activations (i.e., their respective
feature vectors). However, as deep learning models continue
to grow in size, it is unclear if graphs constructed in these
increasingly higher dimension spaces [9], [10] are able to
capture relevant similarity information owing to the curse of
dimensionality. Further, higher dimensions also increase the
computational requirements for graph construction.

In this work, we use a novel graph construction and develop
an improved model analysis for deep learning by taking ad-
vantage of a property of convolutional neural networks (Conv-

Nets) [11], [12], [13]. Specifically, we note that convolutional
layers (generally followed by non-linear and pooling layers)
are formed by multiple convolutional filters that are applied
in parallel to a common input (e.g., an original image or the
output of the previous layer). The output of each of these is the
aggregation of the outputs of multiple channels, where each
channel corresponds to a single convolutional filter. Thus, in all
ConvNet layers, except the last fully connected classification
layers, high-dimensional intermediate layer feature vectors can
be viewed as a concatenation of lower dimensional subvectors,
each corresponding to the output of a channel. We make use
of this natural “subvectorization” in ConvNets to develop a
model analysis through channel-wise graph constructions as
an alternative to the standard full layer model analysis [14],
[15], [16]. This also allows us to estimate model generalization
at the channel level.

In particular, we propose a channel-wise extension of
DeepNNK [7], CW-DeepNNK, which leverages the geomet-
rical interpretation and the robustness of NNK [10] to obtain
per channel leave one out (LOO) classification estimates. Our
analysis allows us to show that each channel learns specific
features, each having different levels of importance for the
overall task. Moreover, features extracted by each channel
complement each other, so that the combination of all subvec-
tors leads to a better classification than that achieved by each
individual channel. A more detailed study of the properties of
channel-wise graphs is carried out in [17], where the intrinsic
dimension of the data representations at a subvector level and
data relationships between channels are studied.

We also conjecture that learning happens at different rates
in each channel and propose a channel-wise early stopping
criterion for deep learning systems that does not require any
validation data. Training is stopped for a given channel if
its corresponding LOO classification performance no longer
improves. Our proposed method achieves comparable test per-
formance with fewer training iterations than existing methods,
such as validation-set-based early stopping and aggregate fea-
ture vector based DeepNNK [7]. Our early stopping criterion
requires lower runtimes and has the further advantage of not
requiring any validation data to be set aside. We present
strategies to further reduce the complexity of our algorithm
while being able to maintain a good estimate of model gen-
eralization. Our framework is compatible with any optimizer
and can be integrated with any ConvNet training setting, while
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not requiring hyperparameter tuning. This method will be
particularly useful for problems with small datasets, where
holding out data for validation is impractical.

II. BACKGROUND AND RELATED WORK
A. Notation

We denote scalars, vectors, random variables, and matrices
using lowercase (e.g.,  and 6), lowercase bold (e.g.,  and 0),
uppercase (e.g., X and Y'), and uppercase bold (e.g., K and ®)
letters, respectively. Wherever applicable, we use a superscript

to index and denote a subvector and related measures. For
example, a vector  in R” obtamed as the concatenation of
S subvectors xf € RPs where Z w1 Ds = D:
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Duain = {(x1,91), (x2,9y2) ... (®N,yn)} is the set of
training data and D}, is the set obtained by removing (x;, y;)
from Dy,n. We denote the empirical risk or generalization
error associated with a function f on M data points D as

Remp(fD) = 37 Zl @)

where f(x) is the prediction at = and I(f(x;),
in the estimate at x; relative to ;.

Given the training data, the leave one out (LOO) [18]
estimate of a function at x; is the estimate based on the set
containing all training points except x;. We denote the risk
associated with the LOO procedure as

y;) is the error
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B. Non Negative Kernel (NNK) regression graphs

Given N data points represented by feature vectors x, a
graph is constructed by connecting each data point (node) to
similar data points, so that the weight of an edge between two
nodes is based on the similarity of the data points, with the
absence of an edge (a zero weight) denoting least similarity.
NNK assumes local smoothness in a non linearly transformed
space, the Reproducing Kernel Hilbert Space (RKHS) [19],
corresponding to positive definite kernels used to measure
similarity between data points, such as the Gaussian kernel
with bandwidth o of (4) or the range normalized cosine kernel
of (5).

k(@i x;) = exp (= [l — x;]|*/207) )
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Unlike weighted K -nearest neighbor (KNN) [20] and e-
neighborhood graphs (e-graphs) [21] that are sensitive to the
choice of hyperparameters K /¢, non negative kernel regression
(NNK) graphs [10] are suggested as a principled approach to
graph construction based on a signal representation view.

While KNN is still used as an initialization, NNK performs
a further optimization akin to orthogonal matching pursuit
[22] in kernel space, resulting in a robust representation with
the added advantage of having a geometric interpretation. The
Kernel Ratio Interval (KRI) theorem in [10] reduces the local
NNK graph construction problem (deciding which of the KNN
neighbors of a given node should also be NNK neighbors) into
a series of hyper plane conditions, one per NNK weighted
neighbor, which applied inductively lead to a convex polytope
around each data point, as illustrated in Figure 1 (NNK graph
on the right). Intuitively, NNK ignores data that are further
away along a similar direction as an already chosen point and
looks for neighbors in an orthogonal direction.

C. DeepNNK: Neural Networks and NNK interpolation

DeepNNK [7] is a non-parametric interpolation framework
based on local polytopes obtained using NNK graphs [10] that
replaces the standard softmax classification layer of a neural
network using the activations obtained at the penultimate layer
as input features, for model evaluation and inference. A key
advantage of DeepNNK lies in the fact that label interpolation
is performed based on the relative positions of points in the
training set, which makes it possible to perform leave one out
estimation to characterize the task performance of a model and
its generalization without the need for additional data, namely
the validation set. Note that this would not be possible in the
original configuration where classification is performed based
on a parametric class boundary.

Formally, the DeepNNK interpolation estimate at a data
point x is given by
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where NNKoy () is the set of indices of NNK neighbors
that form a convex polytope around & and € corresponds
to the NNK weights associated with these neighbors. Note
that in DeepNNK the standard kernels are used to estimate
similarity between data points after the non-linear mapping
h, corresponding to a deep neural network (DNN), has been
applied. For example, the Gaussian kernel of (4) is rewritten
as

h(z;)|?/20%)  (7)

The authors of [7] show that NNK graphs outperform
weighted KNN graphs in label interpolation and that
Rroo( fNNK|D[rain) can be a better indicator of generalization
than the Remp( fDNN|Dtrain) associated with a DNN classifier
applied on training data.

kDNN(miij) = exp (*”h(f’%) -

D. Early stopping methods

The central idea behind early stopping (stop training or
optimization) [23] is that there exists a critical regime during
the training of a learning model where the model ceases
to generalize (perform better) on unseen data points while
being able to do improve performance on given training
data. Identifying this point of negative or zero return is also
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Fig. 1: CW-DeepNNK interpolation framework integrated in a ConvNet, replacing the last softmax classification layer. Taking as inputs the activations from
individual channels in the penultimate layer, CW-DeepNNK outputs C' class predictions for a given input @; via NNK polytope interpolation. Application of
the LOO procedure results in C' channel-wise generalization estimates which can be used to construct an early stopping criterion without a validation set.

attractive from a computational perspective and is the goal of
various early stopping rules or methods in machine learning
[24], [25], [26]. A conventional and widely popular early
stopping method in machine learning is the one based on
validation data, which we name as Validation-based method.
Here, one sets aside a part of the training set (referred to
as validation set) not to be used for training the model, but
on which one only evaluates the performance of the trained
model. The validation performance is taken as a proxy for
model generalization with training halted when the model
begins to perform poorly on the validation set.

Although very effective in practice, especially with large
training datasets where holding off a small part of the training
data has no effect in the learning process, there are drawbacks
to Validation-based early stopping [26]. The validation perfor-
mance may have a large stochastic error depending on the size
of the validation set and may introduce biases leading to poor
generalization estimates. A large validation set yields a more
robust generalization estimate but may deprive the model of
valuable information by reducing significantly the amount of
data available for training. Thus, in applications with limited
training data, it may be better to use all of it for training, rather
than holding some of it for validation.

This shortcoming of Validation-based early stopping has led
to recent alternatives such as [27], [26]. First, [27] proposed a
stopping rule based on estimating the marginal likelihood by
tracking the change in entropy of the posterior distribution of
the network parameters as an indicator of generalization. How-
ever, the likelihood estimates in this framework are affected
when the model has additional regularization terms, which
is typically the case for most state-of-the-art methods. An
alternative approach [26] presents an early stopping method
based on a fast-to-compute local gradient statistic. This method
obtains good results compared to the Validation-based method,
but requires hyperparameter tuning. Moreover, both [27] and
[26] rely on gradient-related statistics that are only valid
in standard stochastic gradient descent settings and fail to
generalize to more advanced optimizers, such as those based
on momentum. Due to their limitations, these methods have
been not widely used in practice. A more detailed comparison
with our proposed method is carried out in Section IV-C.

III. CHANNEL-WISE DEEPNNK (CW-DEEPNNK)

DeepNNK [7] aims at estimating generalization error with
the LOO procedure. However, it fails to utilize the structure
of the feature vector obtained as the concatenation of different
channels. The data used for interpolation is often very high-
dimensional, which can lead to poor representation of the
“true” similarity between data points and therefore to sub-
optimal performance of polytope-based label interpolation of
(6). Partially due to this, estimation of generalization perfor-
mance (on an unseen dataset) using (6) does not achieve the
same accuracy as the conventional procedure based on using
a separate validation set.

To address this problem, in this work we propose a lo-
cal polytope label interpolation in individual channels (CW-
DeepNNK), as illustrated in Figure 1. Instead of using the
transformed data representations of the full penultimate layer
h(x), which consists of the aggregation of outputs of C
convolutional channels, we propose dividing the feature space
into channels:

h!(z;)
h? (x;)
h(z;) = € RP», (®)
he (z,)
which are well-defined and can be interpreted individually.
Then, in each channel c, the first step for the CW-DeepNNK
LOO procedure is to use the intermediate representations
he(Di,,) as feature vectors to construct an NNK neighbor-
hood for each data point h°(x;) in the training set. Second,
perform the NNK interpolation (6). Finally, we compute the
LOO estimation (3) per channel, obtaining the CW-DeepNNK
label interpolation errors Ri oo, R00 - - - » Rioo-

By using the CW-DeepNNK procedure at each training
epoch we obtain a label interpolation error curve for each
channel, which allow us to monitor the generalization of the
model during training. Then, we propose a novel channel-wise
early stopping criterion described in Algorithm 1, which does
not require a validation set and the stopping is performed
in stages, allowing us to stop the training of each channel
independently. Note that this is the first early stopping criterion
that (i) does not require a separate validation set and (ii)



is based on a task performance metric (e.g., accuracy). In
contrast, the other proposed early stopping methods without a
validation set [26], [27] based their generalization estimation
on properties of the gradients computed during training.

Algorithm 1 CW-DeepNNK progressive early stopping with-

out a validation set

Input:
Duain = {(x1,91), (®2,92) ... (TN, yn)}: training set
w: model parameters > Wpenuii: penultimate layer params
h: model non-linear mapping at the penultimate layer
C': number of channels in penultimate layer
n: number of steps between generalization evaluations
p: patience, number of times to observe worsening
LOO NNK interpolation error before stopping channel
K: number of initial neighbors

Output: best parameters w*, best number of training steps t*

:t=0,gq=p, r=00

2: initialize w

3w =w,t* =t

4: while g # 0 do

5: Update w by running the training algorithm for n steps
6 t=t+n

7 forc=1:C do

8 if g(c) > 0 then

o: fori=1:N do

10: 0= ﬁndNNKneighbors(hc({:Ci7 ,Dtirain}% K)
11 Ik (x5) = Zj %lyél

12: end for . _

13: 7?’I(iOO = % Zi l(fNNK(mi)‘lDfrain’ yl)
14: if Rfoo < r(c) then

15: 7(¢) = Rioo- 9(c) =p

16: w*=w, t* =t

17: else

18: | alc)=q(c) -1

19: end if
20 if g(c) = 0 then
21: Freeze and stop training wj,
22 end if
23: end if
24: end for

25: end while

A. Channel-wise early stopping without a validation set

Starting from the standard patience criterion, we monitor the
generalization performance in the penultimate layer channels
and we use a patience parameter p in each channel. When
a channel stops generalizing, i.e., R{yo has not improved
in p observations, we freeze the model parameters of the
channel and stop training it. The rest of the model continues
learning until each of the channels stops generalizing, where
we consider that we have reached the optimal point and
the overall generalization of the model no longer improves.
Finally, we save the best model parameters w* where the

last minimum generalization error is detected. Code for the
proposed method is available online.'

B. Complexity

The channel-wise LOO label interpolation baseline is com-
putationally expensive, since it requires constructing one NNK
graph per training instance, per channel, and per epoch.
However, several improvements can be made to achieve an
overall lower computation cost, competitive with the state-of-
the-art early stopping methods in large scale problems. First,
performing NNK independently in every epoch is very costly,
but the features learned in a given channel in consecutive
epochs are similar. Thus, complexity can be reduced by a
factor of T' by performing one LOO estimation every T
epochs. As an alternative, we can maintain a fixed NNK
assignment for all nodes and monitor the approximation error
for node 7 as a function of its neighbors. When this error
increases a new NNK graph is constructed, so that a better set
of neighbors for node ¢ can be found.

Other improvements in efficiency can be achieved by reduc-
ing the number of channels and the number of nodes for which
LOO label interpolation is performed. For example, we could
perform the interpolation only on those channels with lowest
error. We could also perform random subsampling of training
data points instead of performing the full LOO procedure.
As a result, computing time would be drastically reduced, at
the expense of less reliable and more random generalization
estimates, whose impact could be reduced by augmenting the
patience parameter, which would make the actual stopping
point less sensitive to random oscillations in the estimates.

Additionally, while selecting K for the experiments we
observed that both NNK-based methods are very robust with
respect to the selection of this single hyperparameter. There-
fore, K could be chosen as the minimum K that yields stable
results, significantly reducing the complexity. Exploring all
these ideas for further efficiency improvement of the proposed
method is left for future work.

IV. EXPERIMENTS

In this section, we evaluate CW-DeepNNK for estimat-
ing channel generalization and construct an efficient early
stopping method with several benefits over DeepNNK and
the Validation-based method. We focus our experiments on
a binary classification setting using 2 classes of CIFAR-10
dataset [28]: “plane” and “ship”. Training set and valida-
tion set, if needed, are split in a stratified fashion in each
experiment ensuring class balance in each set. We consider
a 7 layer ConvNet architecture consisting of 4 convolution
layers with 5 depth channels and ReLU activations, 2 max-
pool layers and a fully connected softmax layer. We train
the model with the Adam optimizer [29], with a learning
rate of 0.001 and batch size of 50 on a GTX Titan X with
8GB of memory. We compare the model performance (based
on softmax classification) with that of DeepNNK and CW-
DeepNNK interpolation on train data. We observe that some

Ihttps://github.com/STAC-USC/CW-DeepNNK_Early_Stopping
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Fig. 2: Classification error using interpolating classifiers (DeepNNK, CW-DeepNNK) and model error on training data. CW-DeepNNK significantly
outperforms the softmax classification of the neural network with only a single channel of the penultimate layer activated. Further, most channels attain their
CW-DeepNNK minima at an early number of iterations with performance deteriorating later indicative of overfitting.

channels learn more valuable features than others for the
classification task (see Figure 2). We analyze the behaviour
of our generalization estimate in the presence and absence of
dropout regularization in Section IV-B and in Section IV-C
compare NNK-based generalization estimates with that of the
Validation-based strategy [23] to perform early stopping and
discuss the complexity of each.

A. Generalization estimates using CW-DeepNNK

Each channel of a convolutional layer defines a feature
subspace where we should be able to quantify how useful the
information from that channel is for the classification task,
and have a better interpretation of the captured features in
each channel.

Figure 2 shows a comparison between model error on train-
ing data, DeepNNK and CW-DeepNNK label interpolation
error with LOO estimation. In the DeepNNK case, the error
gap between the model on train data and LOO DeepNNK
increases with the epochs, indicating that the generalization
performance is worsening and the model starts to overfit to
the train data. Also, we can see how CW-DeepNNK has
a much better performance than the model when only a
single channel is activated. Note that an error of 0.5 in a
binary classification is as bad as doing random classification.
We also observe how the interpolation error in the channels
soon reaches a minimum, and then the classification error
increases again. This minimum may indicate the optimal point
of generalization in each channel, from which the learned

features begin to overfit the training data.

Although the last fully connected layer of the model is
trained to use the full combination of features from all
channels, we wanted to see what happens if the model has
to perform classification when relying only on partial infor-
mation. Figure 2 shows how our method is able to perform
much better in each independent channel subspace, and the
model is not capable of performing at a decent level when
some feature channels are deactivated. Thus, we now have a
new point of view, where we can estimate properly how useful
each of the individual channels is for the task.

B. Regularized vs. Non-Regularized models

We can analyze the performance of CW-DeepNNK in differ-
ent scenarios and compare the results in Section IV-A, with no
regularization, to results obtained using explicit regularization,
adding a dropout layer [30] after each convolutional layer, with
a dropout probability of 0.2. In both cases we see individual
channels that fail to learn features of the data relevant to the
task, obtaining almost maximum error in binary classification
Riroo = 0.5. In the following study we focus on the channels
with an error Ripo < 0.4.

Figure 3 shows how in a non-regularized model, our CW-
DeepNNK generalization error estimate finds a minimum at
an early number of iterations. If we compare it with the test
performance, we see that channel-wise LOO performances
peak at a similar place to the peak of the test loss, where early
stopping would occur using the Validation-based method. In
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of the test loss, where early stopping should occur. In a well-regularized model, CW-DeepNNK continues improving as does the model in the test set.

addition, channel minimum error detection in different points
in time suggests that early stopping could be performed pro-
gressively by channels. Further, monitoring this generalization
estimator in a well-regularized network that does not overfit,
our estimator is consistent, observing a performance curve
similar to that of the test set.

We can also detect that in the non-regularized case, the
important channels, i.e., those channels where best CW-
DeepNNK performances are achieved, have a very similar but
very poor performance with an error between 0.2 and 0.3.
Instead, in the regularized case we can see that the important
channels reach an error below 0.2.

We note that only some channels of a convolutional layer
are key for to the classification task, and that we can detect
these channels even before performing the LOO interpolation
based on the NNK polytope local geometry (number of NNK
neighbors) and zero patterns in the activations.

We observe that in channels with fewer zero dimensions, we
will obtain a higher dimensional NNK graph with higher same-
class weights, which subsequently leads to better interpolation.
Besides, the non-regularized networks have a more homoge-
neous behavior between channels but with worse performance
in general, while for regularized models, the most important
channels drive a better overall result.

C. Early stopping with CW-DeepNNK

We compare our generalization estimate with the Validation-
based method as well as with the DeepNNK estimate [7],
to perform early stopping. In this case, we use a patience
parameter as stopping rule for the Validation-based method
and for the full layer LOO DeepNNK interpolation. For our
estimate, we use a patience stopping rule in each channel, as
described in Section III-A. Other non-validation set methods
based on gradient-related statistics [26], [27] are promising
approaches, but unlike our proposed method based on a task
performance metric, they are not compatible with momentum-
based optimizers and require hyperparameter tuning for a
reliable stopping. Moreover, [26] assumes that all weights of
a layer will converge at similar speeds, which may not be
necessarily true in convolutional layers with multiple channels.
The criterion proposed in [27] has only been validated on
simpler models, e.g., one hidden layer networks.

Note that other stopping rules [23], [31] could use our
generalization estimate as a substitute for the validation curve,
but we leave these experiments for future work. Even though
weights of the penultimate layer are prevented from further
training in our proposed channel-wise method, this does not
result in extra benefits in computing complexity as the fraction
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preserves superior results while requiring less computation time, comparable to the Validation-based method.
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(c) Small dataset case with 1000 labeled samples, obtained from random sampling at each initialization. CW-DeepNNK obtains higher accuracies than the Validation-based
method, using all labeled data available for training.

Fig. 4: Test accuracy, stopping epoch and training elapsed time for different early stopping methods. Note that test accuracy refers to the accuracy obtained
in the test set with the best model according to each criterion, i.e., where we find the last minimum generalization error, not the last version where we stop
training. K = 15 for NNK-based methods.

of parameters that we stop training in intermediate stages is
not significant. An extension of this method to the rest of the
layers of the model could speed up the training iterations.
Figure 4a shows the results obtained using the different
generalization estimates for early stopping, with a patience of
20 epochs and 10 different model initializations and validation
set partitions. We can see how all NNK-based methods obtain
test accuracies higher than the Validation-based method. Al-
though the best models are obtained in the DeepNNK case,
it requires a lot of epochs to find the optimal stopping point
whereas the other methods are able to detect overfitting in
a much earlier stage. In the two proposed methods based on
NNK interpolation, using a patience parameter that is too small

can lead to not finding the global minimum of generalization
error, leading to premature stopping and lower test accuracy,
as in the case of the outliers. Therefore, choosing a higher
patience can ensure a high test accuracy, but at the cost of
a longer training, often unnecessary. The proposed channel-
wise generalization estimate using the range normalized cosine
kernel (5) is the alternative that obtains the best trade-off be-
tween performance, training iterations and time. In Figure 4b
we study different LOO computation frequencies to further
improve the efficiency of the proposed algorithm, maintaining
a total wait of 20 epochs in all cases. Test accuracy and
stopping epochs are preserved while the computation time is
significantly reduced with increasing 7', reaching an efficiency



and results similar to those of the Validation-based method in
the case of T = 10.

We also study the case of dealing with small datasets, where
using the available data wisely is critical for good general-
ization and test performance. Using a labeled data subset of
1000 samples of the two CIFAR-10 classes (split between
train set and validation set if required) in Figure 4c we see
how our method obtains state-of-the-art results outperforming
the standard Validation-based approach, since we can train the
model with all labeled data without the need of separating data
for a validation set.

V. CONCLUSION AND FUTURE WORK

We introduced a novel approach for channel-wise general-
ization estimation in ConvNets based on local NNK polytope
interpolation, which allows to detect the channels that are
the most important for the task and obtain best interpolation
performance. We also presented a progressive channel-based
early stopping strategy which does not require a validation
set. Our approach may be the preferred for early stopping
in situations where test performance is key or when labeled
data is scarce, since we would not need to hold out data
for a validation set. Based on a task performance metric,
as is the widely used Validation-based method, the presented
criterion can be integrated into any training setting (including
momentum-based optimizers and explicit regularization meth-
ods) and does not require hyperparameter tuning.

Future work should explore the ideas presented to further
improve efficiency, obtaining competitive results on large-scale
problems. Future research could also be in the direction of neu-
ral network pruning based on the CW-DeepNNK interpolation
error, since we have observed that in certain channels we have
practically no useful information to perform the interpolation,
and those channels could be pruned, resulting in a more
compact network with less computational cost. Another line of
research could involve a progressive early stopping of the full
model, achieving a significant saving of gradient computation
and backpropagation throughout the training.
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