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Abstract

In this paper, we study the problem of sparse
mixed linear regression on an unlabeled dataset
that is generated from linear measurements from
two different regression parameter vectors. Since
the data is unlabeled, our task is not only to figure
out a good approximation of the regression param-
eter vectors but also to label the dataset correctly.
In its original form, this problem is NP-hard. The
most popular algorithms to solve this problem
(such as Expectation-Maximization) have a ten-
dency to stuck at local minima. We provide a
novel invex relaxation for this intractable problem
which leads to a solution with provable theoretical
guarantees. This relaxation enables exact recov-
ery of data labels. Furthermore, we recover a
close approximation of the regression parameter
vectors which match the true parameter vectors in
support and sign. Our formulation uses a carefully
constructed primal dual witnesses framework for
the invex problem. Furthermore, we show that the
sample complexity of our method is only logarith-
mic in terms of the dimension of the regression
parameter vectors.

1. Introduction

In this paper, we study sparse mixed linear regression where
the measurements come from one of the two regression
models depending upon the unknown label z}* € {0,1}. The
observation model can be described as follows:

Yi :z;‘<X1—7ﬁT>+(1—2;)<X1—7ﬂ;>+6i,Vi€ {17"' ,TL},
(1

where X; € R¢, y; € R and e; € R is independent additive
noise. The regression parameter vectors 3 € R?, 35 € R?
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are sparse vectors with possibly non-overlapping supports.

Mixed linear regression models have been extensively used
in a wide range of applications (Griin et al., 2007) which
include but are not limited to behavioral health-care (Deb &
Holmes, 2000), market segmentation (Wedel & Kamakura,
2000), music perception studies (Viele & Tong, 2002) and
vehicle merging (Li et al., 2019). The main task of the prob-
lem is to estimate the regression parameter vectors and the
unknown labels accurately from linear measurements. How-
ever, the problem is NP-hard without any assumptions (Yi
et al., 2014). Being such a difficult problem, it also lends
itself to be used as a benchmark for many non-convex opti-
mization algorithms (Chaganty & Liang, 2013; Klusowski
etal., 2019).

Related Work. There have been many approaches to
solve the mixed linear regression problem after it was intro-
duced by (Wedel & DeSarbo, 1995). The most popular and
natural approach has been to use Expectation-minimization
(EM) based alternate minimization algorithms (see Ghosh
& Kannan (2020) and references therein). More broadly,
the problem can be modeled under the hierarchical mixtures
of experts model (Jordan & Jacobs, 1994) and solved using
EM based algorithms. All these methods run the risk of
getting stuck at local minima (Wu, 1983) without good ini-
tialization. (Yi et al., 2014) provides a good initialization for
the noiseless case under strict technical conditions, however
their method does not provide any guarantees for the noisy
case. Based on the recent work of (Anandkumar et al., 2014;
Hsu & Kakade, 2013), (Chaganty & Liang, 2013) have pro-
posed an approach which uses a third order moment method
based on tensor decomposition. Their approach suffers from
high sample complexity (up to O(d®)) due to tensor decom-
position. (Stddler et al., 2010) proposed an ¢; -regularized
approach for the sparse case and showed the existence of a
local minimizer with correct support but there are no guaran-
tees that EM achieves this local minima. (Chen et al., 2014)
provided a convex relaxation involving nuclear norms for
the problem. They do not focus on providing guarantees for
exact label recovery and their results only hold for bounded
noise and require balanced samples (almost equal number
of samples for both labels). Besides, the optimization prob-
lems involving nuclear norms are computationally heavy



Sparse Mixed Linear Regression with Guarantees

and slow. The mixed linear regression problem can also
be modeled as a subspace clustering problem. But typi-
cally these problems require O(d?) measurements to have
a unique solution (Vidal et al., 2005; Elhamifar & Vidal,
2013).

Contribution. Broadly, we can categorize our contribu-
tion in the following points:

¢ A Combinatorial Problem: We view the problem as
a combinatorial version of a mixture of sparse linear
regressions. The exact label recovery is as important
for us as the recovery of regression vectors. This added
exact label recovery guarantee comes at no extra cost
in terms of the performance.

¢ Invex Relaxation: We solve a non-convex problem
which is known to be intractable. We propose a novel
relaxation of the combinatorial problem and formally
show that this relaxation is invex.

* Theoretical Guarantees: Our method solves two
sparse linear regressions and a label recovery prob-
lem simultaneously with theoretical guarantees. To
that end, we recover the true labels and sparse regres-
sion parameter vectors which are correct up to the sign
of entries with respect to the true parameter vectors. As
a side product, we propose a novel primal-dual witness
construction for our invex problem and provide theo-
retical guarantees for recovery. The sample complexity
of our method only varies logarithmically with respect
to dimension of the regression parameter vector.

* A Novel Framework: It should be noted that we are
providing a novel framework (not an algorithm) to
solve the problem. This opens the door for many algo-
rithms to be used for this problem.

2. Problem Setup

In this section, we collect the notations used throughout the
paper and define our problem formally. We consider a prob-
lem where measurements come from a mixture of two linear
regression problem. Let y; € R be the response variable
and X; € R? be the observed attributes. Let 2 € {0,1}
denote the unknown label associated with measurement <.
The response y; is generated using the observation model
(1) where e; € R is an independent noise term. We collect
a total of n linear measurements with n; measurements be-
longing to label 1 and n, measurements belonging to label 0.
Clearly, n = ny +no. We take | 5F]1 < by and |31 < bo.

Let [d] denote the set {1,2,---,d}. We assume X; €
R? to be a zero mean sub-Gaussian random vector (Hsu
et al., 2012) with covariance ¥ € S? . i.e., there exists
a p > 0, such that for all 7 € R the following holds:

E(exp(77X;)) < exp(%). By simply taking 7, = r
and 7, = 0,Vk # j, it follows that each entry of X
is sub-Gaussian with parameter p. In particular, we will
assume that Vj € [d], \;;L is a sub-Gaussian random

variable with parameter o > 0. It follows trivially that
maxjerq) 4/ 2450 < p. We will further assume that e; is
zero mean independent sub-Gaussian noise with variance
oe. Our setting works with a variety of random variables
as the class of sub-Gaussian random variable includes for
instance Gaussian variables, any bounded random variable
(e.g., Bernoulli, multinomial, uniform), any random variable
with strictly log-concave density, and any finite mixture of
sub-Gaussian variables.

The parameter vectors 33 € R? and 3§ € R? are s;-sparse
and sy-sparse respectively, i.e., at most s; entries of 35 are
non-zero whereas at most s, entries of 33 are non-zero. We
receive n i.i.d. samples of X; € R< and y; € R and collect
them in X € R"*4 and y € R™ respectively. Similarly,
z* € {0,1}™ collects all the labels. Our goal is to recover
BF, 8% and z* using the samples (X, y).

We denote a matrix A € RP*? restricted to the columns and
rows in P < [p] and () < [g¢] respectively as Apg. Simi-
larly, a vector v € RP? restricted to entries in P is denoted as
vp. We use eig; (A) to denote the i-th eigenvalue (1st being
the smallest) of matrix A. Similarly, eig,,,.(A) denotes
the maximum eigenvalue of matrix A. We use diag(A) to
denote a vector containing the diagonal element of matrix A.
By overriding the same notation, we use diag(v) to denote a
diagonal matrix with its diagonal being the entries in vector
v. We denote the inner product between two matrices (or
vectors) A and B by (A, B), i.e., (A, B) = trace(ATB),
where trace denotes the trace of a matrix. The notation
A > B denotes that A — B is a positive semidefinite matrix.
Similarly, A > B denotes that A — B is a positive definite
matrix. For vectors, |v], denotes the ¢,-vector norm of
vector v € RY, ie., o], = (Z?:l |vi|1’)%. If p = o, then
we define |v]|,, = max?_; |v;]. As is the tradition, we used
|v]o to denote number of non-zero entries on vector v. It
should be remembered that ¢ is not a proper vector norm.
For matrices, ||A|, denotes the induced ¢,,-matrix norm for
matrix A € RP*?. In particular, ||A|2 denotes the spectral
norm of A and Al £ max;ep,) 237_; [Aij|- For a matrix
A e RP*4, A(:) € RPY denotes a vector which collects all
entries of the matrix A. We define an operator sign(A) for
a matrix(or vector) A, which returns a matrix (or a vector)
with entries being the sign of the entries of A. A function
f(x) is of order Q(g(x)) and denoted by f(x) = Q(g(z)),
if there exists a constant C' > 0 such that for big enough
xo, f(x) = Cg(x),Vo = x0. Similarly, a function f(z)
is of order O(g(z)) and denoted by f(z) = O(g(x)), if
there exists a constant C' > 0 such that for big enough x,
f(z) < Cg(x), V& = x. For brevity in our notations, we
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treat any quantity independent of d, s and n as constant.
Detailed proofs for lemmas and theorems are available in
the supplementary material.

3. A Novel Invex Relaxation

In this section, we introduce a combinatorial formulation
for mixed linear regression (MLR) and propose a novel
invex relaxation for this problem. Since the measurements
come from a true observation model (1), we can write the
following optimization problem to estimate 57, 55 and z*.

Definition 3.1 (Standard MLR).

l(zvﬂla 52)

min
B1eR?, ByeR?,z€{0,1}n (2)
such that IB1lo = s1, [B2llo = s2

where (2, 81, 32) = %Z?:l 2i(yi—X] 1)+ (1—2i) (yi—
XT52)2.

Even without constraints, optimization problem (2) is a non-
convex NP-hard problem (Yi et al., 2014) in its current form.
In fact, a continuous relaxation of z € [0, 1]™ does not help
and it still remains a non-convex problem (See Appendix A).
Furthermore, the sparsity constraints make it even difficult
to solve. To deal with this intractability, we come up with a
novel invex relaxation of the problem.

For ease of notation, we define the following quantities:
X; X X7 Xy
SZ' — K3 XT —a | = 3 7 1 , 3
[yz] X il [iniT y: ] )
We provide the following invex relaxation to the optimiza-
tion problem (2).
Definition 3.2 (Invex MLR).

su(;h 7that
W>0,U>0
Wart,d+1 =1, Ugg1,041 =1
[tlo <1
€]
where f(t,W,U) = Y &S, W + U) +
Sy 3t(S, W — U g(t, W,U) = |W(:)|1 and

Wt W.U) =
regularizers.

[UG)|1 and Ay and Mg are positive

To get an intuition behind this formulation, one can think
of W and U as two rank-1 matrices which are defined as
follows:

W=WMMILU=WM@1] 5)

The variable ¢ is simply a replacement of variable z, i.e.,
zi = % An analogous transformation exists between z;*
and ¢¥. Then after substituting ¢, W and U in f(¢t, W,U),
we get back I(z, 51, 32). The £;-regularization of W (:) and
U (:) helps us ensure sparsity. Note that for fixed ¢, optimiza-
tion problem (4) is continuous and convex with respect to W
and U. Specifically, it merges two independent regularized
semidefinite programs. Unfortunately, problem (4) is not
jointly convex on t, W and U, and thus, it might still remain
difficult to solve. Next, we will provide arguments that de-
spite being non-convex, optimization problem (4) belongs
to a particular class of non-convex functions namely “in-
vex” functions. The “invexity” of functions can be defined
as a generalization of convexity (Hanson, 1981). Invex-
ity has been recently used by (Barik & Honorio, 2021) to
solve fair sparse regression problem with clustering. While,
we borrow some definitions from their work to suit our
context, we should emphasize that our problem is funda-
mentally different than their problem. They use two groups
in sparse regression which have different means and they try
to achieve fairness. While here, we have two groups with
the same mean and there is no unfairness in the problem.
We also model our parameter vectors with positive semidef-
inite matrices which is fundamentally different from their
approach.

Definition 3.3 (Invex function (Barik & Honorio, 2021)).
Let ¢(t) be a function defined on a set C. Let n be a vector
valued function defined in C'x C' such that (¢1, t2) TV (t2),
is well defined Vtq,to € C. Then, ¢(t) is a n-invex function
if gb(tl) — (b(tQ) = n(tl,tg)TV¢(t2), Vti,te € C.

Note that convex functions are n-invex for 7n(t1,t3) =
t1 — to. (Hanson, 1981) showed that if the objective func-
tion and constraints are both n-invex with respect to same
7 defined in C' x C, then Karush-Kuhn-Tucker (KKT) con-
ditions are sufficient for optimality, while it is well-known
that KKT conditions are necessary. (Ben-Israel & Mond,
1986) showed a function is invex if and only if each of its
stationarity point is a global minimum.

In the next lemma, we show that the relaxed optimization
problem (4) is indeed n-invex for a particular 7 defined in
C x C and a well defined set C. Let C' = {(t, W,U) | t €
[-1,1]", W = 0,U = 0, Way1,441 = 1,Ugq1,a+1 = 1}.

Lemma 34. For (t, W,\U) € C, the functions
fEWU) = 30, 5480, W+ Uy + X, 5t:Si, W —
U),g(t, W,U) = [W()|l and h(t, W,U) = |U(:)|1 are

— - Up

n-invex for n(t,t, W, W U, U) = | nw |, where n; = 0 €
nu

R™, nw = =W and ny = —U. We abuse the vector/matrix

notation (by ignoring the dimensions) for clarity of presen-
tation, and avoid the vectorization of matrices.
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Now that we have established that optimization problem (4)
is invex, we are ready to discuss our main results in the next
section.

4. Main Results

In this section, we present our main results along with the
technical assumptions. Our main goal is to show that the
solution to optimization problem (4) recovers the labels t*
exactly and also recovers a good approximation of 55 and
(3. In that, we will show that the recovered 3; and (3 have
the same support and sign as 8§ and /5 respectively and
are close to the true vectors in ¢5-norm. But before that, we
will describe a set of technical assumptions which will help
us in our analysis.

4.1. Assumptions

Our first assumption ensures that each sample can be as-
signed only one label. Formally,

Assumption 4.1 (Identifiability). For i € [n], —%(y; —
XTB¥)? + 1%(3/1- — XTB5)? = eif 2f = land 5(y; —
XTBF)? — 5 (yi — XTB3)? = eif 2F = 0 for some € > 0.
Clearly, if Assumption 4.1 does not hold for sample ¢, then
we can reverse the label of sample ¢ without increasing
objective function of optimization problem (2). Another
equivalent way of expressing Assumption 4.1 is as follow-
ing: for i € [n], {(S;,W*) < (S;,U*)if z¥ = 1 and
(Si, WH5 > (S;, U*) if 2 = 0 where,

W*: |:511:|[ ikT

Let P denote the support of 37, ie., P = {i|f5}, #
0,7 € [d]} and let @ denote the support of £, i.e.,
Q = {i|py, # 0,7 € [d]}. Similarly, we define
their complement as P¢ = {i|3}, = 0,4 € [d]} and
Q¢ ={i|By, = 0,i € [d]} . Wetake |P| = 51,|P°| =
d — s1,|Q| = s2 and |Q°| = d — s. For ease of notation,
we define H = E(X;X])Vi € [n]. LetZ; = {i|z¥ =
1, € [n]} and o = {i|z} = 0,i € [n]}. We define
Hy= Ly o XiXTand Hy = LY, o X,XT. As our
next assumption, we need the minimum eigenvalue of the
population covariance matrix of X restricted to rows and
columns in P (similarly in @) to be greater than zero.

1LW=WM§TH-@

Assumption 4.2 (Positive Definiteness of Hessian).
Hpp > 0 and Hgg > 0 or equivalently
min(eigmin(HPP)7eigmin<HQQ)) = Cmiﬂ > 0. We
also assume that eig, .. (H) = Cpax > 0. Note that
max(eigmax(HPP)7 elgmax(HQQ)) < Cmax-

In practice, we only deal with finite samples and not popula-
tions. In the next lemma, we will show that with a sufficient

number of samples, a condition similar to Assumption 4.2
holds with high probability in the finite-sample setting.

Lemma 4.3. [f Assumption 4.2 holds and
ng = Q(Slgzﬂ) and ny = Q(%ﬂ) , then

min min

min(eigmin (I{,} PP )’ eigmin (H/Q\QQ )) Z % and
max(eigmax(Hlpp)a eigmax(H2QQ)) < 36{% with

probability at least 1 — O(%).

As the third assumption, we will need to ensure that the
variates outside the support of 35 and 85 do not exert lot
of influence on the variates in the support of 5§ and 55
respectively. For this, we use a technical condition com-
monly known as the mutual incoherence condition. It has
been previously used in many problems related to regular-
ized regression such as compressed sensing (Wainwright,
2009b), Markov random fields (Ravikumar et al., 2010),
non-parametric regression (Ravikumar et al., 2007), diffu-
sion networks (Daneshmand et al., 2014), among others.

Assumption 44 (Mutual

max(|HpepHppoo, [HoeqHgglo) <
some ¢ € (0,1].

Incoherence).
1 — & for

Again, we will show that with a sufficient number of sam-
ples, a condition similar to Assumption 4.4 holds in the
finite-sample setting with high probability.

Lemma 4.5. If Assumption 4.4 holds and n, =

3 3
s (log s1+log d) B 53 (log s5+1og d)
A Cpmgo sy ) and n2 = QUG 555y ). then

max(|HpepHpp oo, ||HQL‘QH<5clgHoo) <1- % with proba-
bility at least 1 — O(%) where 7(Ciin, &, 0, 2) is a constant
independent of n1,no,d, s1 and ss.

4.2. Main Theorem

Now we are ready to state our main result.

Theorem 4.6. If Assumptions 4.1, 4.2 and 4.4 hold,
A= %«/nl logd, Ay > %\/T@ logd and nq, =
53 log2 d o 53 log2 d
(To(C;jimEJT,Em)) and my = Q(TU(Cr:imE,mZm) ) then
with probability at least 1 — O (é) the solution to the opti-
mization problem (4) satisfies the following properties:

1. The labels are recovered exactly, i.e.,

t; =t¥, Vi€ [n] (7)

2. The regression parameter vectors are close to the true
vectors. Formally,

W=ﬁhﬂlLU=ﬁh@1](&

such that 5, = [ﬁlp OPC]T and 3 = [52Q OQC]T
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and

2\14/51

Cvminnl

2\24/52

C(min T2

181 — B2 < (24 b1)

©)
|82 = B3 ]2 < (2 + b2)

In order to prove Theorem 4.6, we will have to show that the
labels are recovered exactly. We will also need to show that
W and U are rank-1 matrices with eigenvectors [61 l]T
and [ﬂg 1]T respectively. Moreover, we will also need to
ensure that their supports match supports of the true vectors
and they are close to true vectors in £o-norm.

5. Theoretical Analysis

We use primal-dual witness approach to show our results.
The primal-dual witness approach was developed by (Wain-
wright, 2009a) for linear regression problem which has been
later used in many convex problems such as Markov ran-
dom fields (Ravikumar et al., 2010), non-parametric regres-
sion (Ravikumar et al., 2007), diffusion networks (Danesh-
mand et al., 2014) etc. The main idea is to start with a poten-
tial solution with certain properties and then later show that
these properties are indeed consistent with the final solution.
We extend this idea to our invex problem. To that end, we
start our proof with a potential solution which has certain
“consistency certificate”.

5.1. Consistency Certificate

We start by taking solutions W and U with the following
properties which we call consistency certificates:

Cl. W and U are sparse. In particular, they have the fol-
lowing sparsity structure:

Wpp  Oppe Wpdta

W =1 0pcp  Opepe  Opegyn
:Wd+1P Og+1pe Wag1,a+1 (10)

Uge  0gq:  Uqga+

U=|0g:@ 0geq: 0Oqgea+1

| Usv1@  Oav1qe Udt1,a+1

We collect all the non-zero entries of W and U in
W e Rs1thsitl gpnd U € Ro2t1is2+1

It should be noted that the consistency certificate C1 is not
another assumption. In that, eventually we will have to
show that it holds in the final solution. We can prove that C1
is consistent with the final solution by showing strict dual
feasibility for both W and U which we do in subsection 5.7.

5.2. A Modified Compact Invex Problem

Once we substitute W and U from C1 in optimization prob-
lem (4), we get a low dimensional optimization problem.

Definition 5.1 (Compact Invex MLR).

min  f(t, W,U) + \g(t, W,U) + \aoh(t, W,U)
tW,U
such that
o W=0,Ux>0
WS1+1,81+1 = 17 U82+1782+1 =1
[tlo <1

(1)

where f(t,W,U) = S, 3((S, W) + 7. 0)) +

L TP T _ TR TR\ (s TT T T
SI (D) - 520,91 W, 0) = W),
h(t, W,U) = |U(:)|1 and A; and Ay are positive regu-
larizers.

Note that

?P _ SiP,P SiP,dH ?Q — SiQ,Q SiQ,cHl

i S. . » Mi T . . :
1d+1,P td+1,d+1 1d+1,Q 1d+1,d+1

12)

For clarity, we will drop the superscripts from S; when
the context is clear. Next, we list down the necessary and
sufficient conditions to solve optimization problem (11).

5.3. Necessary and Sufficient KKT Conditions

First, we write the Lagrangian L(©) for fixed A; > 0 and
A2 > 0, where © = (¢, W, U; I, A, o, y, v, 1) is a collec-
tion of parameters.

- <H,W> - <A7U> + O‘(Wsl-ﬁ-l,sl-}—l — 1)+

n

n
YU spt,m41 = 1) = D wilti + 1) + Y. plti — 1)

i=1 i=1

(13)

Here IT > 0,A > 0, € R,y € R,y; > 0 and p; >
0 are the dual variables (of appropriate dimensions) for
optimization problem (11). Using this Lagrangian, the KKT
conditions at the optimum can be written as:

1. Stationarity conditions:

u t;+1—
3 S+ MZ-T+1,=0 (14)
i=1

2
where Z is an element of the subgradient set of [ (:
1. ie. Zz e L2UL and |Z(:)] < 1and I, €
Rs1 7151+ hag all zero entries except (s1 + 1, 81 + 1)
entry which is a.

5?4 MV -A+I,=0

21—t
(15)

2

i=1
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where V is an element of the subgradient set of |U (:

1. ie, Ve L0 and [V(:)]y, < land I, €
Rs2F 152+ hag all zero entries except (so + 1, 89 + 1)

entry which is +y. For all ¢ € [n], it holds that
1 P — 1 —0 —
SEC W) =SSP — vt =0 (16)

2. Complementary Slackness conditions:

ILW)=0, (A\U)=0 (17)

3. Dual Feasibility conditions:
M>=0, A>=0 19)
v; 20, p; = 0Vie[n] (20)
4. Primal Feasibility conditions:

W>=0, U=0

[t < 1
21

W51+1751+1 = 1, U52+1,82+1 = 17

Next, we will provide a setting for primal and dual variables
which satisfies all the KKT conditions.

5.4. Construction of Primal and Dual Variables

In this subsection, we will provide a construction of primal
and dual variables which satisfies the KKT conditions for
optimization problem (11). To that end, we provide our first
main result.

Theorem 5.2 (Primal Dual Variables Construction). If As-
sumptions 4.1, 4.2 and 4.4 hold, A1 > %\/nl log d,

64poe _ s? log2 d
A2 = FEynzlogd and i = et mesTy) and
3 2
_ s5 log” d
n2 = U Senreo s
mal and dual variables:

), then the following setting of pri-

e Primal Variables:
t; =t¥, Vie[n]
_ B - _ B -
U [ B T
where

n
~ t*F+1
= arg min t
B1 g[ﬁeRsl 2

1=

M8l +1)?

and

(vi — X7 B)%+

- LCR
=a 1 2
Pz = arg min ), —

=1

Xa([Bl1 +1)?

(yi — X, B)%+

e Dual Variables:

1op 10—
Vi = 0, i f§<sf,w>+ 5<S?,U> Vie T,

L
A3

1P — 1-0—
pi = 0,vi = 587 W) = 557 Uy vie T

|
2

§f+/\12+la

=
|
i
<%

q
I
—

1—t*

=
I

{.
Il
—

t; +1

. CHES WA )

Q
!
A
=

s
Il
—

1-1,

. 52NV TD

2
|
PN
=

@
Il
—

satisfies all the KKT conditions for optimization prob-
lem (11) with probability at least 1 — (’)(é), where
70(Crnin, @, 0,5, p,7y) is a constant independent of
S1, 82, d,ny and ny and thus, the primal variables are a
globally optimal solution for (11). Furthermore, the above
solution is also unique.

Proof Sketch. The main idea behind our proofs is to ver-
ify that the setting of primal and dual variables in Theo-
rem 5.2 satisfies all the KKT conditions described in sub-
section 5.3. We do this by proving multiple lemmas in
subsequent subsections. The outline of the proof is as fol-
lows:

* It can be trivially verified that the primal feasibility
condition (21) holds. The stationarity conditions (14)
and (15) holds by construction of IT and A respec-
tively. Similarly, the stationarity condition (16) holds
by choice of v; and p;. Choice of t,v;, ;, @ and vy
ensure that complementary slackness conditions (17)
and (18) also hold.

¢ In subsection 5.5, we use Lemmas 5.3, 5.5 and 5.6 to
verify that the dual feasibility conditions (20) and (19)
hold. We will also show in subsection subsection 5.5
that our solution is also unique.

5.5. Verifying Dual Feasibility

To verify dual feasibility, first we will show that u; > 0, Vi €
Ty, v; = 0,Yi € I,. We define Ay = 3 — pf, and
Ay = 52 — B;‘Q. Then, the following lemma holds true.

Lemma 5.3. If Assumptions 4.1, 4.2 and 4.4 hold,
and N1 = 8poev/nilogd, Ao =  8poe/nelogd,

3 3
_ sy logd _ s; logd
m = s eom ) and ne = g le o) then

[A1le < 2+ b)GEET and [Dala < (2 + bo) G252

‘min71 Cminnz
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with probability at least 1 — (9(%) where 7(Crin, &, 0, %)
is a constant independent of s1, So, d, n1 oF No.

Using the result of Lemma 5.3, we are going to prove that
the settings for dual variables u; and v; works with high
probability.

Lemma 5.4. If Assumptions 4.1, 4.2 and 4.4 hold, and
A1 = 8poev/nilogd, Ao = 8pae\/n2 logd, ny =

log d log d
Uil Ersy) and na = (i) then i >

0,Vi € Z1 and v; = 0,Yi € Iy with probability at least
1 — O(%) where 7(Crain, &, 0, ) is a constant independent
of s1, 82,d,n1 or na.

Now we will show that IT > 0 and A > 0. We will do this
in two steps. The first step is to show that both IT and A
have a zero eigenvalue. In particular,

Lemma 5.5. Both Il and A have zero eigenvalues corre-

sponding to eigenvectors [ﬂf] and [ﬂf] respectively.

Next, we show that all the other eigenvalues of both IT and
A are strictly positive.

Lemma 5.6. [f Assumption 4.2 holds and n, = Q(Slgzﬂ)

min

and ny = Q(Sr"gz;?gd), then the second eigenvalues of T1

min

and A are strictly positive with probability at least 1 — O(é),
i.e., eigy(I1) > 0 and eigy(A) > 0.

On the one hand, Lemma 5.6 ensures that IT > Oand A > 0,
but on the other it also forces W and U to be rank-1 and
unique as both IT and W have to be positive semidefinite
and IT has exactly one vector in its nullspace (same with A
and U).

5.6. Going back to Invex MLR

Now that we have the setting of ¢;, W and U for Compact
Invex MLR problem (11), we can extend these to the origi-
nal Invex MLR problem (4). Notice that all the other entries
of W and U are zeros, thus it readily follows that

W = [51] [T 1],U= [52] (87 1] (22)

where 81 = [501] and 35 = [%] Furthermore, result

from Lemma 5.3 extends directly and gives us

2A
(2+bl) 1\/§

|81 = B7 2 < Cminm1 (23)
2X2./52
182 = B3ll2 < (2+ b2) =

The last remaining thing is to show that consistency certifi-
cate C1 indeed holds which we will do in next subsection.

5.7. Validating Consistency Certificate

Observe that once we substitute ¢; = ¢ in optimization
problem (4), it decouples into two independent convex op-
timization problems involving W and U respectively. Fur-
thermore, since we established that W and U are rank-1,
we can rewrite these independent problems in terms of 3
and 3. Our task is to show that 81, = 0 and 32, = 0. It
suffices to show it for /31 as arguments for (3, are the same.
Below, we consider the simplified optimization problem in
terms of f1:

B —argmln Z (XTB—u)*+ M(B]1 +1)° (24)

€y

Since we are only dealing with measurements in Z;, we can
substitute y; = X 3* + e;. Furthermore, 3; must satisfy
stationarity KKT condition which can be written as:

——ZX@—F

1€Z4 ’LEIl (25)

EAI(“ﬂ1|‘1 +1)( =0,

—ZXX (B —

n

where ( is in the subdifferential set of |11 and ||]|oc < 1.
Specifically, ¢; = sign(f1),Vi € Pand (; € [-1,1],Vi €
Pe<. Our task is to show that ¢ fulfills strict dual feasibility,
ie., [|Cpe|o < 1. We decompose equation (25) into two
parts — one corresponding to entries in P and the other
corresponding to entries in P¢. For entries in P, we have

Z Blp 611—, - Z leel

2611 ’LGIl (26)
+ *)\1(H51H1 +1)(p=0
ni

Similarly, for entries in P¢, we have

Z ZPL 51}: 5113 _T Z XZPL ]

7611 i€y

+ *)\1(H51H1 +1)¢pe =0
ny

After rearranging the terms and substituting for (51, — 57 )
from equation (26), we get

)\ S ~
S+ 1Bl Gee = —HpepHph(

2 Xiei—

’LGIl

7)\1(H51H1 +1)¢p) + nil Z Xipcei

i€l

Let \; = ;\L—i and note that |81 |1 > 0, using norm inequali-
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Figure 1. Label and support recovery with control parameter C,.

ties we can rewrite the above equation as:

11

ICpelloo < [HpepHpploo(ls=— Y Xireilo + I¢p]0)

i€y

1
5\77 Z X’LPL ez”oo
i€y

We know that |HpepHpple < (1 — §) for some
¢ € (O 1]. The following lemma provides bounds on
I

1 N1

Xipeifo and Hn% Diet, Xipe€illoo-

Lemma 5.7. Let A\, > 642—”%/711 log d. Then the following
holds true:

1€l

1 ¢ 1
5\** Y Xipeilo 2 _748 < O(g)a
€Ty
1 ¢ 1
T* 2 Xipeeilo > 2) < O(5)
ZEIl

It follows that | (pe < 1 — & 3 With probability at least
1-— (9( ). Thus, the consistency certlﬁcate Cl1 indeed holds
with hlgh probability.

6. Experimental Validation

Note that we are not proposing any new algorithm in our
paper. However, to validate our theoretical results we per-
formed experiments on synthetic data. We generated re-
sponse y using Gaussian random variables X and chose
regression parameter 8§ (or 55) based on the label of the
samples. We fixed the sparsity s; = so = 4, however
supports were not necessarily the same for both the regres-
sion parameter vectors. We varied ny and no according to
our theorems, i.e., both were varied with 10¢» log2 d for
d = 10,20 and 50 where C,, is a control parameters. The
regularizers were kept according to our theorem and were

varied as O(y/nq log d) and O(4/ng log d). We measured

performance of our algorithm based on the label recovery (in

ratio to supplied n) and support recovery for both parameter
vectors. The experiments were run three times indepen-
dently. Note how we make zero mistakes in label recovery
as we increase number of samples. Similarly, support recov-
ery (ratio of intersection and union with correct support) for
both parameter vectors goes to 1 as we increase sample size.
It should be noted that we do not propose any new algorithm
but our method is free of any initialization requirement. As
for specific algorithm for empirical verification, we use a
projected subgradient method (Duchi & Singer, 2009) to
check convergence for our problem which is achieved with-
out any requirement on initialization. In fact, any algorithm
which converges to a stationary point should work for our
framework.

7. Concluding Remarks

We provide a novel formulation of invex MLR. We show that
invexity of our optimization problem allows for a tractable
solution. We provide provable theoretical guarantees for
our solution. The sample complexity of our method is poly-
nomial in terms of sparsity and logarithmic in terms of the
dimension of the true parameter. Our method helps to iden-
tify labels exactly and recovers regression parameter vectors
with correct support and correct sign. It would be interesting
to think about extending our ideas to mixture of more than
two groups of regressions in future.
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Supplementary Material: Sparse Mixed Linear Regression with Guarantees:
Taming an Intractable Problem with Invex Relaxation

A. Continuous Relaxation of Standard MLR is non-convex

It suffices to prove that the objective function I(z, 81, 82) of optimization problem (2) is non-convex when z; is allowed to
be between 0 and 1. We note that

Uz, B1,B2) = 2y zi(ys — XTB1)% + (1 — 2)(ys — X[ B2)? (27)
where 3; € R?, 3, € R% and z; € [0,1],Vi € [n]. Let © = (z, B1, B2, Z, b1, B2). We consider the following quantity:
F(©) = f(2 1, B) — (2 uB) - 20— L -y - 2L - ) o8)
s B1, B2 1, B2 23 i) a5, PP =5 (B2
where
of T , T7.)2 -
55 = Wi - X[B1)% = (yi — X[ B2)?, Vie[n]
of _\ _gnx XT3
B Z_;— ziXi(yi — X 1) (29)
0 n _
= 3201 = 2Kl — X5)

I
—

It suffices to show that F'(©) changes sign for different feasible values of ©. We choose the following variables:

1
zi =0,z = 5 VZE[TL]
B, = u1,B1; =0,V5 #k
_»321 = um_ﬁzj =0,Vj#I (30)
ﬁlk = w17ﬂ1]‘ = O,V] # k
621 = w27/82.7‘ = Ovvj # l

up = wy — (ug — wo)

Note that choice of wy, us and wy can be arbitrary. This simplifies F'(©):

-

F(©) = (yi — U2Xil)2 - E(yz - U/QXil)2 3D
i=1

i=1

Consider the case when X;; > 0,Vi € [n]. Then choosing us < ws makes F(0) > 0 while choosing us > wy makes
F(©) < 0. This proves our claim.

B. Proof of Lemma 3.4

Lemma 3.4 For (t, W,U) € C, the functions f(t, W,U) = D" | L(S;, W+ Uy + 31" | 3t:{Si, W = U), g(t, W,U) =
~ o~ Mt ~
[W ()1 and h(t, W,U) = |U(:)||1 are n-invex for n(t,t, W,W,U,U) = |nw |, where n, = 0 € R*, nw = —W and
nv
ny = —U. We abuse the vector/matrix notation (by ignoring the dimensions) for clarity of presentation, and avoid the
vectorization of matrices.
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Proof. Weknow f(t, W,U) = 3", 42(S; W) + 15L(S; U). Then,

T Lsow -0

ot;
of 2 ti+1
ow Zl 5 O (32)
0 S 11—t
of ity
ou 2
i=1
To prove that f (¢, W, U) is invex, we need to show that
f(t,W,U) — Z e <nw, (33)
Wetake n, = 0 e R", ny = —W and ny = —U and expand LHS of equation (33) as follows:
t+1 1—t; Nt t+1 ~ 1t
Z i) 2 15 - . 2 (2 15 + ’ Z 2 Sz>
i=1 i=1 =1
b+ 1
= 2 <S7,7 W> ()
i=1
=0
(34
The last inequality holds because .S;, W and U are all positive semidefinite and ¢; € [—1, 1].
Similarly,
gt W, U) - Zﬁt**<w, ~> <U7
(35
= W = IWE |+ W) =0
and
o~ o~ e oh oh oh
h(t’VV?U)ih(thvU)f 7717~7<77W77~>7<77U57~>
; "ot oW oU (36)
= [UOL = 1T+ [T =0
O
C. Proof of Lemma 4.3
Lemma 4.3 [f Assumption 4.2 holds and n; = Q(%logd) and ny = Q(%logd) , then

min(eig i (H1pp ), €igmin(Hago)) = 932 and max(eigy(Hipp ), €ignax (Hago)) < 292 with probability
at least 1 — O(=).

Proof. We prove the Lemma for a general support S and samples n. The results follow when we substitute .S by P and Q)
and n by n; or no based on the context. By the Courant-Fischer variational representation (Horn & Johnson, 2012):

Ul

1 1
eig i (B(X; X[ )ss) = ‘n”un YTE(X; X])ssy = HrIHnn yT(E(X;X])gs — —XIXs+ —XIXg)y
y 2=1 2=1 n n

1 1
< yT(E(X:X])ss — EXng + EXéXs)y (37

1 1
= yT(E(XiXZT)SS — EX;XS)y + yTﬁngsy
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It follows that
. 1 1
elgmin(ﬁX:Sr'XS) > Cin — [E(Xi X )ss — EX§X5\|2 (38)

The term |E(X;X)ss — + XTI Xg]|2 can be bounded using Proposition 2.1 in (Vershynin, 2012) for sub-Gaussian random
variables. In particular,

P(E(X:X])ss — + XIXsla > €) < 2exp(—cen + 5) (39)
for some constant ¢ > 0. Taking e = C‘;‘“, we show that eigmin(%XgXS) > C'g‘“ with probability at least 1 —
2 exp(fccf"T‘“n + |S]). The specific results for n; and ng follow directly.

Remark: Similarly, it can be shown that eig,,,,, (£ XTI Xs) < 2%nax with probability at least 1 —2 exp(—cc‘zi%“" +18). O
D. Proof of Lemma 4.5
Lemma 4.5 If Assumption 4.4 holds and n, = Q(%) and ny = Q(%), then

max(||ﬁpcpﬁ;113\\oo, ||I§Q«Qﬁ§éHoo) <1- g with probability at least 1 — O(3) where T(Crnin, €, 0, X) is a constant
independent of n1,ne,d, s1 and ss.

Proof. We prove the Lemma for a general support S (and corresponding non-support S¢) and samples n. The results follow
when we substitute S by P and ) and n by ny or ny based on the context. Let |S| = s and |S°| = d — s. Before we prove
the result of Lemma 4.5, we will prove a helper lemma.

Lemma D.1. If Assumption 4.4 holds then for some 6 > 0, the following inequalities hold:

R nd?
P(|Hges — Hgeslloo = 6) < 4(d — -
([Hses sesloo = 0) < 4(d — 5)s exp( 12852(1 + 402) max; 2125)
P(|Hss — Hssle > 6) < 452 exp(— . ) o
ss — Hssllo 2 0) < 12852(1 + 402) max; X2
o ) 5204 n cC%. n
B(|(Hss)™ — (Hss) ™o > 8) < 2exp(——— 1= 4 5) + 2exp(~— 4= + 5)

Proof. Let A;; be (i, j)-th entry of Hgeg — Hgeg. Clearly, E(A;;) = 0. By using the definition of the | - |, norm, we can
write:

P(|Hses — Hses|oo = 6) = M?;%?Z |Aij] = 6)

JeSs
< (d—5)P(Y ] |Ay] = 9) @1)
jes
1)
< (d=s)sP(|4y] = )

where the second last inequality comes as a result of the union bound across entries in .S¢ and the last inequality is due to the
union bound across entries in S. Recall that X;, i € [d] are zero mean random variables with covariance ¥ and each —si— is
a sub-Gaussian random variable with parameter o. Using the results from Lemma 1 of (Ravikumar et al., 2011), for S(l)lme
§ € (0, smax; X;;8(1 + 40?)), we can write:

nd?

P(|Ai;| =
(1451 12852(1 + 40?) max;, E%l)

) < dexp(—

(42)

w |

Therefore,

nd?

P(|Hges — Hgesllyp, = 6) < 4(d — —
([Hses = Hseslloo = 0) < 4(d = 5)s exp( 12852(1 + 402) max; %2

) (43)
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Similarly, we can show that

né?
12852(1 + 40?) max; X2

P(|Hss — Hssloo = 0) < 452 exp(— ) (44)

Next, we will show that the third inequality in (40) holds. Note that

|(Hges)™ = (Hses) oo = |(Hss) ™ (Hss — Hss)(Hss) ™ oo

< Vs|(Hss) ™ (Hss — Hss)(Hss) ™2 (45)
< Vsl(Hss) ™ 2l (Hss — Hss)l2l(Hss) ™2
Note that |Hss|a > Cuin, thus |[(Hss) Y2 < ﬁ Similarly, |Hgs|> > “zi» with probability at least
1- 2exp(—cc‘2‘lf‘“‘" + s). We also have |[(Hss — Hgs)|2 < e with probability at least 1 — 2 exp(—ce?n + s). Tak-
ing € = 5212“/‘5“,weget
N C2. cd?Ct. n
P(|(Hss — Hss)|2 = 5%\/15) < 2exp(——— =+ 5) (46)

cs2Ct. n

It follows that | (ss) ! — (Hss)~ [ < & with probability at least 1 — 2 exp(— <-Cuwa™ 4 5) 2 exp(— Camn™ 1 5) ]

Now we are ready to show that the statement of Lemma 4.5 holds using the results from Lemma D.1. We will rewrite
Hses(Hss) ™t as the sum of four different terms:

Hges(Hgs) ™t =T1 + T + T3 + Ty, 47)
where
Ty = Hses((Hss) ™' — (Hss) ™)
T, = (ﬁSCs — Hgeg)(Hgs) ™"

T3 = (ﬁSCS - 19565)((1';(55)_1 — (Hss)™)
Ty = HSCS(HSS)71 .

(48)

Then it follows that | Hses(Hss) oo < [T1 oo + |T2] o0 + | T3]0 + | T4 ]o0. Now, we will bound each term separately.
First, recall that Assumption 4.4 ensures that [Ty], < 1 —¢&.

Controlling 77. We can rewrite 7} as,
Ty = —Hses(Hss) ™ (Hss — Hss)(Hgs)™" (49)
then,
IT4loo = | Hses(Hss) ™ (Hss — Hss)(Hss) ™o

< |Hses(Hss) ool (Hss — Hss) oo (Hss) ™ oo
< (1= )|(Hss — Hss)oo/s](Hss) ™2

(s — Hos)o 2

(50)

<(1-
< ¢
6

_ nCr211i11§2 ) b
18432(1—€)25° (1+402) max; 55 ) 0¥

The last inequality holds with probability at least 1 — 2 exp(fccﬁjf‘“n + 5) — 452 exp(

Cminé

taking 0= m
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Controlling 7. Recall that T = (Hges — Hses)(Hgs)™!. Thus,

T30 < \/EH(HSS)_ll\zl\(ﬁSCs — Hses)oo

<ean H(HSCS_HSC Moo (51)
< ¢
6
The last inequality holds with probability at least 1 — 4(d — s)s exp(— 3555 (?f;ft;;fmaxl <= ) by choosing § = fg
12
Controlling 75. Note that,
| Tl < [(Hses — Hses)|oo | (Hss) ™" = (Hss) ™)
3 (52)
<2
6
The last inequality holds with probability at least 1 — 4(d — s)sexp(— TSI (IT 4;"25) e s) — 2exp(— 07 +s) —
2exp(—5 ‘“‘“ + s) by choosing § = \/g in the first and third inequality of equation (40). By combining all the above
results, we prove Lemma 4.5. The specific results for n; and ns follow directly. O
E. Proof of Lemma 5.3

Lemma 5.3. If Assumptions 4.1, 4.2 and 4.4 hold, and N1 > 8po.v/nilogd, Ao = 8pocv/nslogd, n; =
.3 3

Q(%)’ and ny = Q(%) then ||Aqll2 < (2 + bl)%lr and [Agl2 < (2 + b2 )2A2\/5 with prob-

ability at least 1 — O(é) where T(Chin, &, 0, ) is a constant independent of s1, $2,d, ny or na.

Proof. Tt suffices to prove the result for A, as the result for A, follows in the same way. Note,

t;k +1 T 2 2
By = arg min (yi = XLB)"+ (B8] +1)
eR*1L — 2
_ - _xT 32 2
= i 35 0= X7+ M3l + 1)
€Ly

The optimal Bl must satisfy stationarity KKT condition at the optimum, i.e.,

Z Xip(_yi + XZTPB1) + Z>\1(2T61 + 1) =0

iEIl

where ||31]1 = 27f; and z is in the subdifferential set of |3;]; and ||z, < 1. Since i € Z;, we can substitute
Xsz BTP + €;.

1 1
Z Xip X7, + f)\lzzT)(Blp —B1) + — Z Xipei) + nf)\lzzTﬁf‘P + nf)\lz =0
ny 1 1

’LEIl ZEIl
Note that H; ., = o= Dier, Xip X[ . Using norm-inequalities:
Mo 1 1
[Asle < [(Hipp + *ZZ )"l an > Xiped)lz + I A2z 2+ - Azll) (53)

ZEIl

Using Lemma 4.3, eig,;, (f[lpp) >

|(Hipp + 22227) 7o <

Cuminand using Weyl’s inequality cig i (H1pp + ;\l—izzT) > Cain Tt follows that

2
Cmin *

/\1\/7

A2 < e

Z XZPGZ HQ +

i€Zy

H51p Hl + (54)
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We know that | 5|1 < by. Thus,

2 1 A14/S A14/S
I8l € (o (3 Xiner)la + 20, 4 22 )

C’min ni

iGIl

It only remains to bound || n—ll (X.cr. Xipei)|l2 which we do in the following lemma.

iEIl

Lemma E.1. If \; > 8pc.+/n1 logd, then Hi(ZieL Xipei)|e < \/57% with probability at least 1 — O(3)

Thus, it follows that

2X14/5

Ak < A0l < 2+ b)Y 56)
minT?1

O

F. Proof of Lemma E.1
LemmaE.1 If )\ > 8po.+/nylogd, then Hn%(zz‘ezl Xipei)l2 < \/5% with probability at least 1 — O(3).

X,pe;forsomeie P,ie.,

. . 1 . 1 1
Proof. We will start with .= >, 7 X, e;. We take the i-th entry of .= >; 7 w 2jer, Xji€jl.
Recall that X; is a sub-Gaussian random variable with parameter p® and e; is a sub-Gaussian random variable with

parameter 2. Then, XT’ 2—1 is a sub-exponential random variable with parameters (4+/2, 2). Using the concentration bounds
for the sum of independent sub-exponential random variables (Wainwright, 2019), we can write:

1 X e; nyt?
P(|— Y —L-2L|>1t) <2exp(———), 0<t<8
(I 2 = o120 < 2exp(—=0), (57)
J€TL
Taking a union bound across i € P:
1 X € t2
PEicP||— Y Y > < 2slexp(—%1—4)
m g, PO (58)
0<t<8

It follows that || Hn%(zidl Xipei)|alla < 4/st with probability at least 1 — 2s exp(—mzit;g?) for some 0 < ¢ < 8po..

Taking t = %, we get the desired result. O
G. Proof of Lemma 5.4

Lemma 5.4 If Assumptions 4.1, 4.2 and 4.4 hold, and \1 = 8poe+/nilogd, Ao = 8po./nalogd, ny = Q(T(cs‘ifisz))’
and ny = Q(%) then p; = 0,¥i € 7y and v; > 0,Yi € Iy with probability at least 1 — (’)(é) where

7(Crnin, &, 0, 2) is a constant independent of s1, $2,d, ny or na.

Proof. We start with the setting of p; when ¢ is in Z;.

1 —pr — 1 o —
pi = =580 W)+ 52,0

1 ~ 1 ~
=Sy — X1 5)" + 5(%‘ — X7 B2)°

2
1 ~ 1 -

= —5(%‘ - X7 Bt + X7 (81— BT.)) + 5(%‘ = X7, B3, + X, (B2 — ﬁgQ))Q (59)
1

—5 (s = XL BL) + (Br = BE)TXip XT, (B1 = BE.) + 2(yi — X1 BT X, (BL = BT,))+

1 ~ ~ -
5 (s = XTI, B8, + (B — B3, Xio X1, (B2 — 83,) + 20y — XJ,03)XT, (B2 — 65,))
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Since ¢ € Z7, we can substitute y; = XJPBTP + e;.

1 1 1 1
== 5 — X7 B2+ 5= X7 B5,)% - FATXip XI Ay + SAIXG o XT, Ap — e X Ag+
(X BT, +ei — X7, B3, ) X, As
1 (60)

1 1 1
- i(yi — XTI B+ §(yi - X7 B3)? - 5A{)QP_>QTPA1 + §A§XZ—QXZ-TQA2 — e X] A+

eiXj, A2 + (B — B3)TX: X[ (B2 — B3)
Using bounds on the eigenvalue of data matrix, Assumption 4.1 and bounds on A1 |2 and |Az |2, we can place a bound on
i

N3Chmax
2

n2 C'min
2

n13C.
L N

[A2]3 — lei XTI, Ar| = ei X, Aa| — 1(8F = B3)2[Az]2 (6D

We still need bound to bound [e; X, Aq| and [e; X As| which we do in the following lemma.

Lemma G.1. The following holds:
1. For fixed | Ay ]2, P(le; X] A1| < ) with probability at least 1 — O(3).

2. For fixed | Az

2 P(\eiXZ-TQAﬂ < §) with probability at least 1 — O(%).

Proof. Recall that X A, is a sub-Gaussian random variable with parameter p®| A1/ and e; is a sub-Gaussian random

. . XA, . . . . .
variable with parameter o2. Then, pl\%ﬂ\; ~L is a sub-exponential random variable with parameters (4\/57 2). Using the

concentration bounds for the sum of independent sub-exponential random variables (Wainwright, 2019), we can write:

P(|X"TPA13|>t)<2exp(—ﬁ), 0<t<8 (62)
pllA12 oe 64
Taking ¢t = m, we get
12
P(le; X[, A1 > 1) < QGXP(—W)» 0 <t <8p|A1]z0c (63)
We take £ = 7, then
€ 62
P(le; X7, Aq| = Z) < 2exp(— 16 % 64p2\|A1H§0§)’ 0 < e < 32p||Aq]20¢ (64)

Since | A1]|2 is upper bounded with (9(2—1\/5) and n, is of order O(s3 log® d), thus P(le; X[ A1| < §) with probability at
least 1 — O(3). Similarly, P(Je; X, A| < §) with probability at least 1 — O(3). O

Till now, we have considered | A |2 and ||Az]|2 to be fixed quantity, however they are also upper bounded by O(%\/ﬁ )
with probability at least 1 — O(%), thus the overall probability that u; > 0,7 € Z; is at least 1 — O(%) as long as

€= 3nlcmaXHA1H§ - ”2CminHA2H% + 3nCmaXHﬁT - B;k 2] Azll2 (65)

We need to take a union bound across entries in Z; which changes the probability to at least 1 — O(exp(—logd + logny))
which is still dominated by 1 — O(%).

O
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H. Proof of Lemma 5.5

Lemma 5.5 Both Il and A have zero eigenvalues corresponding to eigenvectors [611] and [612] respectively.

Proof. Tt suffices to prove the result for IT as the result for A follows in the same way. Note,

. . tF+1
= arg min -
b1 gﬁeks1 2 5

=

= arg min (yi = X8 + M (8] + 1)?
per T

(i = X707 + (|8l + 1)

The optimal 1 must satisfy stationarity KKT condition at the optimum, i.e.,

D Xip(—yi + X7 B1) + 2\ (2B +1) = 0

i€Il

By little algebraic manipulation, we can rewrite the above as following:

S+ 1 op Bi| _
(;1—2 Si+/\1Z+Ia)[1 =0

where Z = [ﬂ [2T 1] = sign(W). Clearly,
A
11 =
L 1 . 0
Similarly, we can show
A 52 _
L 1 . O

I. Proof of Lemma 5.6

Lemma 5.6 If Assumption 4.2 holds and ny = Q(Slgzﬂ) and ny = Q(”gzﬂ), then the second eigenvalues of 11 and

min min

A are strictly positive with probability at least 1 — O(%), i.e., eigy(II) > 0 and eigy(A) > 0.

Proof. Tt suffices to prove the result for IT as similar arguments can be used to prove the result for A. We know

= ZS{’+)\1Z+Ia

iEIl

XX Xy 22T 2z
:;z; [—inZJ v ]+A1[2T 1]+I“ (66)
i€ly

Yiier, —YiXT +Mz2T Y vi+ M+

Alsonote that o = —(3, .7 ST+ MZ, W) = =37 (yi — XJP[%)? + A (|B1]1 + 1)2. We also know that 3, satisfies
the stationarity KKT condition, i.e.,

Z XiP(—yi + Xgp@l) + Z)\l(ZTgl + 1) =0
i€Zy

Bl = —(Z XZXvT + )\1221-)_1(2 — Xy + )\12)

i€y i€y
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Using the stationarity KKT condition, we can simplify objective function value of optimization problem (11) at 51 to
Yiier, Ui+ Qier, —wiXT + M27) 1 + A1. Now, we invoke Haynesworth’s inertia additivity formula (Haynsworth, 1968)

A B
BT C|
defined as the tuple (|eig, (R)|, |eig_(R)|, [eigy(R)|) where |eig  (R)| is the number of positive eigenvalues, |eig_(R)| is
the number of negative eigenvalues and |eig,(R)| is the number of zero eigenvalues of matrix R. Haynesworth’s inertia
additivity formula is given as:

to prove our claim. Let R be a block matrix of the form R = then inertia of matrix R, denoted by In(R), is

In(R) = In(A) + In(C — BTA™'B) (67)

We take A = 3, 7 XiX] + \22T, B = )
C — BT A~!B evaluates to zero. Thus,

Xiy; + Mizand C = ZieL yf + A1 + «. It should be noted that

i€l

In(IT) = In( > X; X7 + A1227) + In(0) ©68)

1€Z4

We note that 0 has precisely one zero eigenvalue and no other eigenvalues. Moreover, from Lemma 4.3 and Weyl’s inequality:

. C(min
elgmin(‘Z XZXZT + )\12’2’1-) = 72 >0 (69)
lEIl
with probability at least 1 — O(%) as long as n; = Q(%logd) It follows that the second eigenvalue of I is strictly positive.
Similar, arguments can be made for A. - O
J. Proof of Lemma 5.7
Lemma 5.7 Let A\ > M’%\/nl log d. Then the following holds true:
& 1
]P) N Xz 1 =z ) < O )
(|)\ ny ’LEZI: p€i ”30 8 — 4&-) (d)
g
XZ c = 3 3
5 nZ petiln > $) < 0(3)

Proof. We will start with n% Yier, Xipei. We take the i-th entry of - ZZGL X;,e; forsomeie P,ie., |1 % Djer, Xjiejl.

Recall that X;; is a sub-Gaussian random variable with parameter p® and e; is a sub-Gaussian random variable with
X;

parameter o2. Then, = 67 is a sub-exponential random variable with parameters (4+1/2, 2). Using the concentration bounds
for the sum of 1ndependent sub-exponential random variables (Wainwright, 2019), we can write:

1 X e nqt2
P(|— ) “L2|>t)<2exp(———), 0<t <8
(I 2 = o= 8 < 2exp(—=0), (70)
J€I1
Taking a union bound across i € P:
1 Xj; e t2
PEieP||— > Y > < 2$1exp(77161—4)
mHp o (71
0<t<8
Taking t = ’\— , we get:
“ ny A2t?
P(3ic P | \ Z Xjiej] = 1) < 25, exp(f64p2102)
¢ (72)
0<t<8Ze
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11
A1 M1

nj\ft2 ).

It follows that || Yier, Xip€illoo <t with probability at least 1 — 251 exp(— Bipo2

32,2
Using a similar argument, we can show that | 5\% 7% Yiicr, Xipeeiloo < t with probability at least 1 —2(d—s1) exp(— gip’\;;z ).

Taking t = 85—45 and % in the first and second inequality of Lemma 5.7 and choosing the provided setting of A; and n
completes our proof. O

K. Additional Experiments

05 — d=100 10 “ 4 d=1005, 6 fro —p— d=101[181 = By ||
< o4 a0 op AT G100F s b d=10 (18, ~ B;
" N 5 | o L
Q > = 2 [ d=20 R
£03 806 g4 [l
3 2 . —— d=501:—B; I
= T = *
202 504 , § AL d=50 (18, ~ B3 I
. o / Z2 i i
] a f \
s01 \ 0.2 J ] 1 \
0.0 0.0 g e 0 +\< - - .
0.0 0.5 1.0 15 0.0 0.5 1.0 15 0.00 025 050 0.75 1.00 1.25 150 175
Control Parameter Control Parameter Control Parameter
(a) Misidentified labels (b) Support recovery (¢) £2 Norm error

Figure 2. Label and support recovery with control parameter C,, for high dimensional case d = 100, 200). We also show that the norm
error indeed goes towards 0.

Following the setting mentioned in Section 6, we conduct further high dimensional (d = 100, 200) experiments to validate
our theoretical results. We observe a similar trend, i.e., as we increase number of samples, we make zero mistakes in label
recovery and achieve 100% correct support recovery for both parameter vectors. Additionally, we also show that the norm
error, i.., |3 — B¥ll2, j € {1, 2} goes towards zero in our experiments.



