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Abstract

We consider an improper reinforcement learning setting where a learner is given M base controllers
for an unknown Markov decision process, and wishes to combine them optimally to produce a potentially
new controller that can outperform each of the base ones. This can be useful in tuning across controllers,
learnt possibly in mismatched or simulated environments, to obtain a good controller for a given target
environment with relatively few trials.

We propose a gradient-based approach that operates over a class of improper mixtures of the controllers.
We derive convergence rate guarantees for the approach assuming access to a gradient oracle. The value
function of the mixture and its gradient may not be available in closed-form; however, we show that we
can employ rollouts and simultaneous perturbation stochastic approximation (SPSA) for explicit gradient
descent optimization. Numerical results on (i) the standard control theoretic benchmark of stabilizing
an inverted pendulum and (ii) a constrained queueing task show that our improper policy optimization
algorithm can stabilize the system even when the base policies at its disposal are unstable!.

1 Introduction

A natural approach to design effective controllers for large, complex systems is to first approximate the system
using a tried-and-true Markov decision process (MDP) model, such as the Linear Quadratic Regulator (LQR)
[15] or tabular MDPs [5], and then compute (near-) optimal policies for the assumed model. Though this
yields favorable results in principle, it is quite possible that errors in describing or understanding the system
— leading to misspecified models — may lead to ‘overfitting’, resulting in subpar controllers in practice. An
alternative to this is to construct an optimal controller in an online fashion using a single (or multiple) chain
of black-box interactions with the system. However, recent results on regret performance uncover exponential
dependence on system parameters even for a system as simple as an LQR [12], casting a shadow on online
optimization as a viable option.

Moreover, in many cases, the stability of the designed controller may be crucial or more desirable than
optimizing a fine-grained cost function. From the controller design standpoint, it is often easier, cheaper
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and more interpretable to specify or hardcode control policies based on domain-specific principles, e.g.,
anti-lock braking system (ABS) controllers [36]. For these reasons, we investigate in this paper a promising,
general-purpose reinforcement learning (RL) approach towards designing controllers? given pre-designed
ensembles of basic or atomic controllers, which (a) allows for flexibly combining the given controllers to
obtain richer policies than the atomic policies, and, at the same time, (b) can preserve the basic structure of
the given class of controllers and confer a high degree of interpretability on the resulting hybrid policy.

Overview of the approach. We consider a situation where we are given ‘black-box’ access to M controllers
(maps from state to action distributions) {ki,...,kp} for an unknown MDP . By this we mean that we can
choose to invoke any of the given controllers at any point during the operation of the system. With the
understanding that the given family of controllers is reasonable, we frame the problem of learning the best
combination of the controllers by trial and error. We first set up an improper policy class of all randomized
mixtures of the M given controllers — each such mixture is parameterized by a probability distribution over
the M base controllers. Applying an improper policy in this class amounts to selecting independently at each
time a base controller according to this distribution and implementing the recommended action as a function
of the present state of the system.

The learner’s goal, therefore, is to find the best performing mixture policy by iteratively testing from the
pool of given controllers and observing the resulting state-action-reward trajectory. To this end we develop a
new gradient-based RL optimization algorithm that operates on a softmax parameterization of each mixture
(probability distribution) of the M basic controllers, and takes steps by following the gradient of the return of
the current probability distribution to reach the optimum mixture. This is reminiscent of the standard policy
gradient (PG) method with a softmax parameterization of the policy over a discrete state and action space.

However, there is a basic difference in that the underlying parameterization in our setting is over a set
of given controllers which could be potentially abstract and defined for complex MDPs with continuous
state/action spaces, instead of the PG view where the parameterization directly defines the policy in terms of
the state-action map. Our algorithm, therefore, hews more closely to a meta RL framework, in that we operate
over a set of controllers that have themselves been designed using some optimization framework to which we
are agnostic. This confers a great deal of generality to our approach since the class of controllers can now be
chosen to promote any desirable secondary characteristic such as interpretability, ease of implementation or
cost effectiveness.

It is also worth noting that our approach is different from treating each of the base controllers as an ‘expert’
and applying standard mixture-of-experts algorithms, e.g., Hedge or Exponentiated Gradient [26, 4, 22, 33].
Whereas the latter approach is tailored to converge to the best single controller (under the usual gradient
approximation framework) and hence qualifies as a ’proper’ learning algorithm, the former optimization
problem is in the improper class of mixture policies which not only contains each atomic controller but also
allows for a true mixture (i.e., one which puts positive probability on at least two elements) of many atomic
controllers to achieve optimality; we exhibit concrete examples where this is indeed possible.

Our Contributions. We make the following contributions in this context:

1. We develop a gradient-based RL algorithm to iteratively tune a softmax parameterization of an improper
(mixture) policy defined over the base controllers (Algorithm 1). While this algorithm, Softmazx Policy
Gradient (or Softmax PG), relies on the availability of value function gradients, we later propose
a modification that we call GradFEst (Algorithm 4) to Softmax PG to rectify this. GradEst uses
a combination of rollouts and Simultaneously Perturbed Stochastic Approximation (SPSA) [10] to
estimate the value gradient at the current mixture distribution.

2. We show a convergence rate of O(1/t) to the optimal value function for the finite state-action MDPs. To
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do this, we employ a novel Non-uniform Lojaseiwicz-type inequality [27], that lower bounds the 2-norm
of the value gradient in terms of the suboptimality of the current mixture policy’s value. Essentially,
this helps establish that when the gradient of the value function hits zero, the value function is itself
close to the optimum. Along the way, we also establish the S-smoothness of value function of our
improper controller, which may be of independent interest.

3. We demonstrate the performance of Softmax PG with the instructive special case of Multi-armed
Bandits (Sec. 5.2). For a horizon of T steps, we recover the well-known O (log(T")) bound on regret
[24] with both perfect and estimated value function gradients. Further, when perfect value gradients
are available, we show a O (1/t) rate of convergence to the optimal value function, ¢ being the current
round.

4. We corroborate our theory using extensive simulation studies in two different settings (a) the well-known
Inverted Pendulum system and (b) a scheduling task in constrained queueing system. We discuss
both these settings in detail in Sec. 2, where we also demonstrate the power of our improper learning
approach in finding control policies with provably good performance. In our experiments (see Sec. 6),
we eschew access to exact value gradients and instead rely on a combination of roll outs and SPSA to
estimate them. Results show that our algorithm quickly converges to the correct mixture of available
atomic controllers.

1.1 Related Work

Before we delve into our problem, it is vital to first distinguish the approach investigated in the present paper
from the plethora of existing algorithms based on ’proper learning’. Essentially, these algorithms try to find
an (approximately) optimal policy for the MDP under investigation. In stochastic control parlance, these
proposals try to get close to the Bellman fixed point of the MDP. These approaches can broadly be classified
in two groups: model-based and model-free.

The former is based on first learning the dynamics of the unknown MDP followed by planning for this learnt
model. Algorithms in this class include Thompson Sampling-based approaches [34, 35, 19], Optimism-based
approaches such as the UCRL algorithm [5], both achieving order-wise optimal O(+/T') regret bound.

A particular class of MDPs which has been studied extensively is the Linear Quadratic Regulator (LQR)
which is a continuous state-action MDP with linear state dynamics and quadratic cost [15]. Let z;, € R™
be the current state and let u; € R™ be the action applied at time ¢. The infinite horizon average cost
minimization problem for LQR is to find a policy to choose actions {u}4>1 so as to

T
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such that z;11 = Az, + Bug + n(t), n(t) is iid zero-mean noise. Here the matrices A and B are unknown to
the learner. Earlier works like [1, 20] proposed algorithms based on the well-known optimism principle (with
confidence ellipsoids around estimates of A and B). These show regret bounds of O(v/T).

However, these approaches do not focus on the stability of the closed-loop system. [15] describe a robust
controller design which seeks to minimize the worst-case performance of the system given the error in the
estimation process. They show a sample complexity analysis guaranteeing convergence rate of O(1/ VN ) to
the optimal policy for the given LQR, N being the number of rollouts. More recently, certainity equivalence
[29] was shown to achieve O(v/T) regret for LQRs. Further, [11] show that it is possible to achieve O(log T)



regret if either one of the matrices A or B are known to the learner, and also provided a lower bound showing
that Q(v/T) regret is unavoidable when both are unknown.

The model-free approach on the other hand, bypasses model estimation and directly learns the value function
of the unknown MDP. While the most popular among these have historically been Q-learning, TD-learning
[43] and SARSA [37], algorithms based on gradient-based policy optimization have been gaining considerable
attention of late, following their stunning success with playing the game of Go which has long been viewed as
the most challenging of classic games for artificial intelligence owing to its enormous search space and the
difficulty of evaluating board positions and moves. [41] and more recently [42] use policy gradient method
combined with a neural network representation to beat human experts. Indeed, the Policy Gradient method
has become the cornerstone of modern RL and given birth to an entire class of highly efficient policy search
algorithms such as TRPO [38], PPO[39], and MADDPG [28].

Despite its excellent empirical performance, not much was known about theoretical guarantees for this
approach until recently. There is now a growing body of promising results showing convergence rates for PG
algorithms over finite state-action MDPs [2, 40, 8, 30], where the parameterization is over the entire space of
state -action pairs, i.e., R¥¥4. In particular, [8] show that projected gradient descent does not suffer from
spurious local optima on the simplex, [2] show that the with softmax parameterization PG converges to the
global optima asymptotically. [40] show a O(1/+/t) convergence rate for mirror descent. [30] show that with
softmax policy gradient convergence to the global optima occurs at a rate O(1/t) and at O(e™") with entropy
regularization. These advantages, however, are partially offset by negative results such as those in [25], which
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show that the convergence time is §2 <|S |2 ! ), where S is the state space of the MDP and - the discount

factor, even when exact gradient knowledge is assumed.

We are thus left with a model-free technique, whose convergence rate shows desirable dependence on the
number of iterations, but is exponential in system parameters. Our objective in this paper, therefore, is to
attempt to alleviate precisely this latter issue.

We end this section noting once again that all of the above works concern proper learning. Improper learning,
on the other hand, has been separately studied in statistical learning theory in the iid setting [14, 13]. In this
framework, which is also called Representation Independent learning, the learning algorithm is not restricted
to output a hypothesis from a given set of hypotheses.

To our knowledge, [3] is the only existing work that attempts to frame and solve policy optimization over an
improper class via boosting a given class of controllers. However, the paper is situated in the rather different
context of non-stochastic control and assumes perfect knowledge of (i) the memory-boundedness of the MDP,
and (ii) the state noise vector in every round, which amounts to essentially knowing the MDP transition
dynamics. We work in the stochastic MDP setting and moreover assume no access to the MDP’s transition
kernel. Further, [3] also assumes that all the atomic controllers available to them are stabilizing which, when
working with an unknown MDP, is a very strong assumption to make. We make no such assumptions on
our atomic controller class and, as we show in Sec. 2.2 and Sec. 6, our algorithms even begin with provably
unstable controllers and yet succeed in stabilizing the system.

In summary, the problem that we address concerns finding the best among a given class of controllers. None
of these need be optimal for the MDP at hand. Moreover, our PG algorithm could very well converge to
an improper mixture of these controllers meaning that the output of our algorithms need not be any of the
atomic controllers we are provided with. This setting, to the best of our knowledge has not been investigated
in the RL literature hitherto.



2 DMotivating Examples

Given the novelty of our paradigm, we begin with examples that help illustrate the need for improper learning
over a given set of atomic controllers. The two simple examples below concretely demonstrate power of this
approach to find (improper) control policies that go well beyond what the atomic set can accomplish, while
retaining some of their desirable properties (such as interpretability and simplicity of implementation).

2.1 Ergodic Control of the Inverted Pendulum System

One of the most famous examples of the
aforementioned “approximate-and-optimize’
paradigm is the Inverted Pendulum system
which has, over the years, become a benchmark
for testing control strategies [21]. As shown
in Fig. 1, it comprises a pendulum (mass=m,,)
whose pivot is mounted on a cart (mass=my,).
The cart can be moved in the horizontal direc-
tion by applying a force F'. The objective is to
modulate the direction and magnitude of this
force F' to keep the pendulum from keeling over
under the influence of gravity.

)

The state of the system at time ¢, is given by
the 4-tuple x(t) := [s, $, 0, 0], with x(-) = 0 cor-

. responding to the pendulum being upright and
Figure 1: Motivating example: The Inverted Pendulum. The mass of stationary. One of the .Strategles l'lsed to design
the pendulum is denoted by my, that of the cart by my, the force used control policies for this system is by first ap-
to drive the cart by F, and the distance of the center of mass of the proximating the dynamics around x(-) = 0 with

cart frorn. its starting position vby s. 0 der}otes the angle the pend'ulurin a linear, quadratic cost model and designing
makes with the normal and its length is denoted by 2I. Gravity is . .
a linear controller for these approximate dy-

denoted by g.
namics. This, after time discretization, reduces
to finding a (potentially randomized) control

policy u = {u(t),t > 0} that solves

inf J(x(0)) = E, D xT(H)@x(t) + Ru(t),
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Under standard assumptions of controllability and observability, (1) has a stationary, linear solution u*(t) =
—KT7x(t) (details are available in [7, Chap. 3]). Moreover, setting A := A,per, — bKT, it is well know that the
dynamics x(t + 1) = Ax(t) are stable. Now, a typical design strategy for a given Inverted Pendulum involves
a combination of system identification, followed by linearization and computing the controller gain K. This
would typically produce a controller with tolerable performance fairly quickly, but would also suffer from



nonidealities that parameter estimation invariably entails. To alleviate this problem, first consider a generic
(ergodic) control policy that builds on this strategy by switching across a menu of controllers {Ky, -+, Ky}
produced via the above procedure. That is, at any time ¢, it chooses controller K;, ¢ € [N], w.p. p;, so that
the control input at time ¢ is u(t) = —KJx(t) w.p. p;. Let A(i) := Aopen, — PK]. The resulting controlled
dynamics are given by

s

=

+

=
|

A(r(t))x(t)
x(0) = 0, (2)

where r(t) =4 w.p. p;, I[ID across time. In the literature, this belongs to a class of systems known as Ergodic
Parameter Linear Systems (EPLS) [9], which are said to be Ezponentially Almost Surely Stable (EAS) if
there exists p > 0 such that for any x(0),

]P’{wEQ

1
limsup - log [|x(t,w)|| < —pp = 1. (3)
t—o0 t

In other words, w.p. 1, the trajectories of the system decay to the origin exponentially fast. The random
variable A(w) := limsup,_, ., 7 log ||x(¢,w)| is called the Lyapunov Exponent of the system. For the EPLS in
(2),

t

[T A(r(s,w))x(0)

s=1
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where the equalities (x) and (}) are due to the ergodic law of large numbers. A good mixture controller
can now be designed by choosing {p1,--- ,py} such that A(w) < —p for some p > 0, ensuring exponentially
almost sure stability (subject to log ||A(¢)|| < O for some 7). As we show in the sequel, our policy gradient
algorithm (SoftMax PG) learns an improper mixture {p1,---,py} that (i) can stabilize the system even
when a majority of the constituent atomic controllers {K7, -, Ky} are unstable, i.e., converges to a mixture
that ensures that the average exponent A(w) < 0, and (ii) shows better performance than that each of the
atomic controllers. Stability corresponds to a specific, coarse-grained, cost measure, so we can expect to see a
similar phenomenon for more general cost structures.

2.2 Scheduling in Constrained Queueing Networks

Another ideal example that helps motivate the the need for improper learning, while simultaneously illustrating
its capabilities, is the problem of scheduling in a constrained queueing network. Such systems are widely
used to model communication networks in the literature [6].

The system, shown in Fig. 2a, comprises two queues fed by independent, stochastic arrival processes
A;(t),i € {1,2},t € N. The length of Queue ¢, measured at the beginning of time slot ¢, is denoted by
Qi(t) € Z4. A common server serves both queues and can drain at most one packet from the system in a
time slot®. The server, therefore, needs to decide which of the two queues it intends to serve in a given slot

3Hence, a constrained queueing system.



(we assume that once the server chooses to serve a packet, service succeeds with probability 1). The server’s
decision is denoted by the vector D(t) € A := {[0,0],[1,0],[0,1]}, where a “1” denotes service and a “0”
denotes lack thereof.

4
Az
extra capac.,ity achieved
012 b= B throulgg;:;?g;oper
Ql(t) C, — 1=
+—>
Al (t) —
D(t)
(0,¢)
Ag(t) —> (.0) R ™
C2
—>
Qa(1)

(b) K1 and K> by themselves can only stabilize C1 U Ca (gray
(a) Q4(t) is the length of Queue ¢ (i € {1,2}) at the beginning rectangles). With improper learning, however, we enlarge the
of time slot ¢, A;(t) is its packet arrival process and D(t) € set of stabilizable arrival rates by the triangle AABC shown in
{[0,0],[1,0],[0,1]}. purple, above.

Figure 2: Motivating example: Constrained queueing network with 2 queues. The capacity region of this network (see Fig. 2b) is
given by A := {)\GR%'_ AL+ A2 < 1}.

For simplicity, we assume that the processes (A;(t)),-, are both IID Bernoulli, with EA,(t) = A;. Note that
the arrival rate A = [A\1, \2] is unknown to the learner. Defining (z)" := max{0, 2}, V = € R, queue length
evolution is given by the equations

Qi(t+1) = (Qi(t) — Di(t)) " + Ai(t+1), i € {1,2}. (5)

Let F; denote the state-action history until time ¢, and P(.A) the space of all probability distributions on .A.
We aim to find a policy 7 : F; — P (A) to minimize the discounted system backlog given by

Jr(Q(0)) == Eq ) Z 7H(Q1(t) + Qa(t)) - (6)
=0

Any policy 7 with J(Q(0)) < oo, VQ(0) € Z2 is said to be stabilizing (or, equivalently, a stable policy). It
is well known that there exist stabilizing policies iff \; + Ao < 1 [45]. A stationary policy m,, ., defined by

[1a 0]7 w.p. Ui,
ey e2(Q) = ¢ [0,1], w.p. 2, and vQezZi (7)
[07 0]7 W.p. 1- M1 — p2,

can provably stabilize a system iff p; > \;,V i € {1,2}. Now, assume our control set consists of two stationary
policies K, Ko with Ky = 7.1, K1 = m1_. . and sufficiently small € > 0. That is, we have M = 2 controllers
K1, K. Clearly, neither of these can, by itself, stabilize a network with A = [0.49, 0.49].

However, an improper mixture of the two that selects K7 and Ky each with probability 1/2 can. In fact, as
Fig. 2b shows, our improper learning algorithm can stabilize all arrival rates in C; U Co U AABC, without
prior knowledge of [A1, A2]. In other words, our algorithm enlarges the stability region by the triangle AABC,
over and above C; U Cs.



We will return to these examples in Sec. 6, and show, using experiments, (1) how our improper learner
converges to the stabilizing mixture of the available policies and (2) if the optimal policy is among the
available controllers, our algorithm can find and converge to it. In addition, we will also demonstrate the
effectiveness of our approach towards more complicated path interference graphs.

3 Problem Statement and Notation

A (finite) Markov Decision Process (S, A,P,r, p,v) is specified by a finite state space S, a finite action space
A, a transition probability matrix P, where P (5|s,a) is the probability of transitioning into state § upon
taking action a € A in state s, a single stage reward function r : § x A — R, a starting state distribution p
over S and a discount factor v € (0, 1).

A (stationary) policy or controller w : S — P(A) specifies a decision-making strategy in which the learner
chooses actions (a;) adaptively based on the current state (s;), i.e., a; ~ 7(s;). 7 and p, together with P,
induce a probability measure P’J on the space of all sample paths of the underlying Markov process and we
denote by E7 the associated expectation operator. The value function of policy 7 (also called the value of
policy 7), denoted by V7™ is the total discounted reward obtained by following , i.e.,

—E”Zvrst,at (8)

t=0

Improper Learning. We assume that the learner is provided with a finite number of (stationary) controllers
C:={Ki,---,Ku} and, as described below, set up a parameterized improper policy class Z,,7(C) that
depends on C. The aim therefore, is to identify the best policy for the given MDP within this class, i.e.,

7 = argmax V™ (p). (9)
71'El-soft(c)

We now describe the construction of the class Zgo5:(C).

The Softmax Policy Class. We assign weights 6,, € R, to each controller K,, € C and define 0 :=
[01,- - ,0r]. The improper class Zs,; is parameterized by 6 as follows. In each round, the policy mg € Zso5+(C)
chooses a controller drawn from softmax(6), i.e., the probability of choosing Controller K, is given by,

efm
Fg(m) = ™ (10)
Z eem/
m/=1

Note, therefore, that in every round, our algorithm interacts with the MDP only through the controller
sampled in that round (see Figure 3). In the rest of the paper, we will deal exclusively with a fixed and given
C and the resultant Z, . therefore, we overload the notation 7, (als) for any a € A and s € S to denote the
probability with which the algorithm chooses action a in state s at time t. For ease of notation, whenever the
context is clear, we will also drop the subscript 6 i.e., my, = m;. Hence, we have at any time ¢ > 0:

7o, (als) Z o, (M ,a). (11)

Since we deal with gradient-based methods in the sequel, we define the value gradient of policy g € Zso ¢, by
VoV = d‘éet We say that V™ is S-smooth if VoV™ is S-Lipschitz [2]. Finally, let for any two integers a
and b, I, denote the indicator that a = b.
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Figure 3: A black-box view of our improper learning approach through softmax policy gradient.

Contrast with traditional the PG approach: We emphasize that this problem is fundamentally different

from the traditional policy gradient approach where the parameterization completely defines the policy in

terms of the state-action mapping. One can use the methodology followed in [30], by assigning a parameter

0s,m for every s € S,m € [M]. With some calculation, it can be shown that this is equivalent to the tabular

setting with S states and M actions, with the new ‘reward’ defined by r(s,m) := Y K,,(s,a)r(s,a) where
acA

r(s,a) is the usual expected reward obtained at state s and playing action a € A. By following the approach
in [30] on this modified setting, it can be shown that the policy converges for each s € S, mg(m*(s) | s) =1,
for every s € S, which is the optimum policy.

However, the problem that we address, is to select a single controller (from within Z, ¢, the convex hull of
the given M controllers) , which would guarantee maximum return if one plays that single mixture for all
time, from among the given set of controllers.

4 Improper Learning using Gradients

In this and the following sections, we propose and analyze a policy gradient-based algorithm that provably
finds the best, potentially improper, mixture of controllers for the given MDP. While we employ gradient
ascent to optimize the mixture weights, the fact that this procedure works at all is far from obvious. We begin
by noting that V7™ as described in Section 3, is nonconcave in 0 for both direct and softmax parameterizations,
which renders analysis with standard tools of convex optimization inapplicable. Formally,

Lemma 4.1. (Non-concavity of Value function) There is an MDP and a set of controllers, for which
the maximization problem of the value function (i.e. (9)) is non-concave for both the SoftMax and direct
parameterizations, i.e., 0 — V™ is non-concave.

The proof follows from a simple counterexample whose construction we show in Sec. C in the Appendix.



Algorithm 1 Softmax Policy Gradient (SoftMax PG)

Input: learning rate n > 0, initial state distribution p
Initialize each 61 =1, for all m € [M], s1 ~ p
fort=1to T do

Choose controller my; ~ .

Play action a; ~ Ky, (st,:).

Observe sg11 ~ P(.]s¢, az).

Update: 041 = 0: + 1.V, V™% ().
end for

Our policy gradient algorithm, SoftMax PG, is shown in Algorithm 1. The parameters § € R™ which define
the policy are updated by following the gradient of the value function at the current policy parameters. The
policy mg(m) is defined as in (10). The algorithm proceeds by first choosing a controller my € [M] drawn
according to m; and then playing an action drawn from K (s¢,.). The parameters are updated via a gradient
descent step based on the derivative of the value function evaluated with the current parameters 6;.

Note 1. Although Lemma 4.1 suggests that the value function is non-concave in the parameter 6, the
motivating examples in Sec. 2 of an inverted pendulum and a simple queuing network, show situations where
a pure mizture of the base controllers can perform strictly better than each them individually.

5 Theoretical Convergence Results

In this section, we provide performance guarantees for SoftMaxPG, in terms of the rate of convergence to the
optimal mixture. Notice that the Update step requires knowledge of the value gradient Vy, V™, which may
not be available/computable in closed form. We divide this section into two parts depending on whether or
not the exact value function gradient is available to the learner.

5.1 Convergence Guarantees With Perfect Gradient Knowledge

The following result shows that with SoftMax PG, the value function converges to that of the best in-class
policy at a rate O (1/t). Furthermore, the theorem shows an explicit dependence on the number of controllers
M, in place of the usual |S].

Theorem 5.1 (Convergence of Policy Gradient). With {6;},>1 generated as in Algorithm 1 and using a
2

learning rate n = %, forallt > 1,

&

1

E
L w

772—1—4'7—1—5)
J7

(1 —=7)°

Note 2. The quantity c in the statement is the minimum probability that SoftMaxz PG puts on the controllers
for which the best mixture T puts positive probability mass, i.e, ¢ := inf;>q mg, (m). While

Vi(p) = V™ (p) < %M (

min
me{m’e[M]:m*(m’/)>0}
we currently do not supply a lower bound for ¢, empirical studies presented in Sec. 6 clearly show that c is
indeed strictly positively lower bounded, rendering the bound in (12) non vacuous.

Proof sketch of Theorem 5.1. We highlight here the main steps of the proof. We begin by showing that
V™ () is B— smooth, for some 5 > 0.



Lemma 5.2. V7™ (u) is %-smooth.

Next, we derive a new Lojaseiwicz-type inequality for our probabilistic mixture class, which lower bounds the
magnitude of the gradient of the value function.
Lemma 5.3 (Non-uniform Lojaseiwicz inequality).

—1

) 1 i
Ve > - i _p_ * _ 1/ )
H 507 (1) i (m:g%igowm) olllFz V*(p) = V7™ (p)]

The proof of Theorem 5.1, then follows by combining Lemmas 5.2 and 5.3 followed by an induction argument
over t > 1. Please see the appendix for details of the proof. O

e Analytical Novelties. We note here that while the basic recipe for the analysis of Theorem 5.1 is
similar to [30], we stress that our setting does not directly inherit the intuition of standard PG (sPG)
analysis.

— With |S x A| < oo, the sPG analysis critically depends on the fact that a deterministic optimal
policy exists and shows convergence to it. Our setting enjoys no such guarantee.

— The value function gradient in sPG has no ‘cross contamination’ from other states, so modifying
the parameter of one state does not affect the values of the others. Our setting cannot leverage
this since the value function gradient possesses contributions from all states (see Lemma E.2
in appendix). Hence, our analysis becomes more intricate than existing techniques or simple
modifications thereof.

e Bandit-over-bandits. For the special case of S = 1, which is the Multiarmed Bandits, each controller
is a probability distribution over the A arms of the bandit. This is different from the standard MABs
because the learner cannot choose the actions directly, instead chooses from a given set of controllers,
to play actions. We call this special case as bandits-over-bandits. We obtain a convergence rate of
O (M?/t) to the optimum and recover the well-known M?log T regret bound when our softmax PG
algorithm is applied to this special case. We refer the readers to the appendix for details of this result,
and move to the special case of MAB when the learner uses estimates of the gradient of the value
function.

5.2 Convergence Guarantees With Estimated Gradients

For the bandits-over-bandits case when exact value gradients are unavailable, we parameterize the policy
simplex P([M]) directly, i.e., m(m) = 0:(m),¥Ym € [M] (see Algorithm 2). At each round ¢ > 1, the learning
rate for 1 is chosen asynchronously for each controller m, to be am;(m)?, to ensure that we remain inside
the simplex, for some a € (0,1). To justify its name as a policy gradient algorithm, observe that in order to
minimize regret, we need to solve the following optimization problem:

M
7r€r7r31(1[121\/1]) mzz:l m(m) (tu(m ) — t;t(m))-

A direct gradient with respect to the parameters m(m) gives us a rule for the policy gradient algorithm. The
other changes in the update step (eq 13), stem from the fact that true means of the arms are unavailable and
importance sampling.



Algorithm 2 Projection-free Policy Gradient (for MABs)

Input: learning rate n € (0, 1)
Initialize each 71 (m) = 47, for all m € [M].
fort=1to T do

m,(t) < argmax ¢ (m)

me[M]

Choose controller my ~ .

Play action a; ~ K,

Receive reward R,,, by pulling arm a;.

Update Vm € [M], m # m.(t) :

Rl R ool
7Tt+1(m) = ﬂ't(m) + n ( _ (t) (t)>

m(m)  m(ma(t))

Set mp1(ma(t) =1— > mp1(m).
m##m, (t)
end for

We have the following result for the bandit-over-bandits improper learning problem (the proof appears in the
Appendix).

Theorem 5.4. For a chosen sufficiently small, (7¢) is a Markov process, with m(m*) — 1 as t — o0, a.s.

177 aAmin

mz#Em*

Further the regret till any time T is bounded as R(T) = O | == Y. —Rp—log T> , where Aj :=r(m*) —

r(j),7 € [M] and Apipn := min A,,.
me[M]

Although we obtain a similar log T regret bound for the case of noisy gradient estimates, we note that the
techniques used are quite different from those used in Theorem 5.1. The proof proceeds by showing that the
the expected time for 7;(m*) to cross any fixed threshold in (0, 1] is finite. This, along with showing that the
process {m(m*)} is a supermartingale and invoking Doob’s convergence theorem, helps to prove the regret
bound.

Note 3. The “cost” of not knowing the true gradient seems to cause the dependence on A, in the regret,
as is not the case when true gradient is available (see Theorem D.1 and Corollary D.1.1). The dependence on
Apin as is well known from the work of [23], is unavoidable.

Note 4. The dependence of a on A, can be removed by a more sophisticated choice of learning rate, at
the cost of an extra logT dependence on regret [16].

We note that it is an open and challenging task to show convergence guarantees for our policy gradient
approach over improper mixtures for general MDPs with estimated (noisy) gradients; indeed, such rates are
not yet known even for the basic softmax PG scheme for the tabular MDP setting. The difficulty primarily
seems to lie in the fact that the constant c for the perfect gradient case now becomes stochastic, and showing
that it stays bounded away from 0 in some probabilistic sense is non-trivial.

6 Simulation results

We now discuss the results of implementing our algorithms on the inverted pendulum and the constrained
queueing examples described in Sec. 2. Since neither value functions nor value gradients for these problems



are available in closed-form, we modify SoftMax PG (Algorithm 1) to make it generally implementable
using a combination of (1) rollouts to estimate the value function of the current (improper) policy and (2)
simultaneous perturbation stochastic approximation (SPSA) to estimate its value gradient. The gradient
estimation algorithm, GradFst, is shown in Algorithm 4.

6.1 Approximation of Softmax PG

In order to estimate the value gradient, we use the approach in [18], noting that for a function V : RM — R,

the gradient, VV,
M
VV(0) =~ E[(V(0+ a.u)—V(0))u] = (14)
where a € (0,1). If w is chosen to be uniformly random on unit sphere, the second term is zero, ie.,
E[(V(0+au) — V() u] .2 =E[(V(0 + au)) u] . 2L
The expression above requires evaluation of the value function at the point (6 + a.ut). Since the value function
may not be explicitly computable, we employ rollouts, for its evaluation.

Algorithm 4 GradEst (subroutine for SPGE)

Algorithm 3 Softmax PG with Gradient 1: Input:. P(.)hcy. parameters 6, parameter o > 0, Initial
. . state distribution u.
Estimation (SPGE) 5
2: for i =1 to #runs do
1: Input: learning rate n > 0, pertur- 3wl ~ Unif(SM-1).
bation parameter o > 0, Initial state 4 0, =0+ aul
distribution p 5. 7o = softmax(f,)
2: Initialize each 8}, = 1, for all m € [M], 6: forl=1to #rollouts do
S1~H 7 Generate trajectory
3 fOr t= 1 tOTdO (807a0?T0?sl7a17r1)"-asltaa/lt)’rlt) uSing the
4:  Choose controller m; ~ . policy 7o : and so ~ p.
5. Play action a; ~ Ky, (s¢,:). L &
6:  Observe si11 ~ P(.|s¢,a4). 8: reward” = ZO 7T
—_— J:
7. Ve V™ (1) = GradEst(0;, o, i) 9: end for
8:  Update: - 10:  mr(i) = mean(reward)
Gt = 0t + 1.V Vo (u). 11: end for
9: end for L T
: 12: GradValue = o 2_:1 mr(i).u. 7.

13: Return: GradValue.

Note that all of the simulations shown have been averaged over #L = 20 trials, and the mean and standard
deviations plotted. We also show empirically that the constant ¢ in Theorem 5.1 is indeed strictly positive.

#L
In the sequel, for every trial [ € [#L], let & := inf min 7o, (m), and ¢ := 2= > é. Also let
4 Y [# ] ¢ 1<s<t me{m’€[M]:m*(m/)>0} eb( ) t #L l; t
¢:= min minél. That is the sequences {Eé}zﬂ:’*ﬁ:l define the minimum probabilities that the algorithm puts,

le[#L] 1T
over rounds 1 : ¢ in trial [, on controllers with 7*(-) > 0. {¢;}1_, represents its average across the different
trials, and ¢ is the minimum such probability that the algorithm learns across all rounds 1 < ¢ < T and across
trials. We note her that in all the simulations, the empirical trajectories of ¢; and ¢ become flat after some
initial rounds and are bounded away from zero, supporting our conjecture that the constant ¢ in Theorem 5.1
does not decay to zero.



6.2 The Inverted Pendulum System
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(a) Cartpole simulation with { K1 = Kopt, K2 = Kopt+A}. (b) Cartpole simulation with {K1 = Kopt — A, K2 =
our algorithm converging to the best controller. Kopt+A}. Softmax PG algorithm converges to a improper

mixture of the two base controllers.

Figure 4: Softmax policy gradient algorithm applied to the cartpole control. Each plot shows (a) the learnt probabilities of
various base controllers over time, and (b) the minimum probability ¢; and ¢ as described in the text.

We study two different settings for the Inverted Pendulum example. Let K,,; be the optimal controller for
the given system, computed via standard procedures (details can be found in [7]). We set M = 2 and consider
two scenarios: (i) the two base controllers are C = {K,pt, Kopr + A}, where A is a random matrix, each entry
of which is drawn IID N(0,0.1), (ii) C = {Kopt — A, Kope + A}, In the first case a corner point of the simplex
is optimal. In the second case a strict improper mixture of the available controllers is optimum. As we can
see in Fig. 4a and 4b our policy gradient algorithm converges to the best controller/mixture in both the
cases. The details of all the hyperparameters for this setting are provided in the appendix. We note here
that in the second setting even though none of the controllers, applied individually, stabilizes the system,
our Softmax PG algorithm finds and follows a improper mixture of the controllers which stabilizes the given
Inverted Pendulum.

We investigate further the example in our simulation in which the two constituent controllers are K,,; + A
and K,p: — A. We use OpenAl gym to simulate this situation. In the Figure 4b, it was shown our Softmax
PG algorithm (with estimated values and gradients) converged to a improper mixture of the two controllers,
ie., &~ (0.53,0.47). Let Kcony be defined as the (randomized) controller which chooses K7 with probability
0.53, and K, with probability 0.47. Recall from Sec. 2.1 that this control law converts the linearized cartpole
into an Ergodic Parameter Linear System (EPLS). In Table 1 we report the average number of rounds
the pendulum stays upright when different controllers are applied for all time, over trajectories of length
500 rounds. The third column displays an interesting feature of our algorithm. Over 100 trials, the base
controllers do not stabilize the pendulum for a relatively large number of trials, however, K o, successfully
does so most of the times.

We mention here that if one follows K™, which is the optimum controller matrix one obtains by solving the
standard Discrete-time Algebraic Riccatti Equation (DARE) [7], the inverted pendulum does not fall over
100 trials. However, as indicated in Sec.1, constructing the optimum controller for this system from scratch
requires exponential, in the number of state dimension, sample complexity [12]. On the other hand K ony
performs very close to the optimum, while being sample efficient.



Table 1: A table showing the number of rounds the constituent controllers manage to keep the inverted pendulum upright.

Controller Mean number of rounds # Trials out of 100 in which
before the pendulum falls A 500 the pendulum falls before 500 rounds
K1 (Kopt + A) 403 38
Koy(Kopt — A) 355 46
Keony 465 8

6.3 Constrained Queueing Network

We present simulation results for the following networks.

A Two Queue Network With Fixed Arrival Rates. We study two different settings here: (1) in the
first case the optimal policy is a strict improper combination of the available controllers and second (2) where
it is at a corner point, i.e., one of the available controllers itself is optimal. Our simulations show that in both
the cases, PG converges to the correct controller distribution. We provide all details about hyperparameters
in Sec. F in the Appendix.

Recall the example that we discussed in Sec. 2.2. We consider the case with Bernoulli arrivals with rates
A = [A1, A2] and are given two base/atomic controllers {K7, K5}, where controller K; serves Queue ¢ with
probability 1, i = 1,2. As can be seen in Fig. 5a when A = [0.49,0.49] (equal arrival rates), GradEst converges
to an improper mixture policy that serves each queue with probability [0.5,0.5]. Note that this strategy
will also stabilize the system whereas both the base controllers lead to instability (the queue length of the
unserved queue would obviously increase without bound). Figure 5b, shows that with unequal arrival rates
too, GradEst quickly converges to the best policy.

Fig. 5c shows the evolution of the value function of GradEst (in blue) compared with those of the base
controllers (red) and the Longest Queue First policy (LQF) which, as the name suggests, always serves the
longest queue in the system (black). LQF, like any policy that always serves a nonempty queue in the system
whenever there is one?, is known to be optimal in the sense of delay minimization for this system [31]. See
Sec. F in the Appendix for more details about this experiment.

Finally, Fig. 5d shows the result of the second experimental setting with three base controllers, one of which
is delay optimal. The first two are K7, K5 as before and the third controller, K3, is LQF. Notice that K, K»
are both queue length-agnostic, meaning they could attempt to serve empty queues as well. LQF, on the
other hand, always and only serves nonempty queues. Hence, in this case the optimal policy is attained at
one of the corner points, i.e., [0,0,1]. The plot shows the PG algorithm converging to the correct point on
the simplex.

Non-stationary arrival rates. Recall the example that we discussed in Sec. 2.2 of two queues. The
scheduler there is now given two base/atomic controllers C := {K;, Ky}, i.e. M = 2. Controller K; serves
Queue 7 with probability 1, ¢ = 1,2. As can be seen in Fig. 7b, the arrival rates A to the two queues vary over
time (adversarially) during the learning. In particular, X varies from (0.3,0.6) — (0.6,0.3) — (0.49, 0.49).
Our PG algorithm successfully tracks this change and adapts to the optimal improper stationary policies in
each case. In all three cases a mixed controller is optimal, and is correctly tracked by our PG algorithm.

Path Graph Networks. Consider a system of parallel transmitter-receiver pairs as shown in Figure 6a.
Due to the physical arrangement of the Tx-Rx pairs, no two adjacent systems can be served simultaneously
because of interference. This type of communication system is commonly referred to as a path graph network

4Tie-breaking rule is irrelevant.
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Figure 5: Softmax policy gradient algorithm applies show convergence to the best mixture policy.

[32]. Figure 6b shows the corresponding conflict graph. Each Tx-Rx pair can be thought of as a queue, and
the edges between them represent that the two connecting queues, cannot be served simultaneously. On the
other hand, the sets of queues which can be served simultaneously are called independent sets in the queuing
theory literature. In the figure above, the independent sets are {0, {1},{2},{3},{4},{1,3},{2,4},{1,4}}.

The scheduling constraints here dictate that Queues ¢ and i+ 1 cannot be served simultaneously for i € [N —1]
in any round ¢ > 0. In each round ¢, the scheduler selects an independent set to serve the queues therein.

Rx1 Queue 1 ] O
Interfering
link Queues connected by
Rx2 Queue 2 ] O edges cannot be
JEE— served simultaneously
Interfering
— .
link —
- Queue 3 ] O
—@ Rx3 |
Interfering
€ . _
link Queue 4 ] O
® FRx4 —
(a) A basic path-graph interference system with N = 4 (b) The associated conflict (interference) graph is a path-
communication links. graph.

Figure 6: An example of a path graph network. The interference constraints are such that physically adjacent queues cannot be
served simultaneously.

Let Q;(t) be the backlog of Queue j at time ¢. We use the following base controllers: (i) K7 : Max Weight

(MW) controller [45] chooses a set s; := argmax > Q;(¢), i.e, the set with the largest backlog, (ii) K> :
SeA  jes

Maximum Egress Rate (MER) controller chooses a set s; := argmax . I{Q,(t) > 0}, i.e, the set which has the
SeA  jes

maximum number of non-empty queues.We also choose K3, K4 and K5 which serve the sets {1, 3}, {2,4}, {1,4}
respectively with probability 1. We fix the arrival rates to the queues (0.495,0.495,0.495,0.495). It is well
known that the MER rule is mean-delay optimal in this case [32]. In Fig. 7a, we plot the probability of
choosing K, i € [5], learnt by our algorithm. The probability of choosing MER indeed converges to 1.

Finally, in Table 2, we report the mean delay values of the 5 base controllers we used in our simulation Fig.
Ta, Sec.6. We see the controller K5 which was chosen to be MER, indeed has the lowest cost associated, and



as shown in Fig. 7a, our Softmax PG algorithm (with estimated value functions and gradients) converges to
it.

Table 2: Mean Packet Delay Values of Path Graph Network Simulation.

Controller  Mean delay (# time slots) over 200 trials = Standard deviation

K1 (MW) 22.11 0.63
Ky(MER) 20.96 0.65
K3({1,3}) 80.10 0.92
K4({2,4}) 80.22 0.90
Ks5({1,4}) 80.13 0.91
Arrival rates: (0.3,0.6) — (0.6,0.3) — (0.49,0.49)
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Figure 7: Softmax policy gradient algorithm applied to the path graph scheduling task and 2-queue example with non-stationary
arrival rates. Each plot shows (a) the learnt probabilities of various base controllers over time, and (b) the minimum probability
¢ and ¢ as described in the text.

6.4 State Dependent controllers — Chain MDP

We consider a linear chain MDP as shown in Figure 8a. As evident from the figure, |S| = 10 and the learner
has only two actions available, which are A = {left,right}. Hence the name ‘chain’. The numbers on the
arrows represent the reward obtained with the transition. The initial state is s;. We let 510 as the terminal
state. Let us define 2 base controllers, K and Ks, as follows.

L je[9\{5}
Ki(left |s;) =401, j=5
0, j=10.

L je9o\{6}
Kg(left | Sj) =401, 57=6
0, j=10.
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Figure 8: An example where the otpimum controller is state-dependent.

and obviously Kj(right|s;) = 1 —K;(left|s;) for ¢ = 1,2. An improper mixture of the two controllers, i.e.,
(K7 + K2)/2 is the optimal in this case. We show that our policy gradient indeed converges to the ‘correct’
combination, see Figure 8b. We here provide an elementary calculation of our claim that the mixture
Kpix = (K1 + K>2)/2 is indeed better than applying K; or K for all time. We first analyze the value function
due to K;,i = 1,2 (which are the same due to symmetry of the problem and the probability values described).

> Arelar )| =01 x97 +0.1x0.9%x 0.1 x4 +0.1x0.9x0.1x09x0.1xy"?
t>0

)7 0.1 x ~?

:0.1><79(1+(0.1x0.9v2)+(0-1X()-9V2)2+ T101x09x42

We will next analyze the value if a true mixture controller i.e., Kyiy is applied to the above MDP. The
analysis is a little more intricate than the above. We make use of the following key observations, which are
elementary but crucial.

1. Let Paths be the set of all sequence of states starting from s;, which terminate at s;¢9 which can be
generated under the policy Kyiy. Observe that

VK " (1) Z ,Ylength(p)[p L] (15)

pEPaths
Recall that reward obtained from the transition sg — s1¢ is 1.
2. Number of distinct paths with exactly n loops: 2".
3. Probability of each such distinct path with n cycles:

= (0.55 x 0.45) x (0.55 x 0.45) x ... (0.55 x 0.45) x0.55 x 0.55 x 472"

n times

= (0.55) x 7° (0.55 x 0.45 x +*)"



4. Finally, we put everything together to get:

Ko (1) Z 2" % (0.55)% x 72 x (0.55 x 0.45 x 42)"

B (0.55)*
1 —2x0.55 x 0.45 x 2

> VK'i (81>.

This shows that a mixture performs better than the constituent controllers. The plot shown in Fig. 8b
shows the Softmax PG algorithm (even with estimated gradients and value functions) converges to a (0.5,0.5)
mixture correctly.

In all the simulations shown above we note that the empirical trajectories of ¢; and ¢ become flat after some
initial rounds and are bounded away from zero. This supports our conjecture that the constant ¢ in Theorem
5.1 does not decay to zero, rendering the theorem statement non-vacuous.

We further note that our algorithm performs well in challenging scenarios, even with estimates of the value
function and its gradient. Analyzing convergence with estimated gradients will form part of future work.

We thus see that our algorithm performs well in challenging scenarios, even with estimates of the value
function and its gradient. Analyzing convergence with estimated gradients will form part of future work.

7 Conclusion and Discussion

In this paper, we considered the problem of choosing the best mixture of controllers for Reinforcement
Learning and made the first attempt at improper learning in the RL setting. One natural option in this case
is to run each controller separately for a long time and then choose the best one based on estimated returns.
While quite plausible, this “explore-then-exploit” approach is likely to be severely suboptimal in terms of
rates. Moreover, it is not clear how to obtain the best mixture of base controllers as opposed to the best base
controller. We recall the queuing example (Sec. 2.2) where the best mixture may be strictly superior each
base controller.

This work opens up a plethora of avenues. One can consider a richer class of mixtures that can look at the
current state and mix accordingly. For example, an attention model can be used to choose which controller
to use, or other state-dependent models can be relevant. The learning architecture should not change
dramatically since we are using gradients for the selection process which currently is simple, but may be
replaced by a more complex architecture. Another example is to artificially force switching across controllers
to occur less frequently than in every round. The can help create momentum and allow the controlled process
to 'mix’ better, when using complex controllers.

Finally, in the present setting, the base controllers are fixed. It would be interesting to consider adding
adaptive, or 'learning’ controllers as well as the fixed ones. Including the base controllers can provide baseline
performance below which the performance of the learning controllers would not drop.
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Glossary of Symbols

. §: State space

A : Action space

. S : Cardinality of S
. A : Cardinality of A
. M : Number of controllers

. K; Controller i, i =1,--- , M. For finite SA space MDP, K; is a matrix of size S x A, where each row

is a probability distribution over the actions.

. C : Given collection of M controllers.
. Zsof¢(C) : Improper policy class setup by the learner.

. 6 € RM : Parameter assigned to the controllers to controllers, representing weights, updated each round

by the learner.
7(.) : Probability of choosing controllers

(. | s) Probability of choosing action given state s. Note that in our setting, given m(.) over
controllers (see previous item) and the set of controllers, m(. | s) is completely defined, i.e., 7(a | s) =
M

> w(m) K (s,a). Hence we use simply 7 to denote the policy followed, whenever the context is clear.
m=1
r(s,a) : Immediate (one-step) reward obtained if action a is played in state s.
P(s | s,a) Probability of transitioning to state s’ from state s having taken action a.

V7(p) i=Eaomp [V (s0)] = B} 3720 7' (54,a¢) Value function starting with initial distribution p over
states, and following policy 7.

Q" (s,a) :=E {r(s,a)Jr’y Y P(s | s,a)V“(s’)].

s'eS

Q" (s,m) :=E [Z Km(s,a)r(s,a) +~ Y. P(s' | s,a)V”(s’)}.

acA s'eS
AT (s,a) = Q" (s,a) = V7™ (s)
A(s,m) := Q™ (s,m) — V™(s).

o0
dl = Esymr {(1 -y > P [st =5 ‘ so,7r7P]} Denotes a distribution over the states, is called the
t=0

“discounted state visitation measure”

c:infy> min 7o, (mM).
me{m’e[M]:x*(m’)>0}
dr" d=" (s)
£ = maxg &= .
I S p(s)
o0




o

Figure 9: An example of an MDP with controllers as defined in (16) having a non-concave value function. The MDP has S =5
states and A = 2 actions. States s3,s4 and s5 are terminal states. The only transition with nonzero reward is so — s4.

B Details of simulations settings for the inverted pendulum sys-
tem

In this section we supply the adjustments we made for specifically for the cartpole experiments. We first

mention that we scale down the estimated gradient of the value function returned by the GradEst subroutine

(Algorithm 4) (in the inverted pendulum simulation only). The scaling that worked for us is ﬁ.
™(n

Next, we provide the values of the constants that were described in Sec. 2.1 in Table 3.

Parameter Value
Gravity ¢ 9.8
Mass of pole m;,, 0.1
Length of pole [ 1
Mass of cart my 1
Total mass m, 1.1

Table 3: Values of the hyperparameters used for the Inverted Pendulum simulation

C Non-concavity of the Value function

We show here that the value function, over improper mixtures, is in general non-concave, and hence standard
convex optimization techniques for maximization may get stuck in local optima. We note once again that

this is different from the non-concavity of V™ when the parameterization is over the entire state-action space,
: SxA
ie, R .

We show here that for both SoftMax and direct parameterization, the value function is non-concave where,

by “direct” parameterization we mean that the controllers K, are parameterized by weights 0,, € R, where
M

0; >0, Vi € [M] and > 0; = 1. A similar argument holds for softmax parameterization, which we outline in

i=1
Note 5.

Lemma C.1. (Non-concavity of Value function) There is an MDP and a set of controllers, for which the
mazimization problem of the value function (i.e. (9)) is non-concave for SoftMaz parameterization, i.e.,
0 — V™ s non-concave.

Proof. Consider the MDP shown in Figure 9 with 5 states, s1,...,s5 . States s3,s4 and s5 are terminal



states. In the figure we also show the allowed transitions and the rewards obtained by those transitions.
Let the action set A consists of only three actions {a1, aq,a3} = {right,up,null}, where 'null’ is a dummy
action included to accommodate the three terminal states. Let us consider the case when M = 2. The two
controllers K; € R¥*4 i = 1,2 (where each row is probability distribution over .A) are shown below.

1/4 3/4 0 3/4 1/4 0
3/4 1/4 0 1/4 3/4 0
Ki=|0 0 1|,K;=|0 0 1]. (16)
0 0 1 0 0 1
0 0 1 0 0 1

Let 0V = (1,0)" and 0®) = (0,1)". Let us fix the initial state to be s;. Since a nonzero reward is only earned
during a sg — s4 transition, we note for any policy 7 : A — S that V™ (s1) = m(ay|s1)7(az|s2)r. We also
have,

1/2 1/2 0
/2 1/2 0
(Ki+K)/2=|0 0 1
0 0 1
0 0 1

We will show that 117 4 1ymae >y (10 +0@) 72

We observe the following.
V™o (51) = VEL(s)) = (1/4).(1/4).r = 1/16.
V7o (s1) = V2 (s1) = (3/4).(3/4).r = 9r/16.

where VX (s) denotes the value obtained by starting from state s and following a controller matrix K for all
time.

Also, on the other hand we have,
VI @)y KR 2 (5)) = (1/2).(1/2).0 = 1/4,

Hence we see that,
1 - 1 - ﬂ(9(1)+9(2))/2
§V oD 4 §V o =¢r/324+9r/32=10r/32=1.25r/4 > r/4 =V .

This shows that 8 — V™ is non-concave, which concludes the proof for direct parameterization.

Note 5. For softmaz parametrization, we choose the same 2 controllers K1, Ko as above. Fiz some e € (0,1)

and set 01 = (log(1 — €),loge)" and 8@ = (loge, log(1 — €))*. A similar calculation using softmaz projection,
M

and using the fact that wg(als) = > we(m) K, (s,a), shows that under 61 we follow matriz (1 —e)K; + Ko,

m=1
which, yields a Value of (1/4+¢/2)*r. Under 6 we follow matriz e Ky + (1 — £) Ko, which yields a Value of
(3/4—¢/2)*r. On the other hand, (1) + 0)/2 amounts to playing the matriz (K1 + K»)/2, yielding the a
value of 7/4, as above. One can verify easily that (1/4+¢/2)*r + (3/4 —/2)*r > 2.r/4. This shows the
non-concavity of 0 — V7™ under softmax parameterization.



D Proof details for Bandit-over-bandits

In this section we consider the instructive sub-case when S = 1, which is also called the Multiarmed Bandit.

We provide regret bounds for two cases (1) when the value gradient % (in the gradient update) is
available in each round, and (2) when it needs to be estimated.

Note that each controller in this case, is a probability distribution over the A arms of the bandit. We consider
the scenario where the agent at each time ¢ > 1, has to choose a probability distribution K,,, from a set of
M probability distributions over actions .A. She then plays an action a; ~ K,,,. This is different from the
standard MABs because the learner cannot choose the actions directly, instead chooses from a given set of
controllers, to play actions. Note the V function has no argument as S = 1. Let u € [0,1]* be the mean
vector of the arms A. The value function for any given mixture = € P([M]),

VT=E [Z’ytn | W] = Z’Yt]E [re | 7]
t=0 t=0
s M
YT
t=0 acAm=1
- 1«
_— T = —

where the interpretation of t# is that it is the mean reward one obtains if the controller m is chosen at any
round t. Since V7 is linear in 7, the maximum is attained at one of the base controllers 7* puts mass 1

on m* where m* := argmax V= and V= is the value obtained using K,, for all time. In the sequel, we
me[M]

assume A; :=th. —!' > 0.

D.1 Proofs for MABs with perfect gradient knowledge

With access to the exact value gradient at each step, we have the following result, when Softmax PG
(Algorithm 1) is applied for the bandits-over-bandits case.

Theorem D.1. Withn = @ and with 65 = 1/M for all m € [M], with the availability for true gradient,
we have ¥Vt > 1,

2
VTr* _Vﬂ'gt < L%
1—v t
Also, defining regret for a time horizon of T" rounds as
T
R(T):=> V™ V™, (18)
t=1

we show as a corollary to Thm. D.1 that,

M?
R(T) < min{ > log T y |5 Mﬁ}.
11— 11—

Corollary D.1.1.




Proof. Recall from eq (17), that the value function for any given policy m € P([M]), that is a distribution
over the given M controllers (which are itself distributions over actions .A) can be simplified as:

| M | M
Vi= —— Tt Ky = —— T th,

where 1 here is the (unknown) vector of mean rewards of the arms A. Here, t¥ := p'K,,, i =1,--- | M,
represents the mean reward obtained by choosing to play controller K,,,m € M. For ease of notation, we
will drop the superscript p in the proofs of this section. We first show a simplification of the gradient of the
value function w.r.t. the parameter 0. Fix a m € [M],

9 L M, | M
Ly — _ = — / ’— .
50 VT = T mEZI 0. mo(m)ty, T m§:1 wo(m') {Lm: — mo(m)} vy (19)

Next we show that V™ is f— smooth. A function f: R™ — R is B— smooth, if V¢’,0 €¢ RM

1) 50) - (108 ~0)] < T 10"~ 012.

Let S := %V“e. This is a matrix of size M x M. Let 1 < 1,5 < M.

d (d
o= e
su=(a (@), o

1 d(me (i) (x(i) = m5v))

T 1, do,; (21)
- 5 (B x) — )+ ma( 20 (22)
=1 i 5 (70 () (v(i) — mge) — mo(i)ma (5) (x(i) — mor) — o ()7 () (x(4) — mpv)) - (23)
Next, let y € RM,
M M
Syl =D Siui)y ()
i=1 j=1
1 M M
= 1 |20 2 (o) (e(0) = 56) = o i) (4) () = ) — o ()mo4)(3) — 5 ()
i=1 j=1
1 M M M
= [ W) - Ty - 230 S mimG)(E) - Theuu()
i=1 =1 j=1
1 | & M M
=1 Zm(z)(t(z) — mpe)y(i)? — QZWQ(Z)('C(Z) — )y (i) Z’]‘[‘g(])y(])
i=1 i=1 j=1
1 |& M M
< R Zﬂe(z)(t(z) — mpe)y(i)?| + T Zm(z)(t(z) — mav)y(i) Zwe(])y(])
i=1 i=1 j=1
< o 0 (e = 0| B Oyl + o © (e = 70|yl - ol vl



The last equality is by the assumption that reward are bounded in [0,1]. We observe that,

M
Mo © (v = mu)l], = D [mo(@)(x(i) — o)
m=1
M
= mo(7) ’t(l) — Tt
m=1
= _max |e(i) — mgr| < 1

Next, for any i € [M],

|70 (i) (x() — m5e)| = |m(i)e(i) — ma(i)*r(d) — Y _ ma(i)ma(j)e(s)
i
— (i) (1 — 76(2)) + mo(3)(1 — m(i)) < 2.1/4 = 1/2.
Combining the above two inequalities with the fact that ||mg||; =1 and [|y||, < [lyll5, we get,
2
L—n

1 2
o © (v = m50)||y - Il oo - Imally Nlloe < ——(1/242) |lyll5 -

TS <
|y" S| T

1—~ Hﬁe o (- Wgt)Hoo ly® y||1+

Hence V™ is f—smooth with g =

5
2(1—v)"

We establish a lower bound on the norm of the gradient of the value function at every step t as below (these
type of inequalities are called Lojaseiwicz inequalities [27])

Lemma D.2. [Lower bound on norm of gradient]

H oV

70 =Ty, . (V’T* — V”) .

2

Proof of Lemma D.2.

Proof. Recall from the simplification of gradient of V7, i.e., eq (19):

8 Uy’ ]‘ - li /
87‘/ = 1~ mo(m) {Tmm: — mo(m') } vy,

Taking norm both sides,

M
H;VM - ﬁ ;Wm))Q (t(m) — 7Tv)?
1 ; - -
= m) (em) = e
1 § ) .
-1 77(71’(771 ) (x(m*) — 7't)
= 75 ) (" T

Il
E)
3
*
<

=‘*
|
<
3
S



where 7m* = e,,+. O
We will now prove Theorem D.1 and corollary D.1.1.

Proof. First, note that since V7 is smooth we have:

d 5 2
To, _ /70, < —{( — To: 0 —0 — |8 -0
\74 V041 <d9tV yOig1 t> + 21— 7) 10241 — Ol

2 2

5 2

155 )

2

1_7 . *1)2 " L) 2
<= (557 Gint momy? v v
—_———

The first equality is by smoothness, second inequality is by the update equation in algorithm 1.
Next, let 6; := V™ — V™. We have,

1—
(5,54,.1 - (St S —( 5 7) C?(StQ (24)

Claim: V¢ > 1,0; < (1577) 1.

We prove the claim by using induction on ¢ > 1.

Base case. Since 6; < ﬁ, the claim is true for all ¢ < 5.

Induction step: Let ¢; := m Fix a t > 2, assume §; < %.
Let g : R — R be a function defined as g(z) = = — éxQ. One can verify easily that g is monotonically

increasing in [O, %] Next with equation 25, we have

1
Spy1 < 0 — — 07
t+1 t o1 t

This completes the proof of the claim. We will show that ¢; > 1/M in the next lemma. We first complete the
proof of the corollary assuming this.



1 5

5 1
We fix a T' > 1. Observe that, §; < = < =

1
i

T T

. 1 5logT
E VT VT = —— g (7* —7mp,)t < ————5 + 1.
P 1—y & (1—7)ck

Also we have that,

T T

T T

x 5 1 5T
E VT — VT — E 5t < v T E 6t2 < \/T E W(éf — 5t+1) < a
t=1 t=1 T

t=1 t=1 (1=7)

We next show that with 05,1) = 1/M,Vm, i.e., uniform initialization, inf;>1 ¢, = 1/M, which will then complete
the proof of Theorem D.1 and of corollary D.1.1.

Lemma D.3. We have inf;>1 g, (m*) > 0. Furthermore, with uniform initialization of the parameters 9,(,{),

i.e., 1/M,Ym € [M], we have infy>1 g, (m*) = 7.

Proof. We will show that there exists ¢¢ such that inf,>q mg, (m*) = 121<11t 7, (m™*), where to = min {¢ : mp, (m*) > C}.
txto

We define the following sets.

davrTe _ dvTe
= : > _, *
S1 {9 a0, a0, Ym #m }

Sy = {6 : mp(m™)

*) = me(m),Ym # m*}
S3 = {6 : mp(m™)

>
> C}

Note that Ss depends on the choice of C. Let C := %—;2. We claim the following;:

Claim 2. (i)0; € S1 = 0441 € Sy and (i1)0; € S1 = my,,, (M*) > mp, (M*).

Proof of Claim 2. (i) Fix a m # m*. We will show that if % > %, then dﬂi‘iz;*) > d(ﬁ}f&)' This

will prove the first part.
Case (a): mp,(m*) > mg,(m). This implies, by the softmax property, that 6;(m*) > 6;(m). After gradient
ascent update step we have:

* * dvmes
Ory1(m”) = 0:(m”) +77W

This again implies that 8,41 (m*) > 6;11(m). By the definition of derivative of V7 w.r.t 0; (see eq (19)),
dvre 1

o * T
dbyi1(m*)  1— 7779,,+1(m*)(t(m ) =M
1
= T lm) (t(m) — 7, ,v)
dvme

df;1(m)



This implies 041 € S;.
Case (b): mg,(m*) < mp,(m). We first note the following equivalence:

s > A e (st) = ) (1 ) o) )

which can be simplified as:
(tx(m”) —t(m)) <1 - ) (t(m*) — mye) = (¢(m”) —v(m)) (1 — exp (6:(m*) — 0:(m))) (x(m”) — mgr).

The above condition can be rearranged as:
t(m*) —t(m) = (1 —exp (6:(m*) — 0:(m))) (t(m*) — Wgtt) .

By lemma E.7, we have that V™+1 > V7o — 7T5t+1t > Wgtt. Hence,

W@(m*)

mo(m*)

T T
0 <t(m") —my,, v < 7yt

Also, we note:

Or41(m”) = Opy1(m) = 0,(m”) + UW — 01 (m) — ndﬂt(m) 2 0:(m”) — 0,(m).

Next, we observe that by the assumption 7;(m*) < m(m), we have

e (m*)

1—exp(0:(m*) —0(m)) =1— > 0.

me(m)

Hence we have,

(1= exp (B2 (m) = 1 (m)) (x(m*) = 74, v) < (1= exp (0 (m") = 0:(m))) (s(m") — 75,v)
<t(m*) —t(m).
Equivalently,
(1 _ T (m”)
Ter1(m)

Finishing the proof of the claim 2(i).
(ii) Let 0, € S1. We observe that:

)mwwwam<dwwwm>

7rt+1(m*) = ]pr(atﬂ(m*))

> exp(fi1(m))

m=1

exp(B,(m”) + n )

M
> exp(Bu(m) + n5s)

exp(B(m*) + 0 zdV"5)

WV

M -

> exp(0r(m) + 075 )
= =) )

S exp(6:(m))

This completes the proof of Claim 2(ii).



Claim 3. S, € S and S3 C Sy.

Proof. To show that Sy C Sy, let § € ¢Sy. We have mg(m™*) = mp(m), Vm # m*.

df;‘(/;) 1 i,ym(m*)(t(m*) — )
> ol (s(m) — )
v
df(m)

This shows that § € S1. For showing the second part of the claim, we assume 6 € S3 N SS, because if 6 € Sy,
we are done. Let m # m*. We have,

v qyme 1 T

)~ iy = T (o)) 75) — mom)(e(m) — 7))

M
1 * * . .
= | 2mo(m")(x(m )—mp)+ > mli)(x(i) — myv)
v i#Em*,m
1 M M
_ * . * T . * .
=== | 2mm)+ 30 ol | () = wf = 30 mali)(etm) — (i)
i#=m*,m i#=m*,m
1 M M
= m 2mp(m”) + . Z (i) | (¢(m*) — mge) — . Z ()
i#=m*,m i#=m*,m
1 M A M
= m 2mo(m”) + 4 Z (i) M Z ()
i#=m*,m i#=m*,m
M
Observe that, . me(i) =1 —7w(m*) — w(m). Using this and rearranging we get,
i#EFm*,m
avre avme 1 A A A 1 A
— > M1+ —=)—-(1-— 1-—— > 1—-— | >0.
ey~ > T () (1447) = (15 ) £ 7w (1= 7)) > T (1 57) >0
The last inequality follows because 6 € S3 and the choice of C'. This completes the proof of Claim 3. O

Claim 4. There exists a finite ¢y, such that 6;, € Ss.

Proof. The proof of this claim relies on the asymptotic convergence result of [2]. We note that their
convergence result hold for our choice of n = @ As noted in [30], the choice of 7 is used to justify the
gradient ascent lemma E.7. Hence we have my, —+1 as ¢t — oo. Therefore, there exists a finite ty such that

g, (m*) = C and hence 0y, € Ss. O

This completes the proof that there exists a ¢y such that 1r>1€ g, (M*) = 1<in<f mg, (M*), since once the ; € Ss,
t> St<to

by Claim 3, 6, € S;. Further, by Claim 2, Vt > to, 6, € S; and 7, (m*) is non-decreasing after ¢g. O



With uniform initialization 61 (m*) = 57 = 61(m), for all m # m*. Hence, mg, (m*) > g, (m) for all m # m*.

This implies 0, € So, which implies #; € S;. As established in Claim 2, §; remains invariant under gradient

ascent updates, implying ¢ty = 1. Hence we have that 11>1£1’ o, (m*) = mp, (m*) = 1/M, completing the proof of
t>

Theorem D.1 and corollary D.1.1. O

O

D.2 Proofs for MABs with noisy gradients

When value gradients are unavailable, we follow a direct policy gradient algorithm instead of softmax
projection as mentioned in Sec. 5.2. The full pseudo-code is provided here in Algorithm 2. At each round
t > 1, the learning rate for 7 is chosen asynchronously for each controller m, to be am;(m)?, to ensure that
we remain inside the simplex, for some « € (0,1). To justify its name as a policy gradient algorithm, observe
that in order to minimize regret, we need to solve the following optimization problem:

M
i, 3 )5, m) = 6, m),

A direct gradient with respect to the parameters m(m) gives us a rule for the policy gradient algorithm. The
other changes in the update step (eq 13), stem from the fact that true means of the arms are unavailable and
importance sampling.

We have the following result.

Theorem D.4. With value of o chosen to be less than ——2min— (1) is a Markov process, with m,(m*) — 1

m* _A'rrmn

as t — 00, a.s. Further the regret till any time T is bounded as

1 Ay,
T) < log T + C,
R L=y m;l* all, st C

where C := ﬁ > P{m(m*(t) < 3} < co.
=1

Proof. The proof is an extension of that of Theorem 1 of [16] for the setting that we have. The proof is
divided into three main parts. In the first part we show that the recurrence time of the process {m(m*)}i>1
is almost surely finite. Next we bound the expected value of the time taken by the process m:(m*) to reach 1.
Finally we show that almost surely, tlglgo m(m*) — 1, in other words the process {m(m*)};>1 is transient.

We use all these facts to show a regret bound.

Recall m,(t) := argmaxmi(m). We start by defining the following quantity which will be useful for the
me[M]
analysis of algorithm 2.

Let 7 :=min {t > 1:m(m*) > 3}.
Next, let S := {7 € P([M]) : .52 < 7(m*) < 3}.

In addition, we define for any a € R, S, := {m € P([M]) : =2 < w(m*) < L}. Observe that if 71(m*) > 1/a
and ma(m*) < 1/a then m € S,. This fact follows just by the update step of the algorithm 2, and choosing
n = am(m) for every m # m*.



AWLin

) R, we have that

Lemma D.5. For o > 0 such that a < 0

supIE[T | m :ﬂ < 0.
TeS

Proof. The proof here is for completeness. We first make note of the following useful result: For a sequence
of positive real numbers {a, },>1 such that the following condition is met:

a(n+1) < a(n) — b.a(n)?,

for some b > 0, the following is always true:
ai
140t

This inequality follows by rearranging and observing the a,, is a non-increasing sequence. A complete proof
can be found in eg. ([16], Appendix A.1). Returning to the proof of lemma, we proceed by showing that
the sequence 1/m(m*) — ¢t is a supermartingale for some ¢ > 0. Let A,,;, := A for ease of notation. Note
that if the condition on « holds then there exists an € > 0, such that (1 +¢)(1 4+ «) < v*/(t* — A), where
t* :=t(m*). We choose ¢ to be

an <

*

¢i= o —a(t* —A)(1+¢)>0.
Next, let = to be greater than M and satisfying:
x
—— < 1+e.
T —alM te

Let & := min{t > 1 : m(m*) > 1/x}. Since for ¢t = 1,...,& — 1, m.(t) # m*, we have my1(m*) =
(1 + a)m(m*) w.p. m(m*)r* and 711 (m*) = m(m*) + amy(m*)? /7 (ma)? w.p. 7 (ma)r.(t), where t,.(t) :=

t(mu(t)).

Let y(t) := 1/m(m*), then we observe by a short calculation that,

y(t) — 155y(), w.p.5
y(t) otherwise.
We see that,
E[y(t+1) [ H)] —y(t)
v Q y(t) v
= (y(t) — —uy(t)) + my )t (t).(y(f) + o —y(t)(—= + My )T (T
00 = Ty + e (0-(00) + 0B ) — () mm e (0)
ax*
<a(t* — - = —c.
<ot —A)(1+¢) T a c
The inequality holds because t,(t) < t*A and that m(m.) > 1/M. By the Optional Stopping Theorem [17],
x
—CB & A 2 Ely(&e nt) —Ely()] > -5

The final inequality holds because m (m*) > =2,

Next, applying the monotone convergence theorem gives theta E [£,] < ﬁ Finally to show the result

of lemma D.5, we refer the reader to (Appendix A.2, [16]), which follow from standard Markov chain
arguments. O



Next we define an embedded Markov Chain {p(s), s € Z } as follows. First let o(k) := min {¢t > 7(k) : m(m*) < £}
and 7(k) := min {t > o(k — 1) : m(m*) > £ }. Note that within the region [7(k), o (k)), m(m*) > 1/2 and in
[o(k), 7(k+ 1)), m:(m*) < 1/2. We next analyze the rate at which m;(m*) approaches 1. Define

p(s) := m, (m™) where ts =8+ Z T(i+1) —o(i))

k k+1
for s € Z(U(Z) —7(1)), Z(U(l) - T(Z))>

Also let,
os :=min{t > 0: w4 (m*) > 1/2}

and,
Ts i=min{t > o5 : mepe, (M*) < 1/2}

Lemma D.6. The process {p(s)}s>1, is a submartingale. Further, p(s) — 1, as s — co. Finally,

E [p(s)} =1- A2

=)
m!#m*

Proof. We first observe that,

T4 (m”) if w1 (m*) > 1/2
et = {ms+7+s(m*) if m 41 (m*) <1/2

Since w4, (m*) > 1/2, we have that,
p(s+1) = m 41(m™) and p(s) = m (m”").

Since at times ts, m, (m*) > 1/2, we know that m* is the leading arm. Thus by the update step, for all
m # m*,

LR (ts)  Lpype Ry (ts)}

T41(m) = m (M) + amy, (m)2 [ e, (m) a Ty, (m*)

Taking expectations both sides,
E [me,41(m) | H(ts)] — m (m) = am (m)*(tm — tye) = —alpmy, (m)?

Summing over all m # m*:

E[ﬂ't +1 |H }—Fﬂ't * :—a Z Amﬂ-t

m#m*



By Jensen’s inequality,

Z Ay, (m)2 =

m#m* m/#m*

V
~/ ~ ~
>
g
N~ N~ N~ —
>
3
A
2

Hence we get,

A? (1 - p(s))*

< Z Anl/)
m/#m*

Since, {p(s)} is non-negative and bounded by 1, by Martingale Convergence Theorem, lim;_,, p(s) exists.
We will now show that the limit is 1. Clearly, it is sufficient to show that limsup p(s) = 1. For a > 2, let

§—00

A? (1 - p(s))*

(5]
m’#Em*

This implies immediately that {p(s)}s>1 is a submartingale.

p(s) —E[p(s+1) | H(ts)] < —a = E[p(s+1) | H(ts)] > p(s) +

-1
Lpa::min{s>1:p(s)>a }
a

As is shown in [16], it is sufficient to show ¢, < oo, with probability 1, because then one can define a sequence
of stopping times for increasing a, each finite w.p. 1. which implies that p(s) — 1. By the previous display,

we have
AQ

< > Am/> a?
m/#m*

. Hence by applying Optional Stopping Theorem and rearranging we get,

E[p(s+1) [ H(ts)] —p(s) > @

a—1
a

as long as p(s) <

< Z Am/> a2
E[pa) < Jim Elpa A s] < 2L (1-Efp(1) < o,



Since ¢, is a non-negative random variable with finite expectation, ¢, < oca.s. Let ¢(s) =1 — p(s). We have

A? (g(s 2
Elq(s +1)] ~ Blg(s)] < —a-~— 0,
< Z Am’)

m/#m*

By the useful result D.2, we get,
E[q(1)] 1
Z A"IL/> ( Z A,,”/>
m! #Em* m! #m*

This completes the proof of the lemma. O

Finally we provide a lemma to tie the results above. We refer (Appendix A.5 [16]) for the proof of this lemma.

Lemma D.7.

Z]P’[ﬂ't(m*) <1/2] < 0.

t>1

Also, with probability 1, m(m*) — 1, as t — oo.

Proof of regret bound: Since t* —t(m) < 1, we have by the definition of regret (see eq 18)

1 T M §
ﬁ; <Z m(m)em —m(m)tmﬂ :

m=1

R(T) =E

Here we recall that 7* = e,,,«, we have:

1 T M

R(T) = mIE > <Z(w*(m)tm - m(m)tm)ﬂ
1 :t; m;l

=1 E > <Z(ﬁ*(m)tm - m(m)rm)ﬂ




Hence we have,

(" —ty)E

> (o)
£ |3 =)
m#Em*
1 d )
EE lZ(l —m(m ))1

t=1

m#Em*

We analyze the following term:

T T
E [Zu - m(m*»] —E [Za — i (m) I (m") > 1/2)

t=1 t=1

+E

T
> (1 = m(m*){m(m*) < 1/2}]

t=1

T
-F [Z(l — i (m*)){m (m*) > 1/2}| + C).

t=1

where, Cy := Y P[m(m*) < 1/2] < co by Lemma D.7. Next we observe that,
=1

T T T
[Z (1= m(m*){m(m*) > 1/2}| =E | Y q(s)I{m(m*) > 1/2}| <E [Z q(s)}
t=1 s=1 s=1
T 1 T <m/§m* Am’)
= ; <
a ( Z Arn') B
m! #£m*
( E Am/)
m’;ﬁm*
< A2 log T’
Putting things together, we get,
Z Ay
R(T) < — m7m logT + C
S 1—n a2 & !
( Z Aml)
1 m’#£m*
= log T’ .
1—7 al? o8 +c

This completes the proof of Theorem D.4.



E Proofs for MDPs

First we recall the policy gradient theorem.

Theorem E.1 (Policy Gradient Theorem [44]).

0 1 Omg(als)
o _ o 7o
0" "0 = 7 S0 TG

Let s € S and m € [m]. Let Q™ (s,m) := 3 K (s,a)Q™ (s,a). Also let A(s,m) := Q(s,m) — V(s).
acA

Lemma E.2 (Gradient Simpliﬁcation) The softmaz policy gradient with respect to the parameter 6 €
RM s %V’”’(u) = —7 Z de (s)me(m YA(s,m), where A(s,m) := Q(s,m) — V(s) and Q(s,m) =

3 Kin(s,a)Q™ (s,a), and d””(.) is the discounted state visitation measure starting with an initial dis-

tribution u and following policy my.

The interpretation of A(s,m) is the advantage of following controller m at state s and then following the
policy my for all time versus following my always. As mentioned in section 5, we proceed by proving smoothness
of the V™ function over the space RM.

Proof. From the policy gradient theorem E.1, we have:

o ,(a
GV = 1 S Y e g s

SGS acA
1 M
14 ;g C; 90,/ <Z (m)Km(S,a)> Q™ (s,a)
1
S EROLE (o) et
M
=15 Z di(s) D om <Km/(s,a) -> mem(s,a)> Q(s,a)
SES acA m=1
M
= Zdw S) Ty Z <Km/(s,a) - Z Wme(S,CL)> Q(s,a)
SES acA _
= Zdﬂe 8) T lz K (s,a)Q Z Z T K (s,a)]
SGS acA aceAm=1
1 o S l
- ﬁsesd (e iQ(S’m*WS)i
= Z dr (s ﬂ_m/ATrg (S, m/).
SES

Lemma E.3. V™ (u) is W—smooth



Proof. The proof uses ideas from [2] and [30]. Let 6, = 6 + au, where u € R™ o € R. For any s € S,

> 0o, al) => <ama“awa —0’ 8o<>’ ZKM - aO’u>’

Oa
a a

:Z Z Z gm,/ mm//*ﬂ'gm)Km(&a)u(mH)

a=0

m’'=1m=1
M
= Z Z o, ( (s,a)u(m’”) — Z Km(s,a)u(m”)>‘
m/’ =1 m=1
M M
Z Z 9, . Ko (5, @) [u(m ’)H—Z Z Zﬂ'@ 70, K (s, a) [u(m')]
a m'’=1 a m'"=1m=1
M M
= Z 76,1 |u(m/ |ZKm”(sva’)+ Z o,,nT |ZK S a
m/'=1 a m/’=1m=1
= =1
M M M
= Z g, . [u(m”)| + Z Z 9, 7o, [u(m”)|

m'’'=1 m/’=1m=1
2 Z ﬂ’@ 7 2 ||UH2
I/ 1

Next we bound the second derivative.

=2

a

d Omg, (a|s)
<aeaaa | a-07“>‘ >

a

8271'0&((1, | S) | .
da2 a=0U, .

0? ;
Let Ho# = 27| 9 ¢ paiat we pave,

9 M
a0
H;7 = 379] <m§_:1 7o, (Lni — 7,,,) Km(s,a)>

P M
= a0, <779 K;(s,a) Z o, 70, Km (8, a))

M 87@ ’/T(;
= 71'9]. (]Il] S a Z Km I ere—

m=1 -7

M
=m;(Li; — m)Ki(s,a) Z K (s,a) (mj(L; —mi)mm + 7w (L — 7))



Plugging this into the second derivative, we get,

82
‘<W7r9(a|s)u,u>‘

M M
= Hzfulu]
Jj=11i=1
M M M M
= ij ((Hij — ) K;(s,a) — Z Tm(Lij — ) K (s, a) — Z Ti(Lmj — ﬂm)Km(s,a)> Uil
j=11i=1 m=1 m=1
M M M
= ZmKi(s,a)uf — Z ZmﬁjKi(s,a UsUj — Z Z T Ko (8, a)u?
i=1 i=1 j=1 i=1 m=1
M M M M M
+ ZZ Z 7rl7rj7rm s a uzuj ZZWZ’ITJ s a uqu
=1 j=1 m=1 =1 j=1
M M
+ Z Z Z T Tm Ko (5, a)uu;
i=1 j=1m=1
M M
Zm (s,a)u; —2ZZ7TZ7T] i(s, a)u;u;
=1 j5=1
M M M
— Z Z T Ko (8, a)u? + QZZ Z T T Ko (8, @) uuj
i=1m=1 i=1 j=1m=1

M M M M
u? (Ki(s,a) - Z Wme(s,a)> - 2Z7riui27rjuj (Ki(s,a) - Z mem(s,a)> ’
- - - - -
QZWWE K;(s Zmn (s,a) +227rl|u1\27rj lu;| | K Zwm
i=1

<1 <1

M M

2 2

<ully +2 i luil D> fug| < 3wl
i=1 j=1

RSXS

The rest of the proof is similar to [30] and we include this for completeness. Define P(«a) € , where

(s, s'),
[P(a)] (5,5 = Zﬂ'o (al]s).p(s'|s,a).

acA
The derivative w.r.t. « is,

e

Z[m (a]s)

“—0] (") acA

a_o] P(s'|s, a).

For any vector = € R,

Es

a_ox} => > {We als)

s’€SaceA

J P(s']s, a).a(s).



The I, norm can be upper-bounded as,

d d , ,
Haap(a) o] = e %; 50 (@ | s)‘ao} P(s'|s,a).x(s")
0
< Y 5 | (a] 9] | 2ol
s’€SacA o=

< 2|Jully [l -

Now we find the second derivative,

2P 2
{86 (204) _ [8 w;a(;ﬂs) ] p(s/]s, a)
(0% a=0 | (s,8") acA « a=0
taking the [, norm,
2P 2
H {86(;[) ] x| = max 0 Wga (2a|s) ] P(s|s,a)x(s")
« a=0 S ® s’€SacA @ a=0
02y, (als)
<max 3 (|5 ] s el < 3l ..

s'eS
Next we observe that the value function of 7y, :

VToa(s) = Z g, (a|s)r(s,a) + Z 7o, (als) Z P(s|s,a)V ™0 ().

acA acA s'eS

T0q

In matrix form,
V7o =ry 4+ yP(a)V70a
= (Id—+vyP(a)) V™« =1y,
Vs = (Id — yP(a)) ' rq,.

Let M(a) := (Id —yP(a)) "' = i Y [P(a)]t. Also, observe that
=0

1= = (4= 7Pla) 1 = M(a)1= 1.
= Vi|[M(a)]il, = ﬁ

where [M(a)];.. is the i*" row of M(«). Hence for any vector z € RS, ||M(a)z]|, < ﬁ |zl -

By assumption 1, we have ||rg, ||,, = max,|rg, (s)| < 1. Next we find the derivative of 79, w.r.t a.

Ore, (s)| | [ Org,(s) T%
O o a0, o

M M
Z Z Z 7o, (m”)(]lmm” — T, (m))Km(Sva)T(Sva)u(mH)

m/’=1m=1a€A

<




m’’=1acA m/’=1m=1a€A
M M M

<D0 D mp (M) K (s,a)r(s,a) = Y Y > wo (m)ma, (m) K (s, a)r(s, a)| [[ull o < [lull, -
m’’=1a€A m’’=1m=1acA

Similarly, we can calculate the upper-bound on second derivative,

H Org., Arg, (s)
= max

Oa? s Oa?

| (2 [0V 200
o Oa Oa Oa

o

ry. (s) 00\ " 00, 5
_ a\5) Oa ) Vo < .
max ( 0a?  Oa > Oa < 5/2lull;
Next, the derivative of the value function w.r.t « is given by,
Toq
GVTX(S) = fyegM(a)agi((la)M(a)rgw + eiM(a)%.
And the second derivative,
0?2V ™0 (5) 9 T OP () OP(a) T 0*P(a)
——— =2 M M M M(a)———M
= aetn(e) = (@) S M@, + et M (@) S S M (@),
T1 T2
OP(a) Ory 0?ry
T o T o
+ 2ve, M(«) B M(a) 50 +e M(a) 52
T3 T4

We use the above derived bounds to bound each of the term in the above display. The calculations here
are same as shown for Lemma 7 in [30], except for the particular values of the bounds. Hence we directly,
mention the final bounds that we obtain and refer to [30] for the detailed but elementary calculations.

4 2
T < ——= ||u

2
T2] < [l

_3
(1 —7)2
2
(1-7)

5/2

(1-7)

2
T3] < [l

2
T4] < [[ull -

Combining the above bounds we get,
D?VTea () < 8+2 3y 4y 5/2 ) 2
— < + + + u
‘ 0a? R T R T A T DAL

- M [
2(1—-9)3 7%

a=0




Finally, let y € R™ and fix a § € RM:

’yT62VTr9(s)y‘: y Ta2v7re(s) y
00* lull, — 00% iyl

62V (s) )
< .
S Julozt < 962 uu>’ Il

D?V7™oa (s 00, 00,
= max (2] |-

2
Ayl

o ||um\|?§1 002 a=0 da da
D?VTea () 2
= e g ‘a:o Alylls
V2 4+4y+5 o
< W [yl -

Let 0¢ := 0 + £(0" — 0) where £ € [0,1]. By Taylor’s theorem Vs, 6,6’,

V™ (s) L\ 102V (s) o
Tol(s) — VT (s) — =—. |0 —-0)——5—(0" -0
V(o) - V) - ()| = oo 07 e -
7’ +47+5 2
Since V7 (s) is % smooth for every s, V™ (u) is also %7 smooth. O

Lemma E.4 (Value Difference Lemma-1). For any two policies m and 7', and for any state s € S, the
following is true.




O

Lemma E.5. (Value Difference Lemma-2) For any two policies © and ' and state s € S, the following is
true.

VT8 = V() = g5 D di(s) D (= ) QT (' m).

s'eS m:l

Proof. We will use Q for Q™ and Q' for Q”/ as a shorthand.

m];l ~ m=1
= S (7 — )@ (5, )+

]r;_
Yy Tm (Z Km(s,a) Y P(s'|s,a)V'(s") = Y Kmn(s,a) D P(s']s aW(S'))

m=1 a€A s'eS acA s'eS
M

=Y (T =)@ (s,m) +7 Y malals) D P(s|s,a) [V'(s) = V(s)]

m=1 acA s'eS

1 M .
= ) Y () Q5 m)
T ies m=1

Assumption 1. The reward r(s,a) € [0,1], for all pairs (s,a) € S x A.

Assumption 2. Let 7* := argmax V™ (sg). We make the following assumption.
TEPM

DA [Qﬂ-e (5 m)] Vﬂle( ) O,VS € S,VT(@ eIl

M
Let the best controller be a point in the M — simplex, i.e., K* := Y 75 K,,.
m=1
Lemma E.6 (Non-uniform Lojaseiwicz inequality).
7v7fe > 2 min o ) < || o) — v
\/M m:‘n';m >0 " dze
Proof.
1/2
D mi| = (30 (220w))
00 5 00,
m=1




M
1 ovre (u)‘
= Cauchy-Schwarz
VM m; 00, (Canchy )
1M 1 )
Y Z 1—~ ZdZH(S)WmA(S,m)’ Lemma E.2
M m=1" v s€ES
1 & o
2 - m'tm d7'r9 s A s,m
M m=1 1- v 5;9 g ( ) ( )‘
1 M w* -
> (i) 7 30 S a0
<mmgm> M m=1 1—7y SES
1 M T
= min my | — m d™ (s)A s, m
(m:ﬂ';m>0 > M mZ::I _7526;9 I ( ) ( )‘
1 M .
= min my,, | |—= d™ (s A(s,m
(m:ﬂ';m>0 > ‘\/M SEZS 7 ( )m:1 — ( )‘
= min 7y L Z ™o (3) f: 7T:n /Nl(s m) Assumption 2
m:ﬂ—gm >0 " \/M seS ! m=1 1-— Y ’
1 1 M .
Ve (m. Ln_ o, ) e ;d* z; w Als,m)

[V*(p) — V™ (p)] Lemma E 4.

E.1 Proof of the Theorem 5.1

Theorem 5.1 (Convergence of Policy Gradient). With {0,:}:>1 generated as in Algorithm 1 and using a

learning mtenz%,fcr allt>1
1 (2 ay+5) |la |
* ™ VAt p
—vme(p) < M (LT O e 2 12
Ve Ve < g ( (1 -79)? ) 7 ‘ HMHOo 12
[ee]
Let 8 := % We have that,
M )
V*(p)—V™(p :72 dre( Z (7%, — Tm)Q™ (s,m) (Lemma E.5)
SES m=1
1 dpe(s) M < .
= — = —dT (s T — Tm)Q™ (s,m
T 3 g ) D~ T e
1|1 M -
1—7‘6529 Z(Wm Tm)Q" (s,m)




M

e ;Hw > 3 = m)Q” (s
= ] e v e )

Let 0 :=V*(p) — V™ ().

Ses1— 0 = V™ (1) = V™1 (n)  (Lemma 5.2)
2

1|0
<—— ||z V™ L E.7
35 |57  (enmET)
11 az |
< M (mz%i};o 7T9m> ﬁ 62 (Lemma 5.3)
1 2 dr”
<—— 1 . P 52
25 ( 7) M <m:1ﬂ%1n>0 7r9m> dze t
1 1 ez |
2 . . 14 2
< - (1— _ _P_
S0 (%gﬁ e ”"m) a |l o
L1 (2
= —— = (1) ||| PP
2ﬁ M ( ) L to
where ¢ :=inf min mp, (m).
t>0 m:mk, >0
Assumption 3. We assume that the constant ¢ > 0.
Hence we have that,
.| —2
1 (1= [z
Spp1 < 0p — —— || 252, 25
t+1 t 28 M 0 €0y (25)
The rest of the proof follows from a induction argument over ¢ > 1.
Base case: Since §; < ﬁ, and ¢ € (0,1), the result holds for all ¢ < (2157]\74) % ’

*
™
d

w

28M

2
For ease of notation, let ¢ := =72 . We need to show that §; < %, forallt > 1.

‘ (oo}

P

Induction step: Fix a t > 2, assume §; < £.

Let g : R — R be a function defined as g(x) = « — %x? One can verify easily that g is monotonically

increasing in [0, %] Next with equation 25, we have
1

Spp1 < 6 — —62

B 0 t

= g(0¢)



IN
=N
=16

N
+[6

N
©

Il
AS)
P

This completes the proof.

Lemma E.7. Let f: RM™ — R be B—smooth. Then gradient ascent with learning rate % guarantees, for all

z, ' € RM:
2

, 1 | df(x)
o) - 1) < 55| L2
Proof.
0
@) - 1oy < = (202 4 Lo~

CL||df@) P, B 1 |df @) |

—BH e ||, " 282 || Tz |,
1| df ()|

QBH dz ||,

F Simulation Details

In this section we describe some details of Sec. 6. Recall that since neither value functions nor value gradients
are available in closed-form, we modify SoftMax PG (Algorithm 1) to make it generally implementable
using a combination of (1) rollouts to estimate the value function of the current (improper) policy and (2) a
stochastic approximation-based approach to estimate its value gradient.

Some particulars of the Stationary Queues simulations. Here, we justify the value of the two policies
which always follow one fixed queue, that is plotted as straight line in Figure 5c. Let us find the value of the
policy which always serves queue 1. The calculation for the other expert (serving queue 2 only) is similar.
Let ¢;(t) denote the length of queue ¢ at time ¢t. We note that since the expert (policy) always recommends
to serve one of the queue, the expected cost suffered in any round ¢ is ¢; = q1(t) + ¢2(t) = 0+ ¢.A2. Let us
start with empty queues at t = 0.

VEa:pertl(Q) —E

T
Z'ytct | Expertl]
t=0



With the values, v = 0.9 and Ay = 0.49, we get V F2Pert1(Q) < 44, which is in good agreement with the bound
shown in the figure.

Choice of hyperparameters. In the simulations, we set learning rate to be 10™4, #runs = 10, #rollouts =

10,1t = 30, discount factor v = 0.9 and o = 1/y/#runs. All the simulations have been run for 20 trials and
the results shown are averaged over them. We capped the queue sizes at B = 500.
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