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GPU Adaptive In-situ Parallel Analytics (GAP)

Anonymous Author(s)
ABSTRACT
Despite the popularity of in-situ analytics in scientific computing,
there is only limitedwork to date on in-situ analytics for simulations
running on GPUs. Notably, two challenges that stay unaddressed
are 1) performing memory-efficient in-situ analysis on accelera-
tors and 2) for a given query and platform, automatically choosing
the processing resources and suitable data representation. This
paper addresses both problems. First, we make several new con-
tributions towards making bitmap indices suitable, effective, and
efficient as a compressed data summary structure for the GPUs –
this includes introducing a layout structure, a method for generat-
ing multi-attribute bitmaps, and novel techniques for bitmap-based
processing of major operators that comprise complex data analytics.
Second, this paper presents a performance modeling methodology,
which aims to predict the placement (i.e. CPU or GPU) and the data
representation choice (summarization or original) that yield the
best performance on a given configuration. Our extensive evalua-
tion with complex in-situ queries and real-world simulations shows
that with our methods, analytics on GPU using bitmaps almost al-
ways outperforms other options, and the GAP performance model
predicts the optimal placement and data representation for most
scenarios.

ACM Reference Format:
Anonymous Author(s). 2022. GPU Adaptive In-situ Parallel Analytics (GAP).
In Proceedings of ACM Conference (Conference’17). ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In recent years, analytics on simulation output is increasingly per-
formed in-situ, i.e., without writing original data to the disk [1–7].
In-situ analytics, replacing post hoc analysis, is going to be even
more important in the future because of the changing ratio between
computing power and I/O capabilities. It is anticipated that Exascale-
era machines will only have 1012 bytes/second I/O capability, 106
times lower than their floating-point computation capability. This
ratio between floating point computation and I/O capabilities has
gotten worse by a factor of 200 since the first Petaflopmachine [8, 9].

Another relatively recent but continuing trend in HPC has been
increasing heterogeneity as accelerators dominate available comput-
ing resources on most clusters and supercomputers. Unfortunately,
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to date, there is very limited work on in-situ analytics when acceler-
ators are involved [10–13], and many problems remain open in this
area. For example, a common method of performing in situ data
analysis on GPU-based simulations is moving data that is generated
to the CPU and analyzing it there. However, with more powerful
GPUs being packed into denser nodes, the cores and memory avail-
able for CPU-based in-situ analytics is increasingly a bottleneck. An
attractive, but almost completely unexplored, option is GPU-based
in-situ analytics, as processing the data on the GPU as it is being
generated can alleviate the data transfer costs while utilizing the
high data-parallelism and memory bandwidth of GPUs. Enabling
this, however, requires addressing two challenges. First, GPU mem-
ory is limited, and with a running simulation already consuming
almost all of it, very limited memory is available for in-situ analytics.
Second, the GPU computation model is limited, and query execu-
tion requires support from the CPU and workarounds to perform
complex synchronization and might not always be efficient.

This paper presents GAP (GPU Adaptive In-situ Parallel Analyt-
ics), a system for efficient in-situ GPU approximate processing. GAP
builds on the previous work on using data reduction techniques,
such as bitmaps, for in-situ analytics. However, unlike the previous
work that used these techniques to ease the I/O bottleneck on the
path to the CPU [14, 15], in GPU Adaptive In-situ Parallel Analytics,
data reduction techniques are used for easing the memory pressure
for GPU-based analytics. GAP addresses several challenges in this
process. First, GAP proposes a novel GPU-friendly bitmap sum-
marization format, which packs multi-attribute simulation output
compactly to save limited device memory. This structure also has
the benefit of enabling highly-parallel query processing on the GPU.
Next, we demonstrate efficient implementation of basic operations
on bitmaps that could be stored in compressed or original format.
Finally, building query execution using these operations, GAP de-
velops techniques for maximizing GPU utilization, in view of the
limited synchronization support currently available.

Second, GAP also addresses the aforementioned challenge that
GPU-based analytics (with data reduction techniques) might not
be the most efficient option in all cases. Though storing all data in
GPU memory directly is likely to be infeasible because of memory
constraints, it is possible to transfer the original data to the CPU and
perform the entire analysis there. Alternatively, one can generate an
approximate bitmap representation on the GPU, and either perform
the analytics directly on the GPU, or transfer the data and using
CPU cores for analysis. With the goals of understanding how in-
situ query performance is affected by various factors, and make
automated decisions on the placement of data and computations
at the runtime, GAP provides a cost model and uses it to guide the
choice of best query processing strategy.

To summarize, this paper makes the following contributions:
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• We introduce a compact multi-attribute bitmap format suit-
able for GPU-based in-situ processing that can be generated
and analyzed efficiently in parallel.

• Wepresent novel designs addressing complex and general an-
alytics operations that compare simulation output spatially
and/or across time-steps, and execute the query processing
on GPUs, while utilizing bitmaps as a summary structure.

• We investigate different strategies for in-situ heterogeneous
analytics and perform detailed comparisons on the mem-
ory and compute cost of different summarization and data
placement options when hardware configuration changes.

• We develop a performance model and an adaptive approach
to place the workload to achieve faster computation and
better resource utilization.

Our extensive evaluation indicates that the GPU-based bitmap
approximate processing is highly effective, outperforming CPU-
based processing in most scenarios. To guide better adaptive in-situ
heterogeneous processing, this paper also considers the best in-situ
processing strategy in various scenarios with changing hardware
capacities, and performs detailed analysis on why a particular op-
tion outperforms or lags behind. Finally, our cost model accurately
predicts the execution time of of various components of query pro-
cessing pipeline, thus providing the basis for choosing a suitable
processing strategy.

2 BACKGROUND
2.1 Heterogeneous (GPU) Platforms
Several important aspects of an accelerator (GPU) inform the de-
sign of heterogeneous in-situ analytics systems. As a background,
a GPU consists of dozens of vectorized Streaming Multiprocessors
(SMs) or Compute Units (CU) with multiple SIMD lanes. In terms
of I/O, while there are other techniques in development, most GPU
devices today are still connected to the host system via PCI-E bus,
requiring explicit data movement between host and GPU memory
and data is moved between host and GPU memory explicitly. Al-
though rapidly increasing, the size of the on-device memory and
bandwidth of the host-to-GPU is still quite limited, especially con-
sidering the nodes are also becoming increasingly dense. In terms
of computation, computing tasks on a GPU are usually described
using kernels consisting of thousands of lightweight threads. Thread
warps, usually 32 or 64 threads are the unit for atomic execution.
These threads are divided into a number of blocks, or coordinated
thread arrays (CTAs). A block is usually not swapped out of an
SM until it finished its execution, Most GPUs until recently also do
not support diverging execution inside a single wrap and have no
forward progress guarantee, making inter- and intra-block synchro-
nization hard. Most of today’s accelerators also rely on relatively
costly host-side APIs for device management.

2.2 Bitmap Summarization
GAP uses Bitmaps as a data representation scheme. Bitmaps [16–
23] offer an attractive way to represent and process a set of integers.
A set consisting of integers in range [0..𝑛) can be represented by

a bitmap using 𝑛 bits: a set bit (1) denotes the existence of the
corresponding element in the set. Bitmap indices have been widely
used in the context of data warehouse [16, 24–27] and lately, for
scientific simulation data analytics [28–35].

As scientific computations involve floating point values with an
indefinite number of distinct elements, a binning strategy [33, 36] is
often employed to divide the value domain. In such cases, bitmaps
can also be seen as a summarization of the original data, and used
to process a variety of queries approximately [31, 33, 35, 37]. Be-
cause storing the bitmap in its uncompressed form (bitvector) can
be inefficient spatially, many algorithms [17–21, 23], have been
proposed to improve space efficiency of bitmaps, achieving a com-
pressed representation. Run-length encoding (RLE) [17, 18] is an
example of one such representation. However, such representations
are inherently serial, and hard to process in the massively parallel
architectures of GPUs.

Addressing this problem, Xing et al. [15] proposed a new seg-
mented bitmap representation similar to Roaring bitmaps [19, 21].
Such a representation divides each bitmap into chunks of 216 ele-
ments, and saves individual chunks in one of the three container
formats: Uncompressed, which saves the chunk as uncompressed
bitvectors as described earlier, Array or compressed, which saves the
bitmap as an array that stores the indices of the set bits, and Full,
which marks a chunk with all bits set to one. A chunk is saved with
the representation that minimizes its storage. Such a representation
offers parallelism at both the chunk and intra-chunk levels.

3 GAP QUERY PROCESSING
Though bitmap generation has been performed on GPUs [38, 39]
and many sophisticated query operators on bitmaps have been im-
plemented on CPUs [33, 35, 37], supporting bitmap-based analytics
on GPUs remains an open challenge due to the limitations of the
GPU architecture. In this paper, this issue is addressed through the
design of our layout (Section 3.1) as well through methods for con-
ducting basic operations efficiently on this layout (Section 3.2). The
key insight here is that contrary to traditional sequential nature
of compressed bitmaps, GAP bitmaps can be easily analyzed via a
number of composable efficient primitives on the massive parallel
architecture of the GPU.

3.1 Memory-Efficient GPU Bitmap
Representation

The first step of approximate query processing on the GPU is design-
ing a compact bitmap representation optimized for GPU process-
ing. Building on the same roaring-like bitmap representation from
MoHA [15], we create an optimized representation and a method
for generating it efficiently. The key underlying motivation is that
our target queries likely require processing of the bitmap indices of
multiple attributes together. Our representation has the following
design innovations: 1) a single buffer for all the attributes in the
same time-step, 2) improvement of data locality for multi-attribute
queries by placing all the metadata of the chunks in the same (or a
set of aligned) arrays close to each other, 3) alignment of chunks at
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Figure 1: Data layout of the GAP optimized bitmap represen-
tation: each attribute is stored in multiple chunks indexed
by ametadata table, C, F, andU refer to compressed, full, and
uncompressed chunks, respectively.

the word boundaries for better GPU query processing efficiency,
by reordering all the chunks, packing the compressed chunks at
the end of the buffer, and ensuring all the uncompressed chunks
are aligned at 64-bit word boundaries. Figure 1 gives an illustration
of such a layout. This design also reduces memory allocation and
data migration overheads, because there are fewer buffers to be
managed.

Next, instead of generating the bitmap indices attribute-by-attribute
as may seem more natural, GAP generates the bitmap indices for
different attributes together. This has the advantage of maximiz-
ing GPU utilization by reducing unnecessary kernel workload, as
well as minimizing memory-related costs such as allocating and
resizing buffers. The algorithm implemented works in two passes:
the first pass determines the cardinality values of each chunk by
generating a histogram. Because the bitmap size is determined by
its cardinality values; GAP can then allocate the corresponding
buffer for the bitmap. Such allocation also takes into consideration
of the alignment of each chunk to maximize data parallelism by
putting all uncompressed chunks in the front of the buffer. After the
memory is allocated, the second pass generates the actual chunk
data using another kernel, with each thread block handling one
chunk.

3.2 GPU-based Analytics: Basics
This subsection describes how a small set of basic operations are
implemented on compressed and uncompressed bitmaps. The most
basic operations (for supporting our representative queries in Sec-
tion 4 or otherwise) are the three element-wise Boolean algebra
operations: intersection (bitwise AND), union (bitwise OR), and sym-
metric difference (bitwise XOR), performed between two attributes
of the same or aligned arrays. Because each GAP bitmap is stored
as a series of chunks and these are element-wise operations, the
implementation of these operations can be reduced to how these
operations are performed between individual chunks. However,

III

4 7 31 253 ... 64000

Word 0

0x00000010

Word 0

0x00000020

Word 0

0x80000000

Word 8

0x20000000
... Word 801

0x00000100

Word 0

0x00000010

Word 0

0x00000021

Word 0

0x80000021

Word 8

0x20000000
... Word 801

0x00000100

Compute Corresponding Partial Words

Segmented Prefix Scan

Compressed Chunk

Update Uncompressed Chunk

Word 0 Word 8 Word 801

Uncompressed Chunk

Result

Figure 2: Performing bitwise operations between an uncom-
pressed and a compressed chunk on GPU. A compressed
chunk is converted to a series of ‘partial words‘, the gener-
ated words are then merged with the uncompressed chunk
through a prefix scan to avoid race condition.

a complication of implementing these operations arises from the
need to handle the aforementioned compressed chunks, which store
all set bits as an array of 2-byte integers, directly without decom-
pressing [17–19, 21, 34]. Thus, the implementation of element-wise
operations depends on how these two chunks are stored – com-
pressed or not. The three possibilities are discussed below.
Uncompressed v. Uncompressed: Performing the bitwise oper-
ations on two uncompressed bitvectors word-by-word produces
an uncompressed output chunk. Such an operation can be simply
implemented on the GPU using its vector instructions. It is possi-
ble that the result chunk can be stored in a more efficient storage
format, but such conversion, if desirable, can be performed later.
Uncompressed v. Compressed: In such cases, the type of the re-
sult chunk depends on the specific operation, and thus we consider
each case separately. An intersection between uncompressed and
compressed chunks always yields a compressed buffer and the op-
eration can be performed in two steps. First, for all elements on the
compressed chunk, in parallel we determine if the element exists in
the result chunk by checking the corresponding bit in the uncom-
pressed chunk. Then, for all the elements that have an intersection,
a prefix scan is performed to determine the final position of the
element in the compressed buffer, and the element is saved at the
calculated location.

In comparison, the union between an uncompressed chunk and a
compressed chunk is always an uncompressed buffer. On the CPU,
this operation is as simple as just setting all the corresponding bit
of the uncompressed chunk to true. However, such an operation
on the GPU architecture creates race conditions since multiple
threads can access the same word in an uncompressed chunk at the
same time. An efficient block-wide atomic instruction, if supported,
can be used when setting the corresponding bit. In lieu of such an
instruction, a segmented prefix scan can be carried out to merge

3
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Each thread is assigned N elements to operate. Parallel binary search determines starting point.

Adjustment needed if a pair of set bit are divided into adjacent partitions.

Figure 3: Performing bitwise operations between two com-
pressed chunks on GPU. First the chunks are divided to
smaller partitions that contains an equal number of 𝑁 el-
ements, then each GPU thread can process such a partition
individually.

access to the same word, and only one thread saves the final result
to the corresponding words. Figure 2 gives an illustration of the
process.

The symmetric difference of an uncompressed and a compressed
chunk can be either type of chunks. GAP always generates an
uncompressed chunk as a first step, if desirable, the sparse results
can be compressed later. The uncompressed result can be computed
by traversing the compressed side and flipping the corresponding
uncompressed bits. Traversing the compressed side in parallel also
creates a race condition, which can be addressed by either utilizing
the atomic instructions or performing a prefix scan to eliminate
conflicts, just as mentioned above.
Compressed v. Compressed: Intersections between two com-
pressed chunks always produce a compressed chunk, whereas the
union and symmetric difference operations can produce either
chunk type depending on the cardinality of the results. Opera-
tions between two compressed chunks are essentially the inter-
sect, union, or symmetric difference between the two sorted lists.
The operations between two compressed chunks are performed
in parallel using a divide and conquer method. At a high level,
the algorithm for this case tries to divide the workload equally 𝑛
GPU threads, so that the first GPU thread produces the first 1/𝑛
of output and so on. Each GPU thread can then performs the op-
eration (intersection, union, or symmetric difference) on an equal
number of elements (𝑉𝑇 ) independently. More specifically, we con-
sider processing two compressed chunks 𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡 . First, the two
compressed chunks are loaded to the shared memory for faster ac-
cess. The two chunks are then partitioned into a number of sublists
𝑙𝑒 𝑓 𝑡𝑠𝑙 ,𝑒𝑙 and 𝑟𝑖𝑔ℎ𝑡𝑠𝑟 ,𝑒𝑟 , with a total cardinality of𝑉𝑇 elements. Each
thread can compute its corresponding partition utilizing a binary
search in parallel. Suppose the thread 𝑖 is responsible for merg-
ing the sub-lists left [𝑠𝑙 . . . 𝑒𝑙 ] and 𝑟𝑖𝑔ℎ𝑡 [𝑠𝑟 . . . 𝑒𝑟 ]. Since we know
that 𝑠𝑙 + 𝑠𝑟 = (𝑖 − 1) × 𝑉𝑇 , therefore, a thread can run a binary

search to determine the value of 𝑠𝑙 , and perform the corresponding
operations on the partitions. Figure 3 illustrates this process.

There are two important details to note while performing the
intersection or the merge operation. First, the last element of one
partition might happen to be equal to the first element of the next,
in which case the serial phase of the algorithm will need to perform
an additional check before proceeding. Second, the output position
of each serial operation cannot be determined beforehand, so a
prefix scan needs to be run to determine the output position.

3.3 Enabling Parallel Analytics on a GPU
In addition to the need for efficient parallelization using vectorized
execution units, processing queries on the GPU adds other com-
plexities, particularly because the GPU devices often only support
a limited number of scheduling and synchronization primitives.
GAP utilizes a number of techniques to perform queries on the
accelerator efficiently.

The first question is scheduling granularity. Most primitives
(which can also support implementations of reduce, scan, and oth-
ers) described in the last subsection can be implemented at a warp,
block, or the grid level. This raises the question of how should the
bitmap computations be allocated to individual multiprocessors.
Specifically, should more blocks coordinate to perform a single
bitwise operation between two bitmaps, or should each block be
assigned an entire bitmap index to work with. Such decisions are
dictated by two conflicting factors; a finer granularity of allocating
work improves the utilization of parallelism, but most GPUs today
lacks synchronization mechanisms beyond a single block.

To solve the dichotomy, GAP determines the allocation granular-
ity based on the access pattern. If the access to the bitmap chunks
is regular and predictable, GAP assigns each block a single chunk
to work with, in order to utilize parallelism as much as possible.
The result is usually saved into a global buffer, and a separate ker-
nel is used to reduce or summarize results of individual chunk
operations. These kernels can be submitted asynchronously to the
same device queue in advance to minimize latency. If the access
is irregular and unpredictable, such as in searching algorithms, all
bitmap operations are usually assigned to the same multiprocessor.
As GPU devices have few widely available synchronization mecha-
nisms across different blocks, assigningwork using finer granularity
would imply frequent kernel launches, which are costly.

Another problem in such cases is the need to coordinate the
workload between different multiprocessors. While there have been
recent developments towards grid-level barriers like CUDA cooper-
ate groups [40], in practice most GPUs cannot synchronize between
blocks without synchronizing the entire grid. GAP utilizes a central
queue to allocate work to different multiprocessors and a simple
busy-waiting semaphore is used to arbitrate access. As GPUs lack
widely available forward process guarantee inside the same warp,
only one thread in a block is used to negotiate with other blocks.
Another useful data structure is a lock-free hash table, for tasks
such as removing duplicate status across different threads. GAP
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implements an open-addressing cuckoo hash table [41, 42] using
GPU atomic primitives.

4 QUERY IMPLEMENTATION EXAMPLES
We now demonstrate how the basic capabilities developed here
can support challenging in-situ analytics queries. As a motivation
for selecting these queries, we note that in-situ analytics aims to
shorten the feedback loop of post-hoc analysis in scenarios such as
Smart Simulations [43] andUrgent HPC [44], among others. In Smart
Simulations, timesteps’ outputs are continuously compared against
data from actual experiments or other models; and in Urgent HPC,
the computation requires quick assimilation of the output, as one
is responding to natural events such as wildfires or others. These
scenarios motivate several representative queries – we summarize
these queries and their implementation using our system here.
Time-step selection is a classic technique to reduce the sheer
size of simulation output by only keeping most distinct time-steps.
A typical strategy [45] partitions the time-steps into individual
intervals, and for each partition, chooses the one time-step least
similar to the selected time-step from the previous partition. The
algorithmworks by comparing all time-steps in the current window
with this baseline by computing correlation metrics between the
time-step pairs.

The metrics used in this work are a variation of the Earth Mover’s
Distance (EMD), which can be seen as the minimal cost of changing
the distribution of one time-step to another. Such a distance can be
easily compute using bitmap summarization: An XOR bitwise oper-
ation computes the difference between the corresponding buckets
of the baseline and the current time-step. Once the number of differ-
ent elements between the corresponding buckets is known, it can be
post-processed to produce the final metric [37]. This can be easily
parallelized using the GPU in two steps: In the first step, a kernel is
scheduled, each block of which processes the EMD distance of each
corresponding segment of the input attributes. Atomic instructions
are then used to accumulate the score of different chunks. After
that, a simple reduction kernel returns the best time-step, and the
chosen time-step is sent for storage or further processing.
Stable-region search looks for regions that are stable, i.e. not
changing substantially between each pair of adjacent time-steps
over several time-steps. This query is inspired by physical and
geological research for stable region [46] and the search for large-
regions with specific features in scientific computations [34].

We process this using a dynamic programming approach: we
keep a temporary bitmap for the candidate stable points for each po-
tential bucket 𝑏. At each time-step, we check if the candidates have
changed more than the specified threshold. This can be achieved
by performing a bitwise OR operation between the adjacent buckets
of 𝑏 to gather the candidates in the desired range of the incoming
time-step, and then performing a bitwise AND operation to find the
overlap. The result is again saved to the buffer mentioned above.
The stable points in all the buckets are then solidified into a sin-
gle buffer, and a search is performed to look for large contiguous
regions. The analysis follows a similar parallelization strategy as

the previous query: In the first step, each block is assigned to pro-
cess one bucket. A second kernel is then used to search for stable
regions.
SlidingWindowContrast SetMining (SWCSM) [35, 47] searches
for a set of filter predicates that maximally separate the output of
the running simulation from a baseline. Given a target attribute,
the search seeks a set of predicates that together represent the de-
sired subset of the output space – selected, as indicated above, with
the goal of maximizing the difference between the target attribute
values. Typically a quality function is used to compare different
candidate subsets. The selected subset highlights the difference
between the two simulations, and helps determine the direction of
the future iterations. This paper considers searching the contrast
sets no larger than 𝑘 time-steps.

For each k-sized window of the slides, SWCSM searches for a pair
of the filtering condition that can potentially produce the largest
difference between the two, which is defined by a quality function.
In this work, we use a quality function of 𝑞 = (1 + |𝑠𝑙 − 𝑠𝑟 |) × (1 +
|𝑚𝑙 −𝑚𝑟 |), where 𝑠𝑙 , 𝑠𝑟 and𝑚𝑙 ,𝑚𝑟 are the support (size) and mean
of the chosen target value in the two subsets.

A pruned BFS search on GPU similar to what has previously been
carried out on CPUs [35] is performed to search such conditions.
For each filter set, the support and mean can be easily estimated
by bitmap operations. As previously discussed, a centralized queue
is used to allocate the subset conditions to search. Once a block
is assigned a new filter condition through the queue, it accesses
the bitmap to estimate the population and mean, generates new
possible conditions, and pushes the subset conditions back into the
queue.
Accuracy Considerations: Finally, we also comment on the issue
of potential accuracy loss from the use of bitmap based process.
It turns out that an advantage of bitmap-based approximate pro-
cessing is the accuracy loss is often minimal. Taking the three
queries here as examples, both the EMD computation in time-step
selection [37] and the searching of SWCSM filter conditions [35]
process the values atg the granularity of histogram bins, so bitmap
processing is able to produce the same results if the same binning
strategies are used. For the stable region search, the comparison of
adjacent time-steps can have some error due to binning granularity,
but suitable binning strategies minimize the loss [33].

5 MODELING QUERY PROCESSING
As discussed in the introduction, generating bitmaps on the GPU
and performing analysis using them is only one of the options.
It’s also possible analyzing the GPU-generated bitmaps on CPU or
analyzing the original datasets on the CPU. The trade-offs between
these options depend on the hardware configurations and specific
queries and the properties of the dataset. This section discusses
how GAP models the performance of in-situ analytics of various
aforementioned strategies.

GAP builds a cost model for a specific platform to guide the
choice of query plans. Each in-situ query is executed either every
time-step or after a fixed number of time-steps. To simplify the
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training and prediction, we assume that the same amount of data is
output and analyzed every time an in-situ query is executed. The
cost of an in-situ query comprises several factors: the GPU-CPU
data transfer time (𝑇𝑐𝑝𝑦 ), the bitmap generation time (𝑇𝑏𝑖𝑡𝑚𝑎𝑝 ), the
CPU computation time (𝑇𝑐𝑝𝑢 ), the GPU computation time (𝑇𝑔𝑝𝑢 ), and
the disk I/O time (𝑇𝑑𝑖𝑠𝑘 ). GAP estimates the cost of a particular
query with a given option by combining the estimated cost of all
applicable components. Next, we discuss how each components are
estimated.
Bitmap Generation Time: The bitmap generation time cost can
be divided into two parts: the time of reading the original data
and the time of converting the original data to bitmap format, the
former being proportional to the input data size, and the latter
being proportional to the output bitmap size. Thus, the bitmap
generation cost can be modeled as a linear combination of the two
costs:𝑇𝑏𝑖𝑡𝑚𝑎𝑝 = 𝑘𝑏1 · 𝑆𝑖𝑛𝑝𝑢𝑡 +𝑘𝑏2 · 𝑆𝑏𝑖𝑡𝑚𝑎𝑝 . Here, 𝑆𝑖𝑛𝑝𝑢𝑡 is the size
of the data that is converted to bitmap representation and 𝑆𝑏𝑖𝑡𝑚𝑎𝑝

is the size of (compressed) bitmaps that are output.
Modeling Computation Time: Modeling the performance of ar-
bitrary computations on CPU and GPU is a very hard problem. Our
approach here relies on the fact that our queries comprise invo-
cations of relative simple operations, as previously described in
Section 4. Thus, the query processing time can be estimated opera-
tor by operator. As general guidance, we find that many operators
have relatively low computation costs and are often bound by the
memory access time. The performance of these operators can be es-
timated by evaluating the memory access pattern of each operator.
Such estimation on original datasets mainly involves estimating
the number of scans and the data amount each scan visits. For the
bitmap operators, this cost is estimated using the number of bitmap
operations, and the average input and output size of each operation,
which can be deduced from the data distribution.
Data Transfer Time: The output data size (either original or
bitmap) can be measured directly on a specific simulation. Because
the cost of transferring the data is strongly related to the size, it
is trivially modeled as the sum of two costs: a fixed transfer ini-
tializing cost and a variant cost linear to the size of the data being
transferred𝑇𝑐𝑝𝑦 = 𝑇𝑠𝑒𝑒𝑘 +𝐾𝑐𝑝𝑦 ·𝑆𝑐𝑝𝑦 . Here, 𝑆𝑐𝑝𝑦 is size of the data
to be transferred. The disk I/O cost 𝑇𝑑𝑖𝑠𝑘 can be similarly modeled.

To illustrate further, take the time-step selection query as an
example – at each step, each bitmap bucket of the time-step is
compared with the corresponding bucket of the selected time-step.
Hence, the total number of bitmap operation performed is 𝑛 =

𝑁𝑎 × 𝑁𝑐 × 𝐵, with 𝑁𝑎 , 𝑁𝑐 and 𝐵 being the number of attributes,
the number of chunks in a bitmap and the number of bins in the
bitmap index, respectively.
Applying the Model: Given the above cost prediction methodol-
ogy, GAP perform an offline prediction in two steps. First, to train
the model for a specific hardware configuration, a driver program
is executed on a synthetic dataset. This driver contains a number
of scenarios, including only copying the original and bitmap data
to the host, performing a number of simple scan on the original
dataset, and a number of bitwise operations on generated bitmaps

to measure the performance of bitmap operations. Using the dri-
ver run, linear regression can be applied to determine parameters
such as 𝑇𝑠𝑒𝑒𝑘 , 𝐾𝑐𝑝𝑦 , 𝑘𝑏1, and 𝑘𝑏2. The second step is specific to the
simulation program to be executed. This program is executed for a
small number of time-steps to measure its simulation time, which
determines whether overlapping CPU processing is profitable; and
the data distribution of the simulation output. which can be used to
estimate the effectiveness of the bitmap summarization. After this
data is collected, the prediction is made by inputting to the model
the measured input simulation running time, bitmap size estimated
using the output distribution, the problem size, and the number
of iterations. As the prediction is offline, the overhead of the pre-
diction is the one time cost of measuring the operator costs on a
particular configuration, and the execution of the few iterations of
the target simulation to measure its output time and size.

6 EXPERIMENTAL EVALUATION
This section empirically evaluates the performance of the bitmap-
based query processing and the prediction model in GAP using
multiple queries and actual simulation outputs. The following is-
sues are investigated: 1) After the innovations introduced in our
work, can bitmap-based GPU analytics provide an advantage over
other in-situ query processing options in terms of query process-
ing times? (§ 6.2), 2) How do different architectural configurations
impact the relative performance of different query processing op-
tions? (§ 6.3) 3) How well does the cost model chooses optimal
query execution option for the given query and architectural con-
figuration? (§ 6.4) Because of limited space, impact of individual
optimizations introduced for bitmap-based GPU analytics is not
individually evaluated.

6.1 Experiment Setup
Configuration. The experiments in the paper are run on cloud HPC
platforms, which are increasingly popular for scientific computa-
tion [48] – specifically, an Amazon Web Service (AWS) node with a
4-core Intel Xeon 2586 v4 CPU and an NVIDIA V100 SXM2 GPU
with 16 GB of memory. The CPU and GPU are connected using a
PCI-E connection with a measured host-accelerator throughput of
∼ 11𝐺𝐵/𝑠 . In experiments involving Disk I/O, a remote 4.8 TB AWS
Lustre Filesystem with a 940 MB/s baseline throughput and a 6x
burst throughput is used. The GAP system is programmed using
C++ and CUDA. The highest optimization level is used to compile
the binaries. All experiments utilize 8 working threads to ensure
proper CPU utilization.
Datasets and Methodology. Two simulation programs are used for
the evaluation. The first one is LULESH [49, 50], a hydro-dynamic-
inspired simulation core widely used in previous research [33, 51,
52]. The code models a simple Sedov blast problem using a mesh-
based method, and retains the computation and data movement
pattern in the original simulation. The second simulation, PIC [53],
is a one-dimensional electrostatic particle-in-cell simulation pro-
grammodeling the movement of ions and electrons in the electronic
fields. 64 equal-width bins based on the value domain range are
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(a) Time-step selection on the LULESH dataset,
1000 iterations.
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(b) Time-step selection query on the PIC
dataset, 1000 iterations.
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(c) Stable region query on the LULESH dataset,
1000 iterations.
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(d) Stable region query on the PIC dataset, 1000
iterations.
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(e) SWCSM query on the LULESH dataset, 100
iterations.
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(f) SWCSM query on the PIC dataset, 100 itera-
tions.

Figure 4: Comparison between different methods on LULESH and PIC datasets.

used for all the experiments. A 5-time-step window size is used for
window-based operations.

All experiments are run at least five times and the average tim-
ings are reported. All cache is cleared before I/O-related experi-
ments. In order to mitigate the performance variation caused by
underlying platforms, all the experiments are run in a randomized
order. The reported processing time include the cost of simula-
tion, data summarization, data movement, and query execution. It
should be noted that GAP overlaps CPU and GPU transferring time,
and thus the total reported times are not a simple sum of these
components.

6.2 Overall GPU bitmap analytics performance
To examine how our various optimizations and innovations help im-
prove overall performance, the GPU bitmap analytics incorporating
these are compared with two other options (the current state-of-
the-art): CPU Bitmap and CPU Original. We use the three in-situ
queries discussed in this paper to explore the answer. Figures 4a
and 4b report the query processing time of the time-step selection
query while using different processing options for the two datasets.
Performing such a query in original format requires considerable
memory. For example, with a problem size of 2563, LULESH gener-
ates 1.5 GB of data per time-step, thus requiring 10 GiB of memory
to store six time-steps for processing. In comparison, processing
the bitmaps on the GPU is ∼ 3.6× and ∼ 1.6× faster than process-
ing the original data using the CPU on the largest LULESH and
PIC datasets. Excluding the simulation running time, GPU-based

Heavy Hitter Normal LULESH PIC
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Figure 5: Comparison of the bitmap generation and data
movement cost on different datasets, 1000 iterations.

bitmap processing accelerates the computation 8× and 2.9× on the
datasets, highlighting the advantage of our novel implementation.

While the cost of creating the bitmap indices on the GPU is not
inconsequential, it is outweighed by the savings in both transferring
the data and processing. It should be noted that both bitmap gen-
eration and processing has been acceleration through our design
decisions. For example, on average, generating and transferring
bitmap is more than 2.7× faster compared with transferring the
original data, while the bitmaps are processed more than 10× faster
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than the original data on both CPU and GPU. The relative perfor-
mance of processing the bitmap summarization on the GPU and
CPU depends on the datasets. The two methods almost perform
identically on LULESH, while processing GPU bitmaps is slightly
faster on PIC. This demonstrates the impact of input distribution on
bitmap summarization – LULESH has a more concentrated distribu-
tion, whereas PIC has a distribution similar to a normal distribution;
as a result, the bitmap size of LULESH is relatively smaller. There-
fore, while processing the time-step selection on the GPU saves
both transfer and computation, its effect is less pronounced in the
LULESH dataset.

Similarly, Figures 4c and 4d report the query processing times
of the stable region query with different options. The results paint
a similar yet subtly different picture. While processing the data
using bitmap is still advantageous compared with processing the
original data – on the largest dataset it being 2.1× and ∼ 1.2×
faster – the time differences are less significant compared with
the time-step selection query, especially on the PIC dataset. Unlike
comparing the earth mover distance, checking if two cells are close
to each other is actually less expensive on the original dataset
compared with bitmaps. Hence, the speedup of processing bitmaps
becomes less significant. Again, this effect is more substantial on
the PIC dataset, because its larger bitmap indices size leads to less
savings in data transfer. The relative performance of GPU and
CPU bitmap processing in the stable region query is similar to the
time-step selection query, hinting that GPU bitmap processing is
more efficient in this case even with less overlapping opportunities
compared with CPU-based processing.

The final part of this subsection looks at an irregular and compute-
intensive query - the sliding-window contrast set mining (SWCSM)
query. Figures 4e and 4f show the comparison between different
methods as the problem size is varied. It can be seen that processing
bitmaps are orders of magnitude faster compared with processing
the original data. On the average, GPU-based bitmap processing
is ∼ 64× faster on the LULESH dataset, and ∼ 30× faster on the
PIC datasets compared with processing the original data. GPU-
based bitmap processing also shows significant advantages over
processing on the CPU, being ∼ 2.3× and ∼ 4.5× faster on average,
respectively. This demonstrates that by utilizing the higher paral-
lelism and memory bandwidth through our design, the bitmaps
can be processed very efficiently on the GPU. This use case also
demonstrates the necessity of data reduction in in-situ analytics
- with the problem size of 2563, the GPU used here does not even
have enough memory to hold all the data generated one time-step,
making analysis without summarization impossible.

As the end-to-end query costs include (optional) data summa-
rization, movement, and processing, it is interesting to see how the
overhead of generating and move the bitmap summarization com-
pare with moving the original data. Our next experiment isolates
these costs by comparing cost of generating bitmap and moving the
data to the host with just moving the original dataset on different
datasets, without performing any analytics. Four typical datasets
are used for comparison in this experiment to demonstrate the
significant impact of data distribution on bitmap generation cost.

In addition to the two real-world datasets, two synthetic datasets
are also used. The synthetic datasets include one with a normal
distribution of values and another with a “heavy hitter” distribu-
tion with one single value with over 95% frequency dominating the
distribution. All the datasets have a time-step size of 648 MiB.

Figure 5 shows the results. Overall, the cost of moving the origi-
nal dataset is always higher than the cost of generating and moving
the bitmap. In other words, despite the significant cost of generating
bitmaps, the reduction in data transfer times always justifies this
cost. Data distribution affects the acceleration: in the two more con-
centrated datasets, Heavy Hitter and LULESH, generating bitmap
is 7.3× and 1.8× cheaper compared with moving the original data,
respectively. The bitmap generation is 1.1× and 1.4× faster com-
pared with moving the original datasets on the twomore distributed
datasets, Normal and PIC. Moving the bitmap to the GPU is not
a huge overhead because the bitmap is usually compressed very
efficiently, on average, copying the bitmap to the host is ∼ 9.45%
more expensive compared with keeping the bitmap on the GPU. In
actual anlaytics, keeping the data on GPU also benefits from the
additional computational resources on the GPU.

6.3 Impact of Different Hardware
Configurations

A recurring theme of the previous subsection is that the relative
performance of the available query processing options depends
on the actual dataset and the query type. It is thus natural to ask
whether changing hardware capabilities can result in different rela-
tive performance of different options. . This subsection considers
three typical scenarios in in-situ analytics: when the CPU resources
are limited, when the accelerator available is less powerful, and
when the CPU-GPU connection becomes slower due to contention
or with a different configuration or topology.

The first case considered here is when the CPU resources avail-
able for in-situ analytics on the simulation output from one GPU
are varied – in practice, this can easily happen due to concurrent
workload on the system or denser accelerator configuration. We
choose the stable region and the SWCSMquery as representatives of
I/O- and compute-intensive queries, respectively, and the problem
sizes are fixed to 192 and 1.28M for the LULESH and PIC datasets.
respectively.

Figures 6 and 7 report the results as the number of CPU threads
are varied from 1 to 8. As seen in the figures, the impact of allocating
less CPU resources to the computation depends on both compu-
tational pattern and the dataset distribution. The performance of
the stable region query does not change much with the different
number of threads in most cases, demonstrating the query is mainly
bottlenecked by the transfer time between the CPU and GPU. How-
ever, with only one CPU worker, the CPU-based bitmap processing
time of the same query on PIC becomes slower than processing
the original data, while the query processing time on the LULESH
dataset stays stable. This is because searching for similar tuples
between time-steps in bitmaps is a relatively expensive operation,
requiring comparing each bitmap bin to multiple adjacent bins.
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Figure 6: Performance of stable region
querywith varying number of CPUwork-
ers (200 iterations)
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Figure 7: Performance of SWCSM query,
varying number of CPU workers (200 it-
erations)

LULESH PIC

T4 V100 T4 V100
0

20

40

60

0

50

100

150

200

250

GPU

Q
u

e
ry

 P
ro

c
e

s
s
in

g
 T

im
e

 (
s
e

c
o

n
d

s
)

GPU Bitmap CPU Bitmap CPU Original

Figure 8: Performance of time-step selec-
tion query on platforms with different
GPUs
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Figure 9: Performance comparison of
sliding CSM query on platforms with dif-
ferent GPUs
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Figure 10: Performance of time-step se-
lection query as Host-Accelerator trans-
fer speed varies
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Figure 11: Accuracy of the performance
model across experiment groups in previ-
ous subsections

The same operation is very cheap on the original data as a simple
subtraction and filtering would suffice. On the contrary, both CPU
processing methods on the SWCSM query scales with the number
of CPU workers up to 4 cores, suggesting that the processing is
limited not only by the GPU-CPU transfer and the disk I/O, but
also by the computation cost of searching.

The next scenario considered is how changing computational
capacibilities of GPU change the overall performance of the queries.
Specifically, we compare the query performance on two platforms
with identical CPUs and different GPUs on Google Cloud Platform
(GCP). Both platforms have a 6-core 2.30 GHz Intel Xeon Skylake
processor, but one has an NVIDIA Tesla V100 GPU, and the other
has an NVIDIA Tesla T4 GPU, with about only half of the TFLOPs
of the V100 GPU. The problem size is still fixed to 192 (LULESH)
and 1.28 M (PIC). Figure 8 reports the relative query processing
time of the time-step selection query on both platforms. As ex-
pected, reducing the GPU power makes processing data in bitmap
less attractive. On LULESH, processing the data in bitmaps is only
about ∼ 1.3× faster on T4 compared with processing the original
dataset, and more than twice slower on PIC. This is because on a
slower GPU, bitmap generation is more expensive, reducing the
gain from compressing the data to bitmap summarization; in addi-
tion, the simulation also generates data with a lower rate, making
the host-to-GPU transfer and computation less of a bottleneck. An-
other observation in this group of experiments is the sparsity of

the bitmap summarization can have large implications for relative
performance - even on a slower GPU, processing a more concen-
trated dataset such as LULESH using the bitmap summarization
can still be the relatively faster choice. Contrarily, the efficiency of
processing larger bitmaps is more affected by the capabilities of the
GPU. Figure 9 reviews the SWCSM query performance on the two
platforms, where the computational cost is more significant. While
approximate bitmaps are still the faster choices, bitmap query pro-
cessing on GPU becomes less attractive with the slower GPU. On
LULESH, GPU-based bitmap processing is slower compared with
CPU-based processing, whereas the relative performance advan-
tage of GPU-based bitmap processing is more significant on PIC,
validating the aforementioned observation – GPU-based bitmap
processing is more effective on denser bitmaps due to the higher
data parallelism.

The final scenario considered is when the Host-Accelerator trans-
fer bandwidth changes. Specifically, the host-accelerator transfer
speed in the time-step selection query is artificially slowed down
from 1× to 8×, and other parameters are kept the same as in previ-
ous experiments in this subsection. Figure 10 reports the results. As
expected, both CPU-based methods are affected by the slowdown,
with the methods that transferring more data being more severely
impacted. A natural conclusion is, compression is more profitable
on systems with Host-Accelerator links that are either slower or
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Figure 12: Performance of the modelled GAP system – GPU
comparison experiments with time-step selection query.
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Figure 13: Performance of the modelled GAP system – GPU
comparison experiments with SWCSM query1

have more contention. Denser accelerator setups can easily create
such a contention.

6.4 Accuracy of Prediction Model
This final subsection looks at the accuracy of the cost model. Our
model is trained using four synthetic datasets with different distri-
butions: normal, log normal, a “heavy hitter” distribution with one
single value occurs in a frequency of over 95%, and an “invariant”
distribution that contains only a single value. The training data size
is varied from 64MB to 1 GB per time-step.

Figure 11 evaluates how accurate our model performs in iden-
tifying the optimal placement/representation options using the
four groups of experiments in the previous sections: end-of-end
comparison, scaling CPU workers, changing GPUs, and scaling the
throughput of host-to-gpu transfer speed. Depending on whether
a model identifies the optimal choice, the result are categorized
into three types; when the optimal option is identifies (“correct”),
when the configuration selected is non-optimal but has perfor-
mance within 5% of the optimal choice (“Within 5%”), and when
the model chooses a non-optimal choice with more than 5% perfor-
mance different (“Wrong”). As seen in the chart, the model identifies
a overwhelming majority of the placement/representation model
correctly in each group of the queries. If we account for the cases
that the case the model picks being nearly fast as the optimal choice
– less than 5% performance differences, over 90% time the model
picks the optimal or a near optimal choice.

One significant advantage of employing a cost model is the sys-
tem can predict and choose a good placement and representation
strategy according to hardware configurations and other parame-
ters such as input distribution and problem size. To illustrate how
the model predicts and chooses a good placement/representation
strategy, Figures 12 and 13 show how the model selection version
compares with the other strategies with the time-step selection
query using different GPUs, datasets, and problem sizes. The op-
timal strategies for these queries are not straightforward, and the
two queries represent both I/O- and computation-intensive work-
loads. As seen in Figure 12, the model correctly picks the original
representation in smaller LULESH cases and PIC cases on T4, while
choosing the GPU Bitmap options in other situations. An alterna-
tive like simply choosing bitmap processing on GPU always will
yield considerably worse performance. Similarly, Figure 13 shows
how the model correctly identifies CPU Bitmap as a more preferable
strategies on T4 GPUs and V100 GPUs with the LULESH dataset,
while choosing GPU Bitmap on the PIC/V100 use cases. While there
is a slightly higher number of more sub-optimal cases with the CSM
query, this does shows GAP handles computation-intensive work-
loads effectively.

7 RELATEDWORK
In-situ Visualization and Analytics The idea of in-situ process-
ing emerged decades ago [54–56]. One focus area has been on
effective visualization tools [4, 12, 57] and methods [58–61]. Mid-
dleware systems such as ADIOS [6, 62, 63] and GLEAN [7] have
been proposed for easier integration.

Other promiment efforts include [3, 14, 64–69] – Bauer [70] pro-
vides a comprehensive survey on the topic. Data reduction methods,
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using either in-situ indexing [15, 37, 71, 72] or mathematical meth-
ods [14, 67, 68], have been proposed.

There has been limited research on GPU-based in-situ analyt-
ics. Thompson et al. [11] proposes on-the-fly data summarization
and visualization on heterogeneous platforms for decision-making.
Landrush [10] proposes an approach that utilizes idle cycles on the
GPU to run analytics kernel for better time-to-answer. MoHA [15]
proposes using bitmap summarization as an generic approximate
representation for complex bitmap processing. MONA [73] pro-
poses a performance monitoring system suitable for increasingly
complex in-situ analytics pipelines.
Bitmap indices and compression. Originally developed in rela-
tional database context [16, 24, 25], bitmap indices such as Fast-
Bit [27, 34] gained popularity in scientific computing. Run-length-
encoding is a popular way of compress bitmaps [17, 18, 74]. Roar-
ing bitmaps [19, 21] is a particularly interesting recent compressed
bitmap representation because of its speed in query processing [22].
There are also recent efforts to increase the accuracy or reduce the
size of the bitmap representations [23, 75, 76]. Both lossless and
lossy floating-point compression methods, such as FPC [77], SZ [78]
and general compressors such as the Lempel-Ziv compressor fam-
ily [79], are also used for reducing data movement costs. Recent
efforts extend these frameworks to GPU [80, 81]. While these meth-
ods are also effective in reducing the data size, bitmap indices can
be directly queried on, using fast and simple bit operations available
in the hardware.

GPUQueryProcessing andPerformanceModeling Earlyworks
in the relational database field include implementations of individ-
ual offloaded GPU-based operators and their performance mod-
els [82–84]. Full-fledged systems, both in transactional and analyti-
cal context, have been proposed [85–87]. Other relevant work has
been on implementation of primitives such as sort [82, 88–90] and
scan [91, 92] and merge [93, 94]. Yuan et al [86] estimate the perfor-
mance of individual operator based on device memory access time,
and a recent approach [95] divides heterogeneous execution into
smaller execution components to improve cardinality estimation.

8 CONCLUSION
This paper has introduced GAP, a solution for adaptive in-situ het-
erogeneous analytics. We have proposed a GPU-based query pro-
cessing method, which builds on a multi-attribute bitmap indices
format to perform complex analytics on the GPU in a memory-
constrained and functionality-limited environment. Our paper has
also introduced a performance modeling methodology, capable of
guiding the user to choose between resources and data represen-
tations for query processing. Our extensive evaluation shows that
GPU-based bitmap processing has performance advantages in most
cases, accelerating the queries by up to an order of magnitude. We
also show how different setups impact the performance of different
processing strategies, and how our model can predict the optimal
strategies quite accurately.
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