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Abstract

In this paper, we take a data-driven approach and apply machine learning to the moment closure
problem for radiative transfer equation in slab geometry. Instead of learning the unclosed high order
moment, we propose to directly learn the gradient of the high order moment using neural networks.
This new approach is consistent with the exact closure we derive for the free streaming limit and
also provides a natural output normalization. A variety of benchmark tests, including the variable
scattering problem, the Gaussian source problem with both periodic and reflecting boundaries, and
the two-material problem, show both good accuracy and generalizability of our machine learning

closure model.
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1 Introduction

The radiative transfer equation (RTE) describes particle propagation and interaction with a back-
ground medium. It has been widely applied in many fields of science and engineering including
astrophysics [50], heat transfer [29], remote sensing [56], and medical imaging [28]. The RTE is a
high-dimensional integro-differential kinetic equation. Common numerical methods for computing
RTE can be classified into two categories: probabilistic methods such as the direct simulation Monte

Carlo (DSMC) method [4], and deterministic schemes including the discrete ordinates method (Sy)
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[34] and the moment method [10, 39] among others. In general, any mesh based numerical dis-
cretization faces formidable computational cost due to the curse of dimensionality.

While there have been advances in solving high dimensional models, such as the RTE, using
various approaches in dimensional and model reduction [11, 12, 16, 17, 7, 57, 49|, for a large class of
problems, moment methods are the only tractable solution. Moment methods study the evolution
of a finite number of moments of the specific intensity. Typically, in this scenario, the evolution of
the p* moment depends on the (p+ 1) moment, leading to what is known as the moment closure
problem. Hence, one has to introduce suitable closure relations that relates the highest moment
with the lower order moments in order to get a closed system of equations. A given closure relation
makes assumptions about micro-physics, which may not be true in all settings. Therefore, the trade
off in introducing a closure relation and solving a moment model instead of a kinetic equation, such
as the RTE, is generic accuracy verses practical computability. Many moment closure strategies
have been developed. Some of the best known methods include: the Py model [10]; the variable
Eddington factor models [38, 47]; the entropy-based My models [21, 2, 1]; the positive Py models
[20]; the filtered Py models [45, 32, 51]; the By models [3]; and the M Py model [13, 14, 41].
Newly developed theory around the generic closure problem suggests an approach to constructing
analytical closure models based on gradients that lead to globally hyperbolic moment models [41].
This approach encompasses many of the well known closure models and offers insight into this
challenging problem.

Recently, thanks to the rapid development of machine learning (ML) [35] and data-driven
modeling [6, 52, 18, 60], a new approach to solving the moment closure problem has emerged based
on ML. In [19], the authors introduced a framework to construct machine learning moment closure
models for kinetic problems. They first learned a set of generalized moments using the auto-encoder
to optimally represent the underlying velocity distribution, and then learned the moment closure
model for the generalized moments with the aim of best capturing the associated dynamics of the
kinetic equation. This framework was further applied to the Williams-Boltzmann equation for
polydisperse evaporating sprays in [54]. In [25], based on the conservation-dissipation formalism
[61] of irreversible thermodynamics, the authors proposed a stable closure model parametrized by
multilayer perceptron (MLP) for the Boltzmann BGK equation. In [5], a nonlocal closure was
proposed for the Vlasov-Poisson system using a convolutional neural network (CNN). In [43, 58],
the authors applied MLP, CNN and a discrete Fourier transform (DFT) network to learn the
well-known Hammett—Perkins Landau fluid closure. In [44], the capability of neural networks to
reproduce some known magnetized plasma closures was further investigated. We also note that in

addition to the closure problem, ML is being investigated as a method for directly solving high



dimensional kinetic equations. The physics informed neural networks (PINN) was applied to solve
forward and inverse problems for kinetic equations including the Boltzmann BGK model [42], the
phonon Boltzmann equation [40] and also the RTE [46]. In [59], the full Boltzmann collision
operator was approximated by a neural network with the aim of reducing the computational cost.

In this work, we focus on using ML as a tool for model reduction to address the moment closure
problem of the RTE. To close the moment model deduced from kinetic equations, the conventional
approach is to provide an approximation to the unclosed high order moment. In optically thick
regimes or intermediate regimes, it is easy to find an accurate closure relation. However, in optically
thin regimes (or even the free streaming limit), the kinetic model does not possess intrinsic low
dimensional structure, which makes any attempt at model reduction difficult [36, 37, 27, 53]. To
address this problem, we start from investigating the RTE in the free streaming limit and derive
the exact closure relations with isotropic initial conditions. Motivated by this closure relation, we
propose to directly learn the gradient of the unclosed moment using neural networks for the RTE in
slab geometry. The advantages of our approach are twofold. First, the functional form of the model
is consistent with the exact closure for the free streaming limit. Thus, it is expected to gain better
accuracy using this ansatz, especially in the optically thin regime. Second, the unclosed high order
moments usually have a wide range of magnitudes and become very small in the optically thick
regime. Such a target function makes the neural network difficult to learn, unless an appropriate
output normalization is applied [5]. Our approach in learning gradient provides a natural output
normalization since the magnitude of d,myy1 is close to that of d,my, see equation (2.31) in
Section 2.3. In addition, we incorporate the scale invariance of the closure model into the neural
networks by learning the normalized gradient. We demonstrate numerically that enforcing scale
invariance in the closure model makes the model more generalizable, especially when applied to
initial data whose dynamic range is outside the training set used to create our ML closure model.

In our numerical tests, the training data is generated by initial conditions consisting of a trun-
cated Fourier series with random coefficients [43, 5] and constant scattering and absorption coef-
ficients. The well-trained model is uniformly accurate in the optically thick regime, intermediate
regime and the optically thin regime. Moreover, the accuracy of our model is much better than
the approach based on creating a ML closure directly trained to match the moments, as well as
the conventional Py closure and the filtered Py closure [51]. This is demonstrated on a wide range
of 1D test problems, including the variable scattering problem, the Gaussian source problem, the
two-material problem, and the reflective boundary conditions. An important observation is that
our ML closure is able to nearly exactly reproduce the moments for the kinetic equation, even for

the two-material problem, with a small number (N = 5) of moments. The motivation for this



choice is that, as shown below, at minimum four degrees of freedom are required to exactly close
the moment equations in the free streaming limit with isotropic initial conditions. Therefore, it is
natural to expect that more degrees of freedom are required in the closure for the variable scattering
and absorption setting. In our numerical tests, we find that giving our ML closure the freedom to
relate the gradient of the sixth-order moment to the gradient of the first six moments is enough to
produce accurate results for a variety of different regimes.

Hyperbolicity is another important property in moment closure models, which is difficult to
enforce for traditional closure models [9, 41] as well as ML models [25]. Our ML closure model is
not able to preserve hyperbolicity. We numerically stabilize the model by adding more numerical
diffusion with larger penalty constants in the Lax-Friedrichs numerical flux. How to incorporate
hyperbolicity in the ML closure model is certainly an interesting topic. We also remark that we use
ML to learn the gradient to close our system, while the contribution in [41] enforces the hyperbolicity
with knowledge of the gradients, but does not involve ML. Incorporating the hyperbolicity in the
ML closure model is an interesting topic, which is discussed in our subsequent works [24, 23].

The remainder of this paper is organized as follows. In Section 2, we introduce the moment
closure problem for the RTE in slab geometry. We derive the exact closure for the free streaming
limit with isotropic initial conditions and propose the approach to directly learn the gradient of the
unclosed high order moment using ML. In Section 3, we present the details in data generation and
the training of the neural networks. The effectiveness of our ML closure model is demonstrated

through extensive numerical results in Section 4. Some concluding remarks are given in Section 5.

2 Moment closure for radiative transfer equation

In this section, we motivate a range of possible ML models. We start by introducing the moment
method for the RTE in slab geometry. Next, we derive the exact closure for the free streaming
limit with isotropic initial conditions. The ML closure formulations we produce are inspired by the
exact free streaming closure. This includes the approach we propose based on directly learning the
gradient of the unclosed high order moments using ML. At the end of this section, we go over the

proposed functional forms for the various ML models.
2.1 Moment method

The time-dependent RTE for a gray medium in slab geometry has the form:

1
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where f = f(z,v,t) is the specific intensity of radiation. The variable v € [—1,1] is the cosine of
the angle between the photon velocity and the z-axis. o5 = os(z) > 0 and 0, = 04(z) > 0 are the
scattering and absorption coefficients.

It is common to take moments of the RTE against Legendre polynomials. We denote the k-th
order Legendre polynomial by P, = Py (x) for k > 0. Next, we define the k-th order moment of the

gray model as .
1
my(z,t) = 2/ f(z,v,t)Pp(v)dv, k> 0. (2.2)
~1

Multiplying (2.1) by Py (v), then integrating over v € [—1, 1] and using Bonnet’s recursion formula,

we derive the moment equations up to moment my as
Oymo + Oymy = —0ogmo,

1 2
omy + §3xmo + §8xm2 = —(0s + 04)m,

N +1

mammN+1 = —(0s+ 0q)mn.

omy + 2]\;\;18me1 +
This truncated system is clearly not closed, since in the last equation the evolution of my depends
on mpy+1. There are various ways to close the system, including the classical Py model [10]; the
entropy-based My models [21, 2, 1]; the variable Eddington factor models [38, 47]; the positive
Pn model [20]; the filtered Py (FPy) models [45, 51, 32]; the By models [3]; and the M Py model
13, 14, 41].

In the numerical tests in Section 4, we will compare our ML closure model with the Py model
[10] and the F'Py model [51]. For the sake of completeness, we present the Py model and the F Py

model here. The Py model assumes an ansatz of orthogonal polynomials in velocity space and the

closure relation is myy1 = 0. Therefore, the resulting Py model is

om + Ad,m = Sm, (2.4)
with m = (mg,my1,--- ,my)T and the coefficient matrix 4 € RIVHD>(N+1).
0 1 0 0 0
1 2
Lo 2 o 0
o ¢ o 2 0
A= , (2.5)
N— N
00 NI N(-)&-l IN—1
00 0 oy O
and
S = diag(—0q, —(0s +04), -+, —(0s + 74)). (2.6)



The F Py model proposed in [51] reads as
om + Ady,m = Sm — vLlm, (2.7)

with m = (mg,my,--- ,my)’. Here, the matrice A and S are the same with the Py closure. In

the additional source term, v > 0 is a tunable parameter estimating the effective opacity of the

filter and
L= diag (lo, ll, lQ, s ,ZN) (2.8)
with 3
lo e
. gp(NF)’ k=01, N (2.9)
log p(777)

and p is the filter function. In our numerical test, we follow [51] and take p(n) = Tln‘"

All of these methods relate the (p + 1)* moment to the p'* moment as a way of closing the
system. Fach of them have a set of pros and cons, but none of them do very well in the optically
thin limit. Our proposed ML closures have a functional form that is motivated by a limiting case,

which we introduce in the next section.

2.2 Exact closure for the free streaming limit

For all moment closure models, it is very challenging to accurately compute the free streaming
limit, i.e. when oy is close to zero in (2.1). In such a transport dominated regime, the model does
not possess an intrinsic low dimensional structure, which makes any attempt at model reduction
difficult. In this part, we aim to find an exact closure in such a challenging case under some suitable
assumptions. This will motivate the functional form of our ML model.

We focus on the free-streaming limit in the simplified case of 1D:
Of +v0,f =0, (2.10)
with an isotropic initial condition
[z, v,0) = fo(z), (2.11)
which serves as a baseline for our ML closure models. Here, we do not pay attention to boundary

conditions, and the solution is considered to be either periodic or compactly supported.

The exact solution to (2.10)-(2.11) is

f(z,v,t) = fo(x — vt). (2.12)

Here, instead of using Py, we define the k-th order moment by the projection with respect to a

monomial basis:

1
ng(z,t) = /1 f(z,v, t)v*dv, k> 0. (2.13)

6



We note that the monomial basis is equivalent to those defined by Legendre polynomials in (2.2).
Here, we use the monomial basis moments since it is easier to derive the exact closure relations. In

the free-streaming limit, these moments satisfy the equations:
atnk + &anﬂ = 0, k > 0. (214)

Plugging (2.12) into (2.13), we have

1
ng(x,t) = /1 fo(z — vt)vFdv

_ xjfo(w) ("”—tw>k <-1> duw (2.15)

z+
-+t
= [ () - w)do,
r—t

which implies
T+t
g (x,t) = / fo(w)(z — w)¥dw. (2.16)
r—t
Taking a time derivative to the above equation yields
oy (z,t) + (k + D) tfng(z,t) = folz + 1) (=t)* + fo(z — t)t*. (2.17)
We immediately obtain

topnp(w, 1) + (k + Vg (2, 8) = folz +)(=1)* + fole — ). (2.18)

We notice that the right-hand-side of the above equation only depends on fy(x & t) and the fact

that k is even or odd. Thus, we have that: for even k,

toyny, + (k + 1)nyg = tomo + no, (2.19)
and for odd k
togny, + (k 4+ 1)ng = tomy + 2ny, (2.20)
i.e. for any k > 0,
1+ (=1)k 1—(—1)

t@tnk + (k + l)nk = (tf)tno + no) + (tatnl + 2’01) (221)

Next, in the above equation, we replace the time derivatives by the spatial derivatives using
(2.14):

1+ (=1 1— (1)

— tOzng41 + (k4 1)ng = (—tdyma + 2n1), (2.22)



and then derive

L+ (=1 1—(=1)*

&ml + axng

1+ (=1)F
2

axnk—i—l =
(2.23)

w3 (- o= (1= (1) ).

Notice that the above relation provides an exact closure for d;niy;. However, the closure has

dependence on t. Next, we remove the dependence on ¢. Taking k = 2 in (2.23) yields

1
Ogns = Oxny + ;(3712 — no), (2.24)
then eliminating ¢ in (2.23)
1+ (=1 1— (=1
8mnk+1 = L)amnl + Laan

2 2 (2.25)

k4 1)ng — HEDR (] (—1)k :
+ ( )nk 2 1o ( ( ) )Tll (83371/3 o axnl)

3712 — 1o

This is an exact closure for 0,ng1. We remark that this closure holds for any k > 0 but it reduces
to the trivial case for £ = 0,1,2 and only make senses for £ > 3. Since the two sets of moments
defined in (2.2) and (2.13) are equivalent, it is easy to derive similar closure relations for 0ymy..

We also point out that the exact closure (2.25) cannot be written into a conservative form:

Theorem 2.1. The exact closure (2.25) for k > 3 cannot be written into a conservative form. To

be more precise, there exists no smooth function F' such that (2.25) can be written as
N1 = Fno,na, -+ ng). (2.26)

Proof. We prove by contradiction. Assume that there exist a smooth function F' such that (2.26)

holds true. Using the equality of mixed partial derivatives, we have

0 (1= (=D _ 0 (et D= B — (1= (-1 -
8n3 2 - 8n2 3ng — no ‘
This is equivalent to i
1+ (-1
(k4 1)ng — +(2)n0 —(1- (—1)k)n1 =0 (2.28)

Plugging (2.12)-(2.13) into the above equality, we have

1 1k 1 1
0=(k+1) /_1 fo(x — vt)vkdv — 1—1—(21) /_1 fo(z — vt)dv — (1 — (—=1)F) /_1 fo(x — vt)vdv

1 Y
= /1 folx — vt) ((k + 1)k — 1+(21) - (—1)%) .

For any fixed k > 3, we can always find fy such that the above relation does not hold true. O
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Figure 2.1: Magnitudes of moments my for £ = 0,--- ,6 with different scattering coefficients in the

training dataset.

2.3 Machine learning closure model

In this section, armed with what we just learned about the functional form of moment closures in the
free-streaming limit in 1D, we introduce several models we will explore as possible closure models.
As part of this work on closing moment based models of the RTE, we explore the effectiveness of
each of these models.

A standard approach for moment closures is to find a relation between myy; and the lower
order moments:

mN-i-l:N(mO;mla.” 7mN)' (229)

The ML based approach will find N : R¥*!l — R that is represented by a neural network and
trained from data. This is the regression in supervised learning and also a part of the end-to-end
learning procedure in [19]. We call this approach Learning the Moment (LM). However, in our
numerical implementation, we find that the training process usually gets stuck in local minimum
when using this approach. Hence, the model has difficulty fitting the data well, see the detailed
discussions of Figure 3.3 in Section 3.

We also experiment with another approach, which we refer to as the weighted moment model.
The weighted moment model recognizes the fact that equation (2.25) could loosely be viewed as
relating many weighted moments as a closure. The Learning Weighted Moment (LWM) model

takes the following form:

N
myy1 = ZNk(mo,m1, o N )M (2.30)
k=0
Here N = (N, ..., Nn) : RVT1 — RN+ will be represented by a neural network. This formulation



can deal with normalization issues. However, as shown in Figure 3.3 in Section 3, its behaviour is
similar to that of the simpler Learn Moment model, in (2.29).

Motivated by the exact closure (2.25) for the free streaming limit, we propose to directly learn
the gradient of the unclosed moment. Specifically, we assume that d,my11 depends linearly on

the gradients of the lower order moments with the coefficients being functions of the lower order

moments: N
8$mN+1 = ZNk(mo, mi, ... ,mN)(9$mk. (2.31)

k=0
Here N' = (N, ..., Ny) : RN 5 RV*1 will be represented by a neural network and trained from

data. We call this approach learning the gradient (LG).

The advantages of directly learning the gradient in (2.31) are twofold. First, this ansatz (2.31)
is consistent with the exact closure for the free streaming limit (2.25). Therefore, it is expected
to have better accuracy, especially in the optically thin regime. Second, the unclosed high order
moments usually have a wide range of magnitudes and become very small in the optically thick
regime. In Figure 2.1, we show the L®-norm (in space and time) of moments my, for k =0,--- ,6
with different scattering coefficients. It is observed that the magnitude of mg ranges from 1075
to 1072, Such a target function makes the neural network difficult to learn, unless appropriate
output normalization is applied. Similar problems were also noticed in closing the Vlasov-Poisson
equation in [5], where the output normalization technique was applied to the heat flux with its
estimation given by the Navier-Stokes approximation. Our antasz (2.31) provides a natural output
normalization since the magnitude of d,m 41 is similar to that of d,my.

We further incorporate the scale invariance of the closure model into the neural networks and

learn the gradient with normalized moments (LGNM):

mo

Opmpy41 = ZN (Z; Zi . .,mN)B mg. (2.32)

Here N = (N, ..., Nn) : RN — R¥*+1 will be replaced by a neural network and trained from data.
Given the linearity of the RTE in (2.1), LGNM in (2.32) is expected to have better performance
than LG in (2.31): (1) If f is scaled by a constant in (2.1), the antasz (2.32) can provide exactly the
same prediction; (2) LGNM in (2.32) removes the linear redundancy of the training data and should
be more data efficient; (3) LGNM in (2.32) does not sacrifice any expressive ability. This results
in a ML model with better generalization performance, especially for testing data with a totally
different magnitude. This will be further investigated numerically, see Figure 4.15 in Example 4.3

in Section 4.
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We also point out a disadvantage of the ML closure model with LG in (2.31) or LGNM in
(2.32). This breaks the conservation property of the last equation in (2.3) and generates a partially-
conservative system. This might lead to problems in numerical implementations, especially when

shocks exists [31, 30].

3 Training of the neural network

In this section, we present the details of generating the training data and the training of the neural

network. These details are provided for reproduce-ability of the results.

3.1 Data preparation

In this section, we outline how we generate the data we use for training our ML model. The
data comes from simulating a simple 1D slab RTE problem over a range of initial conditions and
scattering and absorption coefficients. The data is curated and used to create M time snapshots
of the N moments, mﬁ(}ljfl, of the kinetic solution over a fixed time window. This data is used in
training our ML model (see section 3.2). We now go over the details for the creation of this data.

We consider the unit interval [0, 1] in the physical domain with periodic boundary conditions.

Following [43, 5], we take the initial conditions to be an isotropic distribution in the form of a

truncated Fourier series:

kmax

folz,v) =ap + Z ay sin(2kwx + ¢y). (3.1)
k=1

Here, we take kpax = 10 in our dataset. For k > 1, a; and ¢ are random variables sampled from
the uniform distributions on [—7, 1] and [0, 27], respectively. We take ag = ¢ + Zi’;ﬁx 1 with ¢ a
random variable sampled from the uniform distributions on [0, 1]. This guarantees the positivity
of the distribution function. Both o, and o, are constants over the domain for each run. The
scattering coefficient oy is sampled from a log-uniform distribution on [0.1,100]. The absorption
coefficient o, are randomly sampled from [0, 10]. A possible function generated with (3.1) are shown
in Figure 3.2. In the current work, we train with 100 different initial data.

The space time discontinuous Galerkin (DG) method [11, 12] is applied to solve the RTE in slab
geometry (2.1). Piecewise polynomials of degree 2 in space and degree 1 in time are applied. We
take 64 Gauss-Legendre quadrature points to discretize the velocity space. We take the number of
grid points in space to be N, = 512. The CFL condition is taken to be At = 8Axz and the final
time is ¢ = 1. In this work, we use the N moments of every time step taken for each of the 100

initial conditions to form our ground truth data set.

11
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Figure 3.2: A possible initial condition generated from the truncated Fourier series in the training
dataset.

3.2 Training

For our neural network model, we use a fully-connected neural network and choose to use the
hyperbolic tangent for our activation function. The number of layers is taken to be 6 and the
number of nodes in each hidden layer is taken to be 256, unless otherwise stated. The input
normalization is applied: each component of the input is linearly scaled to have zero mean value
and unit variance. For the training of the neural network, we take 1000 total epochs (the number
of iterations in the optimization process). The learning rate is set to be 10™3 in the initial epoch
and decays by 0.35 every 100 epochs. L? regularization is applied with weight 10~7. The batch
size is taken to be 1024. The training is implemented within the PyTorch framework [48]. We refer
readers to [22] for the details on the basic concepts of ML.

For the moment model and weighted moment model, (2.29) and (2.30), the loss function is

taken to be the mean squared error (MSE):

2
S b (a5, 1) — MR (25, ta) [ (3.2)

jn

Ndata

Here, m{" (z;,t,) denote the (N + 1)-th order moment at z = z; and ¢t = ¢, computed from

the kinetic solver and miyy}y (25,1,) is the neural network given in equations (2.29) or (2.30), the

moment model and weighted moment model respectively. Here, Nga.ta denotes the total count of

the data used in training the neural network. For the gradient model and normalized gradient

model, (2.31) and (2.32), the loss function is taken to be:

Ndata D Demiies (s tn) — DamiP (s ) (3.3)
jn

Js
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Here, 9, m\"¢ (x;,t,) denotes the spatial derivative of (N 4 1)-th order moment at x = x; and

t = t, computed from the kinetic solver and Gwm?\?fi (xj,tn) comes from the evaluation of the
neural network using (2.31) or (2.32).

In the training process, we find that the approach to learn the moment in (2.29) and learn
the weighted moment in (2.30) usually get stuck in a local minimum and does not fit the data
well, no matter how we tune the hyperparameters. As a comparison, the approach to learn the
gradient in (2.31) and (2.32) has much smaller relative errors, see Figure 3.3. Moreover, we observe
that increasing the number of moments will result in the smaller training error in Figure 3.3. The
relative L? error in Figure 3.3 is defined to be the relative error between the target function and
the approximated function. Specifically, for the moment model, (2.29) and (2.30), the relative L?
error for the moment models is defined to be
\/ 2 (M (5, tn) — mPy (5, 10))?

Zj,n(mg\rflﬁ (@), tn))? '
Likewise, for the gradient model, (2.31) and (2.32), the relative L? error for the gradient model is
defined to be

By = (3.4)

Ey =

\/Z%n(@wm}{,‘fl (33]’7 tn) - aﬂﬁm?\?—‘% (:xj’ tn))2 (3 5)

22 (OemiE (), 1))

The depth and width of neural networks (i.e., the number of hidden layers and the number of
nodes in the hidden layers) are also crucial hyperparameters in a neural network. Here, we test
the number of layers to be 2,3, .- ,7 and number of nodes in hidden layers to be 8,16, -- ,1024.
The results are shown in Figure 3.4. The error decreases when we increase the number of layers
and nodes in hidden layers and saturate when they reach a certain level. These tests indicate that
taking number of layers to be 6 and number of nodes to be 256 are good hyperparameters for our

neural network. As such these are the values used in this work unless otherwise stated.

4 Numerical tests

In this section, we show the performance of our ML closure model on a variety of benchmark
tests, including problems with constant scattering and absorption coefficients, variable scattering
problems, Gaussian source problems and two-material problems. In all the numerical examples, we
take the physical domain to be the unit interval [0,1]. We consider periodic boundary conditions
and reflective boundary conditions.

To numerically solve the ML moment closure system, we apply the fifth-order finite difference
WENO scheme [26] with a Lax—Friedrichs flux splitting for the spatial discretization. For the time
discretization, we employ the third order strong-stability-preserving Runge-Kutta (RK) scheme
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in (2.30); learning the gradient (LG) in (2.31); learning the gradient with normalized moments
(LGNM) in (2.32).
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[65]. We take the grid number in space to be N, = 256. The CFL condition is taken to be
At = 0.1Az. The penalty constant in the Lax-Friedrichs numerical flux is taken to be apr = 5,
unless otherwise stated.

We mainly focus on the comparison of the ML closure based on Learning the Gradient with
Normalized Moments (LGNM) (2.32), ML closure based on Learning the Moments (LM) (2.29),
and the Py closure [10]. In addition, we consider the F'Py closure [51] and make comparisons with
the other three models in the context of modeling transport on bounded domains with reflecting
walls in Example 4.3 and in the study of the two-material problem in Example 4.5. We note that,
in most cases, the ML model based on LGNM (2.32) has better accuracy than the Learn Gradient
(LG) model (2.31). In particular, the benefit of using (2.32) will be illustrated using the Gaussian
source problem in Example 4.3.

An important observation is that our ML closure is able to nearly exactly reproduce the moments
for the kinetic equation, even for the two-material problem, with a small number (N = 5) of
moments. In our numerical tests, we find that giving our ML closure the freedom to relate the
gradient of the sixth-order moment to the gradient of the 0" through 5 moments is enough to
produce accurate results for different regimes. Moreover, we numerically observe that if we use
fewer than N = 5 moments in our model, where the ML closure would relate the gradient of the
highest moment to the gradient of the lower moments, the method can still produce accurate results

in the intermediate regime, but struggles to describe the solution near the optically thin regime.

Example 4.1 (constant scattering and absorption coefficients). The setup of this example is the

same as the data preparation. The scattering and absorption coefficients are taken to be constants
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over the domain.

We test three different regimes: the optically thick regime (o5 = oy = 100); the intermediate
regime (05 = oy = 10); and the optically thin regime (o5 = 0y = 1). All closures work well in
the optically thick regime and thus we omit the results and only focus on the intermediate and
optically thin regimes.

In Figure 4.5, we show the numerical solutions of my and m; at ¢ = 0.5 with two moments
(N =1) in the system and in the closure. We observe that, in the intermediate regime (o5 = 0y =
10), the solution generated by the closure model with LGNM agrees well with the solution to the
kinetic model. As a comparison, there exist some deviations for the other two closure models, the
LM model and the Py model. However, in the optically thin regime (o5 = oy = 1), all closures fail
to capture the correct physical phenomenon for the kinetic model. This indicates that taking only
two moments is not enough to close the kinetic equation in this regime. This is also consistent with
what we discovered in Section 2.2, that is, as we move to the free streaming limit, the closure is
related to the gradients of many moments.

In Figure 4.6, we show the numerical solutions of my and my at t = 0.5 with N = 5. In the
intermediate regime, all the closures predict the solution quite well. Moreover, it is observed that
the ML closure model based on the LGNM formulation has the smallest error (see the zoomed-in
figure). In the optically thin regime, only the closure model based on the LGNM formulation agrees
well with the kinetic equation, while the other two closures have large deviations in the moments.

In Figure 4.7 and Figure 4.8, we display the log-log scatter plots of the relative L? error versus
the scattering coefficient for N = 1 and N = 5, respectively. In the case of N = 1, we observe
that building a closure model based on the LG and LGNM formulations does not always result in
smaller errors than the Py closure, see Figure 4.7. This indicates that it seems impossible to find
a model with only two moments that will be able to approximate the moments accurately in the
optically thin case. In the case of N = 5, the LG and LGNM models have a much smaller error
than the LM model and the Py model, especially for smaller scattering coefficients, see Figure 4.8.
Moreover, we notice that, in most cases, the model based on LGNM has better accuracy than the
LG model.

Similar to many analytical closure models, our ML closure models do not guarantee hyperbol-
icity. We now use this example to investigate the numerical stability of our closure model. We take
the penalty constant in the Lax-Friedrichs flux to be apr = 2. In Figure 4.9, we output the number
of grid points with imaginary eigenvalues and L°°-norm of the numerical solution during the time
evolution. We find that this model does not preserve the hyperbolicity property and the numerical

solution starts to blow up at around ¢t = 0.27. We then increase the penalty constant to arr = 5.
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Figure 4.5: Example 4.1: constant scattering and absorption coefficients. Here we are plotting
the numerical solutions of my and m; for three moment closures, including Py, Learning Moment
(LM) and Learning Gradient with Normalized Moments (LGNM), at ¢t = 0.5 with N = 1 in the
intermediate regime (05 = o, = 10) and the optically thin regime (o5 = o4 = 1). We note that the
closure based on the LGNM performs slightly better than the other two methods for the N =1
case.

17



0.10
4.2 —— exact
--- LGNM
—— M
...... 0.05 {
4.0 Pw
€38/ g 0001
\ =~
.
| P
3.6 5 ~0.05 1
&
'/.
V4
3.41 i i ~0.101 i
0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0
X X
(a) mo, 0s =0 =10 (b) m1, 0s =0+ =10

X X

(¢c) mo, 05 =0 =1 (d) mi,0s =0r =1

Figure 4.6: Example 4.1: constant scattering and absorption coefficients. Here we are plotting
the numerical solutions of mgy and m, for three moment closures, including Py, Learning Moment
(LM) and Learning Gradient with Normalized Moments (LGNM), at ¢t = 0.5 with N = 5 in the
intermediate regime (05 = oy = 10) and the optically thin regime (05 = 0 = 1). We note that the
closure based on the LGNM performs better than the other two methods for the NV = 5 case.
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Figure 4.7: Example 4.1: constant scattering and absorption coefficients. In this figure we are
plotting the relative L? error of mg and m; with different scattering coefficient at t = 0.5 with
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The figure plots the

relative L? error of mg and m, with different scattering coefficient at ¢t = 0.5 with N = 5. Here
Learning Gradient (LG) and Learn Gradient with Normalized Moments (LGNM) methods perform
better than Learning Moment (LM) and the Py closure.
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Figure 4.9: Example 4.1: constant scattering and absorption coefficients. The number of grid
points with imaginary eigenvalues and L° norm of numerical solutions during the time evolution
in the optically thin regime (05 = 0y = 1) with N =5 and arr = 2.

As shown in Figure 4.10, this helps stabilize the model numerically. Even though there are still a
large number of grid points with imaginary eigenvalues during the time evolution, the numerical
solution does not blow up. We conclude that incorporating hyperbolicity in the ML closure model

is an important topic, which is discussed in a subsequent work [24, 23].

Example 4.2 (variable scattering problem). In this example, we investigate the performance and
generalizability of our closure models by testing them on problems that have spatially varying

scattering coeflicients. In these tests, the scattering coefficient is taken to have the following form
os(x) = c1(tanh(1 + ca(x — x9)) + tanh(1 — ca(x — 0))) + O bases (4.1)

with c1, ¢2, 0spase and xg being constants. Here, the parameters are taken to be ¢; = c3 = 15,
xo = 0.5 and o, = 1. We test two cases with o pase = 1 and o pase = 10. The profiles of scattering
coefficients with o4 pase = 1 and o pase = 10 are shown in Figure 4.11. It is observed that, in the
case of 05 pase = 1, the middle part of the domain is in the intermediate regime and the domain
near the boundary is in the optically thin regime. On the other hand, the whole domain is in the
intermediate regime when o pase = 10.

The profiles of numerical solutions with 04 pase = 1 and o pase = 10 are presented in Figure 4.12
and Figure 4.13, respectively. In the test case that spans the optically thin to intermediate regime,
we observe good agreement between our LGNM closure model and the kinetic model, see Figure
4.12, while the other two closure models do not obtain satisfactory solution profiles. In Figure 4.13,
we plot the results when o pase = 10. In this case, all closure models work well. We note that our

LGNM model still has the smallest error.
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Figure 4.10: Example 4.1: constant scattering and absorption coefficients. The number of grid
points with imaginary eigenvalues and L norm of numerical solutions during the time evolution
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Figure 4.11: Example 4.2: variable scattering problem. Plots of the profiles of scattering coefficient
functions given in equation (4.1), with o pase = 1 and o pase = 10 respectively.

21



1.92+ --- learn gradient 0.027 ___ learn gradient
1.901 —-— learn moment 0.01] =~ learn moment ,\::'
------ Py closure <o Py closure !
0.00 ] ,’ ;
1.86 1 -0.011 !

I — exact

0.0

Figure 4.12: Example 4.2: variable scattering problem.

0.2

04 08 1.0

(a) mo

t=0.5 with N = 5 and 0 pase = 1.

—0.02 1

— exact

(b) ma

Numerical solutions of mg and m; at

2.05 1 0.03
2.00 A 0.02 1
1.951 0.01 1
° -
g g
1.901 0.00
1.851 — exact —-0.01{ — exact
---learn gradient ---learn gradient
1804 — learn moment —0.024 =~ learn moment
------ Py closure --eeo Py closure
0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0
X X
(a) mo (b) ma
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Figure 4.14: Example 4.3: Gaussian source problem. Numerical solutions of mg and m; at t = 0.5
with N =5 in the optically thin regime (o5 = 1).

Example 4.3 (Gaussian source problem). In this example, we investigate the Gaussian source
problem, which simulates particles with an initial intensity that is a Gaussian distribution in space
[15, 13]

c T — 20)?
fo(z,v) = mexp (—(290)> + ca. (4.2)

In this test, we take ¢y = 0.5, co = 2.5, zog = 0.5 and 6 = 0.01.

In Figure 4.14, we present the results obtained using various closure models. We observe good
agreement between the LGNM closure model and the kinetic model, while the other two closure
models have large deviations from the kinetic model. This illustrates that the ML closure model
exhibits good generalization to other types of initial conditions beyond the training data.

From (3.1), it is easy to see that the upper bound of the initial conditions in our training dataset
is 1+ 22112231" % ~ 6.86. To investigate the generalization of our model to problems that have a
magnitude that is outside of the range of training data, we amplify the initial condition (4.2) by
1000 times. That is, in this test we take the initial condition to be

fola,v) = 1000 <(27ng1)1/2 exp <—($_2;°)2> 1 62) (4.3)

with the same parameters c1, c2, 9 and 6 as in (4.2). For the original initial condition (4.2),
the ML closure model based on the LG and LGNM both predict the solution well, see Figure
4.15 (a). The relative L? errors are 1.05 x 10~% and 6.42 x 107> for LG and LGNM approaches
respectively. When we amplify the initial condition by 1000 times, the two models still generate
good predictions, see Figure 4.15 (b). The relative L? errors are 3.89 x 10~* and 6.38 x 107> for
LG and LGNM approaches respectively. This implies that the model without the scale invariance
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Figure 4.15: Example 4.3: Gaussian source problem. Numerical solutions of mg and m; at t = 0.5
with N =5 in the optically thin regime (o = 1). Left: results from the original initial condition,
equation (4.2); right: results from the original initial condition x 1000, equation (4.3).

constraint automatically learns this invariance property from data. Nevertheless, enforcing the
scale invariance property will lead to better results when the magnitude of the problem initial
conditions is very different from that used in the training dataset.

We also test the performance of the ML closure model with non-periodic boundary conditions.
In the initial Gaussian distribution (4.2), we take ¢; = 0.5, ca = 107, 29 = 0.6 and § = 0.005. The
reflective boundary conditions are imposed on both the left and right boundaries. Assume that
the grid points in the interior domain are z; = (j + %)Aa: with j = 0,--- , N, — 1. To treat the
reflective boundary conditions for the moment closure system, we set several ghost points outside
of the domain: z; = (j + %)A:c with j = —3,—2,—1 on the left and j = N, N, + 1, N, + 2 on the
right. In each time step, the moments at the ghost points are updated by

mi(zj,tn) = (1) mp(r_j_1,t), j=-3,-2,—1 (4.4)

and

mi(zj,tn) = (—1) my(zan, —j-1,tn), = Ny No +1, Ny +2. (4.5)

The numerical results with N = 5 in the optically thin regime (05 = 0, = 1) are shown in
Figure 4.16. We observe that the Py closure has large deviations from the exact solution to the
kinetic model. The F' Py closure is more accurate than Py in mg and my, but has relatively larger
error compared to that of the LGNM model, especially near the boundaries. Moreover, the LGNM
model predicts the higher order moments m,4 and ms much more accurately than both the Py and

F Py models.
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Figure 4.16: Example 4.3: Gaussian source problem with reflective boundary conditions. Numerical
solutions of mg, m1, my and ms at ¢t = 0.5 with N =5 in the optically thin regime (o5 = o, = 1).
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We also remark that there exist a lot of work on inflow boundary conditions (including vacuum
boundary condition as a special case), see e.g. [21, 8, 14]. This remains an open problem, even for
analytical moment models. This is not the focus of the current paper and we leave it to our future

work.

Example 4.4 (higher wave number test). To further test the generalizability of our ML closure
model, we consider initial conditions across a range of wave numbers that extends outside of the

wave numbers present in the training data:
fo(z,v) =2 4 sin(2wkx + ¢). (4.6)

Here k is the wave number of the initial data and ¢ is a random number from [0, 27). In the test,
we take k = 1,2,---,25. This is a challenging test, since the magnitudes in the training data in
(3.1) decay with the wave number, so it is naturally difficult for the well-trained model to capture
the correct behavior for the initial condition in (4.6) with non-decaying magnitudes. We test the
optically thin regime, i.e., 05 = oy = 1, since the intermediate regime and the optically thick regime
are relatively easy to capture for the moment closure model. We run the simulations to time ¢t = 0.4.

Figure 4.17 shows the relative L? error of mg when using our LGNM closure model with N = 5.
Overall, the method performs well for these waves that are outside of the training data. For low
wave numbers (1 < k < 10), the error stays in the magnitude of 10~ to 1072. For high wave
numbers (11 < k < 25), the error slightly increases and saturates in the magnitude of 1073 to 1072,
This shows that our ML closure model generalizes well when the initial conditions are outside of

the training data.

Example 4.5 (two-material problem). The two-material problem models a domain with a dis-
continuous material cross sections [33]. In our problem setup, there exist two discontinuities

0 < x1 < 5 < 1 in the domain, and o, and o, are piecewise constant functions:

Os1, T <z < T2,
os(z) =

052, O0<ax<ziora<x<l.

and

Oal, T <x < X9,
0q(T) =

a2, 0Lz <ziorzy<z<l.
Specifically, we take 21 = 0.3, x2 = 0.7, 051 = 1, 052 = 10 and 0,41 = 042 = 0.
In Figure 4.18 and Figure 4.19, we compare our LGNM moment closure with the Py closure

and the F' Py closure for N = 5 and N = 9, respectively. The gray background region is in the
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Figure 4.17: Example 4.4: higher wave number test. relative L? error of mg at ¢t = 0.4 and optically
thin regime o3 = 0y = 1. The number of moments in the system is N = 5.

optically thin regime and the white background region is in the intermediate regime. Here, we tune
the parameter v in the F'Py closure (2.7) in the range of [1, 100] and find that v = 20 is the optimal
parameter for the best performance of mg in F'Py closure. For both N =5 and N = 9, we observe
that the Py closure has large deviations from the kinetic solution in the optically thin portion of
the domain, see the gray part in Figure 4.18 and Figure 4.19. As a comparison, in the ML closure
and the F Py closure, the low order moments mg and m; agree well with the kinetic model, see
Figure 4.18 (a) and Figure 4.18 (b) for N =5 and Figure 4.19 (a) and Figure 4.19 (b) for N = 9.
For the high order moments, the ML closure behaves slightly better than the F' Py closure in my
and ms for N = 5, see Figure 4.18 (c¢) and Figure 4.18 (d). Moreover, for N =9, the ML closure
behaves much better than the F' Py closure in the high order moments my, ms, mg and mg. This
illustrates the potential for better performance of our ML closure over the traditional approaches

including the Py and F' Py closures, especially for the case of capturing the higher order moments.

We further investigate the performance of the ML closure quantitatively. In Table 4.5, we show
the relative L? errors of mg and my moments at t = 0.4 with N = 5,6,7,8,9. We first note
that all three closure models show convergence with an increasing number of moments. Second,
we note that for the zeroth order moment mg, the F' Py closure and the ML closure have similar
performance, and both are more accurate than Py closure. Third, we note that for high order

moments, my, the ML closure is much more accurate than both the Py and F Py closures.
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Figure 4.18: Example 4.5: two-material problem. Numerical solutions of mg, m1, my and ms at
t = 0.4 with N = 5. We take v = 20 in the F'Py closure. The gray part in the middle is in the
optically thin regime and the other part is in the intermediate regime.

relative L? error of myg relative L? error of my
N [Py FPy | LGNM Py FPy | LGNM
5 | 8.61e-03 | 9.55e-04 | 7.28e-04 | 1.14e+00 | 7.72e-01 | 6.06e-01
6 | 4.93¢-03 | 6.40e-04 | 6.74e-04 | 1.01e+00 | 7.79¢-01 | 7.81e-01
7 | 5.84e-03 | 6.83e-04 | 5.71e-04 | 9.36e-01 | 7.66e-01 | 1.13e-01
8 | 5.56e-03 | 6.78e-04 | 4.52e-04 | 9.03e-01 | 7.68e-01 | 8.92e-02
9 | 4.00e-03 | 5.25e-04 | 4.21e-04 | 8.24e-01 | 7.71e-01 | 5.06e-02

Table 4.1: Example 4.5: two-material problem. The relative L? errors of mg and my at t = 0.4
with N =5,6,7,8,9. We take v = 20 in the F' Py closure.
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5 Conclusion

In this work, we investigate the moment closure problem for the RTE in slab geometry and learn a
closure relation from data. Instead of learning the moment itself, we use neural networks to directly
learn its gradient. This new approach is consistent with the exact closure we derive for the free
streaming limit and also provides a natural output normalization. Moreover, we incorporate the
scale invariance of the closure model into the neural networks, which brings better generalization
and performance, especially when applied to initial conditions that have their magnitude outside
of the training data. A variety of benchmark tests, including the variable scattering problem, the
Gaussian source problem and the two-material problem, were investigated. All tests show that
the Learn Gradient ML closure model has both good accuracy as well as that the ML closure
model using a simple training procedure has a strong generalization property, i.e., we did not need
additional training to maintain accuracy even when applied to problems with discontinuities in the
scattering cross section.

We also remark that the methodology of learning the gradients can be generalized to the mul-
tidimensional case. In this case, we would relate the spatial derivatives in each direction of the
higher order moments to the derivatives of the lower order moments in all the spatial directions.
We are currently working on this topic and hope to report the progress in the near future.

Finally, we point out that hyperbolicity is an important property in moment closure models,
which is difficult to enforce for traditional closure models [9, 41] as well as ML models [25]. Our
current ML closure model is not able to preserve hyperbolicity and thus have some numerical
instabilities. How to incorporate hyperbolicity in the ML closure model is certainly an interesting

topic and constitutes our ongoing work [24, 23].
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