
EXACT PARTITIONING OF HIGH-ORDER PLANTED MODELS

WITH A TENSOR NUCLEAR NORM CONSTRAINT

Chuyang Ke Jean Honorio

Purdue University

ABSTRACT

We study the problem of exact partitioning of the hypergraphs

generated by high-order planted models. A high-order planted

model assumes some underlying cluster structures, and sim-

ulates high-order interactions by placing hyperedges among

nodes. Example models include the disjoint hypercliques, the

densest subhypergraphs, and the hypergraph stochastic block

models. We show that exact partitioning of high-order planted

models is achievable through solving a convex optimization

problem with a tensor nuclear norm constraint. Our analysis

provides the statistical upper bounds for our approach to suc-

ceed on recovering the true underlying cluster structures, with

high probability.

Index Terms— High-order Planted Models, Hypergraphs,

Exact Partitioning

1. INTRODUCTION

The problem of partitioning high-order models have been stud-

ied for some long time. Graph-theoretic problems including

cuts, colorings, and traversals have been analyzed in earlier

works [1, 2]. In the past decade, researchers have started

looking at spectral theory and algebraic connectivity of hyper-

graphs [3, 4, 5, 6]. Certain high-order models of interests have

received more attention from an algorithmic point of view.

This includes the densest subhypergraphs [7], the hypergraph

stochastic block models (SBMs) [8, 9], and the hypergraph

planted cliques [10, 11]. Despite years of research, however,

very little is known about the exact partitioning conditions in

general high-order planted models.

In this paper we propose a convex optimization approach

for exact partitioning of high-order planted models. A high-

order planted model generates hypergraphs, which simulate

multi-entity interactions in a network. Our model class formu-

lation is highly general and subsumes models analyzed and

applied in prior literature, including the disjoint hypercliques,

the densest subhypergraphs, and the hypergraph stochastic

block models. When the order is set to 2, our definition of

high-order planted models reduces to regular planted models

with ordinary graphs. Our analysis establishes the regime in

which exact recovery of hidden cluster structures is possible

from noisy observation of hypergraphs.

Related works. In addition to the works mentioned above,

there has been a lot of research on the partitioning of certain

high-order planted models. For the densest subhypergraphs,

[12] and [13] proposed theoretical objective function approx-

imation algorithms. Our goal, arguably more challenging, is

to recover the true underlying clustering structure. For hyper-

graph SBMs, approaches include truncating the hypergraph

to a multigraph [8] or an ordinary graph with a weighted ad-

jacency matrix [14]. It is worth highlighting that our result is

not merely an extension. Our definition of high-order planted

models is highly general, and the convex optimization formula-

tion with a tensor nuclear norm constraint is novel. Moreover

our approach does not approximate, or truncates the hyper-

graph to an ordinary graph. To the best of authors’ knowledge,

we are the first one applying tensor nuclear norm methods in

high-order partitioning problems.

Summary of our contributions. We provide a series of

novel results in this paper:

• We propose the highly general class definition of high-

order planted models, and demonstrate that our model

class definition subsumes several existing planted mod-

els, including the disjoint hypercliques, the densest sub-

hypergraphs, and the hypergraph stochastic block mod-

els.

• We formulate the problem of exact partitioning in high-

order planted models as a novel tensor optimization

problem with a tensor nuclear norm constraint, and we

establish the regime in which hidden cluster structures

can be recovered correctly.

2. PRELIMINARIES

2.1. High-order Tensors

In this section, we introduce the notations that will be used in

the paper. We use lowercase font (e.g., a, b, u, v) for scalars

and vectors, uppercase font (e.g., A,B,C) for matrices, and

calligraphic font (e.g.,A,B, C) for tensors. We use R to denote

the set of real numbers.

For any integer n, we use [n] to denote the set {1, . . . , n}.
For clarity when dealing with a sequence of objects, we use

the superscript (i) to denote the i-th object in the sequence,

and subscript j to denote the j-th entry. For example, for a

sequence of vectors {x(i)}i∈[n], x
(1)
2 represents the second

entry of vector x(1). The notation ⊗ is used to denote outer

product of vectors, for example, x(1)⊗ . . .⊗x(m) is a tensor of

order m, such that (x(1)⊗ . . .⊗x(m))i1,...,im := x
(1)
i1

. . . x
(m)
im

.

We use 1 to denote the all-one vector.

Let A = (Ai1,...,im) be an m-order tensor of size

n1 × · · · × nm. Tensor A is symmetric if it is invariant

under any permutation of its indices, i.e., Aσ(i1),...,σ(im) =
Ai1,...,im , for any permutation σ : [m] → [m]. We use I
to do denote the identity tensor, such that Ii1,...,i1 = · · · =
Iim,...,im , and all other entries are 0.

For tensor A = (Ai1,...,im) and B = (Bi1,...,im) of same

size, we define the inner product of A and B as 〈A,B〉 :=
∑

i1,...,im
Ai1,...,imBi1,...,im . Tensor addition and subtraction

are defined entrywise, e.g., A+ B = (Ai1,...,im + Bi1,...,im).
With slight abuse of notation, for any constant c ∈ R, we use

A < c to denote entrywise inequality.

For any vector u ∈ R
n, we denote the corresponding

m-th order rank-one tensor as u⊗m, where (u⊗m)i1,...,im :=
ui1 . . . uim . For any symmetric tensorA, we define its spectral

norm as |||A||| := supu∈Sn−1 |〈A, u⊗m〉|, where Sn−1 denotes

the unit sphere. Similarly we define its nuclear norm as

|||A|||
∗
:= inf

{
∑r

i=1 |λi| : A =
∑r

i=1 λiu
(i)⊗m, u(i) ∈ S

n−1
}

.

It is worth mentioning that, like the Schatten p-norms in the

matrix case, the tensor spectral norm and tensor nuclear norm

are also dual to each other [15].

2.2. High-order Planted Models

We now introduce the definition of high-order planted models.

Definition 1 (High-order Planted Models). A high-order

planted model is denoted asM(n,m, r, k, p, q), where n is

the number of vertices, and m is the order of the model. It is

assumed that uniformly at random, rk out of n vertices are

grouped into r clusters of equal size k, and the remaining

n − rk vertices do not belong any cluster. p, q are signal

parameters bounded by 0 and 1.

Model M(n,m, r, k, p, q) generates a random hyper-

graph G = (V, E) in the following way. For each subset

{vi1 , . . . , vim} ⊂ V of m vertices, if all are from the same

cluster, nature adds the hyperedge (vi1 , . . . , vim) to E with

probability p; otherwise, nature adds the hyperedge with

probability q.

Our goal is to recover the cluster membership of vertices

in modelM from the observed hypergraph G. For any i ∈ [r],
we use y(i)∗ ∈ {0, 1}n to denote the true membership vector

of cluster i, such that y
(i)∗
j = 1 if vertex j is in cluster i,

and 0 otherwise. We introduce the agreement tensor Y∗ =
∑r

i=1 y
(i)∗⊗m. It is not hard to see that Y∗ is 0-1 valued,

as the clusters are non-overlapping. Thus, Y∗ encodes all

cluster membership information (up to the permutation of

clusters, as there is no way to distinguish between clusters

without prior knowledge). In particular, in the two cluster

case with r = 2 and rk = n, y(i)∗’s can be encoded by a

single vector y ∈ {−1,+1}n. Let A be the adjacency tensor

of hypergraph G. From the definition above, A is a symmetric

tensor. Each entry in A is generated to be 1 with probability p
if the corresponding entry in Y∗ is 1; otherwise it is generated

to be 1 with probability q. The problem now reduces to recover

Y∗ from the observation of A.

Classical models. Here are some classical models covered

by our definition.

• Densest Subhypergraph: 0 < q < p < 1, r = 1. In

this case there exists a dense subhypergraph of size k in

the observed hypergraph G (see e.g., [7]).

• Hypergraph Stochastic Block Model: 0 < q < p <
1, n = rk, r ≥ 2. In this case there exists r dense

subhypergraphs of size k in the observed hypergraph G
(see e.g., [8, 16]).

• Disjoint Hypercliques: p = 1, 0 < q < 1. In this case,

r hypercliques of size k are planted in the observed

hypergraph G. A hyperclique is the generalization of

graph cliques. In a hyperclique, every distinct m-tuple

is connected by a hyperedge (see e.g., [10, 11]).

3. THEORETICAL GUARANTEES OF EXACT

PARTITIONING

In this section, we propose and analyze an algorithm which

recovers the true underlying cluster structures in high-order

planted models. Recall that Y∗ is the true agreement tensor.

We say an algorithm achieves exact partitioning, if its output

Y is identical to Y∗.

Algorithm 1 Exact Partitioning of High-order Models

Input: adjacency tensor A
Output: estimated agreement tensor Y

maximize
Y

〈A,Y〉

subject to |||Y|||
∗
≤ rkm/2

〈

1
⊗m,Y

〉

= rkm

0 ≤ Y ≤ 1 (1)

In the following analysis we examine the statistical condi-

tions for problem (1) to succeed with high probability. Note

that the objective function and constraints in problem (1) are

convex. To be clear, while our convex optimization problem

might be NP-hard due to the tensor nuclear norm constraint

[15], the utility of this constructive procedure is as a proof

technique: it allows us to apply convex optimization tools to

characterize the statistical upper limits of exact partitioning

of high-order planted models. Our analysis establishes the

regime in which given the adjacency tensor A, the true un-

derlying cluster structures Y∗ can be recovered by problem

(1) perfectly.

Remark on exact partitioning. It is worth mentioning

that Algorithm 1 does not require any rounding step and out-

puts the exact solution. Hypergraph partitioning algorithms in

prior literature either are objective function approximation al-

gorithms [12, 13], or unfold hypergraphs into matrices [8, 14].

Note that the groundtruth Y∗ is a feasible solution to problem

(1). Our analysis states that if certain statistical conditions

are satisfied, with high probability no other feasible solution

Y 6= Y∗ will achieve a better objective value.

We now present the main theorem, which provides a suffi-

cient condition for (1) to succeed with high probability.

Theorem 1. Consider any hypergraph G sampled from a high-

order modelM(n,m, r, k, p, q). Let A be the adjacency ten-

sor of G. If

(p− q)2

p(1− q)
= Ω

(

nm5 logm

km−1

)

, (2)

then problem (1) recovers the underlying cluster structure of

M perfectly with probability at least 1−O(1/n).

The proof can be found in Appendix B in the full version.

Remark on rates. In high-order planted models, p and q
are signal parameters that determine the signal-to-noise ratio

(SNR) of the model. This is implied by the left-hand side of

(2): as the gap p− q becomes larger, SNR becomes higher and

exact partitioning gets easier. On the right-hand side, one can

notice that as n gets larger, the whole term becomes smaller

(remember that n = rk). From an information-theoretical

point of view this is intuitive, as a larger number of samples

leads to easier recovery of the true signal.

It would also be interesting to compare our rates with

those of ordinary planted models. In the case of m = 2, our

condition becomes (p − q)2k2 ≥ Cp(1 − q)kn for some

constant C, while the condition in [17] is (p − q)2k2 ≥
C(p(1 − q)k log n + q(1 − q)n). Comparison on the right-

hand sides shows that our bound only requires a slightly higher

order (Ω(kn) versus Ω(k log n+ n)).
Remark on convexity. To be clear, while the tensor nu-

clear norm constraint in problem (1) might be NP-hard to com-

pute [15], the constructive procedure has two utilities. First,

as a proof technique, it enables us to apply convex optimiza-

tion tools to characterize the statistical upper limits of exact

partitioning of high-order planted models. Second, the convex

formulation allows us to implement efficient gradient-based

solvers. This is customary in many fields of machine learning,

including deep learning and Bayesian networks: solving for

the exact solution is NP-hard, but numerical methods are feasi-

ble and efficient. To see this, we provide simulation results on

both synthetic and real-world datasets in the next section.

4. SIMULATION RESULTS

In this section, we test the proposed convex optimization for-

mulation (1) using a projected gradient descent solver. Pro-

jected gradient descent is a standard method to solve con-

strained convex optimization problems. Our projected gradient

descent solver in Algorithm 2 works as follows: starting from

an initial point Y(0), until the stopping condition is met, the

algorithm repeats the assignment Y(k+1) ← P (Y(k) + ηA),
where η is the step size of each iteration, and P (·) is a projec-

tion operator. The projection operator tries to find the “closest”

point to Y(k)+ηA, that fulfills all the constraints in the convex

problem (1). To fulfill |||Y|||
∗
≤ rkm/2 , 〈1⊗m,Y〉 = rkm,

and 0 ≤ Y ≤ 1, the algorithm scales all diagonal of Y(k) so

that their summation is less than rkm/2, scales all entries in

Y(k) so that their summation is rkm, maps all negative entries

to 0, and maps all entries being greater than 1 to 1. In addition,

Algorithm 2 invokes the helper function in Algorithm 3, using

the method in Equation (3.1) in [18], which tries to find a unit

vector w ∈ R
n such that

〈

Y(k), w⊗m
〉

is minimized. Algo-

rithm 2 then subtracts the tensor
〈

Y(k), w⊗m
〉

· w⊗m from

Y(k), making the projected tensor positive semidefinite in the

direction of w. We assume the point P (Y(k) + ηA) satisfies

the constraints, after repeating the projection procedure for a

number of iterations.

Experiment 1: To validate Theorem 1, we generate syn-

thetic fourth order planted models following the procedure

in Definition 1. We consider the setting of the hypergraph

stochastic block model with r = 2, k = n/2, and encode the

membership vector y∗ using +1 and −1’s. We test cases with

n being 30, 60, and 120, respectively. In the experiment the

signal parameters p and q iterate over the range (0, 1), with

an interval of 0.05. We run 20 trials for each pair of p and q.

During each trial, a hypergraph G is sampled, and we invoke

Algorithm 2 to solve for the agreement tensor Ŷ . To evaluate

the performance of the proposed algorithm, we run Algorithm

4 (similar to Algorithm 3 but finds positive eigenvalues; see

full version Appendix C) to compute ŷ, the top tensor eigen-

vector of Ŷ , and then compare the corresponding sign vector

sign(ŷ) against the groundtruth y∗.

We report the empirical probability of exact recovery

P {ŷ = y∗} in Figure 1. We plot the empirical probability

against C := log
(

(p−q)2n
p(1−q)k3

)

, which is equivalent to the log

of the left-hand side of (2) divided by its right-hand side. Our

result suggests that as long as C is greater than the constant

threshold of 10, the proposed method performs well and

recovers the underlying group structure with high probability.

This matches our theoretic findings in Theorem 1.

Experiment 2: We implement the proposed algorithm

on a real-world dataset, email-Eu-core [19]. During each

trial, we extract n most connected nodes from the dataset, and

convert the induced subgraph into fourth order hypergraphs

by counting the existence of star motifs and cycle motifs (see

Figure 4). We then follow the same procedure used in the

previous experiment. We also compare our results with the

motif clustering algorithm [20].

We report the number of correctly recovered labels in Fig-

References

[1] Claude Berge, Hypergraphs: combinatorics of finite sets,

vol. 45, Elsevier, 1984.

[2] George Karypis, Rajat Aggarwal, Vipin Kumar, and

Shashi Shekhar, “Multilevel hypergraph partitioning:

applications in vlsi domain,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 7, no. 1, pp.

69–79, 1999.

[3] Kelly J Pearson and Tan Zhang, “On spectral hypergraph

theory of the adjacency tensor,” Graphs and Combina-

torics, vol. 30, no. 5, pp. 1233–1248, 2014.

[4] Joshua Cooper and Aaron Dutle, “Spectra of uniform

hypergraphs,” Linear Algebra and its applications, vol.

436, no. 9, pp. 3268–3292, 2012.

[5] Shenglong Hu and Liqun Qi, “Algebraic connectivity of

an even uniform hypergraph,” Journal of Combinatorial

Optimization, vol. 24, no. 4, pp. 564–579, 2012.

[6] Dengyong Zhou, Jiayuan Huang, and Bernhard

Schölkopf, “Learning with hypergraphs: Clustering,

classification, and embedding,” in Advances in neural

information processing systems, 2007, pp. 1601–1608.

[7] Luca Corinzia, Paolo Penna, Luca Mondada, and

Joachim M Buhmann, “Exact recovery for a family of

community-detection generative models,” in 2019 IEEE

International Symposium on Information Theory (ISIT).

IEEE, 2019, pp. 415–419.

[8] Chiheon Kim, Afonso S Bandeira, and Michel X Goe-

mans, “Community detection in hypergraphs, spiked

tensor models, and sum-of-squares,” in 2017 Interna-

tional Conference on Sampling Theory and Applications

(SampTA). IEEE, 2017, pp. 124–128.

[9] Laura Florescu and Will Perkins, “Spectral thresholds in

the bipartite stochastic block model,” in Conference on

Learning Theory, 2016, pp. 943–959.

[10] Anru Zhang and Dong Xia, “Tensor svd: Statistical and

computational limits,” IEEE Transactions on Information

Theory, vol. 64, no. 11, pp. 7311–7338, 2018.

[11] Wei-Zhi Nie, An-An Liu, Yue Gao, and Yu-Ting Su,

“Hyper-clique graph matching and applications,” IEEE

Transactions on Circuits and Systems for Video Technol-

ogy, vol. 29, no. 6, pp. 1619–1630, 2018.

[12] Eden Chlamtác, Michael Dinitz, Christian Konrad,

Guy Kortsarz, and George Rabanca, “The densest k-

subhypergraph problem,” in Approximation, Random-

ization, and Combinatorial Optimization. Algorithms

and Techniques (APPROX/RANDOM 2016). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[13] Richard Taylor, “Approximations of the densest k-

subhypergraph and set union knapsack problems,” arXiv

preprint arXiv:1610.04935, 2016.

[14] Debarghya Ghoshdastidar, Ambedkar Dukkipati, et al.,

“Consistency of spectral hypergraph partitioning under

planted partition model,” The Annals of Statistics, vol.

45, no. 1, pp. 289–315, 2017.

[15] Shmuel Friedland and Lek-Heng Lim, “Nuclear norm of

higher-order tensors,” Mathematics of Computation, vol.

87, no. 311, pp. 1255–1281, 2018.

[16] Chiheon Kim, Afonso S Bandeira, and Michel X Goe-

mans, “Stochastic block model for hypergraphs: Statis-

tical limits and a semidefinite programming approach,”

arXiv preprint arXiv:1807.02884, 2018.

[17] Yudong Chen and Jiaming Xu, “Statistical-

computational phase transitions in planted models: The

high-dimensional setting,” in International Conference

on Machine Learning, 2014, pp. 244–252.

[18] Lixing Han, “An unconstrained optimization approach

for finding real eigenvalues of even order symmetric

tensors,” Numerical Algebra, Control & Optimization,

vol. 3, no. 3, pp. 583, 2013.

[19] Jure Leskovec and Andrej Krevl, “Snap datasets: Stan-

ford large network dataset collection,” 2014.

[20] Austin R Benson, David F Gleich, and Jure Leskovec,

“Higher-order organization of complex networks,” Sci-

ence, vol. 353, no. 6295, pp. 163–166, 2016.

	 Introduction
	 Preliminaries
	 High-order Tensors
	 High-order Planted Models

	 Theoretical Guarantees of Exact Partitioning
	 Simulation Results

