UNIQUENESS OF THE 2D EULER EQUATION ON A CORNER
DOMAIN WITH NON-CONSTANT VORTICITY AROUND THE
CORNER

SIDDHANT AGRAWAL! AND ANDREA R. NAHMOD?

ABSTRACT. We consider the 2D incompressible Euler equation on a corner domain € with
angle v with 3 < v < 1. We prove that if the initial vorticity wo € L'(£2) N L>(£2) and
if wp is non-negative and supported on one side of the angle bisector of the domain, then
the weak solutions are unique. This is the first result which proves uniqueness when the
velocity is far from Lipschitz and the initial vorticity is non-constant around the boundary.

1. INTRODUCTION

We are interested in studying incompressible fluids in two dimensions. The prototypical
equation describing inviscid incompressible flows is the Euler equation. With a view to-
wards practical applications, we will be interested in studying the Euler equation on corner
domains and more specifically the uniqueness problem for this equation. The uniqueness
problem for the 2D Euler equation on obtuse angled corners is wide open due to the fact
that the velocity is not log-Lipschitz in these domains. In this paper we prove the first
uniqueness result in such domains when the vorticity is non-constant around the corner,
which is the main source of difficulty in proving uniqueness. To prove this result, we in-
troduce a novel energy functional with a time dependent weight along with control of the
particle trajectories of the flow.

The 2D incompressible Euler equation on a domain A is given by

ur+ (u-V)u=—-VP in A,
V-u=0 1inA, (1)
u-n=0 on A

Here u is the velocity, P is the pressure and n is the outward unit normal. The vorticity is
w =V X u =0y us — 0z,u; and satisfies the transport equation

wi+u-Vw=0 1inA. (2)

One can recover the velocity from the vorticity by the Biot-Savart law u = V+A 1w where
A is the Dirichlet Laplacian and V* = (—0,,,0,,). The 2D Euler equation has several
conserved quantities, chief among them being ||w(-,?)]| Lr(A) for any 1 < p < oco. This is
used in an essential way to prove any kind of global well-posedness result.
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The study of the well-posedness problem for the 2D Euler equation has a long history.
There are two important considerations to keep in mind while talking about the well-
posedness problem: one is the regularity of the initial vorticity and the other is the regularity
of the boundary. Let us first consider the case of both the vorticity and boundary being
regular enough. Global well-posedness for strong solutions in smooth domains was proved
by Wolibner [28] and Holder [12] (see also [23,[16]). One of the most important works in the
well-posedness theory is the work of Yudovich [I5] who established global well-posedness
for weak solutions on smooth domains for initial data wy € L*(A)NL*>(A) (see also [2] 25]).
The uniqueness result of Yudovich used the Eulerian formulation and relied on the Calderén
Zygmund inequalities

IVal, )l gy < CpllwC Doy for all p e [2,00). (3)

Later on Marchioro and Pulvirenti [22] gave a different proof of uniqueness by using the
Lagrangian formulation which relied on the log-Lipschitz nature of the velocity
w(z,t) — uly,?t
) = uly.)
zyed [& — y|lmax{—In|z —y|, 1}

< Cllw( Ol praynreea)- (4)

These estimates hold for C''! domains but may not hold for less regular domains (see [14]).

For the case of initial vorticity being less regular, global existence of weak solutions was
proved by DiPerna and Majda [§] for wy € L*(R?) N LP(R?) for p > 1 and by Delort [6] for
wo € H71(R?) N M4 (R?) (here M is the space of positive Radon measures). Uniqueness
is not expected in general in this case and this is a major open problem (see the works
[26, 27, [5, @]).

For the case of boundary being less regular, global existence of weak solutions for bounded
convex domains was proved by Taylor [24] and for arbitrary simply connected bounded
domains (and exterior domains) was proved by Gerard-Varet and Lacave [9, [I0]. Both
results prove existence for initial vorticity wo € L'(A) N LP(A) or wy € H1(A) N M (A).
However even for wy € L'(A) N L>(A) the question of uniqueness is a major open problem.
It is important to note that if the domain is less regular, then the uniqueness question does
not become simpler even if the initial vorticity is assumed to be smooth, as the regularity
of the vorticity can be destroyed at a later time (see [17) [I]).

There have been some recent works that establish uniqueness for rough domains with
initial vorticity wp € L'(A) N L°°(A). One strategy used was to identify domains rougher
than CM! which satisfy either or and use this to prove uniqueness. This was first
achieved by Bardos, Di Plinio and Temam [3] for rectangle domains and for C? domains
which allow corners of angle 7/m for m € N;m > 2. Later Lacave, Miot and Wang [19]
proved uniqueness for C?>® domains with a finite number of acute angled corners, and then
Di Plinio and Temam [7] proved uniqueness for C1'! domains with finitely many acute
angled corners. Note that for angles bigger than 7 /2, the estimates and fail to hold
and uniqueness is open in general. Another strategy used to prove uniqueness is to prove it
for initial vorticity which is constant around the boundary. The idea behind this strategy
is that if the vorticity is constant around the boundary, then the uniqueness proof of [22]
works, as in this case one only needs the estimate for x,y € K where K C A is a compact
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set outside of which the vorticity is constant. The strategy thus reduces to showing that if
the vorticity is initially constant around the boundary, then it remains constant for later
times. Lacave [I8] proved that if the domain is C! with finitely many corners with angles
greater than 7/2 and wp is constant around the boundary and has a definite sign, then
w remains constant around the boundary for all time and the weak solutions are unique.
Lacave and Zlatos [20] proved the same result removing the restriction of definite sign on wy
but keeping the initial vorticity constant around the boundary and the corners are now only
allowed to be in (0, 7). Recently Han and Zlatos [I1] generalized the results of [I8], 20], by
proving uniqueness in more general domains which include convex domains, but for initial
vorticity which is still constant around the boundary.

In this paper we consider the uniqueness question for a domain which does not satisfy
or and has non-constant initial vorticity around the boundary. In this case, the
methods used previously to prove uniqueness cannot work and new ideas are needed. To
state our result fix % < v <1 andlet Q and 24 be the domains

Q:{rewe(C‘r>OandO<0<mr} Q+:{rei9€(€‘r>0and0<9<y§}.
Let the initial vorticity be wy := w(-,0). We assume that the initial vorticity satisfies
wo € L1(Q) N L™®(Q) along with supp(wp) C Q4 and wy > 0. (5)
We can now state our main result.

Theorem 1.1. Consider the Euler equation in Q with initial vorticity wy satisfying (D).
Then there exists a unique Yudovich weak solution in the time interval [0,00) with this
initial data.

See §3| for a precise definition of Yudovich weak solutions. This is the first result which
proves uniqueness when the domain does not satisfy the estimates or and when
the initial vorticity is non-constant around the corner. As we have non-constant vorticity
around the corner, we have to use fundamentally new ideas to prove uniqueness and we
explain the new approach below.

The assumptions on the vorticity in the above theorem can be slightly relaxed. First
instead of the assumption that supp(wg) C Q4, we only need the assumption that there
exists a neighborhood U of 92 such that supp(wp) N U C 4. The proof in this paper
goes identically for this case. Furthermore by modifying the proof of Proposition one
can establish uniqueness if supp(wg) C {rew eC ‘ r>0and 0<60<p (1/)1/7?} for some
B(v) > % Similarly the assumption of wg > 0 can be relaxed slightly to include negative
vorticity in some places, by ensuring that a version of Proposition [3.7]and of Lemma [3.9 are
still satisfied. Moreover if one only cares about short time uniqueness, then the assumption
of wg > 0 in the theorem can be replaced by the condition by > 0, where by is defined in
(49). This is because the only place we really need the condition wy > 0 is Lemma
which is useful only for long time uniqueness.

For short time uniqueness one can also handle the case of multiple obtuse corners, if the
vorticity is non-negative (or more generally if b(-,0) is positive at each corner, see ,
(49)) and one imposes the condition that the support of the vorticity in a small ball around



4 SIDDHANT AGRAWAL AND ANDREA R. NAHMOD

each obtuse corner lies on one side of the angle bisector. However global in time uniqueness
in such a case would not follow in general from the arguments in this paper, as the vorticity
around one obtuse corner could touch another obtuse corner in finite time. Similarly the
arguments used in this paper do not imply global in time uniqueness for a bounded domain
with one corner as the vorticity leaving the corner will come back to the corner in finite
time.

To understand the difficulty of the problem, consider the particle trajectories in the
support of the vorticity. As the velocity near the corner is very far from Lipschitz, the
particles near the corner move in a manner similar to the ODE @ It is well known that if
the vorticity is non-negative then the particle trajectories near the boundary move to the
right (see for example [17,[13]), however what may happen is that there could potentially be
two different solutions of the Euler equation with both their Lagrangian trajectories moving
to the right but at a different rate. In fact the main enemy in proving uniqueness is when
the particle trajectories for the two solutions are very close to each other but are not the
same. As the velocity is far from Lipschitz near the corner and the transport equation (for
the vorticity) is nonlinear, all current tools available to control the distance between the
trajectories are inadequate to prove uniqueness. To the best of our knowledge the method
we employ to overcome this difficulty is completely novel.

Let us now explain the main idea of the proof. Let x( e be the position of the particle
which starts at the corner i.e. z(0) = 0. From (33 . and we see that heuristically

dx 1_
o =zvt 2(0)=0. (6)

Observe that as % < v < 1, the function 2+~ is not Lipschitz and hence one cannot use
the Picard-Lindel6f theorem to prove uniqueness of this ODE. Indeed one sees that this
ODE has several solutions. However as the vorticity is non-negative, the flow automatically
chooses the solution with the property that the particle moves to the right i.e. z(¢) > 0 for

t > 0. With this constraint the ODE has a unique solution, namely x(t) = [(2”—;1)25] ey

So essentially any method employed to prove Theorem has to be strong enough that it
can prove the uniqueness of the above ODE (with the constraint x(¢) > 0 for ¢ > 0). Hence
the idea is to find a good method to prove the uniqueness of the above ODE problem and
generalize it to prove uniqueness for the Euler equation. There are several ways to prove
uniqueness of this ODE problem such as by directly comparing two solutions or by using
a change of variable. As generalizing a comparison argument to the Euler equation looks
difficult, let us see how a change of variables argument can be used to show uniqueness for

the ODE problem. Consider two solutions z1(t) and zs(t) of (6) with z;(t) > 0 for t > 0
for i = 1,2. Letting 2(t) = |1(1)*~2) —ay(5)*)

dE 2_1 xlf%%_ 2_5 mk%@
dt_ v) b dt v)"?dt

Therefore E(t) = 0 for all time and hence we have uniqueness of the ODE problem. Al-
though this approach looks promising, we ran into several technical issues with generalizing
this method to the Euler equation with the main issue being the low regularity of the

1

we see that

<0.
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vorticity (which cannot be overcome by simply assuming smoother initial vorticity). To
overcome this problem, observe that using Lemma [5.2] we can write the energy as

E(t) = [21(6) %) = 2o(6) 39| & [ (1) — 2o (t)] min{xl(t)(lfi),mg(t)(lf%)},

Now as the unique solution to the ODE with the constraint z(t) > 0 for ¢ > 0 is given by
z(t) = [(B1)t] T, we see that
v \(1-4
E(t) ~ (tzul)( )
Hence we can think of the energy as having a time depending weight. We managed to
generalize this idea of using a time dependent weight in the energy and this is the way we
prove Theorem Let us illustrate our method by providing a proof of the ODE problem
using this method.
Step 1: Consider two solutions z1(t) and zo(t) of (6) with z;(t) > 0 for ¢ > 0 for
i = 1,2. Prove that given 0 < € < 1 there exists 7" > 0 so that for ¢ = 1,2 we have
zi(t) > [(21) (1 —€)t] 2T for t € 0, 7).
This can be proven by observing that
get the required estimate.

1—v

21 () — wa(t)] = (570 |21 (1) — o (t)].

dfti > (11— e)x%_l. Integrating this inequality we

Step 2: Consider the energy Fi(t) = |x1(t) — x2(t)|. By a simple inequality we prove in
Lemma [5.2) part (1), we obtain
dEq
dt
Hence by integration we get F1(t) <, t21 in the time interval [0,T].
Step 3: Consider the energy E(t) = t “Ei(t) = t%|x1(t) — x2(t)|. Observe that if
0 < a < 525 then by step 2, E(t) — 0 as t — 07. Now

11 1 17 11
< ‘5'31 — ¥ ‘ S|z — x| = Ef and E1(0) = 0.

2v—
dE —a\,_ N B S |
=< (t>t gy (8) — 2o ()| + tlar " — ‘
1 4 1_q
—a\ |2t =2 .
= (— oL T2 by t) — 2ot
{(5) [ =2 freimo - w0

_ 1 1.9 1_
< {(f) + < — 1) max{:cf 2,:1:2” 2}}t°‘\x1(t) — xa(t)].
v
Now using step 1, we get

() (oo Yoo

- — 1_—V —a—1$ _
_{ +(2V—1)(1—e)}t |1 () — z2(t)]-

As v > 1— v, we see that we can suitably choose v and € so that ‘% < 0. Hence E(t) =0
in [0, 7] and this proves x1(t) = x2(t) for ¢ € [0, T.
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Step 4: Uniqueness for ¢ > T follows from the Picard-Lindelof theorem by observing
that there exists a ¢ > 0 such that x;(t), x2(t) > c for all t > T.

The proof of Theorem closely follows the above strategy. The analogs of step 1-4 are
Proposition Proposition proof of main Theorem and Lemma [3.9] respectively.
The analog of the Picard-Lindel6f theorem is the uniqueness proof given in Sec 2.3 of [22].
The assumptions on the initial vorticity are imposed so that the uniqueness problem for
the Euler equation behaves in a similar manner to uniqueness problem of the ODE @ The
assumption wp > 0 ensures that the particles near the boundary always move to the right
and we prove this in Proposition and Lemma The assumption of supp(wp) C Q4
ensures that essentially the particles in the support of the vorticity move away from the
corner and this is shown in Proposition Both of these properties are the analogs of the
constraint z(¢t) > 0 for ¢ > 0 for the ODE problem solved above. As mentioned before, the
restrictions on the vorticity can be slightly relaxed. In addition to the uniqueness result,
we also prove the existence of weak solutions as previous existence results do not exactly
cover our situation and hence we include the proof for the sake of completeness.

The paper is organized as follows: In §2| we introduce the notation and derive the flow
equation. In §3| we prove the existence of weak solutions and establish properties of the flow
map and in particular prove that the flow near the boundary moves to the right and that
the support of the vorticity moves away from the corner. Finally in §4] we prove the energy
estimates required to prove Theorem The appendix §b| contains some basic estimates
that we use throughout the paper.

Acknowledgment: The authors thank the anonymous reviewer for the suggestions to
improve the clarity of the exposition.

2. NOTATION AND PRELIMINARIES

Let H = {(z1,22) € C |22 > 0} denote the upper half plane and we will identify R? ~ C.
Let Hy = {(z1,22) € C|z1 > 0 and x2 > 0} and denote a ball of radius r by B,(z) =
B(z0,7) = {z € C||z — 20| <7}. Let D = B1(0) be the unit disc and let S = dD. For
f e L' nL> we write || f|l ;1qz00 = IfIl; + | fllo- For 21,22 € H, let [21, 22] denote the line
segment connecting z; and z3. We define the function ¢ : [0,00) — R as ¢(0) = 0 and for
x>0 as

¢(x) = x max{—In(x), 1}. (7)

Observe that ¢ is a continuous increasing function on [0,00) with z < ¢(z) for all z > 0
and that ¢ is a concave function on the interval [0,1/10]. Also observe that if ¢ > 1 then
od(cx) < cop(x) for all x > 0.

We now introduce a notation for certain integrals which appear in our computations.
Let f € L*°(C) and let z1,---,z, € C be n distinct complex numbers. If ay, -+ ,a, >0
and 0 <7, R < co we define

I((z1,1), -, (zn,an) : (f, 7, R)) :/

Als— ™ Js — z]

o | f(s)| ds, (8)
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where A = B(z1,7)°N---N B(zp,r)*N B(21,R) N ---N B(zp, R). Observe that the set A is
the set of all s € C with distance to the set {z1,--- ,2,} between r and R.

We write a < b if there exists a universal constant C' > 0 so that a < Cb. We write
a Sy b if there exists a constant C' = C(n) > 0 depending only on 7 so that a < Cb. Similar
definitions for Sy my St peyns €tc. We write a = b if a $ b and b < a. Similarly we write
arybifa <, band b S, aete. In this paper we fix the angle of the domain Q as vm (with
1/2 < v < 1) and we will suppress the dependence of constants on v as it shows up quite
frequently.

Let us now derive the equation of the flow. As we are only interested in the flow in Q
and domains which smoothly approximate €2, we derive the equation only for such domains.
Let A be a domain homeomorphic to H or D with OA being correspondingly homeomorphic
to R or S'. If the Green’s function of the domain A is G (x,%), then the kernel of the
Biot-Savart law is Ka(z,y) := VLiGa(z,y) with Vi = (—=04y,0,,). Let ¥ : A — H be a
Riemann map and observe that ¥ extends continuously to A by Carathéodary’s theorem.
Fix zo € A and let f : A\{22} — C be defined as

1 () - )
[ =5:1 (q;(z)—qz(zQ))' )

Clearly f is holomorphic and we have for 21,29 € A, 21 # 29

Ga(er,22) = 52 ) GEH P8 = Re( (a1}
Hence
SRR
= Re(—ifz,(21)) + iRe(fz,(21))
Then from @ we have
T \=— 1 1
Kaun) = (5 ) ¥eten) {qf(zn (o) W) W) 10

If w(-,t) is the vorticity at time ¢, then from the Biot-Savart law we see that

u(zl,t):/KA(zl,zg)w(ZQ,t)dZQ.

Now the equation for the flow X : A x [0,00) — A is given by

dX((if’t) = u( /KA (x,t), 2)w(z,t) dz.

Hence we have
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Define the function b: A x [0,00) — C as

b(x,t) = (i) /A[\I/(a:) i\p(z) - @) i 50) w(z,t)dz. (11)

Hence the equation for X can be written as
dX(z,t)
dt
We now convert the flow equation above in A to a flow equation on H. For x € A, let
y € H be given by y = ¥(z). Consider the flow Y : H x [0,00) — H given by

Y(y,t) = W(X(2,1)) (13)

= b(X(2,1),t) V(X (2,1)). (12)

and define b : H x [0,00) — C as b(y,t) = b(x,t). Then b(Y (y,t),t) = b(X(x,t),t) and we

have

‘Wc(l?t/’t) — BV (5, 1), )| 0 U (¥ (. 8)]. »

We can write a simple formula for b. As y = ¥(z) we see that

B =00 = (5) | Lm) e T \If<z>]“’<z’t) o
N (%> /A L/_{y(Z) - y—;(z)}w(z’t) *

Next, we change variables by setting s = W(z) with s € H and observe that ds = | ¥ (2)|? dz
and hence dz = ‘\IIZ o \11_1(5)’_2 ds. Defining w : H x [0,00) — R as W(s,t) = w(z,t) we get

b(y,t) = ( i )/H[ - 7 ! }@(S,t)‘\llzolll_l(s)Ist. (15)

o2 y—S Yy—Ss

3. WEAK SOLUTIONS

We now give the definition of Yudovich weak solutions and prove their existence for the
domain 2. We prove the existence of weak solutions in €2 as the previous existence results
do not apply directly. The existence proof of Taylor [24] and Gerard-Varet and Lacave
[9, 10] are either for bounded domains or for exterior domains. We modify the existence
proof for R? as given in the book by Majda and Bertozzi [21] to prove existence of weak
solutions in . Similar to [24] and [9], we approximate the domain by smooth domains
Q. and then take a limit as € — 0. Even though the method for proving existence of weak
solutions is quite standard, we include it for the sake of completeness.

For the definition of weak solution we closely follow the definition as given in [9] [10]. If
A is homeomorphic to D with A homeomorphic to S!, we use the definition of Yudovich
weak solution as given in [20]. Hence now consider a domain A homeomorphic to H with
OA being homeomorphic to R. We are mostly interested in the case with A =  and the
definition below is tailored to domains similar to 2. For more general domains a slightly
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different definition as compared to the one below may be needed. We say that (u,w) is in
the Yudovich class in the time [0,7") if

u € L2 ([0,T); L2 .(N)), w=V xuecL>®(0,T); LY(A) N L>(A)),

loc loc

and u(-,t) € C(A) with Rlim sup |u(z,t)] =0 for a.e. t €[0,7). (16)

lz|>R
Now let
Ge(A) = {h € LZ(A) | h = Vp for some p € Hy,.(A)}.
Consider initial data (ug,wp) satisfying
ug € C(A),  wo=V xuye L'(A)NL>®(A),
lim sup |ug(x)] =0 and /Auo +h=0 VheG.(A). (17)

Definition 3.1. We say that (u,w) is a Yudovich weak solution to the Euler equation
with initial condition (ug,wp) in the time interval [0,T), if (u,w) is in the Yudovich class

and satisfies

/T/ w(Op +u-Vo)dedt = —/ wop(+,0) dz Vo e C(A % 1[0,T)), (18)
0 A A

and for a.e. t € [0,T) we have
/ u(ht) h=0  Vhe GA). (19)
A

Note that we have given the definition of Yudovich weak solutions as weak solutions to the
transport equation. It can be shown that this is equivalent to the definition of weak solution
to the Euler equation, see Remark 1.2 of [I0]. Now for § < v < 1 let us now consider the
domain 2 = {reie eC ‘ r>0and 0 <0< 1/7r} and the Riemann map V¥ : 2 — H given by
U(z) = zv. We want to prove the existence of Yudovich weak solutions for this domain
and understand the properties of the flow map.

3.1. Existence of weak solutions

In this section we prove the existence of Yudovich weak solutions in 2. We will approx-
imate £ with smooth bounded domains .. For ¢ = 0 we define Qp:=Q and for 0 < e <1

we define ), as
1 1
Qe =<2 B ( —),— .
{z z € <z 6—|—26 26)}

It is easy to see that for 0 < € < 1, Q. are smooth bounded domains with €., C €, for
€1 > €2 and Up<e<1€e = (2. Let ¥, : Q, — H be a Riemann map and let ‘lie_l be its inverse.
We now give an explicit formula for these maps. First consider the map

Z Z, + ie for z € H. (20)
1 —iez
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We see that for this map 0 — e, ﬁ — i(e =+ 2%) and co — i(e + %) Hence this maps the

upper half plane H to the ball B(i (e + i), i) Let the topmost point of this ball be

defined as c(e) := i(e + 1). Hence (c(€))” € 0€2. Hence we see that

U z) = + i€ T c(e)—I—; V. (21)
= - ]

1 —iez €(i + ez

Therefore we obtain
1
Zv — 1€ ) 1
- (22)

Ue(2) =———
‘ 1+ € +iexv € e(zv —c(e))

For € = 0 we define the maps
U(z) = zv and T h(z) = 2" (23)

It is clear that for fixed z € €2 we have lim¢_,o ¥ (z) = 2y = U(z). Similarly for fixed z € H
we have lim. o U7 1(2) = 2¥ = U~1(2). Also note tht for € = 0, we have from that

KQ<21,22>:(Z')Z1<$—1> R (24)

1
2ny v — Zov 1% . 22;
Let us now prove some basic properties of these maps.
Lemma 3.2. Let 0<e<1. Then
(1) Suppose € > 0. Then for z1,z2 € Qe, we have
| 1 1
1 2{ — 25
[Welor) — Welm)] 2
2y —cle)||z5 — c(e)|
(2) Suppose € > 0. Then for z € Q. we have
1 1 ot
z v
V() S ——— and (Y):(2) = 5773
e2|zv — c(e)| € |zv — c(e)|
(8) For z1,z9 € Qe with z1 # z2, we have
1
Ko (z1,20)| S 77—
Ko (12| S =

(4) For z € H we have
(L= (T (2)] 7 S |z +ie* 2

Proof. We prove the estimates sequentially:
(1) This estimate follows directly from ([22]).
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(2) Observe that for any z € Q, we have that 2 € B(i (6 + 2%), 2%) Hence for any
z € ). we see that

2y — cle)] < 1. (25)

From this we see that for any z € €

€

2
T ()< —2
NS

Now taking a derivative in we get

—2(%_1)
(We):(2) = : (26)

VEQ(Z% —c(€))?

Therefore the estimate follows.

(3) First note that using Lemma we get
1 1_
Bl Bl 1
<

- |Zl —Zz!max{|z1\%_1,\22|%—1} ~ ’21 —2’2"

T
174 174
D)

Hence it is enough to prove that

13
zZ1|Y
Ko (z1,22) < A
2t — 7 |

For ¢ = 0 this follows directly from . Now let € > 0. From we see that

|(Pe)z(21)|[Pe(22) — Te(22)]
[We(21) = Pelz2) {[Pe(21) = Pe(z2)] + [Pe(22) = Pe(22) [}

Ko, (21, 22)| = (27)

1 1
Case 1: |25 —c(e)| < 2|z] — c(e)|.
In this case we see from the first estimate of this lemma that
1
L 2
1 < 2|z — c(e)|
~ T T, -
LAY AE TN

Hence using and the second estimate of this lemma we obtain

[CANEN e

KQEZ’Z 5 ~Y
B 2)l 2 g ey w0z ~ 2

1
v

1
Case 2: |25 —c(e)| > 2

1
2y - c(e)|.
In this case we see that
this lemma we have

1 11
2y —c(€)| = |#{ — 25 |. Hence from the first estimate of
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From this estimate, (27)) and the second estimate of this lemma we have

1_ 1_
(T Welz2)] ozl sl

‘Kﬂe(zh'z?)‘ rg 1 ~ 1 1 -

2~ T 1 T I
|\I’€(Zl) - ‘116(22” 22” — C(€)| }zl” — 25 ’
(4) For e = 0 we see from ([23]) that
1
(1 (2)) = 221, 28)

v

Hence we get }\IJZ(\I'_I(Z))‘_z < J2*72. Now let € > 0. Using and we see
that

1%

_ 1 z e
(V-0 =~ i+ P | +ie]
Now using the fact that for all z € H we have |i + ez| > 1, we obtain

. 2 [2v-2
(0021 (2)]  ~ ‘ZTTZ‘Q,, < |z tiet @272 (20)
(3 €2

We also note that

(1+¢€?)
(1+¢€)

Hence using the fact that for all z € H we have ‘z + 2e + 622‘ > €, we obtain

(z +ie + €22) + i€

(z+i€) = T e

z 4+ i€ =

|2 +ie| < |z +ie+ €2 + & < |z +ie+ 2] + € < 2|z +ie + €2,
Combining this with we get the required estimate
(W)U ()| S |z +ie+ 22|72 Sz 4+ i 72
O

We now prove some basic properties of the velocity on the domains {2 and also show
that the velocity has to be given by the Biot-Savart law for the domain 2.

Lemma 3.3. Let 0 < ¢ < 1 and let g € L*(Q) N L¥(Q). If v(x) = er Ko, (z,y)9(y) dy
and ¢ is given by then

1/3
(1) [0l S N1 g + llglly S gl pzee-
(2) If e = 0, then for z1,ze € Q we have

[o(1) = v(z2)
. 1_ 1_
S N9l p1goe 21 — 22l mind 20572, 22572+ llgll e 6121 — 22]).

Hence v is continuous on Q. Now let K C Q be a compact set and suppose 0 < ey < 1
is such that K C Q,. Then there exists Ck ¢, > 0 depending only on K, v and €
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such that for all 0 < e < ¢

sup [v(21) — v(22)|

< Ckellg :
217Z2€K ¢(|Zl — Z2|) 60|| ||L1PIL°°

Therefore the velocity in the interior is log-Lipschitz.

(8) For e =0 we have imp_, SUP@ZRW(@‘ =0.

(4) Let € = 0 and suppose f € C(§2) is such that V. x f =g in Q, V- f =0 in Q,
f-n =0 on 0Q and we have impg_,cc sup|g>g|f(2)| = 0. Then f = .

Proof. We prove each statement individually.
(1) For z1 € Q¢ we have from Lemma [3.2]

fo(21)] < /Q Ko, (21, 2)lg(2)] d

s | gl
6 1 1 (30)
< /B l9(2)] dz + / 19(2)| d=

L) |21 — 2] Bi(z1)enQe |21 — 2|

S l9llzs sy zyneo + l9lla
2/3 1/3
< gl lglh® + gl

Note that all the above estimates are independent of e.
(2) Consider first the case for e = 0. From we see that for z; € Q we have

v(z) = (27iy>zl(i—l) /Q Lli 1_ ——— 1_ Zi]g(z) dz. (31)

Now using and Lemma we see that for z1, zo €  we have

[v(z1) = v(22)|

St - e
2 |21 — 2 max{ |2y, |27

9(2)] dz
)

1

1
1 2713—272;
e /Q | g2 dz

71 — 2| [z — 27|

1 1
< |z — 29 min{\zl|5_2, |32‘;_2}H9HL10L°"

1_ 1i_
. 21 — | max{ |25 22l 7 g2
+’22|;7 / dZ
Q

1 4 1 _q 1 _q 1 _q
|21 — z| maxq |z1]v 7, |2|¥ |zo — z| maxq |z2]v 7, |2|¥

. 1_ 1_ 1_ zZ1 — z
Sl =z min{|a1 2% 2ol P gl + 1ol [ IO g,
Q|21 — z||z2 — z||2|¥
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Now using the notation from we get

[ ozl
@ |21 — 2o — 2llel

|21 — 2] (0, % S 1), (211, (2, 1) ¢ (g, 0, 00)).

Hence using the first estimate of Lemma [5.5 we see that

[v(z1) — v(z2)]
1_ 1_
< la1 =zl min{ 2177, f2lv 7 bl o
1_ . _1 _1
+ L2217 gl e min{ 21, Lzl E Fo(121 - 2al)

1 1
S |z — z2lming [z |77 22l 7 gl panee + 6121 = 22D lgll pipee-
LnL LNL

Now let K C Q be a compact set with 0 < ¢y < 1 such that K C Q. Note
that in light of the above estimate, we only need to prove the log-Lipschitz nature
of the velocity for 0 < € < ¢y. Let Ky C H be the compact set defined by K; =

{z% z € K} As K C Q,, we see that K; C B(i(eo%—ﬁ),ﬁ). Hence for all
0<e<e¢and z € K we have

1 1
zv = C(e)| ~K,eo .

Hence from Lemma and Lemma we see that for all 0 < ¢ < ¢y and
z1, 29 € K we have

[(We)=(21)] mreo 1,
|(‘1J6)Z(Zl) - (\I’G)Z(ZQ)’ SK,&Q |Zl - 22|7
’\116(21> - \1]6(22)’ ~K,eo ‘Zl - 22|-

Similarly using Lemma and Lemma we also see that for all 0 < e < ¢,
z1 € K and z € ). we have

1 o |21 —c(e)] 2 — c(e)]
~ €
[e(21) — We(2)] b
1
§K7€0 1 1 14
|21 — z]max{]zl\v || }
1
< - -
~K,eo ‘Zl — Z"

Hence from we see that for all 0 < e < ¢y and 21,29 € K and z € (),

|21 — 2] |21 — 20

K - K < .
|Ka.(21,2) a. (22, 2)| ~K,eo |21 — 2| 21 — 2|22 — 2|
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Hence using Lemma [5.4] we see that

[v(z1) = v(z2)| S/ Ko, (21,2) = Ko (21, 2)[|9(2)| d=

€

Skeo 121 = 2lll9ll 1npe + ¢(l21 - Zz!)HgHme-

(3) Let r > 1 and let g1 = glyjz1<,y and go = g — g1 Let vi(z) = [, Ka(z,y)g1(y) dy
and vg(x fQ Kq(z,y)g2(y )dy For z; € Q with |z1]| > 2r we see from ([30) . ) that
)l S | —ln @ISl < 7l

Also from part (1) of this lemma we have

2/3 1/3 2/3 ”1/3

lv2(20)] S llg2ll5” g2l ™ + llg2lly < Ngllss g2l + llgall;-

Hence

2/3 H1/3

sup [v(z)] S *Hng + 1913 g2l + llgall; -

|z|>2r

As Hgng — 0 as r — 0o, we are done.

(4) Asv(z) = [ Ko(z,y)g(y) dy and Kq(z,y) = V3 Ga(z,y), where G is the Green’s
functlon of 2, we see that V-v =0, VXxv =g and v-n = 0 on 9. From
part (2) of this lemma we have v € C(Q) and from part (3) we also see that
limp—s00 SUP|5>p|v(2)| = 0. Hence v satisfies all the properties satisfied by f.

Now let p=f—v. AsV-p=0and V x p =0 we see that p is a holomorphic
function on 2. Let P : H — C be defined as

P(z) = p(¥~H(2))(T7H):(2).

Observe that P is a holomorphic function on H. From we see that for z € H we
have (U—1),(2) = vz*~Y. Now as p-n = 0 on 9Q we see that P is real valued on
R\{0}. Hence by the Schwarz reflection principle, we can extend P to a holomorphic
function on C\{0}. As p € C(Q) we see that lim, o 2P(z) = 0 and hence P can be
extended to a holomorphic function on C. As limg—,c supjg>glp(z)| = 0, we see
that P is a bounded entire function on C which goes to 0 at infinity. Hence P =0
and so p = 0.

O

Now let (u,we) be a Yudovich weak solution in €2 in the time interval [0,7). For this
solution, the flow X, : Q¢ x [0,T) — Q is defined by ]

dX(z,t) -
TP = ulXo(w,0)1) Xe(@,0) = 2 (32)

1We see from Lemma that this map is well defined.
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From Lemma part (2) we see that the velocity is log-Lipschitz in the interior of )
and hence this ODE can be solved uniquely as long as X(z,t) € Q.. We first recall the
quantities related to the flow for the domain €).. We see from and that
dX (z,t)
dt
where b, : ¢ x [0,00) — C is defined as

be(21,t) = (2;)/ [\II (zl)l—qzﬁ(z) N )1 e (34)
e(y
be(x

== bE(XE(x7t)7t)@(X€(‘r7t))7 (33)

Similarly we define the flow Ye : Hx [0, T) — Has Ye(y, t) 1= We(Xc(z, )), where y = U (z).
Similarly define b : H x [0, 00) — C as be(y, t) := ,t). Hence from we have

T 5 (¥, )| (0. 0 ) Vel )] (3)
Defining w, : H x [0,00) — R as @(s,t) := we(z,t), where s = U (2), we get from
5w 1) = (o) /H[y - S]Z)E(s,t)‘((\lle)z o W) (s)[ " ds. (36)

We now show that the flow X, always remains in the domain ). and hence the maps
Xe: Qe x[0,T) = Q¢ and Ye : H x [0,7) — H are well defined. The following lemma is
analogous to similar statements proven in [I8], 20} 11].

Lemma 3.4. Let 0 < e <1 and let (ue,w.) be a Yudovich weak solution in the domain .
in the time interval [0, T) with initial vorticity wy € L'(Q) N L>®(Q). Let R > 0 and let
xo € Qe with |xg| < R. Then there exists constants ¢, C1,Ca,C3,Cy >0 and 0 < g < 1 all
depending only on R, T and esssup,cjo rl|we(-,t)|| 1 s0 that if 0 <€ < e then

Cr{Im(Ye(y0,0))}*" < Im(Ye(yo, 1)) < Co{Im(Ye(yo,0))}¢ "

and also

ct —ct

ng(XE(.CEQ, ) 15)9] ) s < d(XE(xO,t),é?Qe) S C4d(X€($0,O),aQ€)V6
Proof. In this proof we will let C' > 0 denote a general constant which depends on R, T
and on esssup,e(o 1) |we (", )| 1np and we write a Sc b instead of a < Cb.

We will first prove the estimate for Y,(y,t) and then translate that information into an
estimate for X (z,t). Let yo = V¢(zp). Now as u, is bounded from Lemma we see from
that there exists Ry > 1 depending only on R,T" and esssup;c(o 1) llwe(- )| f1qz0 SO
that for all t € [0,7) and 0 < e < 1 we have

[ Xe(zo,1)| <

% <R (37)

1
Now we choose a 0 < €y < 1 such that egR{ < 1/8. Hence from and it is clear
that if 0 < e < ¢p, then fo t € [0,T") we have

Yo, )] = [We(Xe(o, )] < 4R (38)
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Therefore €|Ye(yo,t)| < 1/2.
Now for y € H we see from that

B = (52) [ |52 - -2 ool o v Pas

27/ Jgly—35 yY—s

Therefore

Im (b (y, 1))
(217T>Re{/m [yls - Re(yl) =5 Re(yl) —s y1 s]ae(s’t)‘((%)z SRCl ds}'

Hence using part 4 of Lemma we see that

o)1 5 e [ Bl 2,
’ [y — s||Re(y) — s|
|Im(y)|
S ol Ol [ g ds
Rz |(y + i€) — s||(Re(y) + i) — s||s]
Observe that if we let z; = y + ie and 22 = Re(y) + i¢, then |Im(y)| = |z1 — 22|. Hence
using the definition of I from we see that
’Im(EE(y7t))’ § Hw€('7t)Hoo|Zl - Z2|I((07 2- 2”)’ (217 1)7 (2’2, 1) : (17 0, OO))

Thus using the second estimate of Lemma [5.5] and observing that |y + ie| > [Re(y) + ie| we
obtain

0By, )] S Jooel )l (1 -+ Iy + i€ %) p([Tm(y)).
Now from we get

Y0} _ 1305, g, 1), 0} (8212 0 0 )Yl )

Now as €|Ye(yo,1t),t)| < 1/2, we see from and that
_ 2 o
[(Pe)z 0 ) (Yely, 1))]” S [Ye(yost) + e

Hence

‘ dlm{Y(yo,t)} ‘
dt

S e+ 8) o (1Tm(Ye(yo, ) ) (
S e 1) oo (T (Yoo, 0)1) (14 Ve(wo, 1) +ie*™).
Now using we get

L Yoo, )+ el ) [Yelyo, 1) + e (39)

‘ dIm{Ye(yo,t)}
dt

\<¢mm (50, ).
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Consequently from Lemma there exists ¢ = ¢(R, T esssupycpo,p)llwe( )|l p1qp) > 0
such that for all ¢ € [0,7) we have

—ct

{Im (Y (y0,0))}*" Se Im(Ye(yo, 1)) So {Im(Ye(yo,0))}¢ " (40)

This proves the first part of the lemma.

Now let & € 99, be such that d(X(xo,t),08) = d(X(xo,t),Z). As the line segment
joining the origin and X (zg,t) intersects 02, we see that |Z| < 2| X (xo,t)|. In particular
we have |zZ] < R; from (37). Hence by the same argument used to show (B8], we also see
that | (Z)| < 4R; and hence €| ¥ (Z)] < 1/2.

So now consider z € H with |ez| < 1/2. We claim that for such z we have

+ i€

~ €. 41
‘l—iez |z + ie| (41)

To see this consider first the case of |z| > 100e. Here it is clear that

z , .
’ ‘ —l—ze‘ ~ |z & |z + i€l
1— ez

Now if |z| < 100¢, then clearly

’ © tie Ser |z + €.

1 — ez
On the other hand we know that the map maps the upper half plane to the ball
B(i(e + i), i) Hence

< + 1€

e<‘

1 — ez

This proves the claim ([A1)). Also if 21, 22 € H are such that |ez1], |eza] < 1/2, then we see
that

Therefore using , Lemma and we get
d(Xe(xo,t), 08)
= min_[¥ 1 (Ye(yo,t) — ¥ (s)]

els|<3,s€R
. . Ye(yo, t) N N
~ min |Y(yo,t) — s|min< |—————— + ¢ , — + 1€
e\s\S%,SER| e(y ) ‘ {‘ - ZeK(ym t) 1 —ies

~ min |(Ye(yo, t) — sll(Ye(yo, t) + ic)|" ™"
e\s\ﬁ%,SER

~ |(Ye(yo, 1) +ie)” — {Re(Ye(yo, 1)) +ie}”.
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Furthermore we see from Lemma that
{Im(Ye(yo, ) HYe (%0, 1) + ie]” ™" Sc d(Xe(0,1),09) So {Im(Ye(yo, 1))}

Hence
{Im(Ye(yo, 1))} Sc d(Xe(wo,t),002) S {Im(Ye(vo, 1))}

In particular for ¢ = 0 we have
{Im(Ye(0,0))} Sc d(Xe(20,0),00%) So {Im(Ye(yo,0))}"
Combing these two estimates with we obtain for all ¢ € [0,T)
d(Xe(20,0),00) " Se d(Xe(o,1),00) Sc d(Xe(wo,0),00)" ™.
O
We are now ready to prove the existence of Yudovich weak solutions in 2.

Theorem 3.5. Consider an initial data (ug,wo) satisfying in the domain Q. Then
there exists a Yudovich weak solution (u,w) in domain € in the time interval [0,00) in the

sense of and .

Proof. We closely follow the existence proof of weak solutions in R? as given in Chapter
8 of [2I]. Observe that it is enough to prove the existence in the time interval [0,7") for
arbitrary 1" > 0. By restricting wp to compact sets and by convolution, we see that there
exists initial vorticities (wp)e € C2°(€2e) C C°(2) such that for all 0 < e <1

[(@o)ell ooy < llwollpoe(ys wo)ell L1y < llwoll L1
and
|(wo)e — CU()HLl(Q) -0 as € — 0.

Now for € > 0 the domain (). is a smooth bounded domain and hence there exists a unique
smooth solution (ue, we) in Q¢ in the time interval [0, T") with initial vorticity (wp)e (see [22]).
Let the corresponding flows be X, : Q. x [0,T) — €, then from the transport equation we
see that we(x,t) = (wo)e(X 1(x,t)). As X(-,t) and X !(-,t) are measure preserving, we
see that for all 1 < p < oo we have [[we(",¢)|| 1o(q,) = [[(Wo)ell Lo (a,) < llwoll (-

Step 1: Let K C Q be a compact set and let R > 0 be such that |x| < R for all x € K.
Let 0 < ¢g < 1 be such that K C €, for all 0 < € < ¢p and ¢ also satisfies the conditions
of Lemma |3.4] From using the fact that the velocity is uniformly bounded by Lemma 3.3
followed by Lemma[3.4] we see that there exists a compact set K1 C € such that for all 0 <
e <eand v € K and ty,t3 € [0,T) we have that X (X !(x,t1),t2), X7 H(Xe(,t1),t2) €

K. Similarly there also exists compact sets Ko, K3 C € such that for all 0 < € < ¢y and
ti,ty € [0,T) we have for z € K;

Xe(X (@ 1), ta), XN (Xe(m, 1), t) € Koy

€

and similarly for x € Ky we have
Xe(X7 M, t1),t2), X (Xe(2, 1), 22) € K.

€
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These sets will be useful to prove estimates for the maps X and X! below. Now from
Lemma [3-3] observe that for all 21,22 € Ko and 0 < € < ¢y we have

d’Xe(Zl, t) — XE(ZQ, t)’

— < ue(Xe(21,1),1) — ue(X(22, 1), )]

< CK37507H"-’0HL10L00 ¢(|X€(Zla t) - Xﬁ(z27 t)’)

Hence from Lemma [5.1] there exists 71,72 > 0 depending only on K3, €y, T and |lwo|| 14700
so that for all 21,29 € Ko and ¢t € [0,T)

|2’1 — 22|’yl § |X6(21,t) — XE(ZQ,t)’ § |2:1 — ZQ’W. (43)
Therefore for all 21,29 € K7 and t € [0,T)

1 1
|Zl — 22|72 < ‘X;l(zl,t) —X_I(Zg,t)‘ < |Zl — ZQ|71. (44)

€

As the velocity is bounded by Lemma we have for all z € K and all ¢1,t3 € [0,T)
|X€($7t1) - XE(x7t2)| SK,EQ,”WOHleLoo |t1 - t2"

Now let X*(x,t;7) = X (X !(x,t),t — 7) denote the backward particle trajectories with

€

X (x,t;t) = X 1(x,t) and which satisfies the ODE
dX¥(x,t;T)
dr
Observe that for z € K we have X} (z,t;7) € K;. Hence from the above equation, (44))
and Lemma [3.3] we see that for all x € K and all 0 < t; <ty < T we have

(X2, t1) = X7, 1) = [ X7 (@, 1) = XTH(X (2, tast2 — 1), 1)

€
1

<o — XP(x, a5t — 1)1

= —u (X (x,t;7),t — 1) X! (2, t;0) = .

1
Sheollinee [t2 =t
Step 2: Using these estimates we see that for 0 < € < g the restricted functions X, X! :
K x[0,T) — § form equicontinuous families. Hence by Arzela Ascoli and a diagonalization
argument and passing to a subsequence we get continuous functions X, X 1 : Qx[0,T) — Q
such that

X. > X and X ! x7!

uniformly on compact subsets of Q x [0,7). Hence for all ¢ € [0,7) the function X (-,¢) :
Q — Q is a homeomorphism. As X(-,t) and X(-,t) are measure preserving, we see that
for any f € C.(9) C C.(2)

/Qf(Xﬁ(x,t))lzeQE d:)::/Qef(Xe(x,t))d:n:/Qs @) da::/Qf(x)dx.

Hence by letting e — 0 and by an approximation argument we see that X (-, ) and X ~!(-,#)
are also measure preserving.
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We can finally define w : Q x [0,7) — R as w(x,t) = wo(X L(x,t)) and u(x,t) =
Jo Ka(z, y)w(y,t)dy. It is easy to see that (u,w) is in the Yudovich class by using
that fact that X ~!(-,¢) is measure preserving and from Lemma

Let us extend the function we(-,t) : Qe = R to we(-,t) : @ — R by zero. We then claim
that for any t € [0,7') we have

[we(,t) = w(-, )l 1y = 0 as € — 0.
To see this observe that for any fixed 0 < ¢9 < 1, for all 0 < € < ¢g and z € €2, we have
we (@, 1) — w(z,1)]
= |(wo)e (X< (2, 1)) — wo(X (1))
< (wo)e (X (@, 1)) = (Wo)eo (X (@, 1)] + [ (wo)eo (X (,8)) — (wo)eo (X (2, 1))
+ [ (wo)eo (X (2, 1)) — wo(X (2, 1)).

Hence using the fact that [|(wo)e —wollp1) — 0 as € — 0, X7(,t) and X71(-,t) are

measure preserving and the fact that X 1(-,#) — X ~!(-,¢) uniformly on compact subsets
of K, we see that

H(we('at) - w('7t))]lQEHL1(Q) —0 as € — 0.

As Jlw(, ) 1o, — w(-,t)|L1(q) — 0 as € = 0, the claim is proved.
We extend ue(-,t) : Qe — C to u(-,t) : 2 — C by zero. We now claim that for any fixed
t € [0,T) we have uc(z,t) — u(x,t) a.e. x € Q. To see this observe that we have for z; € €

ue(z1,t) = Kq (21, 2)we(z,t) dz.
Qe

As we(,t) =0 on 2\Q¢ we have

ue(zl,t):/Qng(zl,z)(we(z,t)—w(z,t))dz—l—/QKQG(zl,z)w(z,t)dz.

Using Lemma we see that the second term converges to u(z1,¢) by dominated con-
vergence. The first term can be easily controlled by a similar computation as done in
Lemma, that is

/ Ko, (z1,2)(we(z,t) —w(z,t)) dz
Q

1
< | ————|we(z,t) —w(z, t)| dz
S | gl —wtat)
5 Hwe(‘vt) - w(‘vt)HLS(QﬂBl(zl)) + HO‘)E(‘?t) - w('ﬂt)HLl(Q)
which goes to 0 as € — 0.

Step 3: Let us now show that (u,w) is a weak solution to the Euler equation . Let
p € CX(Q x[0,7)). Then there exists ey > 0 such that supp(p) C ¢, % [0,T). Hence for
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all 0 < e < ¢y we see that

Now observe that

T T
/ / We(Opp + e - V) da dt = / /(wE — w)(Opp + ue - V) dx dt
0 Q 0 Q

T
—i—/ /w(atgo—i-ug‘Vgo)dxdt.
0o Jo
T
//w(atg0+u~Vgo)dxdt
0o Ja

by dominated convergence. The first term can be controlled by using the fact that u. are
bounded by Lemma

The second term converges to

—w) (O + ue - Vo) dx dt

Sty [ o8 = ol Dl

which goes to zero by dominated convergence. We also see that as (wg)e — wo in L(2) we

have
/ (wo)ew(+,0)dz — — / wo)p

Thus (u,w) satisfies (18). Now for any h € G¢(Q) we see that

/que(-,t)-h—/Que(-,t)-h—O.

Consequently by using the fact that ue are bounded by Lemma we get from dominated

convergence that
/ u(-,t)-h=0.
Q

Hence proved. O

Lemma 3.6. Let (u,w) be a Yudovich weak solution with initial vorticity wo in the domain
Q in the time interval [0,T). Then
)

(1) The map X (-, t) : Q — Q is a homeomorphism for each t € [0,T) and the functions
X, X71:Qx[0,T)— Q are continuous.

(2) w(z,t) = wo(X Y(x,t)) for a.e. (z,t) € Qx[0,T)

(3) If (tn)32, is a sequence in [0,T) with t, —t € [0,T), then ||w(-,t,) —w(-, t)||; = 0
as n — oo. B

(4) The functions b : Q x [0,T) = C, b:Hx [0,T) = C and u : Q x [0,T) — C are
bounded continuous functions and the ODE for e = 0 is true pointwise for all
(x,t) € Qx [0,T).
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(1)
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We prove the statements sequentially.

As X is defined as the solution to the ODE for ¢ = 0 and as the velocity
is locally log-Lipschitz from Lemma we see that X is continuous as long as
X(z,t) € Q. Now from Lemma 3.4 we see that X (x,t) € Q for all (z,t) € @ x[0,T)
and hence X : Q x [0,7) — Q is continuous. From the same argument as the
one used to derive we see that X (-,¢) : @ — Q is one to one. Now using
this together with Lemma and Lemma we see that X(-,t) is onto Q and
hence X(-,t) : Q — Q is a homeomorphism. Hence X! : Q x [0,T) —  is also
continuous.

By using Lemma 3.1 in [II] by Han and Zlatos, we directly get that w(z,t) =
wo(XY(z, 1)) for ae. (z,t) € 2 x[0,T).

If K C Qis acompact set then by a similar argument as the one used in Theorem
we see that the restricted functions X !(-,¢,) : K — Q form an equicontinuous
family. As X~1(-,t,) — X ~!(-,t) pointwise, this implies that X (-, ¢,) — X~1(-, 1)
uniformly on compact sets of Q. We now get that ||w(:,t,) —w(-,t)|; — 0 by
approximating wo by a function g. € C.(2) in L!'(Q) and passing to the limit.
Recall that b is given by the formula with € = 0. From a similar computation
as in Lemma [3.3] we see that

10l oo () S Nlwoll 1 ynzee (-

Now if (21,t1), (22,t2) € Q x [0,T) then from Lemma and the calculations of
Lemma [3.3] we see that

\b(zl,tl) — b(ZQ,tQ)‘ S ]b(zl,tl) — b(ZQ,tl)’ + ‘b(ZQ,tl) - b(Z2,t2)‘
1 1
< 6(121 — 2oy mind 21" 7%, |2l Hlwoll 1y
1
+/ —l_1|w(z,t1)—w(z,t2)]dz.
Q |29 — 2]|2|¥
For the first term we observe from Lemma [5.2] that
21 — 2| min{\zlyl—%, 122\1-%} ~ |21 — 2 min{\zlyl—%, 2|, |21 — 22\1—%}
S o — 27

Now by using the weighted AM-GM inequality and using the definition of ¢ from
we get
|b(z1,t1) — b(z2,t2)|

1
< max{—In(|z1 — 22[), 1}|z1 — 22* ¥ ||wol| 1 pe0

1 1
—I-/ ———|w(z,t1) —w(z,t2)| dz +/ Tlw(z, t1) — w(z,t2)] dz
Q Q

|29 — z|¥ |2

_1
< max{—In(|z1 — 22[), 1}z1 — 22|* ¥ lwoll p1pzee + lw(st1) — w(-, t2)

+ Hw('7t1) - w('7t2)HL1'

[ =5
L2v—1
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Hence b : Q x [0,T) — C is bounded and continuous and hence b : H x [0,T) — C is
also bounded and continuous. From Lemma we already know that u is bounded
and from and we see that u(z,t) = £2v71b(2,¢) and hence u: 2 x [0,T) —
C is also continuous. As the velocity is continuous on Q x [0,T"), the ODE for
€ = 0 is true pointwise for all (z,t) € Q x [0,T).

O

3.2. Properties of the flow

From now on we will only consider flows on the domain €2 and so we will only be concerned

with equations , , , and for € = 0. In particular we get that X :
Q% [0,T) — Q satisfies

where b : Q x [0,00) — C is given by
) 1 1
b(er, ) = () / SN Y (46)
2 ) Ja Zlv —Zv  Ziv — 2V

The flow Y : H x [0,7) — H is defined as Y(y,t) = X(a;,t)%, where y = v Similarly
b:H x [0,00) — C is defined as b(y,t) := b(x,t) and we have

WD) _ 5 (w001 (0.0 (47)

Defining w : H x [0,00) — R as w(s,t) := w(z,t), where s = z%, we get
~ iv? 1 1 o9
b,t:()/ _ 5(s, 1|52 2 ds. 48
w0 = (5e) |15 - 5 |t 2as (48)

Let the initial vorticity wg € L'(£2) N L>(2). Note that if wy = 0 then the flow is trivial
and hence we assume that wy # 0. Observe that

b(0,0) = b(0,0) = (”2) /H [_1 + l]ao(s)|s|2”—2 ds = f / Tm(s)@o(s)|s|* 4 ds.

2 S S H

Define
bo := 0(0,0). (49)

Hence if wg > 0 and wy Z 0, then 0 < by < co. (Recall that H is the upper half plane and
wWo(s) = wp(s”) for s € H).

The next proposition quantifies the property that the support of the vorticity moves away
from the corner for a short period of time. This is proved in part (3) of the proposition
below. This is the analog of step (1) of the proof of the uniqueness of the ODE () in the
introduction.
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Proposition 3.7. Let (u,w) be a Yudovich weak solution in the domain 0 in the time
interval [0, 00) with initial vorticity wo € L*(Q) N L>(Q) and assume that we have by > 0
where by is defined in . Let X : Q x [0,00) — Q be the flow map of the solution. Let
€ > 0 be such that 0 < € < min{bo,l}. Then there exists T > 0 and 0 < R < 1/10 such
that for all t € [0,T] we have

(1) For all x € QN Bogr(0) we have |b(x,t) — by| < €.

(2) For all x € N Bgr(0) we have | X (z,t)| < 3& and for all x € QN Br(0)° we have
X ()] > 5.

(8) For all x € Q4 N Br(0) we have X (x,t) € Q4 and

@V—U@O—Qtﬁi.

X(@0)] 2 "

(4) For all € Q4 N Br(0) we have | X (x,t)] > |z **

Proof. We will define T' > 0 at the very end of the proof. We will prove the result by
1
proving the corresponding result for the flow Y (y,¢) = X (x,¢)v in the upper half plane.
(1) From Lemma we know that b : Q x [0,00) — C is a continuous function.
Hence there exists 77 > 0 and 0 < R < 1/10 such that |b(x,t) — bg| < € for all
x € QN Byr(0) and t € [0,T7].
Now let R* := (R)% and hence 0 < R* < 1/10 and we have [b(y,t) — by| < € for
all y € HN B(0, 2%R*) and t € [0,T1], where b was defined in (48)).
(2) As the velocity is bounded from Lemma there exists a constant C; > 0 such
that ‘%‘ < C) for all z € Q and ¢ € [0,00). Letting T5 = % > 0 we see that

for all ¢ € [0, T»] we have

=

X (1) - X(@,0)| < 1t < 5.

Now as X (z,0) = = we see that for all x € QN Br(0)¢ we have | X (z,t)] >
Similarly for all z € N Bg(0) we have | X (z,t)] < 3R < 1/5.
Using this we see that for all y € HN Br-(0)¢ and ¢ € [0, T3] we have |Y (y,t)| >
(%)% = R*/Q%. Similarly we have |Y (y,t)| < (%R)% < 1/5 for all y € HN Br+(0)
and t € [0, Ty].
(3) Let T3 = min{7T1,T2} > 0. From and part (1) and (2) of this proposition we
see that for all y € Hy N Bg«(0) and ¢ € [0, T3], we have
dRe{Y (y,t)}
dt

This says that the particle is moving to the right and hence Y (y,t) € H;. We can
quantify exactly how much it moves to the right by integrating and so

Re{Y (y, )} " Re{Y(y,0)}*" _ (bo—¢)
2u—1 2vu—1 - 2

vl

1 7 9y bg — € iy
= LR 0.0 .0 > P I Rey P 2 0

t.
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As Re{Y (y,0)} = Re(y) > 0 for all y € Hy N Br-(0) we obtain
(2 — 1)(by — e)t] =T

(50)

V0] Refy () > | 218

V2
(4) Let x € QN Bgr(0) and y = zv. As Y(y,t)] < 1 for all y € HN Bgr«(0) and
t € [0,T3], we see from in Lemma |3.4] that

dIm{Y(y’t)}' < ¢(|1m(Y(y,t))\)(1 + |Y(y,t)|2—2y) lwolloo

dt
< o(Im(Y (y, £)) ) llwoll o -

Hence from Lemma [5.1] we see that there exists Co = Co(||wol|;1470) > 0 so that
for all y € HN Br+(0) and ¢ € [0, T3] we have

Hence | X (z, )| > [w} T for all z € Q4 N Bg(0).

Cot

(Y (y,1)) Z {Im(Y (y,0))}* .

Let Ty > 0 be such that 1 < e“27 < 1 + ¢ and let T5 = min{7T3, 74} > 0. Then for
all y € HN Bg+(0) in the time ¢ € [0, T5] we have

Im{Y (y, t)} Z (Im{Y (y,0)})'**.

We can now prove the required estimate. For y € H N Bgr-(0) satisfying Re(y) <
Im(y) we see that for all ¢ € [0, T5] we have
Y (y, 6) = Im{Y (y,£)} Z (Im{Y (y,0)})" " 2 (Im(y))" " = [y|'". (51)
For y € H; N Br(0) satisfying Re(y) > Im(y) we see that for all ¢t € [0,T5] we have
Ry (1.0} _
dt -
Hence

Y €
Y(50)] 2 Re(¥ (4,6) = Re(y) = 4 2 "4 (52)
V2
and thus | X (z,t)] > |z|*°. We define T* = Ty and the proof is complete.
(I

Remark 3.8. As stated in the introduction, the assumption of supp(wg) C €4 can be
relaxed to supp(wg) C g = {re? € C ’ r>0and0<6<B(vvr} for some B(v) > 3.
To do this, part (3) and part (4) of the above proposition need to be modified. First
observe that part (4) needs very little change. Indeed the new statement would be that
for z € Qg N Br(0) we have |X(x,t)] 24 |z|'T*. To prove this we follow the same proof
as above and see that as y = = {reie ‘ 0<0< BW}, therefore there exists cg > 0 such
that either cs|Re(y)| < Im(y) or Im(y) < Re(y). In the first case, from we see that

Y (y,t)| =5 |y|'T* and in the second case (52) gives [V (y,t)| = |y|' . To prove the analog
~ ~ 1 ~
of part (3), define ¥ : Q — H by W¥(z) = 22#*. For this map we have ¥(Qg) = H. Let
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w = ¥(z) and define a new flow W in ¥(Q) by W(w,t) = X(a;,t)‘”%". Now following
the same argument for W instead of Y gives us the new estimate. Indeed by choosing
1
an e small enough (depending on by and ) and letting R** = R26v, we see that for all
W(w,t) € Hi N B g5p..(0) we have
d 1
- t)) =
RV (w.0) = 7
Zp (b — )W (w, )72,

Hence for w € H{NBpr++(0), we see that W (w, t) € Hy for t € [0, T3], for a suitably modified
T3 > 0. Following a similar argument as in the proposition, we also get a quantitive lower
bound for | X (x,t)| for x € Qg N Br(0).

W (w, )] Re (b(X (2,1), W (w, 1) =2

We now prove that around the corner the flow moves to the right for all time and particles
in 4 cannot come very close to the origin. We need this to prove uniqueness for all time
in Theorem and not just for a short time. The following lemma is the analog of proving
that z1(t),z2(t) > ¢ for t > T in step (4) of the proof of uniqueness of the ODE (6) in
the introduction. Proving this lemma would be immediate by a continuity argument if we
knew that X : Q x [0,00) — € extends continuously to X : Q x [0,00) — Q. We suspect
that this is true but do not have an argument for it. As we do not know this property, the
proof of the following lemma becomes a little more involved.

Lemma 3.9. Let (u,w) be a Yudovich weak solution in the domain € in the time interval
[0,00) with initial vorticity wy € LY(Q) N L>¥(Q) satisfying wo > 0 and wy # 0. Let
X : Q2 x[0,00) = Q be the flow map of the solution and let 0 < Ty < Ty. Then there exists
¢ >0 such that | X (x,t)] > ¢ >0 for all x € Qp and t € [Th, T3].

Proof. Put ¢ = %min{bo, 1} > 0 and let R,T > 0 be as given by Proposition from

which in particular we get 0 < R < 1/10. Let R* = Rv <1 and let Ty = min{7, T} } > 0.
Define § > 0 as

5 {(21/— 1) (b —e)Torfl -

2
v
Hence from we see that for all y € Hy N Bg+(0) and we have
Re{Y(y,Tp)} > ¢ > 0.

Now observe that b : H x [0, T3] — C is continuous from Lemma Also observe that
for y € R we have from

b(y,t) = (Z;j) /H[Re(yl) — - Re(yl) — 8]&(s,t)182”‘2 ds

2
I
_ V[ Il e s ds
™ Ju [Re(y) — s|

> 0.
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Hence there exists R; > 1 and 0 < §; < R*/2 so that Re(b(y,t)) > 0 for all y € [— Ry, R;] X
[0,61] and ¢ € [0,T%]. Now from Lemma3.4] we see that there exists 0 < r < min{4, §;} such
that for all y € HN B,(0) and t1,t2 € [0, T3], we have Y(Y ~1(y,t1),t2) € [-R1, R1] x (0, 61].

2r <201 < R* <1< Ry
r<d

[ T \ 1 a1
r R* Rl

FIGURE 1. Particle flow around the boundary

We now claim that for all y € H; and t € [Ty, Tz] we have |Y (y,t)| > r. We show this
via contradiction. Suppose yo € H and g € [Tp, T>] be such that Y (yo,t0) € B-(0). Then
by definition of r we have that Y (yo,t) € [-R1, R1] x (0, 61] for all ¢ € [0,75]. Hence from
(47) we have

dRe{Y (yo,t)}
dt

Now if yo € Hy N Bgr-(0) then we see that Re{Y (yo,T0)} > d > r. Hence by the above
estimate we have Re{Y (yo,%0)} > Re{Y (yo,T0)} > r and hence |Y (yo,to)| > r, which is a
contradiction.

On the other hand if yo ¢ H; N Br+(0) but satisfies yo € [—R1, R1] x (0,91] and yo € Hy,
then from the fact that §; < R*/2 implies Re(yo) > R*/2 > r. Hence we similarly obtain
Re{Y (yo,t0)} > r and hence |Y (yo,t0)| > r, which is a contradiction. The lemma now
follows by setting ¢ = r”. O

= %Re@(y(@/oﬁ)jt))lY(yo,t)\H” > 0.

4. ENERGY ESTIMATE

In this section we will ignore the dependence of constants on v and |lwo|| 1470 SO We
write a $ b instead of @ Sy jwo|l 1., 00

We now consider two Yudovich weak solutions (uj,w;) and (ug,w2) in © in the time
interval [0, co) with the same initial vorticity wy satisfying . Let X1, X5 : Q2x[0,00) — Q
be the corresponding flows of the solutions. Let by, b : 2x [0, 00) — C be the corresponding

functions from , so that

dX 1 (J?, t)
dt

Consider the energy

dX2($,t)

_ %bl (X1 (2, ), )X 1 (, £) (51 dt

_ %bg(Xg(:v,t),t)Yg(x,t)(%_l).

Eq(t) = /Q]Xl (x,t) — Xo(x,t)||wo(x)| dx.
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We first prove that this energy cannot grow too fast near ¢ = 0. Note that if the domain is
CY1 or if the corner has an angle of v with 0 < v < %, then the energy Ej(t) is sufficient to
prove uniqueness and one can directly show that F;(t) = 0 for all ¢ > 0 (See the uniqueness
proof in Sec 2.3 of [22] or simply follow the proof of the proposition below). What we show
below is that even if the energy Fi(t) is not sufficient to prove uniqueness in our case, we
can still gain some useful information out of it.

Proposition 4.1. Let (u1,w;) and (ug,ws) be two Yudovich weak solutions in § in the time
interval [0, 00) with the same initial vorticity wy € LY(Q)NL>®(Q) satisfying supp(wp) C Q4
and by > 0 where by is defined in . Let X1, X5 : Q x [0,00) = Q be the corresponding
flows of the solutions. Then for any o > 0 satisfying 1 < a < % there exists constants
C,T > 0 such that for all t € [0, T] we have

Eq(t) < Ct™.
Proof. We first define constants depending on «, v and on by. Define

« 1 {2,,_@(21/—1) bo2v = 1) }>o.

>1 and e=-
a1 e TN T - B2

p= (53)

Hence p > 2v > 1 and 0 < % < M Also 0 < ngz < ﬁ and 0 < e < min{bg, 1}.

(Here the estimate p > 2v comes due to the restriction a < 23%1 in the proposition). We
will use these inequalities in the upcoming computation.

Observe that as the velocity is bounded by Lemma [3.3] we see that for all z € 2 and
t € [0,00) we have | X1 (z,t) — Xao(z,t)| < t. Hence there exists 75 > 0 so that for all z €
and ¢ € [0,T7] we have

‘Xl(l',t) — X2($,t)| < 1/10.

Again using the fact that the velocity is bounded we get

dE; (t)
s,

and hence E1(t) < t. Thus there exists 75 > 0 such that for all ¢ € [0,75] we have

Xm(ﬂj‘, t) _ ng(:U, t)
dt dt

jwo ()| dz S 1

1
Er(t) < 75 min{1, [fwoll,}-

Now using the e from in Proposition [3.7| for the flows X (+,t), Xa(+,t) we get constants
R1, Ry and Ty, T, so that Proposition is satisfied. Let

R=min{R, Ry} >0, T =min{T},T§,T1,T5} > 0. (54)
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Now for ¢ € [0,00) we have

dEl(t) </ Xm(.%',t) dXth
dt  ~ Jq

dt
1/‘bl(Xl(a:,t),t)Xl(a:,t)u_ — bo(Xa(a, ), ) X o, 1)+ ‘|w0 )| dx
vJa

|wo(x)| da

IN

(55)

IN

1/|bl(X1(:1:,t),t)|’X1(:1;,t) ~ Xl 1) fuo(e)]| da
vJo
+i/ﬂ\bl(Xl(x,t),t)—bg(Xg(:v,t),t)HXg(x,t)|v_1|w0(:):)|dx
=I1+11.

Controlling I : We first control the first term I in . Using Lemma Lemma and
Proposition [3.7| we have for all ¢ € [0, 7]

1
I== | |b(Xi(a,0), y’xl 2,07 — Xo(a, )7 (\wo )| dx
14 Q+
5/ ‘Xl(x,t) = X, 1) |lwo ()] de
Q+ﬂBR
+/ (Xl (z, )5~ Xz(x,t)%ﬂ]ywo(x)ydx
QNBs,(0)

< / 12| D04 X, (2, 1) — X (e, 1) jwo(z)] d
Q4+NBRr(0)

+/ RIS X (2, 8) — Xo(z, 0)| ()| da
Q4+NBr(0)°

Sr |[1X (@, t) = Xo (@, D)llwo @) oo, o) >H”““ (L-2)(1+¢) .
+E1(t>,
where 1 —|— = =1. For |:B| D49 ¢ £4(BR(0)) we need
1
(; —2)(1+e)q > 2
— 1—2+6(1_2”)>—2<1—1>
v v P
1+¢€(1—2v) - 2

v p’
which is satisfied by the choice of p and € given in (53)). Now as | X1 (z,t) — Xo(z,t)| < 1/10,
Ei(t) <1/10 and ||wo||o, < 00, we see that for all ¢ € [0,7] we have

’U\)—‘

I Sapo,r B1(t )” + E1(t) Sabe,r E1(1)7. (56)



2D EULER UNIQUENESS 31

Controlling IT: We now control the second term I in . From the definition of b in
we see that

‘bl(Xl(x7t>vt) - bQ(XQ(x7t)vt)’
<,

1 1
Xi(z,0)p —5v  Xo(x,t)v —5v

lwi (s, t)| ds

1 1

+/Q Xl(x,t)% —s% B Q(x’t)% —3% |W1(S’t)|d8
1

+ QE(w,t)% - %(wl(s ) —wa(s, t))ds
1

+ /Q)(g(.%'t)V—SV(W1(S t) —wa(s,t))ds

=1L +1l,+ 113+ 114.
Now by Lemma we see that
I + 115

/ ’Xlxt v — Xo(z,t)
‘Xl Xo(z, 1)+

1
v

\wl(s t)| ds

xtu—8v

1_ 1_
<l/‘ \xacut>—;xxx,w|nmx{p¥ﬂx,wpf1Jx3¢mtﬂu 1}pq(&tﬂds
~ 1_ 1_ 1_ 1_
@ X (,1) = 5| Xo (@, t) — sl max{ | X1 (2, )] |s| 7~} max{ [ Xa(a, )7 Js)7 }

</ X1 (2, ) — Xz, )|
~ 1
9 [ X1 (2,t) — || Xo(@, ) —sl|s|]

lwi(s,t)|ds.

If 21 = Xy(z,t), 22 = Xo(x,t) and f = |wi(-,t)|1o then we see that the above integral

equals |21 — 22|I((0, 2 — 1), (21, 1), (22,1) : (f,0,00)) (note that I is defined in (g))). Hence
by the first estimate of Lemma [5.5] we get

1 1
Iy + 11y S 61X (2, 8) = Xo(, ) min{ | X (2,6)] 7%, | Xa(e, 1)+ }.

Now let us concentrate on II3 and I1y. As wy(Xi(s,t),t) = wo(s) from Lemma and as
the mapping X7 (-, t) is measure preserving (and its inverse as well), we see from the change
of variable s — Xi(s,t) on the first term of I3

1 1
/ 7—l7lw1(8,t) ds = — — lWO(S) ds.
QXQ(QUH‘Z)V — Sv QXQ(QT,t)V —Xl(s’t)y
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By doing a similar change of variable for the second term of I13 as well, we see that
1 1

/ fp— 1w0(s)d8/ f— T
Q Xo(z,t)v — X1(s,t)v Q Xo(z,t)v — Xo(s, t)v
Now by a similar computation for 1, and by using Lemma we now see that
Xi(s, )% = Xa(s, 1)

I3+ 114 S / ] ]
@ X (a,)7 = Xa(s,)*

I3 = wo(s) ds|.

. —on(s)] ds
Xo(z,t)v — Xo(s,t)v

X1(s,t) — Xa(s,t)]
/ X105, ) T lwo(s)|ds.
L |X2(I‘, t) - Xl(sv t)”XZ(za t) - X2(37 t)”XQ(:Ev t)’”
Combining all these estimates we get from (55)) that,

11 = 1/|b1(X1(x,t),t) — bQ(XQ(.%',t),t)HXQ(JZ‘,t)’%_I‘wO(I‘)‘dl‘
vJa

<

~

1
§/|Hl + Iy + I3 4 IL|| X (x, )| wo(z)| da
Q

< / O(1X: (2, 8) — Xo (2, 1)) Jwo ()| da
Q

| X1 (s,t) — Xa(s, )]
+/Q{/Q | Xo(z,t) — X1(s,8)|| X2 (, 1) _X2(87t)’\wo(s)!ds}ywo(a:)ydx.

Now by using Fubini and using the change of variable Xo(z,t) — x while observing that
this is measure preserving, we obtain

IT< /Q B(1: (1) — Xo (2, ) |wo ()] e

s, t) — Xo(s, a
+ /Q{/Q |z _|)§é1((52)||x jg(zt()l’t)] |wo(X2 1(x7t))‘ d:c}]wo(s)| ds.

Now if 21 = Xj(s,t), 20 = Xa(s,t) and f = ’UJO(X;I(',t))‘HQ then we see that the inner
integral in the second term equals |21 — z2|I((21,1), (22,1) : (f,0,00)) (as defined in (§)).
Hence using Lemma and the fact that Hwo(XQ_I(-,t))HleLOO = |lwollp1qp We get

< /Q B(1: (1) — Xo (2, 1)) o () da

As | X1 (z,t) — Xa(z,t)] <1/10 for all z € Q and t € [0, 7] and as ¢(z) is a concave function
in [0,1/10], we obtain from Jensen’s inequality
Eq (1) >

1

Now as Eq(t) < (1/10) min{1, [jwol|,} in the interval [0,T], we use the formula of ¢ from
to see that

11 S Ei(t)(— n(B1 (1) + In(llwolly)) S #(E1(2))- (57)
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We can now use the estimates and in the equation to see that

dE;(t)
dt
Hence by integrating we see that there exists a C7 > 0 such that

’E\»—A

Savbo.r E1(t)7.

Ei()" 7 <Ot

We get the result by observing that a = p%l. O

We are now ready to prove our main result.

Proof of Theorem[1.1]. Let (uj,w;) and (ug2,ws) be two Yudovich weak solutions in 2 in
the time interval [0,00) with the same initial vorticity wp satisfying . If wg = 0 then
the result is obviously true and so we can assume that wp #Z 0, which in turn implies that
bp > 0. Let X7, X5 : Q x [0,00) — € be the corresponding flows of the solutions.

Let a = 2V1_1 so that « satisfies the conditions of Proposition H Let

E(t) =t “Ey(t) /|X1 2,t) — Xo(z, t)||wo(z)] da.

From Proposition we see that lim,_,o+ E(t) = 0. We now use this energy to prove
uniqueness in a time interval [0, 7] for some 7™ > 0.

Let ¢, R, T > 0 be as defined in the proof of Proposition H for the value of @ = ﬁ
given in and (54). For all ¢ € [0,T] we see that

diit) = t—“{ <_ta)E1(t) + dglt(t) }

From the estimates , and the computation for obtained in the proof of Propo-
sition [A.1] we get

<_to‘) Ey(t) + dEdlt(t)
< <ta> Ei(t) + I+ 11

< {<_ta)E1(t) + i/QmBR(O)bl(Xl(x’t)’t)”Xl(x’t)l — Xo(z,t) t “WO )d:v}

1 __
+/ \bl(Xl(x,t),t)\‘Xl(x,t)l ~ Xz, t)v ‘\wo ) dw + IT
Q4 NBS(0)

Steo,R {(?)El(t)Jri/Q . (O)Ibl(Xl(SUat),t)!‘Xl(w,t) L Xo(x, t) ‘\WO )\dw}
+ E1(t) + ¢(En (1))
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Now for any 21,22 € H; we see that min,c., ..j[2[ > \%minﬂzl], |z2|}. From Proposi-

tion |3.7| part (3) we see that for z € Q4 N Bg(0), both X (x,t), Xo(z,t) € Q4 C H;. Hence
from Proposition part (3) we have

’Xl(x7t)%_l - X2(xvt>%_1’
1

< <_1> ’Xl(xvt)_X2<m7t)‘ max ’Z‘%_z
v z€[X1 (2,t),X2(2,t)]

IN

(\@)2—% <1 — 1> | X1 (x,t) — Xo(x,t)] max{]Xl(x’ t)]%_27 | Xo (2, t)’%—Q}

(20 — 1)(by — e)t] !
VQ

<22 - 1) 0 - Xale0) |

21 —v)v
~ (v =1)(bo —€)

75|X1(:v,t) — Xo(z,t)).

Hence from Proposition 3.7 part (1) and (2) we have

14

— 1
(FH)m0+ [ 0% 0P - X 0d - ) do
Q4+NBr(0)

—Q

= <t> /QJrﬂBR(O)‘Xl(x’t) — Xo(,t)||wo(x)| d
2(1 — v)(by + €)
" (2v —1)(bo — €)t /52+QBR(O)|X1(x,t) — Xo(2,1)jwo(w)| dz

N 21 —v)(bo+€)\1 x.t) — x,t)||wo ()| dz
S( " (21/—1)<b0—€)>t/Q+OBR(U)’X1( ,t) X2( ’t)H 0( )‘d .

This term is non-positive as a = qu and by the choice of € from (53]) we have 0 < % <

2(%_”. Hence for all ¢ € [0,T] we have

dE(t .
) i 0B 1),
Now as 0 < Ey(t) <1/10 in t € [0,T] we have

C“ijlz(ft) Sbo,r —17 B (1) In(E(1)).

Now let 8 > 0 be such that 0 < a < 8 < 2311. From Proposition H we see that there

exists a constant Cy > 0 such that Fy(t) < Cot? for all t € [0,7]. Hence E(t) < CatP~.
1
Let T* = min{T, (1002)‘<ﬁ—a>} > 0 and so for all £ € [0, 7*] we have 0 < E(t) < Gyt~ <
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1/10, and thus for all ¢ € [0,7*] we have

dE(t
di) Sto,r —t “E1(t){In(t"E1(t)) + In(t*) }

S6.Covor O(E(t) —t By (t) In(Cat? @)
N/B Ca2,bo,R ¢( ( ))

Hence by Lemma we have E(t) = 0 for ¢t € [0,7*]. This implies that for a.e. z €
supp(wp) and ¢t € [0,7%] we have X;(x,t) = Xa(z,t). Hence from Lemma we see
that for a.e. t € [0,7*] we have supp(wi(-,t)) = supp(wa(-,t)) a.e. and that for a.e.
x € supp(wi(-,t)) we have wy(z,t) = wa(z,t). All in all, we have that wi(x,t) = wa(x,t)
for a.e. (z,t) € Q x [0,7%] and hence X;(x,t) = Xo(x,t) a.e. (x,t) € Q x [0,T%].

To complete the proof we will show the uniqueness for any arbitrary large time interval
[0,7"] where T’ > T*. From Lemma 3.9 we see that there exists ¢ > 0 so that for all z € Q.
and ¢t € [T*,T'] we have |X;(z,t)| > ¢ > 0 for ¢ = 1,2. Thus by following the proof of
Proposition [4.1| we see that for all ¢ € [T™*,T"]

PO <. o(Ew)

As E1(T*) = 0, we see that Eq(t) =0 for all ¢ € [T*,T"] and therefore by similar argument
as above we have wy(z,t) = wa(x,t) for a.e. (x,t) € Q x [0,7"]. Hence proved. O

5. APPENDIX
Here we collect some basic estimates we use throughout the paper.

Lemma 5.1. Let T, R,c > 0 and let y : [0,T] — R be such that |y(t)| < R for allt € [0,T]
and satisfy

dy
% < cotwio) y(0) =y > 0,
where ¢ is given by . Then
WO} Sry® Sk O} " forallte[0,T).

—ct

Proof. We only prove y(t) Sg {y(0)}°  since the other estimate is proved similarly. We
have

% < cymax{—1In(y),1} < cy{—In(y) + 1 + In(R+1)}.
Therefore
dlgiy) <c{-In(y) +1+In(R+1)}.
Now multiplying by e we obtain

d(e In(y))

7 <ee(l1+In(R+1)).
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Integrating the above inequality we get
e In(y(t)) — In(y(0)) < (e — D)(1+In(R+ 1)) < (1 + In(R + 1)).
Hence

In(y(t)) < e “In(y(0)) + 1 +In(R+1)

and so

efct

y(t) Sr{y(0)}
O

Lemma 5.2. Let v > 0 and let a,b € C be non-zero complex numbers satisfying the
condition 0 < arg(a), arg(b) < min{m, Z}. Then we have

(1) If 0 < v <1 then

0¥ — b¥| ~, |a — b| min{|ay”—1, \b\"_l} ~, |a — b| min{|ay”—1, b, Ja — by”—l}.
(2) If 1 <v < o then

la¥ — b¥| ~, |a — b| max{yay”—l, \b\”_l} ~, |a — 0| max{ya\"—l, b, o — b\”_l}.

Proof. We only prove it for 0 < v < 1 and the proof for 1 < v < oo is similar. Without loss
of generality |a| < |b|.

(a) Case 1: |a|] < %. We have
ja” = b~ [Bl” ~y Ja = bl[p" .
In this case |b|” " = min{\a|”_1, ]b[”_l} 2, min{]a\l’_l, 6], o — b\”_l}.
(b) Case 2: % < |a| < |b|] and “ZT_I" < 1. Hence we have
a—1b v
1) —1j.
()

Using the binomial theorem we see that
a—b
b
In this case [b]" ! = min{\a|”*1, ]b|”’1} - min{|a|”*1, ", |a — b\”’l}.

(c) Case 3: @ <la| < [b] and 1 < ’“T_b} < 2. Observe that

@ =] = bl

la” = "] =, [b]”

' = |a—b||b]""".

1 a a\v

- 7_1‘ 2:‘(—) —1‘%1.

2<)b < b v
Hence we have

@ =¥ = o

(5)" =1 = [0l = fa = bijol" "

In this case [b]" ' = min{\a|”_1, ]b[”_l} 2, min{]a|l’_1, 6" |a — b|”_1}.
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O
Lemma 5.3. Letn > 2 and let 0 < R < oo. Let z1,--- , 2z, € C be n distinct complex
numbers and let f € L>(C). Let dpmim = min{|z; — 2| |1 <4, < j,i# j} > 0 and let
0 <7 <dnin/2. Ifar, - ,an >0, dpin = |21 — 22| > 0, then for I defined as in (§]) we
have the following estimate
I((Zly al)a T (Zna an) : (fv T, R))
n dmin/2 1
e
Sal,---,an Hf”oo Z / mdl‘ H |Zj - Zl| J
i=1 \"" || j#i,1<j<n
+ I((z1, 01 + a2), (23, 3), -+, (zn, ) : (f, dmin/2, R)).
Proof. Clearly we can assume that || f||,, > 0. If » = 0 and max{ay,---,a,} > 2 then the
right hand side of the estimate is co and there is nothing to prove. Hence we assume that
either » > 0 or that max{aq, -+ ,a,} < 2. Now as 0 <7 < dypin/2 we have for 1 <i <n
/ 1 F(s)d
s)| ds
Bzi)NB (dmin/2) 18 — 217 -+ |5 — 20|
s 1
Savean oo T] 12—zl @ ds
iAi1<i<n B(z,r)°NB(2;,dmin/2) |8 — zi
dmi'n/2 1
e
Saram [1f s H |25 — 2~ /T Wdff

J#i1<j<n
Summing these up we get

I((zhal);"' 7(Znaan) : (f,T, R))

n

dmin/2 1 o
Soq,-..,om ||f”oo Z /r WCZQJ H |Zj — Z; J

i=1 ji1<j<n
—I—I((Z]_,Oél),"' 7(ZN7an) : (fvdm’m,/27R))
Now by the weighted AM-GM inequality we have
1 1 1

al+ag

|s — 21 |5 — g1 T2 AL s — 2] s — 29|*?

Hence
I((Zla Oél), ) (Zna an) : (f) dmzn/Z) R))

5041,'“ ,0ln I((Zlv aq + 012), (Z?n Oég), T, (Zna an) : (f7 dmzn/27 R))
+ I((Zlﬂ 0)7 (’227 a1 + 042), (237 043), R (Zna an) : (f) dmm/Q, R))
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Now we observe that
1 3
|s — 2] = |s — 21|

for all s € B(za, |21 — 22]/2)°¢

and as dyi, = |21 — 22| we obtain
I1((21,0), (22,01 + a2), (23, a3), -+, (zn, ) : (f, dmin/2, R))
S am L((21,00 + a2), (23,03), -+, (2n, ) (f, dmin/2, R)).
Hence proved. O
Lemma 5.4. Let 21,2 € C be such that z1 # 29 and let f € L*(C) N L>(C). Then
|21 = 221 ((21, 1), (22,1) = (f,0,00)) S [[fll 1o @(121 — 22]).-
Proof. We see from Lemma that
I((21,1), (22,1) : (£,0,00)) S [ flloe +1((21,2) : (f, 21 — 22|/2,00))
S llee +1((21,2) : (f, |21 — 221/2,1)) + 1((21,2) = (f,1,00))
S 1 lloe max{—In(|z1 — z2]), 1} + || f14
S fllp1npe max{—In(|z1 — z2[), 1}.

Lemma 5.5. Let 21,29 € C be non-zero complex numbers with z; # z and let f € L'(C)N
L>*(C). If0 <v <1 then

|21 — 22 1((0,1 — v), (21,1), (22,1) : (f,0,00))

S 1 e ming 21| [22)” ! bb(|21 — 22)).

We also have the estimate
‘Zl - Z2|I((07 1-— V)7 (217 1)7 (227 1) : (f707 OO))
S 1o (1 min{fza ™, 2l ™ }) (121 — 2.

Proof. Let dpn = min{|z1], |22],|21 — 22|} > 0. We prove this in cases.
Case 1: d,;, = min{|z1], |22]}

Without loss of generality we can assume that dy,:, = |21|. Hence % < |z1 — 22| < 2|2
and so by the weighted AM-GM inequality and Lemma [5.3| we have

10,1 = v), (21,1), (22,1) = (f,0,00))
Sv (0,2 = v), (22,1) : (f,0,00)) + I((21,2 — V), (22,1) : (f,0,00))
S Iflloolz2” ™+ 1((0,8 = v) = (f,]221/2, 00))

1 lloolzr = 22l 4+ 1((21,3 = v) : (fs 21 — 22]/2, 00))

-1 -1
Sv 1 fllsel22l”™" + 1 fllsol21 — 22f”

S 1l mind 20 2o
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Case 2: dpin = |21 — 22|
In this case we see that % < |z2| < 2|z1|. Hence by Lemmam we have

1((0,1 = v), (21,1), (22, 1) : (f,0,00))
< (I = 22l a2 21 Y) 4 10,1 = ), (21,2) £ (F 21— 221/2,00)
So I flloolz1l” ™+ 10,1 = v), (21,2) : (21 — 221/2,1211/2))
(0,1 = v), (21,2) : (£, ]21]/2,0)).
Now observe that from the weighted AM-GM inequality we have
(0,1~ v), (21,2) : (,]211/2,0))
S (0,3 = v) : (f[21]/2,00)) + 1((21,3 = v) = (f,]21]/2,00))
Sl
Hence we have
1((0,1 = v), (21,1), (22, 1) £ (£,0,0))
So 1ol zn ™+ 10,1 = v), (21,2) : (f, |21 — 221/2,[211/2))
So Iflloclon ™!+ 120 L0, 1 = ) : (fs |21 = 220/2, |211/2))
L T (102) 5 (f 2 — 202, 11/2)
So lflolzn ™+ 1 T ((21,2) (|21 = 220/2, |211/2))
So Izt 1 T ((21,2) + (F |21 = 221/2, 1) + 21" ((21,2) ¢ (f, 1 ]211/2))
Sv HfHoomin{\hl”_l, \Zzly_l} max{—In|z1 — 2of, 1} + 21" 1((21,2) : (f,1,]211/2))-
We now easily see that
1 ((1,2) 5 (L 1210/2)) S T2

Now I((z1,2) : (f,1,]z1]/2)) is non-zero only if |z1| > 2 and that |z;[" " In(|z1]/2) <, 1 if
|z1| > 2. Therefore

21 T ((21,2) £ (£, 1, 1211/2)) So [ lloo-
Hence proved. O
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