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Abstract

The adversarial training is a popular tool to remedy the vulnerability of deep learn-
ing models against adversarial attacks, and there is rich theoretical literature on the
training loss of adversarial training algorithms. In contrast, this paper studies the
algorithmic stability of a generic adversarial training algorithm, which can fur-
ther help to establish an upper bound for generalization error. By figuring out
the stability upper bound and lower bound, we argue that the non-differentiability
issue of adversarial training causes worse algorithmic stability than their natu-
ral counterparts. To tackle this problem, we consider a noise injection method.
While the non-differentiability problem seriously affects the stability of adversar-
ial training, injecting noise enables the training trajectory to avoid the occurrence
of non-differentiability with dominating probability, hence enhancing the stability
performance of adversarial training. Our analysis also studies the relation between
the algorithm stability and numerical approximation error of adversarial attacks.

1 Introduction

Successful machine learning algorithms require not only a good empirical performance but also
generalizing well to unseen data. For the robustness towards unseen data, empirical experiments
show that deep learning models can be fragile and vulnerable against adversarial input (Biggio
et al., 2013; Szegedy et al., 2014). To set an example, in image recognition problems, a deep neural
network will predict a wrong label when the testing image is slightly altered, while the change is
barely recognizable by human eyes (Papernot et al., 2016a).

Related research efforts in adversarial learning include designing adversarial attacks in various ap-
plications (Papernot et al., 2016a,b; Moosavi-Dezfooli et al., 2016), detecting attacked samples (Tao
et al., 2018; Ma and Liu, 2019), and modifications on the training process to obtain adversarially
robust models, i.e., adversarial training (Shaham et al., 2015; Madry et al., 2017; Jalal et al., 2017).

However, although adversarial training improves the adversarial robustness during testing, its gener-
alization performance is still poor. While Yin et al. (2018) presented that the adversarial Rademacher
complexity is never smaller than its natural counterpart, Schmidt et al. (2018); Zhai et al. (2019) ar-
gued that a better adversarial generalization requires more labeled/unlabeled data.

In the literature of natural DNN optimization via iterative gradient moves, the empirical loss at each
iteration can be characterized by convergence rate analysis, yet generalization properties are not well
understood. To characterize the generalization error, one popular way is to study the algorithmic sta-
bility. Algorithmic stability is first considered by Kearns and Ron (1999); Bousquet and Elisseeff
(2001, 2002). Later, Hardt et al. (2016) explored the connection between algorithmic stability and
generalization performance of gradient-type optimization. Some follow-up research studies the sta-
bility for different classes of algorithms, or relax the definition of stability to generalize its usage,
see Ramezani-Kebrya et al. (2018); Charles and Papailiopoulos (2018); Kuzborskij and Lampert
(2018); Zhou et al. (2018); Lei and Ying (2020); Ho et al. (2020); Madden et al. (2020).
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In general, there are two ways to utilize algorithmic stability. On the one hand, as showed by Hardt
et al. (2016), the algorithmic stability provides an upper bound for the generalization error; hence
it will be useful when establishing the convergence of generalization error. On the other hand, the
algorithmic stability itself is also a measure that evaluates the performance of an algorithm.

Our work extends algorithmic stability analysis to adversarial training. Our contributions are:

• Through figuring out the stability upper bound and lower bound, we argue that adversarial
training leads to poor algorithmic stability even the clean loss is smooth. To solve this
problem, we propose to inject noise into the adversarial training process. Although some
existing works proposed the usage of noise injection, we highlight that such a method is
more meaningful in adversarial training than its natural counterpart. Theoretical justifica-
tion of the noise injection method is provided for a wide range of data-generating models
in several tasks, including both linear regression and logistic classification.

• Noticing that, in practice, adversarial attacks are mostly approximated via numerical meth-
ods, e.g., fast gradient method (FGM) or projected gradient method (PGD), our theory
investigates the role of accuracy of attack approximation for the stability of adversarial
training algorithms. In short, a more accurate attack leads to better stability upper bound.

• The effectiveness of noise-injected adversarial training is further generalized to the L1
attack. Compared with L2, L1 training algorithm is generally less stable.

• Beyond the theoretical analysis under simple models, we provide a theory in two-layer
ReLU network with lazy training (training the hidden layer) and observe the effectiveness
of the noise injection method. We also obtain empirical evidence that for deep neural
networks model, proper forms of noise injection and more accurate attack calculation (e.g.,
PGD-k over FGM) improve the generalization error.

2 Related Works

Theories in adversarial training To theoretically understand how adversarial training works,
Sinha et al. (2018); Wang et al. (2019a) investigated the convergence of adversarial training when
the loss is strongly convex w.r.t. data attributes. In this case, it can be shown that the gradient of
adversarial loss w.r.t. model parameters is Lipschitz, leading to good stability. However, when the
loss is not strongly concave in data attributes, Xing et al. (2021a) figured out that adversarial training
does not have a Lipschitz gradient even for linear regression. Some studies in deep neural networks
(Gao et al., 2019; Zhang et al., 2020; Allen-Zhu and Li, 2020) studied the convergence of adversarial
training loss, and Allen-Zhu and Li (2020) also provided a theoretical guarantee of the adversarial
testing loss when attack strength is small enough. Some other literature in the generalization of
adversarial training can be found in Khim and Loh (2018); Awasthi et al. (2020); Pinot et al. (2021);
Xing et al. (2021b).

Observations in deep learning In terms of empirical studies, He et al. (2019); Zheltonozhskii
et al. (2020); Xie et al. (2020); Lee and Chandrakasan (2020); Wu et al. (2020) focused on improving
the performance of attack/adversarial robustness in deep learning.

In the literature, there are several ways to improve the adversarial training, including modifying the
objective function to help the convergence of the training process (Zhang et al., 2019; Wang et al.,
2019b), regularization (He et al., 2019; Zheltonozhskii et al., 2020; Wu et al., 2020), replacing non-
smooth components (Lee and Chandrakasan, 2020; Xie et al., 2020), and handling over-fitting issue
(Lee and Chandrakasan, 2020).

Stability for non-smooth loss and min-max problem Besides works in the algorithmic stability
of first-order optimization methods on smooth loss, Bassily et al. (2020) studied the case when loss
is convex but not smooth. In this scenario, the minimax lower bound and convergence upper bound
of stability together imply that stochastic gradient descent1 (SGD) and gradient descent (GD) have
poor stability. It is recommended to run SGD/GD with an extremely small learning rate for a vast
number of iterations, which implies that it is not practical to train a non-smooth model with good
stability. Consequently, adaptations are essential for non-smooth models to improve the training
process.

1We are considering sample-with-replacement SGD.
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Another recent work, Farnia and Ozdaglar (2020), considered the algorithmic stability in the min-
max problems for generative adversarial networks (GAN) to argue that simultaneous training in
generator and discriminator leads to good stability. However, besides the strongly-convex-concave
assumption in their loss, the “min-max” problem considered in GAN and adversarial training are
not the same. These two differences lead to different conclusions between GAN and adversarial
training.

3 Stability of adversarial training

In this section, we study the uniform argument stability (UAS) of adversarial training. Utilizing the
notations introduced in Section 3.1, we present in Section 3.2 the upper and lower bounds of UAS.
Section 3.3 studies the effect of attack error on stability.

3.1 Notations

Adversarial training To introduce adversarial training, let l denote the loss function and f✓(x) be
the model with parameter ✓. The (population) adversarial loss is defined as

R(✓, ✏) := E [l (f✓[x+A✏(f✓, x, y)], y)] ,

where A✏ is an attack of strength ✏ > 0 and intends to deteriorate the loss in the following way

A✏(f✓, x, y) := argmax
z2Bp(0,✏)

{l(f✓(x+ z), y)}, (1)

where Bp(x, r) is a Lp ball centering at x with radius r.

Given n i.i.d. samples S = {(xi, yi)}ni=1, the adversarial training minimizes the sample version of
R(✓, ✏) w.r.t. ✓:

RS(✓, ✏) =
1

n

nX

i=1

l (f✓[xi +A✏(f✓, xi, yi)], yi) , (2)

and the estimator b✓ aims to minimize RS(✓, ✏). We rewrite RS(✓, ✏) as RS(✓) for simplicity when
there is no confusion.

The minimization in (2) is often implemented through an iterative two-step (min-max) update. In the
t-th iteration, we calculate the adversarial sample ex(t)

i = xi + A✏(f✓(t) , xi, yi) based on the current
✓(t), and then update ✓(t+1) based on the gradient of the adversarial training loss while fixing ex(t)

i ’s
with learning rate ⌘t. The algorithm runs for T iterations. A more detailed pseudocode is postponed
to Algorithm 1 when introducing our adaptations. Note that for some loss function l or model f✓,
there may not be an analytic form for A✏ (e.g. deep neural networks), and numerical methods, e.g.
FGM and PGD, are utilized to approximate A✏.

Risk decomposition Define ✓0 and ✓̄ as the minimizer of R and RS respectively. Then for the
algorithm output b✓, the excess risk can be decomposed into four parts as below:

R(b✓)�R(✓0) = R(b✓)�RS(b✓)| {z }
Egen

+RS(b✓)�RS(✓̄)| {z }
Eopt

+RS(✓̄)�RS(✓0)| {z }
0

+RS(✓0)�R(✓0)| {z }
E=0

,

Since the last two parts are either negative or with zero expectation, we mainly focus on the first two
parts, namely, generalization error R(b✓)�RS(b✓) and optimization error RS(b✓)�RS(✓̄). Based on
Hardt et al. (2016), Egen is upper bounded by algorithmic stability.

Uniform argument stability (UAS) UAS aims to quantify the output sensitivity in L2 norm w.r.t
an arbitrary change in a single data point. An algorithm is �-UAS if for neighboring datasets S1 ⇠
S2 (i.e., S1 and S2 differ only in a single data point), it satisfies that

sup
S1⇠S2

kb✓(S1)� b✓(S2)k := sup
S1⇠S2

�(S1, S2)  �.
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where k·k represents the L2 norm. Under proper conditions, the UAS bound implies a generalization
error bound (Bassily et al., 2020): if P (k�(S1, S2)k � �)  0 for any neighboring (S1, S2), then
for any ,

P

"
|Egen| � c

 
�(log n)(log(n/)) +

r
log(1/)

n

!#
 + 0. (3)

3.2 Upper and lower bound

This section presents the upper bound and lower bound of UAS of adversarial training when its
natural counterpart is convex and smooth.

The upper bound of UAS of adversarial training can be directly extended from Bassily et al. (2020)
as follows:
Proposition 1. Assume l(f✓(x), y) is L-Lipschitz and convex w.r.t. ✓, and ✓ 2 B2(0, r). The two
models ✓(t)1 and ✓(t)2 are adversarial training estimators obtained using datasets S1, S2 respectively.
For SGD,

sup
S1⇠S2

E
h
k✓(T )

1 � ✓(T )
2 k

i
= O

0

@min

8
<

:r, L

vuut
TX

t=1

⌘2t + L

PT
t=1 ⌘t
n

9
=

;

1

A .

The upper bound of GD is the same.

The following theorem presents the lower bound of UAS. For simplicity, we consider the case of
constant learning rate, i.e., ⌘t = ⌘ for t = 1, ..., T .
Theorem 1. Assume ✓ 2 B2(0, r). There exist some ✏ > 0 and some loss function l(f✓(x), y)

which is differentiable and convex w.r.t. ✓, such that ✓(t)1 and ✓(t)2 , which are SGD-based adversarial
training estimators obtained using S1, S2 respectively under attack strength ✏, satisfies that

sup
S1⇠S2

Ek✓(T )
1 � ✓(T )

2 k = ⌦

✓
min

⇢
1,

T

n

�
⌘
p
T +

⌘T

n

◆
.

For GD, the lower bound is

sup
S1⇠S2

k✓(T )
1 � ✓(T )

2 k = ⌦

✓
min

⇢
1, ⌘

p
T +

⌘T

n

�◆
.

To prove Theorem 1, similar to Bassily et al. (2020), we design a smooth clean loss function with
two datasets S1 ⇠ S2 and study the exact change of the model parameters. The detailed proof is
postponed to the Appendix D.

As discussed by Bassily et al. (2020), the non-smoothness of the loss is the main reason for poor
stability. The presented low bounds match the result of Bassily et al. (2020), but it is worth mention-
ing that the two results are not directly comparable since Bassily et al. (2020) studied the UAS
of clean training when the loss function l(f✓(x), y) is non-smooth, while our work studies the
UAS of adversarial training when the loss function is smooth. On the other hand, the UAS of
cleaning training under smooth loss, implied by Theorem 3.8 of Hardt et al. (2016), is of order
O(min{r, L

PT
t=t0

⌘t/n}). Therefore, we conclude that adversarial training has a worse stability
than its natural counterpart.

To ensure the convergence of optimization (i.e., ⌘T is not so small) and the generalization perfor-
mance (Proposition 1 and Theorem 1), one may take T = n2 and ⌘ = 1/n3/2. The resulting
optimization error and stability then become O(1/

p
n), which matches the minimax lower bound of

excess risk (Chen et al., 2018). However, such a choice of (⌘, T ) is impractical and needs to improve
(refer to the discussion in Bassily et al., 2020).

3.3 The role of numerical attack error

In real-world applications, calculating the exact attack A✏ for general models is not easy, and usually,
a numerical approximation A0

✏ (e.g., by FGM or PGD) is used in the adversarial training algorithm.
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Some recent literature start to aware the important impact of the numerical attack error (i.e., the
difference between A✏ and A0

✏). For example, Gao et al. (2019); Zhang et al. (2020) took account of
the attack approximation method in the convergence analysis of adversarial training, and Deng et al.
(2020) studied the convergence of PGD attack.

For algorithmic stability, extended from Proposition 1, the following result considers the effect of
attack error. Comparing the upper bounds of Proposition 1 and Corollary 1, it suggests one to control
the attack error carefully in the adversarial training.
Corollary 1. Under the same conditions of Proposition 1, assume the algorithm uses an approxi-
mation A0

✏ instead of the exact attack A✏ with attack error min kA✏(x, y, w) � A0(x, y, w)k  �"
for any (x, y, w), where the minimum is taken when the exact attack (i.e., (1)) is not unique. Assume
O✓l(f✓(x), y) is -Lipschitz w.r.t. x. Then, for SGD

sup
S1⇠S2

Ek✓(T )
1 � ✓(T )

2 k = O

0

@min

8
<

:r, L

vuut
TX

t=1

⌘2t + L

PT
t=1 ⌘t
n

+ �"
TX

t=1

⌘t

9
=

;

1

A .

The upper bound of GD is the same.

Besides the convex case, some discussions for non-convex case can be found in Appendix A. The
observations are similar.

4 Improving the stability

In this section, we show that injecting noise in adversarial training enhances the smoothness of
adversarial loss, and hence improves the stability of adversarial training.

4.1 Source of non-smoothness

As mentioned after Theorem 1, the non-smoothness issue in adversarial training is the main cause
of the poor stability. Summarizing from the related works, we identify two important sources of
non-smoothness in adversarial training even when the standard loss is smooth: (1) when the data are
overfitted, i.e., the training loss is almost 0 and Oxi l(f✓(xi), yi) ⇡ 0, the adversary has no preference
on the attack direction at xi, and the numerical estimation of A✏ is not stable, which possibly leads
to an unstable update iteration of adversarial training; (2) there exists a certain set of ✓, such that the
adversarial training loss is always non-differentiable regardless of the training data, even when its
natural counterpart is smooth. For example, in linear regression, when ✓t is closed to the null model,
the non-smoothness issue occurs (Xing et al., 2021a).

To tackle both non-smooth issues, we propose incorporating noise injection in the training process
as described in the following section.

4.2 Injecting noise during training

In this section, we present the noise injection algorithm in adversarial training and provide some
theoretical justifications.

Algorithm 1 below illustrates the details of the noise injection method. The basic idea behind this is
that: the non-smoothness of adversarial loss occurs only when ✓ and xi’ belong to a certain special
region (e.g., in linear regression, when ✓ is closed to either zero or when ✓>xi ⌘ yi), thus injecting
some small noise to both ✓ and x helps them to escape from such region where non-smoothness
occurs, which further ensures the Lipschitz continuity property.
Remark 1. The Gaussian noise in Algorithm 1 is for proof simplicity. In general, it can be changed
to other noise distributions if the tail is not heavy.

In the literature, there have been some applications of noise injection. For example, He et al. (2019)
considered injecting noise to the weights as a regularization method to improve the adversarial
robustness. Besides literature in supervised learning (Weng et al. (2018); Wang et al. (2018); Ford
et al. (2019), injecting noise in data was also considered to stabilize the training process of GAN
(Arjovsky and Bottou, 2017; Jenni and Favaro, 2019).
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Algorithm 1 Add noise to weight and data
Input: data {(xi, yi)}ni=1, number of iterations T , learning rate {⌘t}Tt=1, attack strength ✏, noise
size (⇠✓, ⇠x), scale parameter r , initialization ✓(0).
for t = 1 to T do

Add Gaussian noise with variance ⇠2✓ to each dimension of ✓t to form e✓(t), and add Gaussian
noise with variance ⇠2x to each dimension of xt to obtain exit .
Calculate the attack (based on exit and e✓(t)) as bzit .
Take gradient w.r.t e✓(t) on l(fe✓(t)(bzit), yit).
Update ✓(t) to ✓(t+1) with rate ⌘t.
Project ✓(t+1) onto B2(0, r).

end for

Output: ✓(T ).

In the following theorems, we provide a theoretical justification for the stability and optimization
when injecting noise into adversarial training for the following models:

• Linear regression: l(f✓(x), y) = (x>✓ � y)2.

• Logistic regression: l(f✓(x), y) = � log1{y=1}(p) � log1{y=�1}(1 � p), where p =

p(x>✓) = 1/(1 + e�x>✓).

• Smooth hinge loss: the hinge loss max{0, 1�y(x>✓)} is not smooth at 0, hence is approx-
imated by l(f✓(x), y) = (1 � y(x>✓))H((1 � y(x>✓))/h), where h > 0 is a bandwidth
parameter, and H is a smooth approximation of the indicator function I{x � 0}. The
detailed conditions on H are postponed to Lemma 7 in the Appendix D.2.

The following assumption is imposed on the data:
Assumption 1. The independent variable x 2 Rd follows multivariate Gaussian distribution with
zero-mean and ⌃ whose eigenvalues are bounded and away from zero.

For regression, E|y| and Ekyxk are finite. For some constant C > 0, any ✓ 2 B2(0, Cr) satisfies
P (|x>✓ � y| 2 [⇣1r, ⇣2r]) = O(⇣2 � ⇣1) for ⇣1, ⇣2 > 0.

For classification, the label is y 2 {±1}. The upper bound r satisfies r/maxi=1,...,n kxik ! 0.

The Gaussian assumption in x is merely for derivation simplicity. The assumptions w.r.t. regression
avoids |x>✓�y| from clustering around zero when k✓k/r approaches zero. A linear model E[y|x] =
✓>0 x with Gaussian noise satisfies Assumption 1.

Given the above problems and data generating models, the following lemma studies the smoothness
(i.e., the Lipschitz constant) of O✓l(f✓(x), y), and of the gradient of noise injected adversarial loss.
Lemma 1 (Informal Statement for Lemma 3). Assume Assumption 1 holds. Denote L as the Lips-
chitz constant of l(f✓(x), yj) w.r.t. ✓ for any x 2 B2(xj , 2✏) and all 1  j  n. Then, in probability,
L is bounded by some finite L⇤. Take the noise injected in data as zero-mean Gaussian with vari-
ance (⇠20/d)Id, and the noise injected in parameters is zero-mean Gaussian with variance (⇠2/d)Id
where ⇠ = ⇠0L⇤. Denote E(✓+ �, ex, y) as the event that O✓l(f✓+�(ex+A✏(f✓+�, ex, y)), y) is B⇤/⇣-
Lipschitz for some B⇤ > 0. There exists some choice of (⇠, ⇣) ! 0 such that with probability
tending to one over the generation of S, uniformly for all ✓ 2 B2(0, r),

P (Ec(✓ + �, ex, y)|(x, y) 2 S) = o(1).

The formal statement is postponed to Lemma 3 in the appendix.

Let P (Ec|S) := sup✓2B2(0,r),(x,y) P (Ec(✓ + �, ex, y)|(x, y) 2 S) in what follows, for notation
simplicity.
Remark 2. The terms r, L are generic representations. For different loss functions and data dimen-
sion d, their values may change. In addition, the exact rate of P (Ec|S) is affected by the value of
r, L as well as ⇠, ⇣. We postpone the details to Appendix D.2 during the proof.
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The following lemma is an intermediate step in the derivation of Theorem 2 below, and reveals the
important role played by B⇤/⇣. Note that since Lemma 1 holds over the randomness of S, instead
of uniform argument stability, we turn to a bound similar to hypothesis stability (Bousquet and
Elisseeff, 2002) for the following results. To simplify the representation, the values of (B⇤, L⇤, r)
are treated as constants in the following main text.

Lemma 2. Under the same conditions as in Lemma 1, uniformly for all i = 1, ..., n, with probability
tending to one over the generation of S1 ⇠ S2 where the i-th sample is replaced, for both GD and
SGD, given k✓(t�1)

1 � ✓(t�1)
2 k = �t�1, it follows that

E[k✓(t)1 � ✓(t)2 k2|S1, S2,�t�1] 
✓
1 + 2⌘2t

(B⇤)2

⇣2
1{⌘t �

⇣

B⇤ }
◆
�2

t�1 + reminder,

where the detail of reminder term can be found in (8) in Appendix D.2. Note that the expectation
taken on k✓(t)1 � ✓(t)1 k2 in GD is over the injected random noise, and the one for SGD is taken for
both the sampling in SGD and the injected random noise.

Lemma 2 illustrates the relationship between k✓(t)1 � ✓(t)2 k2 and �2
t�1. Recall that B⇤/⇣ is the

Lipschitz constant of O✓l(f✓+�(x̃+A), y). When ⌘t � ⇣/B⇤, a larger Lipschitz constant implies a
larger upper bound of stability. When taking ⌘t < ⇣/B⇤, we have the following result:

Theorem 2. Under the same conditions as in Lemma 1, when taking ⌘t  ⇣/B⇤, for both GD and
SGD, with probability tending to one (where the probability refers to the generation measure of the
n+ 1 distinct independent samples in S1 ⇠ S2),

E[k✓(T )
1 � ✓(T )

2 k|S1, S2] = O

0

@
"
p
P (Ec|S1) + P (Ec|S2) +

r
1

n

#vuut
TX

t=t0

⌘2t

1

A

+O

 
�"+

1

n
+ P (Ec|S1) + P (Ec|S2)

� TX

t=t0

⌘t

!
.

Furthermore, extending from Lemma 9 of Bousquet and Elisseeff (2002), the generalization gap is
upper bounded using hypothesis stability as follows.

Proposition 2. Assume ✓ 2 B2(0, r). Denote b✓(S) as the model obtained based on dataset S using
some algorithm. Assume l(f✓(x), y) 2 [0,M ] when kxk 

p
d log n, we have for any i = 1, ..., n,

E
⇣

R(b✓(S1))�RS1(b✓(S1))
⌘2�

 M2

2n
+ 4E

"
sup

✓2B2(0,r)
l2(f✓(x+A✏), y)1{kxk �

p
d log n}

#

(4)

+ 3ME
h���l(fb✓(S1)

(xi +A✏), yi)� l(fb✓(Si
2)
(xi +A✏), yi)

���
i
,

where Si
2 represents the neighboring dataset of S1 whose ith sample is replaced. The notion A✏ is

an abbreviation of the attack A✏(f, x, y) or A✏(f, xi, yi).

Note that the last term on the RHS of (4) can be bounded according to the result of Theorem 2, under
Lipschitz condition of the adversarial loss l(f✓(xi + A✏), yj). The second term on the RHS of (4)
can be bounded given some further conditions on the tail behavior of loss function.

Compared with the generalization upper bound obtained in Bousquet and Elisseeff (2002), in Propo-
sition 2, there is an extra term corresponding to kxk >

p
d log n. In Proposition 2, we only assume

l(f✓(x), y) 2 [0,M ] when kxk 
p
d log n, which is weaker than the uniform bounded assumption

in Bousquet and Elisseeff (2002).

Besides, we also establish the optimization error bound. The following theorem presents the con-
vergence of noise-injected adversarial training when ⌘t ⌘ ⌘. For the proof, one can refer to the
Appendix D.2.
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Theorem 3. Under the same conditions as in Lemma 1, for both GD and SGD, ✓̄ :=
argmin✓2B2(0,r) RS(✓), when ⌘t ⌘ ⌘,

E


min
t=1,...,T

RS(✓
(t))� min

✓2B2(0,r)
RS(✓)

����S
�

 Ek✓(0) � ✓̄k2

2⌘T
� E[k✓(T ) � ✓̄k2|S]

2⌘T

+
⌘(L⇤)2

2
+O(L⇤⇠) +O(r�").

Theorem 3 presents the convergence of adversarial training loss throughout the training. Under the
boundedness of ✓ and ⇠ = ⇠0L⇤, when (⌘, T, ⇠0) is chosen properly (e.g. (⌘T ) ! 1 and ⇠0 ! 0)
and �✏ ! 0, the adversarial training loss converges to its minimal asymptotically.

It is noteworthy that the general design of Algorithm 1 does not specify the noise distribution.

While in Section 4.3, we use Gaussian noise to justify our theorems under linear regression empiri-
cally, different forms of noise can be utilized for complex models, refer to our experiments on deep
neural networks in Section C.2.
Remark 3. If an intercept term exists in the loss function, e.g., l = (x>✓ + b � y)2 for linear
regression, the analysis is similar to Lemma 1, leading to the same final conclusions as in Theorem
2 and 3.
Remark 4 (L1 Attack in Adversarial Training). In general, the stability of L1 adversarial training
is worse. To set an example, we consider the linear regression setup. For L2 attack, the gradient
of adversarial loss is not Lipschitz only when ✓ approaches zero or ✓>x is closed to y. Under L1
attack, the adversarial loss becomes

(x>✓ � y)2 + ✏2k✓k21 + 2✏k✓k1|x>✓ � y|,

indicating there is a much larger set where the L1 adversarial loss is not smooth.

Noise injection is still helpful to remedy the non-smooth issue for L1 adversarial training and
leads to results similar to Theorems 2 and 3. However, one will derive a worse upper bound for the
stability and optimization error. Refer to Appendix E for more detailed arguments.

4.3 Numerical illustration

We use simulation to illustrate how noise-injected adversarial training affects performance. In
short, the quality of the updating gradient is better after injecting noise. The Lipschitz constant
of O✓l(f✓(x+A), y) in Lemma 2 is smaller.

We consider linear regression problem in this experiment. The data is generated using y = x>✓⇤+�
with x ⇠ N(0, Id) with d = 10 and � ⇠ N(0, �2). The coefficient ✓0 is taken as ✓⇤i = 1/

p
d for

i = 1, ..., d. The variance of noise is taken as �2 = 4 and attack strength is ✏ = 2. We randomly
generated n = 1000 samples.

To train the regression model, we train T = 500 epochs with learning rate ⌘ = 0.01 and initializa-
tion ✓(0) = 0. In each iteration, we calculate kOft(✓(t)) � Oft�1(✓(t�1))k/k✓(t) � ✓(t�1)k as an
approximation for the Lipschitz constant of the gradient, where Oft(✓) is the averaged gradient of
adversairal loss for the tth batch of data St. Based on Lemma 2, a larger Lipschitz constant (B⇤/⇣)
indicates a worse stability, which is the right tail of the histogram. The results are summarized the
histograms in Figure 1.

From the left three histograms in Figure 1, one can see that injecting noise on parameters and data
(where we set ⇠x = ⇠✓ = ⇠) leads to a smaller distribution of Lipschitz constant for Oft(✓(t)), in
terms of right tail percentile. For the right two histograms in Figure 1, a smaller batch size implies
a heavier tail in the distribution of Lipschitz constant due to larger stochastic noise in estimating
Oft(✓(t)).

Besides the experiment showing how noise injection affects the training process, we also conduct a
simulation to illustrate the effect of attack error on the generalization. Due to the space limit, the
simulation is postponed to the Appendix B. To briefly summarize the observations, for all scenarios
we consider, when there is an error when calculating the attack, the generalization gap becomes
larger.
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Figure 1: Density of kOft(✓(t)) � Oft�1(✓(t�1))k/k✓(t) � ✓(t�1)k. ✓0,i = 1/
p
d for i = 1, ..., d

with d = 10. n = 1000, � = 2, ✏ = 2. ⌘ = 0.01, T = 500. Vanishing initialization. A larger
⇠ implies a smaller Lipschitz gradient of Oft(✓(t)). The (mean, sd, 99.9%-quantile) are (178.90,
22.34, 323.36), (167.72, 19.20, 234.43), (174.95, 20.71, 247.93), (163.05, 34.89, 337.07) for the
above four histograms.

5 Exploration in Neural Networks

While our main contributions are for statistical models, we also provide some theoretical results and
numerical experiments associated with neural networks.

It is still an open question how to connect existing algorithmic stability tools to neural networks.
Since the number of parameters in neural networks is much larger than simple models, a simple
bound on k✓(T )

1 � ✓(T )
2 k is not useful. Instead, we consider a two-layer neural network with lazy

training and vanishing initialization in regression and provide a stability bound directly on the loss.
In order to track the neural network parameters, we track both the convergence and the stability
together. This is more restrictive than simple models.

The following (informal) statement presents the stability of two-layer nonlinear networks with lazy-
ing training in adversarial training setup. The formal statement of the theorem is postponed to
Appendix C.1. Based on the following theorem, under proper configurations, the noise-injected
training in neural networks improve the stability:
Theorem 4 (Informal Statement). For two-layer nonlinear (including ReLU) networks, with proper
initialization and training configurations, training only on the hidden layer with proper noise injec-
tion, it satisfies that

ES1⇠S2

���l(f✓(T )
1

[x+A✏(f✓(T )
1

, xi, yi)], yi)� l(f
✓(T )
2

[x+A✏(f✓(T )
2

, xi, yi)], yi)
���

= O

 "
L
p
P (Ec) +

r
L2

n

#
⌘
p
T +


L

n
+ LP (Ec)

�
⌘T

!
+ rem,

where rem = o(1) and is not the dominant term.

There are two differences between Theorem 4 and the results in simple models. First, it is not useful
to directly assume the weights of the neural network parameters within a large ball and put this large
number into the bound, thus we simultaneously study the convergence and stability of the neural
network to tighten the stability bound. Second, instead of bounding the stability of the parameters,
we turn to bound the stability of the loss, which is more meaningful to this over-parameterized
method.

Besides the results in two-layer networks, we also numerically study the generalization gap using
deep neural networks with CIFAR10 dataset. Due to space limit, we postpone the experiments to
Appendix C.2. The observations from numerical experiments are (1) injecting noise can reduce
the generalization gap between training and testing performance, and (2) improving the accuracy of
attack also improves the quality of the adversarial training. Both of the observations are similar to
those in simulations.

6 Conclusion

In this paper, we evaluate the algorithmic stability of the adversarial training method. Based on the
lower bound and upper bound of UAS, we reveal that the naive adversarial training is not as stable
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as its natural counterpart. To improve the stability, we argue that it is helpful to inject noise into
model parameters and input data. Our theory verifies the effectiveness of noise injection in some
simple models. Besides, our theory also considers the effect of attack error and indicates that the
upper bound of UAS is smaller when the attack error is smaller.

The above theoretical investigations emphasize the usage of noise injection and controlling numer-
ical attack error during the adversarial training. These theoretical insights are well validated by our
simulations under simple regression models.

There are two future research directions motivated by this study. Although we observe a similar
phenomenon in deep neural networks as our theory in simple models, there is a gap between the
exact algorithmic stability of deep neural networks and the UAS bounds in simple models. Our
analysis in the two-layer neural networks is a trail in this area, but a more comprehensive study
study on algorithmic stability of the deep neural network is wanted. Second, as we mentioned in
the numerical experiments, a wider neural network has a poor attack. Corresponding theoretical
explanation is also an interesting topic.
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