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Abstract

The recent proposed self-supervised learning
(SSL) approaches successfully demonstrate
the great potential of supplementing learning
algorithms with additional unlabeled data.
However, it is still unclear whether the ex-
isting SSL algorithms can fully utilize the
information of both labelled and unlabeled
data. This paper gives an affirmative an-
swer for the reconstruction-based SSL algo-
rithm (Lee et al., 2020) under several statis-
tical models. While existing literature only
focuses on establishing the upper bound of
the convergence rate, we provide a rigorous
minimax analysis, and successfully justify the
rate-optimality of the reconstruction-based
SSL algorithm under different data genera-
tion models. Furthermore, we incorporate
the reconstruction-based SSL into the exist-
ing adversarial training algorithms and show
that learning from unlabeled data helps im-
prove the robustness.

1 Introduction

Modern learning algorithms (e.g., deep learning) have
been the driving force of artificial intelligence. How-
ever, the success of these algorithms heavily relies on a
huge volume of high-quality labeled training data, and
these labeled data are expensive and not always avail-
able. To overcome this, the recently proposed idea of
self-supervised learning (SSL) aims to supplement the
training process with abundant unlabeled data, which
are inexpensive and easily accessible (e.g., the images
or footage captured by surveillance systems).
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While SSL algorithms have gained increasing popular-
ity, the corresponding theoretical investigations were
not conducted until recent years. For instance, Lee
et al. (2020); Teng and Huang (2021) reduce and re-
formulate the reconstruction-based SSL as a simple
statistical model and show that it improves the estima-
tion efficiency. Two other studies (Arora et al., 2019;
Tosh et al., 2021) justify the effectiveness of contrastive
learning in classification.

However, to our best knowledge, there is no existing
study working on the fundamental information limits
of SSL, i.e., the minimax lower bound of the estima-
tion efficiency. Minimax lower bound does not directly
inspire new methodologies, but it helps understand
whether the existing methods achieve the best or not.

Minimax rate is the best possible convergence rate that
can be achieved by any estimator in the worst case
given finite samples, where “the worst-case” refers to
the data distribution. Attaining minimax rate guaran-
tees that the estimator achieves the best efficiency un-
der the worst case. Failing to attain the minimax rate
means that there must exist some scenarios where the
estimator is not efficient. As a result, to understand
the performance and optimality of SSL algorithms, it
is essential to study the minimax bound.

Another motivation to study minimax lower bound
is to understand the role of conditional independence
(CI) for SSL. Lee et al. (2020) identifies that CI is a
key factor yielding the estimation efficiency. A natu-
ral question would be how essential the CI condition is.
Lee et al. (2020) suggests that the convergence rate of
SSL estimate might be slower when CI does not hold.
However, it is unclear whether it is caused by that
the SSL is inefficient under conditional dependency, or
that the fundamental information limit is worse un-
der conditional dependency. To answer this question,
minimax lower bound analysis is necessary.

Besides the minimax analysis of SSL, since the afore-
mentioned works observe a great advantage of SSL
over classical supervised learning methods, it is natural
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to conjecture that the rationale behind SSL can poten-
tially boost the performance of other techniques, e.g.,
adversarial training, differential privacy, and pruning.
We consider adversarial training in this paper.

It is well known that deep learning models are vulner-
able when they are fed with adversarial inputs (e.g.,
Zhang et al., 2017; Papernot et al., 2017). The adver-
sarial inputs lead to serious concerns about Al safety.
However, despite the existing literature in adversar-
ial training with SSL that works on algorithm de-
sign and empirical study, e.g., Kim et al. (2020); Zeng
et al. (2021); Ho and Vasconcelos (2020); Gowal et al.
(2020); Chen et al. (2020b), there is little theoretical
understanding towards this.

In summary, this paper aims to study two problems.
First, we want to establish theoretical justifications on
how and when the reconstruction-based algorithm in
Lee et al. (2020) enhances the estimation efficiency in
a training process. Second, we study an adversarially
robust adaptation of this algorithm to show its effec-
tiveness in the adversarial setting.

Model Setup To explain the details, we denote co-
variates X; € R%, response Y € R, and some ex-
tra attributes X» € R9. Following Lee et al. (2020),
our target is to learn a model of Y from X;. We use
(X1, X2,Y) as the random variables, and (21, z2,y) as
observations. Assume we have the following datasets:

e Labeled Data: Sy (ny samples of (x1,z2,y)) and
Sy (ng samples of (z1,y)).

e Extra unlabeled data: S3 (ng samples of (1, x2))
and Sy (n4 samples of (z1)).

In terms of the estimation procedure, in clean training,
it can be summarized as follows:

e Pretext task: Learn some representation (Z =
. 1
argminge r - g, g, 172 — ¢(x1)]|3 for the
mapping from z; to xo, where F is some func-
tion space to be defined.

e Downstream task: estimate the coefficient W =
arg minwﬁ > 5,.5, IWT¢(z1),y) for some
loss function [ depending on the specific task, e.g.
regression, logistic regression. For classification
task, the final classifier is sgn(W T é(z1)).

To set a concrete example, we want to predict the gen-
der y of a person using the hairstyle x; and train from
a set of front photos. One can first train a regres-
sion model from the hairstyle z; to predict the face xo
(pretext task), then use this regression model to make
a prediction for each photo, and finally, use the pre-
dicted face picture ¢(z1) to train on the gender label
(downstream task). The gender label is not used in the

pretext task, so we can use many unlabeled photos for
the regression model in the pretext task.

In classical learning methods, the relationship between
y and x7 is learned solely based on the training data
pairs of (z1,y). The information from z2 and the re-
lationship between (z1, 23) are overlooked. The above
reconstruction-based method utilizes these data so
that it potentially improves the estimation efficiency.
Note that we consider two conditions for possible extra
data sets besides Sy: (1) whether the data are labeled
or not, and (2) whether the data contain X5. Thus, for
the sake of completeness, it is natural to include all Sy
to Sy in our framework of minimax analysis, despite
that the usual clean SSL algorithm doesn’t utilize data
Ss. We will show that S; indeed does not affect the
rate of the minimax lower bound.

Besides, as mentioned above, Lee et al. (2020) also dis-
cusses the importance of CI in SSL. The CI condition
is formally defined as follows:

Definition 1. The data generation model satisfies
conditional independence if X1 and X5 are condition-
ally independent given Y = y.

Contributions Our contributions are as follows:

First, we explain from a minimax perspective that the
SSL method is generally well-behaved in clean training
for classification models. We provide detailed charac-
terizations in how the four datasets (S; to Sy) affect
the estimation efficiency. From both lower bound and
upper bound aspects, the size of S7, So, and S3 af-
fects the efficiency, and whether SSL improves the ef-
ficiency depends on the comparison between nq + no
and n; + ng. In addition, towards the CI condition,
we reveal that when n; + ng is large enough, no mat-
ter whether CI holds or not, SSL is minimax optimal
under a well-designed family of F, though the rate is
slower without CI. As for dataset S, its sample size
ny4 does not affect the minimax convergence rate.

Secondly, we adapt the “pseudolabel” method (Car-
mon et al., 2019) so that adversarial training achieves
the minimax lower bound in classification. We figure
out the minimax lower bound of the convergence with
the presence of unlabeled data (i.e., Sy to S4) and pro-
pose a way so that adversarial training achieves this
lower bound with the help of SSL under the proper de-
sign of pseudolabel imputation. Again, when n; 4+ ng
is sufficiently large, SSL improves the adversarial ro-
bustness compared to a vanilla adversarial training.

Finally, as a by-product, we provide discussions about
SSL for regression with ¢ being a linear function and
SSL for classification with ¢ being a two-layer ReLU
neural network (with lazy training). For the former
one, we establish similar minimax results as the above.
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For the latter one, we show that the neural network
family serves as a good candidate for F in the pretext
task when there is no parametric knowledge for F. It
can potentially accelerate the convergence.

2 Related Works

Below is a summary of other related articles in the
areas of self-supervised learning, adversarial training,
as well as statistical minimax lower bound analysis.

Self-Supervised Learning There are two popular
types of self-supervised learning algorithms in the lit-
erature, i.e., reconstruction-based SSL and contrastive
learning. Reconstruction-based SSL learns the recon-
struction mapping from the large pool of unlabeled im-
ages and then employs it to reconstruct labeled images
which are used in the downstream task (Noroozi and
Favaro, 2016; Zhang et al., 2016; Pathak et al., 2016;
Doersch et al., 2015; Gidaris et al., 2018). Contrastive
learning uses the unlabeled images to train represen-
tations that distinguish different images invariant to
non-semantic transformations (Mikolov et al., 2013;
Oord et al., 2018; Arora et al., 2019; Dai and Lin, 2017;
Chen et al., 2020a; Tian et al., 2020; Chen et al., 2020a;
Khosla et al., 2020; HaoChen et al., 2021; Chuang
et al., 2020; Xiao et al., 2020; Li et al., 2020).

Adversarial Training Many works consider the ad-
versarial robustness of learning algorithms from dif-
ferent perspectives, e.g., the statistical properties or
generalization performance of the global optimum of
some well-designed adversarial loss function (Mehrabi
et al., 2021; Javanmard et al., 2020; Javanmard and
Soltanolkotabi, 2020; Dan et al., 2020; Taheri et al.,
2020; Yin et al., 2018; Raghunathan et al., 2019;
Schmidt et al., 2018; Najafi et al., 2019; Zhai et al.,
2019; Hendrycks et al., 2019), or the algorithmic prop-
erties of optimizing the adversarial loss function (Sinha
et al., 2018; Gao et al., 2019; Zhang et al., 2020; Allen-
Zhu and Li, 2020; Xing et al., 2021a).

Related studies about semi-supervised learning with
unlabeled data can be found in deep learning and other
areas. For example, Carmon et al. (2019); Xing et al.
(2021Db) verify that unlabeled data helps in improving
the estimation efficiency of adversarially robust mod-
els. Cannings et al. (2017) use unlabeled data to con-
struct the local k-Nearest Neighbors algorithm.

Minimax Lower Bound Minimax lower bound is
an important property in the area of statistics, and has
been studied for different models, e.g. non-parametric
model, linear regression, LASSO, as well as adversari-
ally robust estimate (Audibert and Tsybakov, 2007;
Raskutti et al., 2012; Yang and Tokdar, 2015; Sun
et al., 2016; Dicker et al., 2016; Cai et al., 2010; Mour-

tada, 2019; Tony Cai and Zhang, 2019; Dan et al.,
2020; Xu et al., 2020; Xing et al., 2021b).

3 Minimax Lower Bound

To reconcile the notation for both clean and adversar-
ial training, for binary classification, we denote risk
R(f,€) as the population misclassification rate of the
classifier sgn[f(X1)], where X is the attacked input
variable under strength e. Specifically, given f and
X1 =21, X1 = argmax,er(q,,e) [(f(2),y) where [ is
the loss function for training!. The constraint R(z1, €)
is an Lo or Lo, ball centering at x; with radius e. De-
fine R*(e) = inf; R(f,€) as the optimal misclassifica-
tion rate under e. To train a classifier, one minimizes
an empirical loss function, where the loss can be dif-
ferent from R, e.g., square loss or cross-entropy.

To regulate the distribution of (X7, X2,Y"), we impose
the following assumption:

Assumption 1. The distribution family P satisfies:

(1) There is some known function p(-;-) such that,
any distribution in P satisfies P(Y = 1|1X1 = z1) =
pla1; B) for some § € R ;

(2) Assume (X1, Xo,Y) satisfies (1) with 8 = 8*, then
R(2p(+; 8) — 1,€) is L-Lipschitz and is twice differen-
tiable in B when B € B(B*,r) for some small r > 0
for all e = 0 and the € of interest.

The condition (1) in Assumption 1 is for the purpose of
parametrization. Since we are doing parametric esti-
mation, we need to consider the class of models whose
parametric form exists. The generalized linear model
is included by our assumption. The condition (2) in
Assumption 1 describes how [ is related to the misclas-
sification rate. It should hold for € = 0 (clean training)
and the ¢ of interest in adversarial training. We fix €
(which does not change with n) and do not consider it
a changing parameter throughout training.

The following theorem presents the minimax lower
bounds of the convergence of any estimator when CI
holds/does not hold, for both clean (¢ = 0) and adver-
sarial training (e > 0). Combining with upper bounds
in the later section (i.e., Theorems 2, 3, 4), the pre-
sented rates indeed are optimal:

Theorem 1. Assume Assumption 1 holds. Also as-
sume (dy + dg)log(n;) = o(n}/?’) fori=1,2,3. The

In the models we consider in this paper, the attacks
for [ and 0 — 1 loss are the same.
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minimaz lower bound is

inf sup ER(f, €) — R*(e)
f P

_ Q( dy /\( da +d1+d2))-
n1 + no ni + no ny +ng

When CI holds, the lower bound becomes

. n dl dl
fsupER(f,¢) — R*(e) = O 4 '
Hfl s%p (f,e) (€) <n1 +ne  n1+ ”3>

The proof of Theorem 1 is postponed to the appendix.
To prove the minimax lower bound, one common way
is to design a specific distribution so that the distri-
bution parameters, e.g. mean and variance, always
involve error given the finite training samples. The es-
timator f will further inherit this error. Our examples
used to prove the minimax lower bounds in Theorem 1
are more complicated compared to Dan et al. (2020);
Xing et al. (2021b).

Although Lee et al. (2020) reveals that reconstruction-
based SSL achieves a faster convergence rate under CI,
the minimax lower bound gets much larger when CI
does not hold based on our result. From this aspect,
even if CI does not hold, the SSL algorithm is still
good, and achieves the optimal convergence rate based
on the results in later sections.

Besides, the rates are irrelevant to the sample size of
Sy, indicating that the information of X, is not the
bottleneck for this classification problem.

Remark 1. Xing et al. (2021b) proves that introduc-
ing Syq is helpful, and this does mot contradict with
our arguments in Theorem 1. Assume Var(Y|X1, X2)
and dy are all constants, and n; = n3 = 0, then the
minimaz lower bound in Xing et al. (2021b) is still
Q(1/n2). The unlabeled data in Sy improves the con-
vergence in a multiplicative constant level, but not the
rate of the convergence.

Remark 2. In this paper, we consider the upper bound
and lower bound of ER(f,€) — R*(e). This is differ-
ent from some literature in learning theory, e.g. Sec-
tion 8 in Mohri et al. (2018), where they consider
R(f,€) = S1(f(w1,2),5)/ Sni. The former one fo-
cuses on the difference between the testing performance
using the trained model and the true robust model,
while the latter one considers the discrepancy between
the training performance and the testing performance
of the same model. Since we aim to study how the
trained model performs compared to the true robust
model, we use the former one in this paper. It is note-
worthy that the latter one converges in a different rate
from our results in this paper.

4 Convergence Upper Bound

This section studies the convergence rate of SSL to see
whether SSL achieves the optimal rate.

4.1 Convergence in Clean Training

We translate the results in Lee et al. (2020) into our
format to match the minimax lower bounds above.

For the pretext task, under CI, we consider learn-
ing ¢ from the function space F = {¢ | ¢(z1) =
p(x1; B)pz + (1= p(a1; B))us, B€ R, pg, py € R},
where p is the parametric form of P3(Y = 1|X; = 1)
as defined in Assumption 1. The rationale behind this
choice of F is that, under CI condition, E[X3|X; =
1] = P(Y = 1|X1 = z)E[Xe]Y = 1] + P(Y =
—1|X; = x1)E[X3|Y = —1], which matches the form
of functions in F. A concrete example will be provided
in Example 1 later.

For the downstream task, we consider two estimators
of W' as follows. For both cases, the trained classifier
is defined as sgn(W T é(z1)).

e Logistic regression on (y, ¢(z1)).

o~

e Plugin estimator in Dan et al. (2020), which is
equivalent to square loss in clean training.

The following example analyzes the Gaussian mixture
model when CI holds. It provides the basic analysis
on how X affects the convergence.

Example 1 (Classification under CI). Consider
Gaussian mizture model defined as follows:
1
PY=1)=PY=-1)= 3

B X1, X% 2] >
X 7X Y = ~ N * | 9 *7 >|<7 I
( ! 2)| Y <y Llj [22,1 22,2

2

where p;’s and X7 ;’s are unknown parameters. The
conditional distribution of Xo given X1 =x1,Y =1 is
Xo|Xi=21,Y =1 ~ N(uj+35,(57,) (21— p),

D52 = 551(81) 715 0).
Therefore, X7 5 = 0 is equivalent to CI condition in
this model. Further, the probability P(Y = 1|X; = x1)
is a function of x1 and (X5 )" 'p1 only, so the best
¢ to minimize Elxg — ¢(x1)||* can be represented
as 6" (a1) = (2pler: (510)"4ut) — Duj under CI
Based on this, the family of ¢, F = {¢ | ¢(z) =
(2p(x; Zi%ul) — 1)ua, VEi%ul,ug} s a proper choice
for the pretext task.

Solving the pretext task, we have

—

a(xl) = (2p(w1; 21_&,“1) — 1)fi2, where

1 x v—1 % dy
IS b - (5107l = 0 (2.
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The detailed derivation is postponed to appendiz.

In the downstream task, since the output of éiks al-
ways in the same direction (parallel to i), Weo(x1)
becomes ¢(2p(x1; El_j,ul) —1) for some constant ¢, and

its sign only depends on (2p(x1; Zi}m) —1). The es-
timation error in W and Lo therefore does mot affect
the final prediction, and the error in the prediction is

only caused by the error in Zf&ul. Consequently,
ER(W'¢,0) — R*(0) = O (dl) (1)
’ ny+ns /)’

The proof for Example 1, and Theorem 2 and Theorem
3 below are postponed to the appendix. The basic idea
is to use Taylor expansion on the estimation equation
to obtain the Bahadur representation of the estima-
tor. In general, via Bahadur representation, one can
show that the estimator asymptotically converges to
the true model in Gaussian.

The following theorem can be obtained via extending
Example 1 to other models under CI:

Theorem 2. Assume Assumption 1 together with
some finite-variance condition (to be specified in the
appendiz) hold. If (di + do)log(n;) = o(n;/?’) for
i =1,2,3, and dy = o(+/d1(n1 + n3)), then for both
the two loss functions (logistic loss and square loss),

when CI holds,
( : > 7
ny+ng

where ¢* is the population loss minimizer of the pretext
task, and W* is the population loss minimizer (logistic
or square correspondingly) in the downstream task.

ER(W'6,0) — R(W*)T¢*,0) =

In contrast to Theorem 2, the following theorem stud-
ies the convergence of SSL when CI does not hold. For
simplicity, we consider using linear ¢ in the pretext
task, i.e., F={linear mappings from R% to R%}

Theorem 3. Assume Assumption 1 together with
some finite-variance condition (to be specified in the
appendiz) hold. If (di + do)log(n;) = o(n;/?’) for
1 = 1,2,3. For linear ¢, if the singular values of
EX, X, are finite and bounded away from zero, then

ER(WT$,0) — R(W*)T¢*,0)
_ o( 2, d1+d2>,
ni + no

ny + ns
where ¢* is the minimizer of the population loss of the
pretext task, and W* is the minimizer of the population
loss in the downstream task.

Together with the lower bounds obtained in Theo-
rem 1, the upper bounds in Theorem 2 and 3 in-
dicate that SSL achieves minimax optimal for clean
training, when n; + ng > n; + ng under CI, or
ny+nsg > (dl —|—d2)(n1 —|—n2)/(d1—d2) without CI. This
implies that SSL efficiently utilizes data information to
achieve optimal convergence, while the deterioration
of rate when CI fails is merely caused by information
bottleneck of the data.

Furthermore, for commonly used model which only
considers (X1,Y"), the upper bound is O(dy /(n1+n2)),
e.g. Xing et al. (2021a). Compared to this rate,
the upper bounds in the Theorem 2 and 3 are faster
when ng is large. These observations imply that the
reconstruction-based SSL does perform better than
only studying the relationship between X; and Y.

Simulation Study We use the model in Example
1 to numerically verify the effectiveness of SSL under
CI. We take diy = 5, do = 2, the mean vector u =
14, +d,/V/d1, and the covariance matrix ¥ = Iy, 1q,.
We repeat 100 times to obtain the mean and variance
of Regret. The sample size ny and ny4 are zero, and
n1 = 100. The results for plugin estimate are sum-
marized in Table 1. From Table 1, SSL improves the
performance when ng is large enough. The observa-
tions in logistic regression are similar (postponed to
the appendix).

4.2 Adversarial Training

Intuitively, a straightforward way to adapt SSL in ad-
versarially robust learning is to perform the down-
stream task with adversarial loss. However, a simple
example below illustrates that such a procedure may
lead to a bias:

Example 2. Under the Gaussian mizture classifica-
tion model in Example 1, following Dan et al. (2020),
one can show that the population adversarial risk
minimizer, for both the two loss functions, is a lin-
ear classifier whose coefficient vector is of the form
(AX} | + Bla,) 'pi. Using F considered in Example
1, the decision boundary implied from WTQAS (for any

W) is always parallel to (31,1) " p1 which is a biased
estimation for (AX} | + Bla,)™ '} if £ is not pro-
portional to Iy, .

To ensure the consistency of the adversarially robust
estimator, one can borrow the idea of Carmon et al.
(2019); Uesato et al. (2019): we first use SSL in clean
training, and based on which, we create pseudolabel
for data in S3 and Sy, then we perform an adversarial
training using S; to S4 with the pseudolabels. Algo-
rithm 1 summarizes this procedure.

With an abuse of notation, we denote R(6,¢€) as the
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Table 1: Regret in clean training under CI: SSL (plugin estimator/square loss) vs learning only labeled data.

ns3 SSL (mean) labeled (mean) SSL (var) labeled (var)
500 0.01057 0.00959 7.07E-05 3.84E-05
1000 0.00529 0.01017 1.83E-05 7.53E-05
5000 0.00104 0.00970 2.01E-06 4.78E-05
10000 0.00042 0.00876 1.55E-06 4.88E-05
20000 0.00031 0.00974 6.94E-07 5.20E-05
Algorithm 1 Adversarial Training with SSL via Algorithm 1. If WTQAS is unbiased, then for square
(adv+SSL) loss/logistic regression,

Input: data S; for i =1,...,4. Adversarial training
configuration (n,T)e,...).

Use S; and S35 to obtain qZ:)\

Use S; and S5 to obtain W.

Create pseudolabel for samples in S3 and Sy as y.
Take 7 = y for Sy, .55.

Conduct adversarial training with configuration
(n,T,¢,...) to obtain 6 where

Zlnisz max

1(07%1,7).
F1ER (71,6) ( l'17y)
1500994

0 = argminy

Output: the robust model 9.

risk of the linear classifier sgn(6 T X;). Algorithm 1 fo-
cuses on the linear classifier 8T Z;, but in real practice,
one may train a nonlinear model in the adversarial
training stage (e.g., a neural network).

How to obtain reasonable pseudolabels? A key
requirement of the pseudolabel is that the distribution
of (X1,Y) approximately matches (X1,Y). Thus Y is
a simple plug-in estimator p(x1; ’5\) when we have the
parametric form of p, i.e., P()/} = 1/X1 = z1). The
following Gaussian mixture model example illustrates
how to construct pseudolables for unlabeled data:

Example 3 (Pseudolabel for Gaussian Mixture
Model). When estimating ¢, we are considering the
class of function F = {6 | ¢lx1) = (2p(ar; £y 1) —
1) pa, VE;&,ul,ug}, An estimate of P(Y = 1|1X; =
x1), i.e. p(a:l;El_j/,Ll), can be directly obtained from

the pretext task. This construction method can also be
applied to general models in P.

The following theorem evaluates the convergence rate
of Algorithm 1 and shows its effectiveness:

Theorem 4. Assume Assumption 1 and some finite-
variance condition (in the appendiz) hold.

(I) Assume the conditions in Theorem 2 hold. Denote
0* = argmingEL(0T X1,Y) as the optimal linear clas-
sifier using square loss/logistic regression. Denote )
as the linear adversarially robust estimator obtained

ER(@,e)—R(Q*,e)zO( 2 )

ny +ng

(IT) Assume the conditions in Theorem 3 hold, szT(E
is asymptotically unbiased,

ER(0,¢) — R(6*,¢) = O ( da

d1+d2>
ny + no '

ny + ns

The proof of Theorem 4 is postponed to the appendix.
To build the connection between the clean training
and the adversarial training, we borrow the idea from

semi-parametric problems to expand p(ml;Zf&ul) in
the Taylor expansion for the estimation equation, e.g.,
Wang and Wang (2009).

Theorem 4 shows the convergence rate of the estimator
obtained in Algorithm 1. Again for adversarial train-
ing, SSL achieves minimax optimal when ng is large.

Effect of Accuracy of Imputed Labels Theorem
4 establishes the convergence rate of the whole proce-
dure in Algorithm 1 where the SSL clean training stage
helps estimate probability p = P(Y = 1|X; = 7).
However, in real practice, when there is no parametric
knowledge of the model (i.e., Assumption 1 fails), it
is not easy to obtain an accurate p, and people may
consider directly using the predicted label as the pseu-
dolabel. The following result illustrates how the accu-
racy of p affects the convergence in logistic regression.
For square loss, the condition is slightly different, and
we postpone the discussion to the appendix.

Proposition 1. Under the conditions of Theorem
4(I), assume one obtains some consistent p such
that EHX1||2H]/7\(X1) — p(Xl)HQA—) 0 i n; + ns,
then for logistic regression, (1) 6 is consistent to 60*;
and (2) the convergence rate of 8 is O(d1 /(> ni) +
E[| X1 [[?p(X1) — p(X1)[1?)-

Simulation Study Our aim is to numerically ver-
ify: (1) Algorithm 1 improves the overall performance;
and (2) the dataset Sy is not the bottleneck of the
convergence, which is an observation from the com-
parison among upper bounds and lower bounds as dis-
cussed Section 3. Similar to Table 1, we take d; = 5,
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dy = 2. The mean and variance are p = 14, 14,/Vd1,
Y = Ig,+d, respectively. We consider Ly attack with
€ = 0.1 in this experiment.

In Table 2, the benchmark algorithm is om-
nipotent and performs standard adversarial train-
ing on S; to S3, with labels in S3 known.
For benchmark and the other methods except for
adv+SSL(Sy, S5, S4), they do not use Sy, while for the
method adv+SSL(S1, S3,S54), na = n3. The method
adv(S1) means to use adversarial training on the
dataset S7 only. The method adv+pseudo label(S7,S5)
is to use clean training in S; to impute the label for
samples in S3 and then conduct adversarial training.

From Table 2, we have some observations.

First, the quality of the imputed labels affects the
adversarial robustness, and unlabeled data helps im-
prove adversarial robustness. Comparing the bench-
mark and the other methods, the benchmark has a
better clean training stage result, i.e., the true label,
thus the final adversarial estimate is better. Com-
paring adv+SSL(S1,53), adv(S;), and adv+pseudo
label(51,S3), we claim that using unlabeled data helps
improve the estimation efficiency.

In addition, S4 only slightly contributes to the im-
provement of adversarial robustness. Comparing
adv+SSL(57,53) and adv+SSL(S7,S53,54), we see that
the additional data S4 do not significantly improve
the estimation efficiency. Similar observations can be
found in Table 5 for logistic regression (in appendix).

5 Additional Discussions

We provide some additional discussions as by-products
of the analysis above. In the main text, we provide the-
oretical results associated with two-layer neural net-
works in SSL. Due to the space limit, we postpone
the discussion about the linear regression model with
linear ¢ to the appendix.

5.1 Neural Networks

The design of ¢ in the previous sections is based on the
parametric knowledge of the data generating model.
We consider using a two-layer neural network as a
“nonparametric” alternative to model ¢ while such
knowledge is unavailable. In the literature, there are
abundant results on the expressibility or fitting conver-
gence of neural networks, e.g. Schmidt-Hieber et al.
(2020); Bauer et al. (2019); Elbréchter et al. (2019);
Hu et al. (2020, 2021); Farrell et al. (2021).

We follow Hu et al. (2021) to consider an easy-to-
implement estimation procedure. To be specific, we

use a two-layer neural network ¢ = (¢1,..., dq4,) with

1 m
bk (x) = ﬁ Zaj,ka(w;kx)a Wik € R%,
j=1

where a;; are generated from {£1} uniformly. The
weights w, ;s are initialized from N(0,721;) and
trained with an £, penalty with multiplier .

Proposition 2. Let d; and dz be fized and CI holds.
Assume ¢ is trained under proper configurations and
the distribution of (X1,Y) satisfies some extra con-
ditions. Assume ng is large enough so that nz >
poly(ni +mns) for some polynomial of ny +mns. Both W
and $ in the SSL procedure are regression estimator.
Then with high probability,

ROW$.0) — R*(0) = o (nlinz> .

The detailed conditions in Proposition 2 are postponed
to Appendix E. From Proposition 2, when there are
sufficient samples in Sz, the SSL procedure will im-
prove the accuracy in clean training even if we do not
have parametric knowledge for the model.

Real-Data Experiment We use the Yearbook
dataset from Ginosar et al. (2015). We consider a two-
layer ReLU network with lazy training (this network
matches Proposition 2) for ¢. Since all of our theoret-
ical results are developed under large-sample asymp-
totics, we resize the images to 32x32, take the center
16x16 patch of an image as X5, and take the rest as
X;1. The goal is to classify the gender of each image.
We minimize the square loss to obtain a classifier.

For the clean training task, in the pretext task, we ran-
domly select 20,000 samples and regress X on X to
learn the representation mapping ¢ using a two-layer
ReLU network with lazy training and taking m, the
number of hidden nodes, as 1000. Since the data di-
mension d; and dy are comparable to 20,000, we add
an Lo penalty in the regression loss. The pretext task
is trained by 100 epochs. For the downstream task, we
take 10,25, 50, 100 samples with their labels to obtain
W . Using square loss, there is an analytical solution of
W. We add an L5 penalty to the square loss and tune
it to achieve the best prediction accuracy. For adver-
sarial training task, we use SSL in clean training and
impute labels for unlabeled data, and use all data with
labels/pseudolabels to train a two-layer ReLU network
(with 1000 hidden node) as the adversarial classifier.
We use Lo attack with e = 4/255.

To assess the performance of SSL for the clean training
task, we compare it against a benchmark clean train-
ing algorithm: we directly use the two-layer ReLU net-
work with 1000 hidden nodes (train all layers) on the
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Table 2: Average Regret of adversarially robust estimate under CI condition. n; = 100. The variance information

is in Table 3 in the appendix.

ns benchmark adv+SSL(S51,S3) adv(S1) adv+SSL(51,53,54) adv-+pseudo label(Sy,S3)
500 0.00771 0.01264 0.01041 0.01211 0.00965
1000 0.00543 0.01195 0.01040 0.01046 0.00946
5000 0.00150 0.00543 0.00897 0.00526 0.00916
10000 0.00070 0.00332 0.01008 0.00330 0.00898
20000 0.00050 0.00213 0.00956 0.00185 0.00907
Ciean Train w00 Adv Train
| o ceen s = .
s = " ‘1.',‘-;
g™ g s gw § ’.':': %
£ B e & x ol .x
f—? M 3 os | B *
= B0 80 {y * .
2.5 ° X
0 =3 x
»  w  w® w w o » & % 10 5w ®

Htabeted Training Samgplas

Htabeted Training Samglas

LClzar Test Acc

Figure 1: Clean and adversarial (L attack with e = 4/255) test accuracy (gender classification) using Yearbook
data. Left: clean training accuracy. clean_ssl: SSL clean training. clean: benchmark clean training. Middle:

adversarial training accuracy adv: standard adversarial training with only labeled data.

adv_ssl: adv+SSL

algorithm. adv_semi: Carmon et al. (2019). Right: clean test accuracy in clean training vs adversarial test

accuracy in adversarial training.

labeled samples for 100 epochs with a learning rate of
0.1. For fairness, we also add and tune the £ penalty
to achieve the best performance. To assess the per-
formance of adv+SSL algorithm for the adversarial
training task, we compare it against two benchmark
adversarial training algorithms: (1) We conduct the
standard clean training using only the labeled data
(z1,y) and then impute labels for unlabeled data to do
adversarial training, i.e., the exact algorithm in Car-
mon et al. (2019). (2) We only use the given labeled
data to conduct adversarial training and do not use
the unlabeled data. We use a two-layer ReLLU network
(with 1000 hidden nodes) for both benchmarks.

The experiment results are summarized in Figure 1,
based on the average and variance of testing accuracies
of over ten repeated runs. There are three figures in
Figure 1. The left panel of Figure 1 compares the clean
testing accuracy, and it is easy to see that SSL leads to
a higher accuracy than the benchmark method. The
middle panel of Figure 1 compares the adversarial test-
ing accuracy, and one can see that utilizing unlabeled
data helps improve the testing performance. If we
compare the blue dashed curve and the red curve in
both left and middle plots, it suggests that a better
clean model (used to generate pseudolabels) leads to a
better adversarial model. To confirm this, in the right
panel of Figure 1, we plot the clean testing accuracy

in clean training against the adversarial testing accu-
racy in adversarial training to study how the quality
of the pseudolabels affects the final adversarial robust-
ness. One can observe a positive correlation between
these two accuracies, implying a positive correlation
between the pseudolabel quality and final adversarial
robustness. We conjecture that the improvements in
Figure 1 is not as remarkable as Table 2 in simulation
due to (1) from Proposition 2, the required n3 is much
larger than Theorem 4, and (2) the data dimension ds
for real data is larger than simulated model, involving
more error in estimating ¢.

6 Conclusion

In this paper, we investigate the statistical properties
of reconstruction-based SSL. In particular, we study
the minimax lower bound of estimation accuracy and
the adversarial robustness. Through figuring out these
properties, we argue that (1) in clean training, no mat-
ter CI holds or not, reconstruction-based SSL reaches
the optimal rate of convergence in the models we con-
sider; and (2) it is possible to design adversarially ro-
bust estimate such that it is also optimal. These ad-
vantages of the SSL method lead to a better perfor-
mance of SSL compared with the vanilla training.

There are several potential directions for future de-
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velopment. First, the procedure for adversarial train-
ing considered is tedious (i.e., pretext task and down-
stream task in clean training, and the adversarial
training itself). It is interesting to simplify the pro-
cedure. Second, we only provide some light discussion
using neural networks for the pretext task when the
parametric form of P(Y = 1|X; = z;) is unknown.
An in-depth investigation on this matter is definitely
worthwhile, as deep neural networks have been viewed
as a powerful nonparametric learning tool for mod-
ern data sciences. Third, this paper only discusses
reconstruction-based SSL, and it is of great interest
to generalize our analysis to other types of SSL-based
methods.
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Below is the list of contents in the appendix:

e Section A: discussion about regression.
e Section B: additional experiments, extra tables, and results regarding to neural networks.

e Section C: additional assumptions on the finite variance, and lemmas which provide minimax lower bound
for some particular distributions.

e Section D: proofs for results in Section 2 and 3.
e Section E: proofs for results in Section 4 and A.

e The derivations for different losses are similar, so during the proofs, we firstly present the proof details for
one loss, then display the proof for the other losses in a separate proof block to mention the differences.

A Regression

For regression, we assume X; and X» jointly follow some multivariate Gaussian distribution with Var(X;) = I,,
Var(Xs) = I,. The singular values of Cov(X7, X2) are finite and bounded away from zero. The response satisfies
y = 0] x1 + ¢ for noise e. The following theorem presents the convergence rate of the SSL estimate and the
minimax lower bound:

Theorem 5. For linear regression model described in above, assume 0y = Cov(X1, Xs)ag, then

ER(W T ¢,¢) — R*(e) = O ( o’dy + laoll*(ds + d2)> ;

n1 + No ni + ns
which is minimaz optimal when ny + nz > (n1 + no)||lag||?(d1 + d2)/(0?(dy — da)).

Note that the condition 6y = Cov(X1, X2)ag implies that the final estimate /WTc/é\ is asymptotically unbiased
to 0p. In comparison, Theorem 5 delivers a similar conclusion to the Theorem 4(II). Although the convergence
rate of SSL estimate is slower without CI, it still reaches the minimax lower bound. The proof of Theorem 5 is
postponed to Section E.

We only present the case where CI fails in Theorem 5 as CI is not appropriate in the model we consider. The
following example illustrates this issue:

Example 4. Assume (X1, Xo,¢) follows multivariate Gaussian, then CI implies o = 0.

B Extra Tables and Additional Experiments

Table 3: Variance table corresponding to Table 2
ng benchmark adv+SSL(51,53) adv(S;) adv+SSL(S51,53,54) adv+pseudo label(Sy,S3)

500 1.14E-05 3.55E-04 7.09E-05 3.18E-04 3.53E-05
1000 8.43E-06 8.35E-05 6.71E-05 9.69E-05 3.07E-05
5000 7.85E-07 8.68E-06 4.58E-05 8.62E-06 2.27E-05
10000  3.01E-07 4.61E-06 6.12E-05 5.65E-06 1.62E-05
20000  2.06E-07 2.48E-06 5.11E-05 1.42E-06 1.79E-05

Table 4 is the clean training result using logistic regression, and the observations are similar to Table 1. Table
5 is the adversarial training result using logistic regression, and the observations are similar to Table 2. Table 6
summarizes the variance information for simulation in adversarial training.
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n3 SSL(mean) labeled(mean) SSL(var) labeled(var)

500 0.00946 0.02307 4.17E-05 3.19E-04
1000 0.00458 0.02076 1.24E-05 3.14E-04
5000 0.00106 0.02304 1.84E-06 3.42E-04
10000 0.00049 0.02375 1.25E-06 2.72E-04
20000 0.00015 0.02394 6.79E-07 2.23E-04

Table 4: Clean estimate under CI condition using logistic regression. n; = 100. Left: mean regret, right: the
variance.

na benchmark adv+SSL(S1,S3) adv(S;) adv+SSL(51,55,54) adv+pseudo label(Sy,S3)

500 0.00218 0.00570 0.01229 0.00441 0.00643
1000 0.00104 0.00325 0.01209 0.00291 0.00572
5000 0.00021 0.00064 0.01254 0.00072 0.00477
10000 0.00025 0.00051 0.01248 0.00027 0.00485
20000 0.00002 0.00020 0.01245 0.00017 0.00553

Table 5: Mean: Difference between the adversarial testing accuracy of estimators and 6* using logistic regression.
n1 = 100. The variance information is in Table 6.

ns benchmark adv+SSL(S7,53) adv(S1) adv+SSL(S51,55,54) adv+pseudo label(S7,S3)

500 3.78E-06 1.63E-05 7.20E-05 1.29E-05 2.09E-05
1000 1.08E-06 7.06E-06 9.72E-05 5.30E-06 2.06E-05
5000 4.06E-07 7.65E-07 8.69E-05 5.96E-07 9.63E-06
10000  1.99E-07 4.28E-07 9.69E-05 2.86E-07 9.09E-06
20000  1.32E-07 2.72E-07 8.62E-05 2.20E-07 2.07E-05

Table 6: Variance table corresponding to Table 5

C Lemmas and Extra Conditions

We first introduce some extra conditions and lemmas which are related to the minimax lower bounds. The extra
conditions are technical assumptions regulating the behavior of the loss (and its Taylor expansions) to ensure a
finite variance. The lemmas are some particular examples used in the minimax lower bound.

Assumption 2. We further assume that P satisfies:

(3) E|| X1]2X1 X, /E|| X1]|? have bounded eigenvalues.

(4) When CI holds, all the eigenvalues of the covariance of d||Xa — E(X2|X1)||?/08 and the expectation of
|| Xz — E(X2|X1)[]?/05* are of ©(va,) for some ya, = Q(1).

(5) When CI holds, if (X1,X2,Y) follows distribution Pg« for some (%, then E|| Xy — E(X2|X1)||%/08 is L-
Lipschitz for some constant L > 0 when B € B(5*,r) where B denotes an Lo ball and r is some constant.

Assumption 3. We assume that

1. when 1 is logistic regression: the covariance of Ol/060 has all bounded and greater-than-zero eigenvalues, the
expectation of 9%1/060% has all bounded and greater-than-zero eigenvalues. The density is finite and away
from zero when xy is near the decision boundary. In addition, all the eigenvalues of

Evy, || X1 (W)TExl {(619();15;6*)) <8p();15;/8*)>"r}1 (81)();15;6*))

are in O(d3).
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2. when 1 is square loss: the covariance of 9108 has all bounded and greater-than-zero eigenvalues, the expec-
tation of 021/06° has all bounded and greater-than-zero eigenvalues. The density is finite and away from
zero when 1 is near the decision boundary. In addition, all the eigenvalues of

2

Ex, || X1] (W)TEXI {(81)();15;6*)) (ap();gﬂ*)>T}l (Mggﬁ*)) (XT6°)?

are in O(d}).

Conditions (3), (4), (5) in Assumption 2 regulate the distributions in P, ensuring that a second-order Taylor
expansion is accurate for the likelihood/loss function.

Assumption 3 is an extra assumption for adversarial training. Since we use SSL in clean training and use
the vanilla method in adversarial training, some extra conditions are needed to supplement adversarial training.
Similar to the idea in Assumption 2, Assumption 3 ensures that the Taylor expansions w.r.t. p and [ are accurate.

Lemma 1. Assume (v1,72) € R4tz and (21, 29) ~ N (i, $*) for some known ¥* and unknown pu = (p1, p2).
There are ny + n3 samples of (x1,x2), na + ng samples of (x1). Then for estimators of u1,

. =N R2d
inf  sup E||M1—H12:Q( 1>’
A ||y | <R, 2N

and for estimators of o,

. N R2d
wf s Bl -l =0 ().
B2 |z ||<R,Z* ny +ng

Proof of Lemma 1. The proof is similar to Lemma 2 below using Gaussian prior. O

Lemma 2. Assume (71,22) € R4+ and (z1,29) ~ N(0,X*) for some known ¥*, and the response Ely|z] =
xIE’{yza for some vector a and Var(y|zi) = o for any x1. There are ny samples of (x1,72,y), na samples of
(x1,y), ng samples of (x1,x2) and ny samples of (x1). Then

2d
infsupElfa — af* = © (M) .

Proof of Lemma 2. Assume y|z; follows Gaussian distribution. We take a ~ N(0,0%14,/(an)) for some a > 0
as the prior distribution of a. Then it is easy to see that only S; and Ss are related to a. Denote f]nhm, as the
sample covariance matrix, and a, = (inhnz +adg, )t ﬁ >_s,.s, T1y- The conditional distribution of a|S1, Sa
becomes a multivariate Gaussian

a|S1, Sz ~ N(@a, (0% /(n1 +n2)) (B ne + alas) ),

and therefore

. PO N 2d
infsupE[|a@ — a||? > inf E||@ — @u|* + |da — al* = © (02) .
a g a ni + no

O
Y11 Yo
51 Yoo
ny + ng samples of (r1,x2), and ny + ny samples of x1, and no response y is provided, then when (di + da) =
o((n1 + n3)log(n1 + n3)),

Lemma 3. Assume (z1,72) € R4+92 and (z1,29) ~ N(u, $*), where ¥* = [ ] Assume there are

~ dy+d
T L e =
1257, ’ n1 +n3
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Assume the response E[y|z1] = x £ ya for some known vector a with ||al| = 1 and pn = 0. There are ny samples of
(x1,2,y), no samples of (x1,y), ny samples of (x1,x2) and ng samples of (x1), then when (n1+nz2) = o(ny+ns),
for any estimator 0 which estimates X7 a,

inf sup E[|§ — ¥ 5a]? = Q (
6 X3

1,2

d1+d2>
ny + ns ’

Proof of Lemma 3. We directly prove the second argument of Lemma 3. We use Bayes method to show the
minimax lower bound. Assume ¥; 2 = 3] , follows some prior distribution, then

inf SwpE|S12 — Bio° = inf EgEx, 5,512 — Siol?
Y12 87 5 Y12
> inf Eg,Ex, s, [Es, 515, 51,2] — 12/

Y12

Denote the density of £1,2 as g(£1,2). Assume EX 5 = 37, and 315 — 37, = AjA7. And we take Ay = a/|la|.

Assume ¥4 = Iy, 12 = I4,, and 0y = X; 2a. Denote ¥* = {gil gm]. Then the likelihood of the four
2.1 2,2

types of samples 51, ..., S is proportional to

9(X1,2) 1 T .T]y-1 (71 1 T 2
5|z Py T3 2, [l ad] =7 L~ 5 SZS (v =@ X120)
1,02

Since X1, and X9 2 are both identity matrix,

-1
_ i1 Xl T Y11 Xl Aq
|E| - ‘ |: 1+ [O A2] 2571 4 AQAI 2272 0

S5y + AA] B
—1
A b D A
* T x\—1 1 T 1,1 1,2 1
| |<1+[0 AJ](Z%) [OD <1+[0 Aj] {ES,ﬁAzAT 2272] {0D7

where

« 11
E1,1 E1,2 — (Z*)_l _
Y51+ AsA] 3o,

thus denoting £ = [0 Aj ] (£*)7? {AOI}, we obtain

e 3] anen |

Z = [Z1a+9 (140 A] ((Z)7 -

- &
=1+ (1+6- )
|Z*|(1 4 2¢).
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In terms of X7, denoting & = [A] 0] (¥%)~! {Al}, and &= [0 A (Z%)7! [ N ]
0 Ay

- —1
X [ Y Zik,z} ! {0} (AT 0] { Y11 Yo
P E’{ﬂ Pt AsA] Sgs Ay ! S50 4+ AsA] Ngp

Z—l _ s
{2’2‘,1 EAYTASIED VP 1+&-62/(14¢)

= [

]m AT] (591
T7¢
0

e ] T e aam) [G] 0 ag)E)
S B (e es)
1 [A oy -1 w10 -1

e o] & o) a4 )0 agen

C+oU+E-e/i+e) | A+O0+E-&/1+8)

_ (E*)fl _
Ay
0

+

Therefore,
9(Z1,2) 1 1|7 1 T 2
|| (natna)/2 €xp {_2 Z [J;I’m;'] b xs| 9202 (y — 1 X1 20)

9(E1,2) 1 =1 | L1 1 Ty 2
= Wexp {_2 Z [SCI,I;—] (E ) Ty — @ (y _fL'l 21,2af)

T 25)%n1+n3)/2 o {_; 2 [Phad] 7 -7 Bj }

1
< exp {—202 (o] A1 AT a) — 20y — 2] 51 pa) (o] ArA] a)}
S1,S52
= g(21,2)9091 (A1, Ag)ga (A1, Ag)
z
z2

Denoting [ 1} = (¥t Bl], then
2

243, 1+¢ 1+&-¢2/(1+¢) 1+6)2(1+€-€2/1+9)

o(=anf3]) a(Ea]l))

1
22 O e e/i+e)  TrOre-ei o)

Lo Eaea)s] walS]Eay) seen (e ane

Now we consider another likelihood

9(%1,2)9091 (A1, Asz),
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where g1 is an approximation of ¢g; and equals to

G1(A1,Ar) = exp{tr [Aol} [0 Ay (x9)!

S1,S3 T2
1 + o [Aa) + [0y’
X exp —532; Ea | [21 520 ] 0 +& ([21 2] A,
Xl{Al ES}
= exp{tr {Aol} [0 A2] (2*)~1 Z(Z*)—1 [Z] [;I;ir’x;—]_ld1+d2
51,83

xowd 387 0 [ & 2] @)l adl+ e a0t | |
S1,53

X].{Al GS}

Intuitively, when ||A|| — 0, g1 — ¢1; otherwise g1 — 0. As a result, we take S = {||A1|lec < 1/v/n1 + ng}.

From the generation of (z1,x2), assume go(X1,2) x I{||A1]|ec < 1/v/n1 + n3}. We know that with probability
tending to 1,

af 3 (=) {xj (2] 23] = Lasa, ||| = O ((ds + do)(n1 +13)),

and

> & [2] ()2, 2g ]+ (21(5%) " A0)% 4, | = O ((ny + ns)la,).
51,53

Therefore, Ay follows truncated normal distribution and

di+d
Ea,~g l[(A1A; —EAA] )a|? = © (ni+ni,) .

In the above analysis of A we investigate in the distribution ggog; instead of the true distribution ggogi1g2. Now
we quantify the difference between g and g1 g2.
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When A; € S, we have
9192

g1

— exp{;tr ([Aol] [0 Ay (z9)~? [

>t 2 eled) - ID

51,53

g <1i5+1+5—512/<1+5> _2>}

A 2
XeXp{_;Sgs( © <[ . [Olb

1+ +&-¢/(1+9))

ACEIN))

2

Taroa e /1 9) (<1+£>(1+§—£2/<1+£>> ‘2) }
L aaE) |3 o A

TP T A T e /(11 8)

1,53

Ay
0

1
X exp {—%'2 Z (] AAS @) —2(y — xIE’{’Qa)(acIAlA;—a)}
51,52

xl{AleS}
= AXBxCxDx1{A, €S8}.

Recall that £ = [0 Aj ] (2*)7* [Aol] and Ay = a/||al|, from the support of Ay, we have & = O(\/d1/(n1 + n3)).

Therefore,

1 1

A I

- (1+£)[1+§1—§2/(1+§)] [14+6-/1++14+6-20+&[1+E—-€2/(1+9)]]
1 9 )
= Greire-gyaee TS/ MO ITelr e/
1

TronTe-era e e /)
- raliTe—eTe] /0O A e
- 06,

so A = exp{o(1)}. Similarly, we have B = exp{o(1)}. In terms of C' and D, one can show that both of them are
in exp{o(1)} as well. Therefore, g1g2 = g1(1 + o(1)), which implies that

d1+d2>
ni+ng)

s;pIEH(AlA; —EA A )al> =0 (

As a result, we can conclude that

igfsupIEHé\— Y 0al> =6 (d1+d2> .
>

?7,1+TL3
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D Proofs for Section 2 and 3

D.1 Proof for Theorem 1

Proof of Theorem 1, CI holds. The basic idea is similar to Theorem 3. We impose a prior distribution on the
parameter pg associated with P(y|z1), then argue that we cannot exactly estimate pq.

Denote f1 and fo are the density of z1 and x2, and za|y ~ N(yu2, X2 2) and is conditionally independent to x4
given y. Also denote ¢ (x, u, X) as normal density of x given mean p and covariance ¥. Assume P(y = 1|z1) =
’L/)("El, Mo, 2171)/(1/1(1’1, Ho, 2171) + 1/1(501, —Ho, 2171)), then the hkehhood becomes

(H fi(z)P(ylzy, po) f2(22]y) ) (H fi(z1)P |$1,Mo)>
x (H f1($1)f2(x2|$17/t0)> x (Hﬁ(iﬁ)) :
Sy

S3

Thus the posterior distribution of ug given S; to Sy is proportional to

fo(po) H P(ylzy, po) | % <Hf2($2$1aﬂo)>'

S1,52 S3

Denote fa(z2|1, o) = m(po, 1, x2), then we have

1/1([551’952] [NO’FLQ]’E) ([xlva] [MS’/‘QLE) (:L'
w([xha:?] [MO’M2]7Z> + ([.’El,xg] [M6>M2]7Z> '
(@, g, Eap) — (@, —pg, B

Y1, pg, X1,1) + P2, —pg, B

%@

B log m(ug, 21, 72) — Ho)

§< ),

and

2
oy B 7 2) = -

(['Tlvx?]’ [M37M2]7 Z) - 1/} ([m1>$2]7 _[M87 /~‘2]7 Z) I,
( 1

P

d} [xl,ivz],[u?‘),,ug],Z)+1/)([x1,x2],7[u8,,u2],2)
(w1, p1é, X1,1) — (21, #07211)

(z1, g, X1,1) + (1, —pf, X11)
(w1, ), (1§, 2], D) =¥ (wr,wal = 2], D\ T
( (v, 221, 15, o), B) F 9 (2, 2], — sy i, & )) (@1 = 15w = 1)

< S

—ui) "

(@1, s, X1,1) — (21, M0>Z11)
Y(wy, pg, X1,1) + (2, —pd, X11)

When (di +dz)? log(n1 +n3) = o(n1 +n3), one can figure out that 5% log m(pg, 1, 72) and 5 log m(us, z1, T2)
converges to their mean respectively. In addition, from the model constructlon we know that

E;j; logm(uy, x1,x2) is negatively definite.
0

Using Taylor expansion, we have
P T
log i, ov,00) = o (g n,a2) + - ogmius,n ) (o~ )
o

1 . 0? « «
+§(uo — )" (a 5 logm(uo,wurz)) (1o — 16) + O(llpo — mlI)-

Thus when |0 — pl|> = O(1/(n1 +n3)), [1g, f2 only changes in O(1) proportion.

On the other hand, one can figure out that when ||ug — pg||> = O(1/(n1 + n2)), the posterior distribution of 1o
is approximately a multivariate Gaussian. The final lower bound takes from the smaller one in the above two
bounds.
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When € > 0, assume 1 ~ N(0, I ,), then the adversarial risk minimizer still the linear classifier sgn(z{ o). As
a result, the minimax lower bound of the estimation error of pg is inherited in adversarial case. O

Proof of Theorem 1, CI does not hold. We consider several cases:

e Case 1: ny +ng = o(ny +n3) and dy < d;.
e Case 2: ny +ng = o(ny +n3) and dy > d;.
e Case 3: n; +ng = O(ny + ng).

Case 1: The proof is similar to Theorem 5 for regression. Assume the optimal classifier w.r.t z; is of the form
sgn(a’ Yo 121) for some a € R%. Based on Lemma 3, when a is known and ||a|| = 1, we have

d1+d2>

inf sup E||6 — Y qal? =Q (
9 %o ny +ns3

When ¥ 5 is known, the proof follows similar arguments as Theorem 1 when CI holds. Assume P(y = 1|z1) =
Y(r1,2120,211)/(¥(21, 51 20,21 1) +9¥(21, =1 20, £1,1)). Since there is no CI condition, there is no connection
between the distribution of xo and the label y. As a result, the part of likelihood related to a is

fo(¥1,20) H P(ylz1, %1 2a).
S1,52

Denote P(y = 1|z1) = m(X; 2a,x1), then we have

logm(X12a™,21) = (21 —312a")

Y(z1,Y120,%11) — Y(x1, —X1 20,31 1) .
- (1 — X1 20")
P(x1, X120, 51,1) + (21, =31 20,51 1)

8212&

log[l — m(X120",21)] = —(x1 —X12a")

77/1(301721,2@, E1,1) - 7/1($1, —21,2% E1,1) «
- (1 — X1 20")
Y(x, E12a,811) + (21, —X1,20,311)

8212&

2
321720,2
= _Idl — (1’1 — El?ga*)(xl — Elyza*)—r
Y(x1, X1 20%,511) — (21, =120, X11) .
(a1, E120,* 311) + (21, —E120%,51,1)
n <¢(l’1, Y1 0a%,811) — (1, X1 20", 51 1)
Y(xy, B120%,811) + (1, =31 20%,511)

82
———log[l — by *
T
= Ig, — (1 — X1 20")(x1 — X1 20"
1/’(%,21,2&*, E1,1) - 1/)($1, —21,261*, E1,1) g
Y(x1, X120, 511) + (w1, —=S100%, 811)
2
(a1, X1 20%,311) — (21, — X120, %y 1)) . T
: : ’ : T — 2100  )(x1 — X10a”) .
<¢(I1’21,20*721,1) + (a1, —X1 20%,X11) (1 1207 (@1 1207)

logm (X126, 1)

+

2
> (iEl — 2172(1*)(:1?1 — ELQCL*)T

)T

As a result, when the singular values of ¥; o are all finite positive constants, if ||a — a*||> = O(1/(n1 + n2)), the
posterior distribution of @ is approximately a multivariate Gaussian when d; > da, and we obtain E|la — a*||? =
©(d2/(n1 + ng)). The overall rate becomes O(da/(n1 + na) + (di + d2)/(n1 + ng3)).
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Case 2: the arguments are similar to Case 1. However, in the last step, the covariance of the posterior of a if not
of full rank, so again we obtain E|ja — a*||? = ©(d1/(n1 + nz2)). On the other hand, since ny + ny = o(n; + n3),
the overall minimax rate becomes ©(dy/(n1 + na)).

Case 3: we directly assume a prior distribution on p and do not consider the relationship between 1o and ¥ .
Following similar arguments as in the previous cases, we obtain E||uo — pgl|?> = ©(d1/(n1 + n2)).

O
D.2 Proof of Example 1

Proof of Bahadur Representation in Example 1. In pretext task, we have

0 ;E_l
3 — () |2 = —A(ws — dlon)) "y LLEL EL1)

%1 1 oxiim
9 2
o1 22 — ¢(x1)]l5 = —2(2p(x1) — 1) (22 — H(21)),
and
92 ) T O?p(z1; 71 m)
Y g = - Ay — ZAThmarl
ORIE 22 — d(z1) |2 (22 = ¢(21))  pro FTORIE

_ _ T
T Op(x1; 51 1m) \ [ Op(w1; S71m)
2 — —
8(21,}M1) 3(21,%,“1)

62
>z llwz — d(1)ll3 = 2(2p(z1) — 1)*La,,
O3

o? Op(x1; Sy 1m) . Op(z1; X1 1m) 1
—————lws — ¢(m)|5 = A— (22 — [ +42p(x1) = 1) — M2 -
3(21,@1)@#2" ? Dl O(X7141) (22 = () @p(e2) = 1) AErim)

In addition,
Op(xy;Biim) 9 (1, 11, 511)
(1 1m) (X1 1p1) V(s pas Ba1) + (21, —pa, Bi)
_ OY(w1, p1, ¥11) 1
AETim) Yl Ban) + Y@, —pn, Xi1)
w($17u1721,1) a

_ [w(xl’ i 2171) T 7/}(5U1, —u1, El,l)]Q a(ziiﬂl) (1/J($17 M1, 21,1) + 1/)($1» — M1, 21,1))

= p(z1; S p)r — plar; 11 p) (2p(er; B 1m) — 1)a
= 2p(1; 7 1p) (1 = plar; B1 1))z

—

We know that v/n1 + ng([S1 141, f2] — [(55 1)~ ut, 43]) asymptotically follows N (0, A~'B(A~!)T) where
A S Bl gl
= oot g Bllwe — ér)]3,
ST 1), po)? ?

.
9 2 (2 a2
B = E <W||$2—¢($1)||2> <5’[(21_&H1)7H2}| o( )||2> .

Aig Arp
A= ’ ’
[A2 1 A2,2:|

)

Thus we have
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with
.
92 Op(z1; 7 1m) \ [ Op(wr; X7 1)
Ay = o Elza — ¢a1) 3 = 8] °E
a(2171#1) 8(21,1/‘1) 8(21,1,“1)
0? Op(x1; 27 1)
Ay = g ———E|za — ¢(a1)]3 = 4E | (2p(z1) — V) —F o | 1o
O(X11p1)0pe ? A(E71m1) ’
62
Asy = F5E[zs—o(x1)]3 = 2E(2p(z1) — 1)*1a,
Oy
Using block matrix inversion on A, we have
A1 1(141,1 — A1,2A2_7%A2,12_1 —(A11 — A1,2A£§A2,1)_1A1,2A£%} _
—A2_72A2)1(A1,1 —A1y2A2_72A271)_1
As a result, the Bahadur representation of 21_1 1 is
0 (A1 — A0 A5 A )T 9
-1 * \—1 * ( 1,1 1,24422432,1 * * 2
El,lﬂl - (21,1) M1 = "+ 13 SZS 82;% ) lz2 — ¢(21, 11, E1,1)”2 (2)
1,93 ’
(A1 — A1,2A£§A2,1)_1A1,2A§,§ 0 . < 12
+ —— > glez = o BB o ()

S1,S3

Expanding A; 2 in the Bahadur representation and then

1 . =1, % d
IS b - (5107l = 0 (2 ).

Finally, in terms of the regret, following Lemma 6.3 of Dan et al. (2020), we have

~ N T el x d
BR(p(, )~ 1) - RE6(ond) — 1) = 0 (B T - (510~ uil?) =0 ().

D.3 Proof in Section 3.1

Proof of Theorem 2. Theorem 2 is established upon Assumption 1 and 2.

When CI condition holds, the covariance matrix A; 2 in Example 1 is of rank 1. From the pretext task and the
family of ¢ we choose, following the same arguments as Example 12, under Assumption 2,
1 ~ dy
—_E|B-5*?=0 < ) .
1612 ” | ny +ng
On the other hand, as we mentioned before, the output of ;5 is always in the same direction, thus there is no

further error involved in the downstream task in terms of the misclassification rate for both plugin estimator and
logistic regression.

Denote i1 and fip are the parameter associated with (E, then since
R* = R(¢"W") = R(2p(-, ") — 1),

based on Assumption 1, we have

R(W/)—R*:O( d )

n1 +ng
O

2The way of doing Taylor expansion is the same for Example 1 and other models, and the Bahadur representation (2)
is the same.
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Proof of Theorem 8, Square Loss. Theorem 3 is established upon Assumption 1 and 2.

Denote (X7, X2) as the data matrix for S, Ss (without response), and (X7, X3,Y”) as the data matrix for Sy, Ss.
Denote %; j = Ea;z] for i,j € {1,2}. Also denote X; ,, as Exyy for i € {1,2}.

We first look at the asymptotics of (/#E/W . From the problem setup, we can directly solve q/ﬁ\:
6= (X, X)X Xo = X715,
and further write down W:
W = (6(X)TH(XD)1O(X) Y = (L2157 1812) B2 511 By
Thus
=W = S11810(821 57 1810) 1015718,

We then study the convergence rate. Denote 6y as the 9 obtained when n; — oo for all ¢ = 1,2,3. For the
pretext task, one can see that

(S(X1) TO(X1) 1 o(X]) Y — g7

L XTX L XTX ~
11 (12 _ 21,2> + 311 (n11+ 7;3 — 21,1> 1112 4o

¢— ¢

(B(X))To(X]) T o(X]) Y — W
L (e
ny + N2
(W

ni + ng

S
!
5
I

-1
(9/5* ") 12+ 22,1(5* &%) + 0)
+ (QZ— ¢*) $1.100 + 0) ,
where
* INT x / R =R —1
(W +(p—0") T1o+Ta1(p— &) + o) — (

_ (W) (G 6 %00+ 5203 67) (W> e

ny + ng n1 + ng

¢*<X1>T¢*<X1>>1

ny + no

As a result, denoting = (bNr W, we have
600 = (0—¢") W +(") (W W) +o,

therefore,

e e I

n1 + no ny + ns

Proof of Theorem 3, Logistic Regression. Theorem 3 is established upon Assumption 1 and 2.

The derivation for the pretext task is the same as the one in square loss. In the downstream task, denote
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&1, 6, W) = 6(@1) 7t and &o(1,6, W) = (1) 1t then

1

ni + no

Z [p(ml)gl(xlvd)*a W*) - (1 _p(xl))éé(xlagﬁ*,W*)}

S1,52

= ST ), 67, ) — (1= p(an) o, &, W]

n1 + ng $1.5s

1 ~ o~
e SZ; 1y = &(1,6. W) — 1y = ~1)s(a1, 6, 7))
T om ing 512;2 [p(z1)&1 (21, 0", W7) = (1 = p(x1))&2(71, 9", W]

S [plaa e, 6 ) — (1 pen)s(an, 6, )

TL1+’I7QS S

o Z (xl)fl(xl,qb*ﬁ)—(1—p(x1))52(x1,¢*ﬁ)}

1,52

P16 (@1,6.W) = (1= plar) (a1, 6. W)

n1+n

Py

1,52
o 2 P68 ) = (L= Pt 6. )]
1T N2 5

Py

1,52

Uy = Dea(an, 6. W) — 1y = ~ea(1,6.W)]

TLl —|—7’L2

Observe that with probability tending to 1,

mWZ (21)&1 (21, 6", W) — (1 = pla1))€a(1, 6", W*)]

1

n1+n2

,S2
Z[ w11 (1,6, W) — (1 — p(a1))éa(x1, 6", W)}
1,52

_ E{pmgng W) - (1 plar)) 22

=A

and

- }L > [p(fl)gl(xly(;a W) = (1= plz1))éa(21, 6, W)}
1T N2 S1.55
—mim > Uy =16 (1,6, W) = 1y = 1} (01,6,

S1,S2
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is a random noise with variance O(da/(n1 + ng)). In addition,

- inz SZ; [p(an)&(acl,aﬁ*ﬁ) —(1- p(ml))gg(ajl,¢*7W)}
n Jlrn Z [p(ml)gl(xl,(g, W) = (1 - p(a1))&(a1, 6, W)}
! 2 S1,S2
= Y el 6 W) — (1 ple)a (e, 67 W)
! 2 S1,S2
1 - I
_n1 T 512,;2 [p(zl)§1($17¢,W ) — (1 —p(x1))é2(x1, 0, W )] +o

B ) g (01,67 W)+ (L plan)) s o, 6 )| B = 670 40

=B

Thus we have

W-w* = Y p(@)éi(en, 6" W) = (1= p(1))éa (a1, 6%, W)

Cnytne 1 5
+A‘IB($— o)W
Z {P (x1)&1 (21,6, W) — (1 —P(fﬂl))fz(iﬂhawﬂ

1,52

Tll +TL2

> My = (@1, 6, W) - Uy = ~1)éa(e1,6.W)| +o.

n
1+n "

As a result, taking 0= quW\ and 0y = ¢*W™*,

E[6 — 6] :o( d__ | d1+d2).

ny+n2  ng+ng

D.4 Proof in Section 3.2

Proof of Theorem 4, Logistic Regression, Upper bound. Theorem 4 is built upon Assumption 1, 2, and 3. As-
sumption 1, 2 ensures the performance of the SSL in clean training, and Assumption 3 regulates the adversarial
training.

Below is a summary of the proof:

e Part 1: we show that @ is consistent.
e Part 2: given the consistency results from Part 1, we can present the Bahadur representation of 9.

e Part 3: we figure out p from clean training, and take it into the Bahadur representation to get the final
convergence result.

We first use the data model in Example 1 to go through the proof, then discuss on how to generalize it. The
extra moment conditions mentioned in the theorem statement are mentioned when we generalize the proof.
Part 1: Our first aim is to show that 0 is consistent, i.e., 9 — 0*. To achieve this, Denoting & (z1,6) =

6 1 _ 6 1 . . .. .
(ml — €W> Tl and &a(x1,0) = (acl + €H9H) PR T since the adversarial logistic loss is strongly
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convex, there exists some constant C' > 0 such that

om0 (1= ple)a(er, 0] - Elpe)6 (@.6) — (L= p(en)6a(r, 0] H
- Hﬂfi(gifHZE Elp(z1)&1(21,0) = (1 = p(a1))€2(21,0)] H
> (Ce

Furthermore, with probability tending to 1, we have

~

B [ 01.0) - 0 - pe)eond)] - e 5 [penen0) - 0 pe)aten D) |

-
Z ' 51,52,55,54

is smaller than some 7 — 0 in ) n;. We further compare

Y [penaen ) - (- plen)es(on, )]

n,
Z ' 51,52,53,54

to the first-order optimality condition, i.e.

~ ~

1

S Z [1{y:1}§1($1,9) - l{y:71}£2(1‘170)] =0.
! 51,82,53,54

Since S; and Ss contains labels, we have with probability tending to 1, for some constant r > 0,

1
don;

sup
lo—0*||<r

Y Ip(e)én(1,60) — (1= p(w1))éa (w1, 6)
51,52

1
S Z [1gy=13&1(21,0) — Liy=—13&2(21,0)] H = 0.
' 51,52

In terms of S3 and Sy, the labels are imputed from p, thus

1
su T1)<1 x1,9 —(1— X 21’1,0

W[5t w0

s X Bl e6) - (1 )l 0)] |
" S3,54
1
= u p(x1) — p(x1)) (&1 (21,0 2(z1,0))] |,
Hef@}ﬂg S S§4[(p( ) —p(x1)) (§1(21,0) + &2(21,0))]

which also converges to zero since p — p and each dimension of z; has finite fourth moment. Further following
similar argument as for S; and Ss, we have

L ST ()€ (1,0) — (1= plan))a(an,0)]

an‘ S3,54

1
7277‘, Z [1{?!:1}51(93179) - 1{y=—1}§2(x1>9)} H = 0.
' 83,54

sup
lo—0*I<R

Therefore, combining all the above results, we have

Pr(i- 0122 < P ([Efpanatn.d) - - seed)] | > o).

and H]E [p(xl)& (21, 5) — (1 —p(x1))&a (21, 5)} H — 0 in probability, thus with probability tending to 1, ||§—9*|| —
0.
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Part 2: Given the consistency result, we further consider the convergence rate as a function of p — p. We have

Yo @& (@ 67) = (1= plw)éa(z1,67)]

S1,52,53,54
= > [px)&i(zr,07) = (1= p(z1)&a(en,07)] = Y [1{y:1}§1(3«”1>§) - 1{y:*1}§2(1‘17§)}
S51,52,53,51 51,52,83,54

=0 by optimality condition

= Y [pena ) - 0 - pa))@@nd)] - 3 [lyen€@n0) - 1=y, 0)]

S1,55 S1,52

+ Y g ) - A -pe)een o) - Y [pa)& @ 8) - (1 - p)(a0)]
51,52,53,54 51,52,53,54

+ Y P06 @8 - (1= pa)e@nd)] = Y [pe)g @ 8) - (0 - b)), 0)]
S3,54 S3,54

+ 3 [P d) - (1 =pa))e@nd)] = 3 [Lymy&i @) - Ly y&(.0)]
S3,94 S3,54

= A+ A+ A3+ Ay =Ag

A; is a random variable with noise variance O(nj + ng). Ao measures the difference between 6 and 6*. As
measures the difference between p and p. A4 is a random variable with noise variance O(ns + ng). With
probability tending to 1,

Ay = = [ple)E (@0, 09)(60 — 6%) — (1 - ple)Eh(r.6°) (0 — 0%)] + o

S1,52,53,54

— (Do) Elp@)gi (@1,6) — (1 = p(a1))éh(ar, 0] (0 = 67) + O/ > millo — 6"]) +

Therefore we have

00" = s E)GE) — (L pa )OI (A + s+ A~ o)
e
B ;n 2 (= = (@) 61009 = () — 1t plon)a(on, )
=0, (Vi (miFn2)/ Tni)
n > (bl) = Bla)) (& (21,67) + & (21,6%))
=, -
= (21)) €1(21,0%) = (Igymm1y — 1+ Pe1)Eal1, 0°)
=0, (Vi (natna)/ £ i)
- ;; Shsgm [p(21)&1(21,07) — (1 = p(x1))&2(21,67)] +o.
o, (varsm)

Part 3: We further using the construction of p to bound A. As mentioned in Example 3, we use (Z to obtain p.
We know that ||ft1 — p1]]/||pe1]] = Op(di/(n1 +n3)) and i1 — 1 can be represented using Bahadur representation
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—

as well. For (x1) in Sy, it is independent to Zf&ul, thus

2

=0 ( i > .
ny+ng
For two samples (x1) and (x}) in Sy, we have

T _ Op(x1) . _ Ip(z7)
E E 1 _ Z* 1 , E 1 _ Z* 1 , 1
[ < 1,1H1 ( 1,1) 251 32;&%& 1,1H1 ( 1,1) 251 521__&M1

E

IR S . N Op(z N X
r-! <E1&ﬂ1 —(%11) Y, aggll) >(f1(931,9 )+ &a(xe,0%))
1,11

< (€221, 0%) + Ea(a1,0%)T T (61(a,0%) + §2<xa,a*>>]
dy
=0 <n1 —‘rﬂg) '

-t —— 9
S T - ) 2O (6 ) 07) 1 6, 67))
821,1#1

_ O dl ( g )2 + d% Ny
ni+ng \ Y. n; ni +ng (D-n;)?

Thus
2

For (z1,x2) in Ss, it is correlated to Ef&,ul, thus

2
) Ip(z1)
0T m

E

> (1(z1,07) + &2(21,07))

ey, 1 di di
P st — (2 ,)” -0 to(—4 ),
i = (B10) " (n1+n3> ((n1+n3)2>
and for two samples (z1,z2) and (27, %) in Ss, it becomes

T _ Op(x1) i _ Ip(z7)
E| {27 — (2% ), Sy — (3 ) Ly,
[< 1,1M1 ( 1,1) H1 321_&#1 1,1H1 ( 1,1) M1 821_&#1

< (€2(@1,0%) + Ealer,6%))T T2 (€1(, %) + 52<m3,0*>>]

d d?
= O( ! =+ 1 2> .
ni+ng  (n1+n3)

Thus although Sj is related to fi1, we still have

2

r-t T _ op(x1) di
E § Yol — (2 )y, ——% ,0* ,0* 0< )
S = < ik — (371) 3217,%/‘1 (61(21,0%) + &2(21,07)) P,

Combining Part 2 and Part 3 we have

E||5—e*||2=0( & )

TL1+TL3

and further we obtain

ER(@,@—R(@*,@—O( 4 )

ny + ns

Assumption 3 guarantees that the above analysis can be generalized to other distributions. Furthermore, although

—

the Bahadur representation of Zl_i 11 involves Xo, since X7 and Xy are conditionally independent given Y =y,
there is no extra requirement on Xo. O
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Proof of Theorem 4, Square Loss, Upper bound. Theorem 4 is built upon Assumption 1, 2, and 3. Assumption
1, 2 ensures the performance of the SSL in clean training, and Assumption 3 regulates the adversarial training.
The proof if similar to the one for logistic regression below and replace & to &(z1,y,60) =
(xl + eﬁ sgn(y — x?@)) (y — 27 0 —sgn(y — =] 0)e||0]|). The adversarial square loss is strongly convex.

Assumption 3 ensures that the above analysis can generalize to other distributions. O

Proof of Theorem 4, Linear without CI, Upper bound. Theorem 4 is built upon Assumption 1, 2, and 3. As-
sumption 1, 2 ensures the performance of the SSL in clean training, and Assumption 3 regulates the adversarial
training.

In the proof when CI holds, the Bahadur representation of 9 — 6* does not directly utilize the CI condition.
Instead, we use the convergence result of p. Therefore, similarly, we use the convergence result of SSL from
Theorem 3 to obtain the convergence results of p to apply to Part 3. O

Proof of Proposition 1. Logistic Regression Since p is consistent, one can follow Part 1 of the proof of Theorem
4 to obtain the consistency result. In terms of the convergence rate, following Part 2 of the proof of Theorem 4,
we have

0—0"

L S (o) — (a0)) (61, 0°) + Ea(nn6)) + A

2 53,54

for some E[|A|? = O(d1/(3> ni)). Since E|&1]]2 = O(dy) and E||&|? = O(dy), we have EH§— 0*)]? =
O(dr /(3 ni) + B X 2[|P(X1) — p(X0)|1?)-

Square Loss When E| X1 |2||p(X1) — p(X1)]|?(X10*)? — 0, the convergence rate of 6 — 0% is EHlﬁ\f 0%
O(dr /(3 mi) + ElI X1 [12[P(X1) — p(X1)[2(X16%)?).

D.5 Discussion about Logistic Regression

Our first goal is to investigate in what is the 6* in logistic regression. Assume there are infinite labeled data, the
first-order optimality condition is

0 1 0 1

Ely=py (@ +ergm) T cmo—aor — Ely=-n(@ e,

— 4+ X0 =0
19 101 1o o +

From the distribution of (X,Y"), we have

1 0 1
Treroaan T ELy=1 (@ —ergn) ey +A0 =0

0
Elgy—1y (7 + e7—) 6]/ 1 + ez 0+l

161l

1 1

Elfy-nz (Hem_em + 1+em+e|e|>

E{E |1 ! + . 0z =
{y=13%{ 7 +exT0—clol ' 1 4 exTO+elO] e

1 1 .
E{E |:1{y_1}£[' (1 + eu—eR + 1+ 6U+GR> 0 x= ’LL:| } '

Since (X, 0" X) follows Gaussian with mean (1,0 ) and variance [052 nga], we have
6 %0 ¥00T
E(z|0Tz =u) = = (u—0"p) = _
(@0 @ =) = p+ Grog(u=0"n) = n+ gregu = g
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thus denote ¢ = ((0, pu, X, ¢) =E [( L — L )}, we have

1+6u—eR 1+eu+sR

1 1 -
E {E [1{1/_1}&10 <1 T + T equER) 0'z= u} }
P 1 1 200 1
= E =77
4750 {“ <1 TR T +eu+eRﬂ TR~ Ty ¢
Return to the optimal condition, we have

$00T 1 it 0 1 N 1
0750 > 0Tne |“\Txen—eR T 14 euteR

ue —

6
— N=0
)}+ﬂmﬁ+

Dividing ¢,

07 uxo 6 1 1 1 0
— E = — +A0=0
TS0 T T [“ (1 TR T 1+e“+ER>} ¢ e T
Thus for some constants A and B,

0 =—(AZ + BI)™ ' p.

The above result reveals that, the convergence rate of logistic regression is the same as plugin estimator. However,
the relationship between (A, B) in the above formula may be different from the one in plugin estimator, leading
to potential bias in adversarial setup.

E Proof for Section 5 and A

E.1 Proof for Section 5.1

To provide detailed conditions on the neural network and configurations, we first define some quantities. For

two unit vectors s,t € R%, define a function h as

s t(m — arccos(s 't))
27 '

(4)

h(s,t) = Buwnn(0,14,)(s T t1H{w s > 0,0y > 0}) =

There are total ny + ng samples which have (z1,z2). We take n = nj + ny and index the samples as (2%, z}) for

i=1,...,n. After indexing the samples, we then define H(*) as a n x n matrix such that Hl(io) = h(z, z7).

Proof of Proposition 2. The detailed conditions for Proposition 2 are as follows:

3dy —1

o The learning rate n = ©(n~ 21-1).

dy—1
e The penalty A = O(n 2di=1 ).

e The number of hidden nodes m > 7~ 2poly(n,1/Xg) for some initialization variance 72> = O(1) and \g =
Ain(*).

e The number of iterations T satisfies log(poly(n, 7,1/X\g)) < nuT < log(poly(7,1/n,/m)).

e The input z; is normalized such that ||z;|| = 1, and this normalization does not change the minimal
misclassification rate. Denoting u; and ) as the conditional expectation of X; (after normalization) under
y = =1, then both ||u1|| and ||} || are nonzero.

Since ds is a constant, training a neural network with input dimension d; and output dimension ds is equivalent
to training dy different neural networks. Therefore following Hu et al. (2021), one obtain that

16— 6°113 = 0p (n=7) . (5)
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Denote (X7, X5) as the data matrix for Sy, S3 (without response), and (X7, X5,Y”) as the data matrix for Sy, Ss.

In terms of W7 under CI,

& (X) 9" (X))
n1 + no

(6)

is not a full rank matrix (at most rank two for binary classification). To avoid singular matrix problem, we take

—

W—Ww*
= ;ig})@(X{)T@(XO + M) (XY - W
S (XDTE (XD | (G-6)T9" (6T (B—¢") B
= lim ( 1 LA + —|—0+)\Id1>
A—0 ny + no ni + no ny + N
. (¢*<X1>W' CECOR N ) e
ny + no ny + ng

—1

~ i (¢*<X1>T¢*<X1> N Mdl) - ((aE S I o M qs*)) (¢*<X1>T¢*<X1) N Mdl)

A—0 ny + no ny + no ni + no ni + no

. <¢*(X{)TY’)

ny + no
x(YINT 1% ( v/ -1 T Ty
+nm<¢ (1) ¢<X1>+Mdl> <(¢ ¢") Y>+o.
A—0 ny + no ny + no

As a result, W — W*.

Different from Lee et al. (2020), we are considering the regret (the difference on the misclassification rate between
the estimated classifier and the Bayes classifier) as the final performance measure. Based on the definition of

W* and ¢*, if we use sgn(WT¢*(x1)) for some estimate W such that W — W, the classifier always makes the
exact same decision as the Bayes classifier.

On the other hand, for the estimated output

~

W) = WTe" (@) + (W) T (6lar) = ¢ (1) + o,
since we have argued that sgn(WTqb* (71)) = sgn((W*) T ¢* (1)), we aims to study how (W*)T(g/b\(xl) — ¢*(x1))

affects the regret.

The regret can be represented as

[ 172 = plan) it {sen(T6(w0)) # sgn((W") 0" 1)} dPla)

[ 172 = plan)it {sen (W76 0) + (W) (@) = 6" (1)) # 5 (W) 6" 1)) } dPla) + 0

IN

[ 172 = ple) {136 = 6 @) 2 min (776 ()l [V 6 @)l) } dPlan) + o

IN

(1 o(1) [ 1172 = plon)t {IBta1) = & @) 2 10V) 6" (@) /W [} dP(ar) + o

Further, since (W*)T¢*(21) = p(x))(W*) Ty + (1 — p(x1))(W*) Ty and |||, ||i}]] = ©(1), there exists some
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¢ > 0 such that

[ 172 = el {130 = 6" @)l = (0T )|/ IW I} dPGo)

< [z {3 - ¢ @) 2 /2 - plan)l} dPla)
< 1 [18) - & @I {3 - 9" @) 2 el1/2 - plan)]} dPla)
< 1\/ J13G2) = o+ @) 2ap(a).
which becomes O, ((n; + n3)~%2(4=1) based on (5). O

E.2 Proof for Section A

Proof of Theorem 5, Linear ¢, Regression, Lower Bound. Assume 311 = Var(z1) = Iy, and 99 = Var(zs) =
I;,. When using linear ¢, it is easy to see that ¢*(x1) = g 21 for £51 = Cov(zz,21). Thus when SSL is
unbiased, we have fyr; = CLTEQJCEl, ie. 6y = QTZQJ for some vector a. From Lemma 3, we have known fixed a,

~ d d
inf sup E[| — £ 2a|]? = © (1+2|a”2> )
g

1,2 ny +ng

and for known ¥ 5, from Lemma 2 we have

2d
infsup]E||aa||QQ< 7 % >
0 a ny + N2

Using the strong convexity property of the risk, we then obtain

~ di +d 2d
infsupER(0) — R* = Q <1+2||a||2 + 02) ,
0 i ni +ns ny + na

where |la]| = ©(]|fy]]) based on assumption. O

Proof of Theorem 5, Linear ¢, Regression, Upper Bound. The proof is similar to the square loss case in Theorem
3. Denote (X7, X5) as the data matrix for Sy, S5 (without response), and (X7, X5,Y”) as the data matrix for
S1,S52. Denote ¥; ; = Emix;r for 4,5 € {1,2}. Also denote %; , as Ex;y for i € {1,2}.
We first look at the asymptotics of QASW . From the problem setup, we can directly solve QZZ
¢ = (X, X1)7' X Xo = 27151,
and further write down W:
W = (6(X])To(X71) T o(XD Y = (521571 512) ' Saa6.
Thus
0= oW — S71512(821 571 81,2) " 22,160
When 6y = 21_&22,1(10 for some ag, we have
S 151,2(821 87 151,2) T Ba160 = 6o,

i.e., SSL is unbiased.
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We next study the convergence rate. Denote 6y as the 9 obtained when n; — oo for all¢ = 1,2, 3. For classification

task, there is no preference on the magnitude of 6y as it works as a linear classifier, so we take ||0y|| = 1. For the
pretext task, one can see that
d—¢" = (BXD O(XD) (XD TY - ¢

l
1
X, X XX
-1 1 A2 —1 1 1 —1
= -X by —_— 3 Yiix .
11 (n1+n3 1,2) + 2 (n1+n3 1,1> 112120

W—wr = (@) X)) Y W
= < );;E:QX/) ($—¢*)TEL2+22,1(<?5—¢*>+o)1
(‘m (6—¢%) 21)190+0)—W*,
where
<¢*(§£)E2(XD B ) Bt Sar (B o H)l . <¢*<§11>E2<X1>>1
. (qs*ofi)ld;;()co)l (G 6510 + 500G - 9) (d)*(ﬁ{i()(“)l o

As a result, denoting g = gr W, we have
-6 = (0—¢") W +(¢) (W-W")+o

therefore,

~ doo? di +d
E||e—eo2=0( 203 & 2||90||2>-

ny+n2  ni+ng

O

Proof of Theorem 5, Linear ¢, Regression, Adversarial. For the convergence upper bound, following the decom-
position of estimation error in Xing et al. (2021b), beside the part from ||0 6p||? in clean training, there is one
extra part due to the information limit on ¥ ;. However, since there are Y n; samples to provide information
of x1, the new term can be ignored, so the minimax lower bound in adversarial training is the same to clean
training.

In terms of the lower bound, we know that
9(6) = (Zl,l + )\Idl)_lzl’lG(O),

thus following Xing et al. (2021b), we consider two scenarios: (3) X1 1 is known and we impose prior distribution
on 6(0); (4) 6(0) is known and we impose prior distribution on ¥ ;. Following the arguments in clean training,
we have scenario (3) reduces to clean training setup. For scenario (4), following Xing et al. (2021b) we obtain

. d
inf sup E|00(c)2—@< ! >
0 S,a,c ny+ng +ng+ny

To conclude,

~ 2 2
w0 =0 ([T Yo )

0 S,a.c ny+nzg nNi+ng nNi+net+ng+ng ny+ng  nigt+ng




