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Abstract

Modern machine learning and deep learning
models are shown to be vulnerable when test-
ing data are slightly perturbed. Existing
theoretical studies of adversarial training al-
gorithms mostly focus on either adversarial
training losses or local convergence proper-
ties. In contrast, this paper studies the gen-
eralization performance of a generic adversar-
ial training algorithm. Specifically, we con-
sider linear regression models and two-layer
neural networks (with lazy training) using
squared loss under low-dimensional and high-
dimensional regimes. In the former regime,
after overcoming the non-smoothness of ad-
versarial training, the adversarial risk of the
trained models can converge to the mini-
mal adversarial risk. In the latter regime,
we discover that data interpolation prevents
the adversarially robust estimator from being
consistent. Therefore, inspired by successes
of the least absolute shrinkage and selection
operator (LASSO), we incorporate the L£;
penalty in the high dimensional adversarial
learning and show that it leads to consistent
adversarially robust estimation. A series of
numerical studies are conducted to demon-
strate how the smoothness and £; penaliza-
tion help improve the adversarial robustness
of DNN models.

1 INTRODUCTION

Recent advances in deep learning and machine learning
have led to breakthrough performance and are widely
applied in practice. However, empirical experiments
show that deep learning models can be fragile and vul-
nerable against adversarial input which is intentionally
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perturbed (Biggio et al., 2013; Szegedy et al., 2014).
For instance, in image recognition, a deep neural net-
work will predict a wrong label when the testing im-
age is slightly altered, while the change is not recog-
nizable by the human eye (Papernot et al., 2016b).
To ensure the reliability of machine learning and deep
learning when facing real-world inputs, the demand
for robustness is increasing. The related research ef-
forts in adversarial learning include designing adver-
sarial attacks in various applications (Papernot et al.,
2016b,a; Moosavi-Dezfooli et al., 2016), detecting at-
tacked samples (Tao et al., 2018; Ma and Liu, 2019),
and modifications on the training process to obtain
adversarially robust models, i.e., adversarial training
(Shaham et al., 2015; Madry et al., 2018; Jalal et al.,
2017; Balunovic and Vechev, 2020).

To introduce adversarial training, let [ denote the loss
function and fy(z) : R? — R be the model with pa-
rameter 0. The (population) adversarial loss is defined
as Ry(0,€) :==E[l(folr + Ac(fo,2,y)],y)], where A, is
an attack of strength € > 0 and intends to deteriorate
the loss in the following way

Ac(fo,z,y) := argmax{l(fo(x + 2),y)}. (1)
z€R(0,€)

In the above, z is subject to the constraint R(0, €), i.e.
an Lo ball centered at 0 with radius e.

Given ii.d. training samples {(z;,v;)}",, the adver-
sarial training aims to minimize an empirical version

of Rp(0,¢) w.r.t. 6:

n

Ry(6,€) = %Zl (folzi + Ac(fo, zi, yi)l,vi),  (2)

=1

and 6 = argming Ef(H, €). The minimization in (2) is
often implemented through an iterative two-step (min-
max) update. In the ¢-th iteration, we first calculate

the adversarial sample 7 — i+ Ac(fowy, i, y;) based

K3
on the current 89, and then update 8+ based on
the gradient of the adversarial training loss while fixing
52@’5; see Algorithm 1. This generic algorithm and
its variants have been studied in Shaham et al., 2015;

Madry et al., 2018; Jalal et al., 2017; Balunovic and
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Vechev, 2020; Sinha et al., 2018; Wang et al., 2019a
among others. Note that for complex loss function [
or model fy, there may not be an analytic form for A,
(e.g. deep neural networks). In this case, an additional
iterative optimization is needed to approximate A, at
each step; see Wang et al., 2019a.

Algorithm 1 A General Form of Adversarial Training

Input: data (z1,91),..., (Tn,yn), attack strength e,
number of steps T, initialization #(9), step size 1.
fort=1to T do
for i=1ton do
Calculate the attack for the ith sample and get
5§t_1) =z; + Ac(foe—1, Ti, i)
end for
Fixing 7\'~"’s, update 6% from 0¢=1 through

%

6 = 04D — R, (04D €) (3)
1 < _
_ plt-1) _ 2 FEDy o
— ¢ Vo [n ;ﬁlz (o (@ )y)] :

end for
Output: 0(7).

In the literature, there are three major strands of
theoretical studies related to this work. The first
strand focuses on the statistical properties or gener-
alization performance of adversarially robust estima-
tors without taking account of the role of optimization
algorithms (Javanmard et al., 2020; Yin et al., 2019;
Raghunathan et al., 2019; Schmidt et al., 2018; Na-
jafi et al., 2019; Min et al., 2020; Zhai et al., 2019;
Hendrycks et al., 2019; Chen et al., 2020). For in-
stance, Javanmard et al. (2020) studied the statistical
properties of Rf(é, €), without specifying how to ob-
tain the exact/approximate global minimizer f5. The
second strand studies the adversarial training loss,
i.e., the limiting behaviors of Rf(6() ¢) as a train-
ing algorithm iteration ¢ grows. For instance, Gao
et al. (2019); Zhang et al. (2020) showed that for over-
parameterized neural networks, the empirical adver-
sarial loss could be arbitrarily close to the minimum
value in a local region near initialization. The third
strand studies the (local) convergence of adversar-
ial training under certain convexity assumptions (e.g.,
Sinha et al., 2018; Wang et al., 2019a). Besides these
theoretical results, there are a few empirical works as
well (e.g., Wong et al., 2020; Wang et al., 2019b; Rice
et al., 2020; Lee and Chandrakasan, 2020; Wu et al.,
2020; Xie et al., 2020).

In this paper, we investigate the global convergence
and the generalization ability (i.e., R;(0("),€)) of the
adversarial training, for two models fp, linear regres-
sion and two-layer neural networks, with the squared

loss I(fo(z),y) = (fo(x) — y)? under Ly and L., at-
tacks. Our theoretical contributions are summarized
as follows.

First, the adversarial loss Rs(6,¢) suffers from non-
differentiability even if both [ and fy are smooth, thus
the optimization, i.e., Algorithm 1, works poorly. This
motivates us to introduce a surrogate attack to over-
come the non-smoothness problem. Under low dimen-
sional setup and L, attack, we show that under proper
conditions, the iterative estimate HET) trained from the
surrogate adversarial loss asymptotically achieves the
minimum adversarial risk (Section 2).

Secondly, we observe the “data interpolation” behav-
ior of Lo adversarial training under high dimensional
setup (d/n — o). More specifically, the training loss
converges to zero, but the population loss Ry (OéT),e)
converges to a large constant which is the adversarial
loss of null model. To remedy the poor generaliza-
tion, we penalize the adversarial training loss using
LASSO. The resulting adversarially robust estimator
and adversarial risk are both consistent for under some
sparsity assumption (Section 3).

Thirdly, we examine the differences between the L
and Lo adversarial training. One similarity with Lo
case is that, when attack strength is small, data inter-
polation prevents L, adversarial training from achiev-
ing a consistent estimator as well, and the issue can be
improved by the use of LASSO penalty. In terms of
the differences, in general, it is harder to conduct ad-
versarial training under L., attack, in the sense that
a lower learning rate and more iterations are required

to ensure the convergence of GéT) (Section 4).

It is worth mentioning that a recent work by Allen-
Zhu and Li (2020) also conducted a similar analysis for
the generalization ability of adversarial training for a
two-layer ReLLU network model. However, the focus of
their work is to explain the feature purification effect
of adversarial training in neural network and overlook
the difficulties of adversarial training when e does not
asymptotic goes to 0.

For technical simplicity, throughout the paper, we as-
sume the data are generated from linear regression:

y="0gz+e, (4)

where z € R? is Gaussian vector with mean 0 and vari-
ance X (6 is not perpendicular to X)), and ¢ is a Gaus-
sian noise (independent of x) with variance 02 < oo.
As d diverges, we assume both maximum and min-
imum eigenvalues of ¥ are finite and bounded away
from 0. In addition, ||fy|| and o2 are allowed to in-
crease in d, but the signal-to-noise ratio ||fp||s/o is
large, say bounded away from zero.
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2 LOW DIMENSIONAL
ASYMPTOTICS

This section considers linear regression models and
two-layer neural network models (training the first
layer weights) under the low dimensional scenario. In
particular, we examine the landscape of the adversar-
ial loss and further investigate the testing performance
of the estimator GET). In what follows, we rewrite Ry
as Ry, for linear models and as Ry for two-layer net-
works.

2.1 Linear regression model

Consider the linear regression model: fp(z) = 6'z.
By the definition of A¢(fy,,y) under the L5 ball con-
straint and the fact that z and ¢ are both Gaussian,
Ry has an analytical form as

Ri(0,¢) =[6 — 6o[|% + 0 + €*[|6]?

+ 2ecol|0]\/ 110 — bol13; + 02,
where ||al|} := a'Xa, |la]| := ||la||2 for any vector a,
and ¢p := /2/m. Given any € > 0, define

0" (€) := argmin Ry, (0, ¢) and R*(¢) := meinRL(H,e).
0

When no confusion arises, we will rewrite 0*(e) and
R*(¢) as 6* and R* for simplicity.

We first analyze Ry (0, €) based on the form (5).

Proposition 1. Assume the attack strength ¢ > 0 and
the data generation follows (/). The adversarial loss
Ry is differentiable w.r.t. 0 if and only if (1) 0® > 0
and 0 # 0, or (2) c =0, 0 # 0, and 0 # 0y. The
function Ry, is conver w.r.t. 6, and there exists some
constant ¢ such that when ¢ > ¢, 0* =

From Proposition 1, there always exists some 6 where
R (6,€) is not differentiable (e.g., § = 0), and it is not
avoidable when e is large. Even if we smooth the stan-
dard loss as in Xie et al. (2020) to improve the quality
of the gradients (or use smooth classifiers as in Salman
et al., 2019), the non-differentiable issues remains for
the adversarial loss. This makes it difficult to track the
trajectory of gradient descent algorithms in the sense
that the adversarial training loss will fluctuate during
training rather than strictly decreases over iterations.

To solve this problem and improve the gradient qual-
ity, for both models under consideration, we introduce
Ac ¢ that is a surrogate for £, attack A.:

101(fo(x), y)/ O]

Ae s Ly =
o) = S @)y e 7 &

Ae(fGaxay)'

Lee and Chandrakasan (2020) showed that the insta-
bility of adversarial training when 9l(fy(x),y)/0x is
closed to zero. Therefore, the design of A.¢ aims to
impose shrinkage effect on A, when ||0l(fo(z),y)/0z||
is small, thus the training process will be more stable.

When £ =0, A. ¢ is reduced to A.. With the surrogate
A ¢, we define the empirical and population surrogate
loss as:

1 n
RL& 0 6 = E;l f9 zz+A€f(f95IZayZ))ayi)a

2

Ry, 5(9 6) = El(fe(xl + A, E(e xzayz))vyi)'

One can show, Ry, ¢(0,€) is smooth and convex every-
where. Accordingly, Algorithm 1 is modified by re-
placing A, with A.¢. Note that a smaller value of &,
which leads to a closer approximation to Rz, o, makes
Ry ¢ less smooth at the origin and thus requires a lower
learning rate n and more iteration steps 7". Therefore,
we require a fine-tuning of ¢ in the sense that £/||6o||
slowly decreases to 0. The surrogate loss for two-layer
neural networks, i.e., Ry ¢ and Ry, is defined in the
same way.

The use of surrogate attack improve the gradient qual-
ity of adversarial training and enforces the smoothness
and convexity of surrogate loss Rp ¢(0,¢€). It facili-
tates the convergence and generalization analysis of

adversarial training. We study the consistency of HET)
toward 6* and RL’g(OéT),e) toward R*, under suit-
able choices of (§,7,t) after accounting for the dimen-
sional effect v? := ||6p|% + 02 (for simplicity assume
v? bounded away from zero); see Theorem 2.

Theorem 2. Assume the data generation follows (4)
and let € be a fived constant. If there exists some con-
stant By such that Hﬁéo)H < Byv, and the dimension
growth rate satisfies logny/d?/n — 0, then with prob-

ability tending to 1, the surrogate loss Ry, 5(05 ,€) de-
creases in each iteration, and

T * T *
Rue®. )~ R 0, and 7”92 il -0

v?2 v

given n = £/(v2L) for some large constant L, T =
(v?loglogn)/€ and & = v3d/\/nlogn.

The proof of Theorem 2 is postponed to Appendix
C. The results of Theorem 2 actually hold for a wide
range of (£,7,T) (as elaborated in the Appendix C).
In general, the choice of (1,T) can be invariant to v,
while a larger v implies a wider range of possible .
In terms of tuning 920) and &, one can estimate v? via
the sample variance of y1, ..., y,. Note that the above
discussions apply to Theorems 3, 4, 5, 6, and 7 as well.
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Figure 1:  Adversarial training and testing loss in
linear regression. Solid line: adversarial testing loss.
Dashed line: adversarial training loss. The training
process with & = 0 is more fluctuate.

Theorem 2 also confirms the phenomenon that “ad-
versarial training hurts standard estimation” (Raghu-
nathan et al., 2019). Denote §OLS as the common
least square estimator for un-corrupted data (i.e. with-

out attack) and trivially @\OLS — 0p. By Theorem 2,
0" — 0% # 6o, thus

Rp(9{",0) — Rp(oLs.0) R (6*,0) — Ry(6,0)
2 - 2
v v

where the function c(e) increases in €, and converges
to [|6p]|%/v? as € diverges.

Remark 1. The Gaussian assumption of x is used in
Theorem 2 for the convenience of showing the analyt-
ical form of Ryp. All the results in this paper, except
for Section 3.2, are still valid as long as the density of
(z,y) is finite and exp(—t||z||?) < oo for some t > 0.

Numerical experiments

To demonstrate the necessity of smoothing attacks un-
der large ¢, a simple simulation is conducted. Let
d =10, n = 1000, z € R% and ¥ = I;. The re-
sponse y = By * + ¢ with B9 = (1,...,1)T and o2 = 1.
The level of attack is taken as e = 3. We use the same
training data set in the adversarial training for £ = 0
and £ = 0.05. Figure 1 displays the effectiveness of
&: the loss with £ = 0 always fluctuates, and after we
smooth the training process through taking & = 0.05,
(surrogate) training and (non-surrogate) testing loss
smoothly decrease in each iteration.

2.2 Two-layer neural networks

We consider the two-layer neural network with an ac-
tivation function ¢, say

1 h
fo(z) = 7 ; o(z"0;)a;, (6)

where a;’s are known values and 6 = (01,...,05) €
R%" is the parameter to be trained. This “lazy
training” setup has been widely used in the litera-
ture (e.g. Du et al., 2018, 2019; Arora et al., 2019;
Ba et al., 2020; Allen-Zhu and Li, 2020), it eases the
theoretical analysis. Additional, we adopt a vanish-
ing initialization scheme (Ba et al., 2020): QE(B ~
N(0,15/dh**+?) for some § > 0.

Theorem 3 shows that Ry ¢ (HET), €) converges to the
same minimal loss R* as in linear regression under
proper choice of T and &, as n and h diverge.

Theorem 3. Under the generative model (4), as-
sume the activation function ¢ in model (6) is
twice continuously differentiable, ¢'(0) # 0, and
@(0) = 0. If a and h satisfy |alle = O(1),
max |a;|/(min fa;]) = O(1), (dlogn)|lalecv/Vh —
0, and (dlogn)|alesvVh/||al? — 0. When
&/v? — 0 where £/v? = —loglogn/log(\/d?logn/n Vv
(dlogn)llallos/Vh), and 1 = En/(v*L||al|?) for some
large constant L, with probability tending to 1, for
T = (v* loglogn)/¢, if v/dlogn(L+vn|all* / (h*/*€) +
Lnw)T Jh%/? — 0, then

Rye(0", ) — R*

2

— 0, (7)
where R* is the exactly the same as Theorem 2.

The detailed proof is postponed to Appendix D. The
choice of € here depends on the weights a together with
the number of hidden nodes h. Note that although
both Theorems 2 and 3 establish the convergence of
Ry (0, €), Theorems 3 requires that /v converges to
zero in a slower speed, leading to a slower convergence
rate for Ry (0, ¢€).

Remark 2. The proof of Theorem 3 is similar to Ba
et al. (2020): as the number of hidden nodes h grows,
the trajectories of optimization using linear network
(with zero initialization) and nonlinear network (with
vanishing initialization) are slightly different, while the
convergence result of the former one can be simply ex-
tended from linear models. Different from Ba et al.
(2020), we specify the learning rate as well as the num-
ber of iterations as functions of (d,a,n,h), while Ba
et al. (2020) utilized gradient flow, which is not ap-
plicable in our setup. In addition, compared with Ba
et al. (2020), the relationship of (&, a,n) is revealed in
our result when ||6p|| — oo.

Theorem 3 requires a continuous differentiable ¢, and
similar results can be established forReLU activation
function as well:

Theorem 4. Under the generative model (4), as-
sume the activation function ¢ is ReLU function
with zero initialization and no bias. Take /v =
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—loglogn/log(\/(d?logn)/n). Setn = Eh/(v2L|al?)
for some constant L. Denote a™ as a vector such that
a;-' = a;1{a; > 0}, and similarly define a~. If a sat-
isfy |a™||/|la” || = 1 and ||a]| = O(1), with probability

tending to 1, for T = (v?loglogn)/&, (7) holds.

Numerical experiments

A series of simulation studies of low dimensional linear
regression and two-layer neural network model with
lazy training are conducted. Due to page limit, these
results are detailed in Appendix A and successfully
validate our Theorems 2-4 on the convergence of ad-
versarial training with surrogate loss.

Here we present another experiment that shows the
improvement of predicting the performance of adver-
sarial trained estimator via surrogate loss for compli-
cated models beyond our theorems. We fit a ResNet-34
(WideResNet34-1) model for CIFAR-10 dataset. Since
the ReLU function is not smooth, we utilize the train-
ing technique introduced by Xie et al. (2020): we use
ReLU in the forward path and use Softplus(8 = 10)
in the backward path to improve the gradient qual-
ity. The number of epochs is taken as 100. The initial
learning rate is 0.1, and at the 75th and 90th epoch, it
is multiplied by 0.1. The value of £ is taken as 0.001
at the initial stage and multiplies 0.1 whenever the
learning rate is changed. We repeat this experiment
10 times to obtain the mean and variance and con-
duct this experiment under various levels of attacks.
We use Ly attack with strength ¢ = 3.0 in this ex-
periment. The results are summarized in Figure 2. It
shows that using surrogate loss leads to slightly higher
adversarial testing accuracy and much higher standard
testing accuracy than the one with & = 0.

In addition, we conduct two experiments (in case that
the adversarial training with £ = 0 does not converges
algorithmically in the above experiment): (1) with 200
epochs and (2) with initialization that is obtained by
standard training as in Allen-Zhu and Li (2020). The
results are postponed to the appendix. In short, a
better performance is obtained under surrogate loss,
and the initialization from standard training does not
improve the performance.

Although our theory only reveals a single non-
differentiable point, it is still important to handle this
carefully in neural networks. The non-differentiable
problem is partially due to that the adversary has no
preference in the direction of attack. If we estimate the
attack twice (from different initializations) and the dif-
ference between the two estimates will be large when
the non-differentiable problem is severe. We conduct a
small experiment to investigate the attack difference.
The details are postponed to the appendix. The re-
sults justify the importance of accommodating this

Std/Adv accuracy
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Figure 2: Standard and adversarial testing accuracies
for CIFAR-10 with ResNet34. Solid line: adversarial
testing accuracy. Dashed line: standard testing accu-
racy. With & = 0.001, both adversarial testing accu-
racy and standard testing accuracy (with standard de-
viation as 0.458, 0.321) are higher than that for £ =0
(0.743, 0.219).

non-differentiability issue, especially for large e.

3 HIGH DIMENSIONAL
ASYMPTOTICS

In this section, we focus on the high dimensional
regime where d/n — oco. It is first revealed that the
adversarial training also suffers from the classical in-
terpolation effect, i.e., near-zero (surrogate) adversar-
ial training loss but high generalization error. As a
potential remedy, we penalize the adversarial training
loss using LASSO and show that the estimate is con-
sistent when 6* is sparse.

3.1 Effect of interpolation

It is well known that interpolation may occur under
high dimensionality. For instance of linear regression,
if a gradient descent with zero initialization is applied
to minimize the squared loss when d/n — oo, then the
solution converges to

O(y) = X" (XX") 1y,

where X = (21,79,...,7,) " and y = (Y1,%2, s Yn) |,
given a sufficiently small learning rate. This perfectly
interpolated estimator 0(y) is proven to be inconsis-
tent to 6y and lead to a large generalization error (e.g.,
Hastie et al., 2019; Belkin et al., 2019). Note that this
over-fitting scenario is different from the one in Rice
et al. (2020), which is caused by over-parameterization
in deep neural networks rather than high dimension-
ality of the input.

Our first result shows that 6(y) also induces the same
effect of interpolation in adversarial learning for linear
models.



On the Generalization Properties of Adversarial Training

Lemma 1. Assume data generation follows (4).
When 0(y) # 0 and d/n — oo, we have ||0(y)|*/v? =
Op(n/d), and with probability tending to 1, for any
& >0, it holds that

Rie(0(y).€) Rre(0(y),€)

— 1.

We next show that 87 shares the same properties
as O(y). The core idea is that the training trajec-
tory {Hét)}z;l can be sufficiently close to that in the
standard training, when both are initialized from zero.
Since the latter converges to 6(y), the surrogate ad-
versarial training loss and testing loss of QéT) act in a
similar way as those for §(y) respectively.

Theorem 5. Under the same assumptions as in
Lemma 1, when (logn)\/n/d — 0, take n small
enough such that the largest eigenvalue of 77XTX 1
smaller than 1. Use zero initialization, and denote

T = min{t € Z* : [|| X0 — yll2/(vy/n) < 1/v/logn},
then with probability tending to 1, for any & > 0, we
have T < oo and

Rpe(6" )

02

Rpe(0"€)

— 0, and 5 — 1.
v

The proof of Theorem 5 is postponed to Appendix E.
Compared with Theorem 2, Theorem 5 no longer re-
quires £ to be associated with (d,n). A crucial reason
for this difference is that under high dimensionality,
when ¢t <T', the smoothness of Ry, ¢ along the training
trajectory (i.e., the gradient of §L75(9§t), €)) is always
dominated by a term that is only determined by the
eigenvalues of high dimensional design matrix X, re-
gardless of how small ¢ is (refer to equation (13) in
Appendix E for details). This is contrast to the low
dimensional case.

Theorem 5 shows that RL75(92T),6)/1)2 does not con-

verge to R*/v?. Similar results can be established for
two-layer neural networks (with lazy training):

Theorem 6. For the two-layer neural network (6),
under the same conditions on ¢ as in Theorem 3,
(logn)\/d/n — oo, take zero/vanishing initializa-
tion and 1 = Minearh/||all?>. Assume |a|o =
O(1), (dlogn)afecv/Vh — 0, max |a;|/(min|a;]) =
O(1), Vdn(logn)®|lacvvh/||al* — 0 , vdlogn(1 +
v2nlall/(R3/2€) + Lyw)T /h%/2 — 0. Denote T :=
min{t € Z* : |||feét) — yll2/(vy/n) < 1/\/logn}, then
with probability tending to 1, for any & > 0, we have
T < oo and

Ry (0 €)

02

Rye(0" )

— 0, and >
v

-1 (8

For ReLU network, we have the following result:

Theorem 7. For the two-layer neural network (6),
(logn)y/d/n — oo, assume the activation function
¢ is ReLU function with zero initialization and no
bias. If |la™||/lla”|| = 1, llall0 = O(1). Denote
T :=min{t € Z7 : | fyo — yll2/(vv/n) < 1/vIogn},
then for any & > 0, with probability tending to 1, we
have T' < oo, and (8) holds.

Numerical experiment

A simulation is conducted to verify Theorem 5. We
choose n = 20, d = 1000, and ¢? = 1. The true under-
lying model 6y is all-zero except for its first 10 elements
being 1. The attack intensity is e = 0,0.01,0.1. Learn-
ing rate is taken as 0.001 with zero initialization and
& = 0.5. The curves in Figure 3 represent means of
respective statistics, and the shaded areas represent
mean + one standard deviation, based on 100 repli-
cations. Figure 3 shows that the surrogate adversarial
training loss keeps decreasing to around zero for all the
choices of €, while the adversarial testing loss converges
to some nonzero constant. Note that the three adver-
sarial training loss curves in the left plot of Figure 3
overlap.

More experiments for larger d and £ = 0 (with a change
when 6 = 0) are postponed to Appendix A. Besides,
we also postpone experiments for neural networks to
Appendix A.
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Figure 3: Adversarial training, high-dimension.

3.2 Improving adversarial robustness using
LASSO under high dimensionality

In this section, we explore how incorporating LASSO
improves adversarial learning under high dimension-
ality. In particular, we will present some theoretical
justifications for linear models and conduct numeri-
cal exploration to evaluate the potential of LASSO in
neural networks.

Intuitively, a sparse adversarial learning via LASSO
makes sense only when the adversarial loss has a sparse
global optimization, i.e., 8* is a sparse vector. There-
fore, certain investigation is necessary to understand
the sparsity relation between 6y and 6*.
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Proposition 8. Under model (4), the optimal solu-
tion of Rp¢(0,€) is of the form 6* = (£ + kI)~'X6,
for some k as a function of (0p,%,0%&). Assum-
ing 0y is sparse, then whether the robust coefficient
(B + kI)71%00) is sparse or not depends on .

The following example illustrates that, based on
Proposition 8, when the correlation between active set
and inactive set is zero, the adversarially robust model
0* is sparse as well.

Example 1. When 0y is sparse, and ¥ can be rep-
¥ 0
0 3
the active attributes, and s is for the other attributes
of x, the model 6* will be sparse as well.

resented as , where 31 is the covaraince of

To simplify the derivation, we assume > = [ in the
following result. Denote S as the active set of 6%, and
s =|S| as the size of S. We consider applying LASSO
in the adversarial training loss:

S o+ AceUfor i wi))ow) + A0

i=1

The statistical property of 55, the minimizer of the
above objective function, is as follows:

Theorem 9. Assume data generation follows (4), 6y
is sparse and ¥ = I. Take £/v? — 0, Mv = o(1)
and \Jv > (ey/(slogd)/n) V (€an/v?) for some large
constant ¢ and a, — co. If € < /7||0o]|2/(v/2v), then
0* # 0, and with probability tending to 1, we have

]%Lf(éé,e)——ff

0 — 0
= 16 =61l _

— 0, and 3
The proof of Theorem 9 is similar to the traditional
LASSO analysis as in Bickel et al. (2009); Belloni and
Chernozhukov (2013) but with an important modifi-
cation. In the literature, the Hessian of the standard
training loss, i.e., XTX/n, is usually required to sat-
isfy the so-called restricted eigenvalue condition. How-
ever, in adversarial setting, the Hessian changes as 0,
so it takes more steps to verify the above condition.

Remark 3. Theorem 9 shows the effectiveness of
LASSO in sparse linear model and it performs better
then the case without LASSO. Note that the estima-
tion consistency still holds for low-dimensional dense
model, if d and n satisfies (dlogd)/n — 0. But, to
ensure that LASSO improves the performance in this
case, A should be carefully tuned.

We conduct some empirical study to explore the poten-
tial applications of LASSO in the adversarial training
of neural networks. Similar experiments under large-
sample regime can be found for adversarial training

Sinha et al. (2018); Wang et al. (2019a); Raghunathan
et al. (2019), and pruning in adversarial training Ye
et al. (2019); Li et al. (2020).
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Figure 4: Comparison on standard (upper) / ad-
versarial (lower) test accuracies between training
with/without £q penalty under Lo attack with & =
1074, Attack strength e = 3.

Numerical experiments

The program was modified from a repository in
Github! and library Advertorch. A simple two-layer
neural network is constructed with 1024 hidden nodes
and ReLlU as activation. We use MNIST dataset to
distinguish between digits 0 and 1, and randomly se-
lect a small number of samples of 0 and 1 from the
training dataset to create a high-dimension scenario.
The L, attack level is set to be 3. We trained 2000
epochs to ensure the convergence of the algorithms
and repeat the experiment for 30 times to draw a box-
plot. After training 2000 epochs, for both A = 0 (No
penalty) and A = 0.001 (LASSO), the training accu-
racies for clean data and adversarial data both reach
100%. The penalty A = 0.001 was chosen such that
the magnitude of penalty is comparable with loss. The
results are summarized in Figure 4.

For adversarial accuracy, as shown in Figure 4, the re-
sults with two different A’s are significantly different,
where the choice of A = 0.001 improves the adversar-
ial accuracy compared with A = 0. As a reference, we
also plot the standard accuracy (i.e. prediction accu-
racy for un-corrupted data), even though the objec-
tive function minimized is the (penalized) adversar-
ial training loss. Figure 4 shows, it approaches 99%
quickly in n for both adversarial training with and
without LASSO.

We also observe similar results when £ = 0, and the
details are postponed to Appendix A.

We also tried on CIFAR-10 with WideResNet34-10.

"https://github.com/louis2889184/
pytorch-adversarial-training


https://github.com/louis2889184/pytorch-adversarial-training
https://github.com/louis2889184/pytorch-adversarial-training

On the Generalization Properties of Adversarial Training

The A is chosen to ensure that the magnitude of cross
entropy loss and the LASSO penalty are comparable.
We use all data in the training dataset to conduct this
experiment. The results are summarized in Table 1.
Our theorem only concerns the high dimensional case,
i.e., small-n-large-d, however, as showed in Table 1,
both standard and adversarial testing accuracies are
still enhanced when using LASSO, in this large-n ap-
plication (Refer to Remark 3).

Method std acc (%) adv acc (%)

Benchmark — 84.346(0.355) 61.760(0.204)

LASSO 107° 86.568(0.214)  63.072(0.292)
Table 1:  Adversarial training in CIFAR-10 using

WideResNet34-10 with Lo attack, e = 0.5.

4 L., ADVERSARIAL TRAINING

In this section, we discuss the adversarial loss and ad-
versarial training under L., attack. Similar as stated
in Chen et al. (2020), the adversarial risk of the linear
model becomes

R (0,¢) =[0 — 0ol + o® + 2 [|0]I3

+ 2ecol|0]|14/ 110 — Ooll3; + 0.

Below are discussions w.r.t L., adversarial training:

Harder to train

From (9), R7° is not differentiable when some element
in 6 is zero. Similar as for £, attack, we propose to
shrink the size of adversarial attack when Ry is not
differentiable, while a difference is that the shrinkage
is applied on each dimension of z: for i =1, ...,d,

|01/ Dl

Ao 9l = oo + 2

[Aeoo(fea mvy)]i~

A major difference between L., and Lo attacks is
that, L., attack is more sensitive to . For exam-
ple, if 6 = (1/d,...,1/d)" and ¢ = 1/v/d, then A>®
becomes (¢, ...,e)T whose Lo norm is 1, while A% is
(e/(1 + d),...;e/(1 + d€))T, whose Lo norm quickly
shrinks to zero if £&d — oo. As a result, it is neces-
sary to require that £ = o(1/d) to avoid overshrinkage
of the L, attack. However, as discussed in previous
sections, a smaller £ requires smaller learning rate and
more training iterations, thus training under L., at-
tack is more difficult.

Effect of interpolation

In high-dimensional case, adversarial training still suf-
fers from data interpolation: when € = O(1/v/d) and
d/n — oo, the minimal adversarial training loss con-
verges to zero, while the population adversarial loss

converges to v? (recall that v? = ||6p]|? + 02). Similar
as for Lo attack, we add LASSO in the L., adversar-
ial training in MNIST and CIFAR-10. The results are
summarized in Figure 15 and 16 in appendix, as well
as Table 2. For both datasets, LASSO improves both
standard and adversarial testing accuracies.

Method std acc (%) adv acc (%)

Benchmark 82.870(0.131)  50.338(0.315)

LASSO 107° 84.800(0.282) 54.260(0.376)
Table 2:  Adversarial training in CIFAR-10 using

WideResNet34-10 with L., attack, e = 8/255.

Remark 4. From the aspect of formulation, L ad-
versarial loss and LASSO has overlapped effect as both
introduce L1 penalty effect into the loss function, see
(9). However, LASSO and L, are designed for dif-
ferent purposes. From the aspect of loss landscape in
deep learning, LASSO does not intend to change the
loss landscape near the global minima as the penalty
term goes to zero asymptotically, i.e., any global opti-
mum for standard loss are optimum for LASSO prob-
lem given infinite training data. On the other hand,
for adversarial robustness under Lo attack, it aims to
select the certain global minima such that the predic-
tion is robust in the nearby region of training samples,
and not all minimizers of standard loss are robust to
adversarial attack. From this aspect, they can be ap-
plied simultaneously. We refer readers to Guo et al.
(2020) for more discussion.

5 CONCLUSION AND FUTURE
WORKS

This paper studies the convergence properties of ad-
versarial training in linear models and two-layer neural
networks (with lazy training). In the low-dimensional
regime, using adversarial training with surrogate at-
tack, the adversarial risk of the trained model con-
verges to the minimal value. In a high-dimensional
regime, data interpolation causes the adversarial train-
ing loss close enough to zero, while the generalization
is poor. One potential solution is to add £y penalty in
the adversarial training, which results in both consis-
tent adversarial estimate and risk in high dimensional
sparse models.

There are several future directions. First, we may fo-
cus on classification tasks as a future work. In regres-
sion, the adversarially robust model generally outputs
smaller-in-magnitude predictions, which is not prac-
tical in classification. One may be interested in how
adversarial training works in classification. Second,
the scenarios we consider are d/n — 0 and oo, and
one can consider the linear dimensionality case, i.e.
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d/n — ¢, as a future direction. Finally, the non-
smoothness issue happens to the adversarial loss and
the penalty term (e.g., LASSO, Wang et al., 2019b; Wu
et al., 2020), so there is potential to improve further
the gradient quality of penalized adversarial training
via smoothing the penalty function.
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