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ABSTRACT

We study the problem of exact partitioning of the hypergraphs
generated by high-order planted models. A high-order planted
model assumes some underlying cluster structures, and sim-
ulates high-order interactions by placing hyperedges among
nodes. Example models include the disjoint hypercliques, the
densest subhypergraphs, and the hypergraph stochastic block
models. We show that exact partitioning of high-order planted
models is achievable through solving a convex optimization
problem with a tensor nuclear norm constraint. Our analysis
provides the statistical upper bounds for our approach to suc-
ceed on recovering the true underlying cluster structures, with
high probability.

Index Terms— High-order Planted Models, Hypergraphs,
Exact Partitioning

1. INTRODUCTION

The problem of partitioning high-order models have been stud-
ied for some long time. Graph-theoretic problems including
cuts, colorings, and traversals have been analyzed in earlier
works [1, 2]. In the past decade, researchers have started
looking at spectral theory and algebraic connectivity of hyper-
graphs [3, 4, 5, 6]. Certain high-order models of interests have
received more attention from an algorithmic point of view.
This includes the densest subhypergraphs [7], the hypergraph
stochastic block models (SBMs) [8, 9], and the hypergraph
planted cliques [10, 11]. Despite years of research, however,
very little is known about the exact partitioning conditions in
general high-order planted models.

In this paper we propose a convex optimization approach
for exact partitioning of high-order planted models. A high-
order planted model generates hypergraphs, which simulate
multi-entity interactions in a network. Our model class formu-
lation is highly general and subsumes models analyzed and
applied in prior literature, including the disjoint hypercliques,
the densest subhypergraphs, and the hypergraph stochastic
block models. When the order is set to 2, our definition of
high-order planted models reduces to regular planted models
with ordinary graphs. Our analysis establishes the regime in
which exact recovery of hidden cluster structures is possible
from noisy observation of hypergraphs.

Related works. In addition to the works mentioned above,
there has been a lot of research on the partitioning of certain
high-order planted models. For the densest subhypergraphs,
[12] and [13] proposed theoretical objective function approx-
imation algorithms. Our goal, arguably more challenging, is
to recover the true underlying clustering structure. For hyper-
graph SBMs, approaches include truncating the hypergraph
to a multigraph [8] or an ordinary graph with a weighted ad-
jacency matrix [14]. It is worth highlighting that our result is
not merely an extension. Our definition of high-order planted
models is highly general, and the convex optimization formula-
tion with a tensor nuclear norm constraint is novel. Moreover
our approach does not approximate, or truncates the hyper-
graph to an ordinary graph. To the best of authors’ knowledge,
we are the first one applying tensor nuclear norm methods in
high-order partitioning problems.

Summary of our contributions. We provide a series of
novel results in this paper:

* We propose the highly general class definition of high-
order planted models, and demonstrate that our model
class definition subsumes several existing planted mod-
els, including the disjoint hypercliques, the densest sub-
hypergraphs, and the hypergraph stochastic block mod-
els.

* We formulate the problem of exact partitioning in high-
order planted models as a novel tensor optimization
problem with a tensor nuclear norm constraint, and we
establish the regime in which hidden cluster structures
can be recovered correctly.

2. PRELIMINARIES

2.1. High-order Tensors

In this section, we introduce the notations that will be used in
the paper. We use lowercase font (e.g., a, b, u, v) for scalars
and vectors, uppercase font (e.g., A, B, C') for matrices, and
calligraphic font (e.g., A, B, C) for tensors. We use R to denote
the set of real numbers.

For any integer n, we use [n] to denote the set {1,...,n}.
For clarity when dealing with a sequence of objects, we use
the superscript (i) to denote the i-th object in the sequence,
and subscript j to denote the j-th entry. For example, for a



sequence of vectors {m(i)}ie[n], a:(Ql) represents the second
entry of vector z(1). The notation ® is used to denote outer
product of vectors, for example, M ®...@x(™ is a tensor of

order m, such that (z(V ®...@z(M), ;= M mET)
We use 1 to denote the all-one vector. '

Let A = (A, .. ;,) be an m-order tensor of size
niy X -+ X Ny,. Tensor A is symmetric if it is invariant
under any permutation of its indices, i.e., Ay(i,),....0(i,) =
A, .. 4., for any permutation o : [m] — [m]. We use 7
to do denote the identity tensor, such that Z;,  ; = --- =

immse.im » and all other entries are 0.

For tensor A = (A;, . ;. )and B = (B;,, ;) of same
size, we define the inner product of A and B as (A, B) :=
Z“ i Aiy....i..Bii ..., Tensor addition and subtraction
are defined entrywise, e.g., A+ B = (A, ..i.. + Biy,..oin )-
With slight abuse of notation, for any constant ¢ € R, we use
A < cto denote entrywise inequality.

For any vector uv € R"™, we denote the corresponding
m-th order rank-one tensor as u®™, where (u®™);
U;, - .. U4, . For any symmetric tensor A, we define its spectral
norm as || A|| := sup,egn-1 (A, u®™)|, where S*~! denotes
the unit sphere. Similarly we define its nuclear norm as

IIAll, := inf {ZZ:1 [ANi] : A= 2;1 NuMem (1) ¢ gn—11,

It is worth mentioning that, like the Schatten p-norms in the
matrix case, the tensor spectral norm and tensor nuclear norm
are also dual to each other [15].

2.2. High-order Planted Models
We now introduce the definition of high-order planted models.

Definition 1 (High-order Planted Models). A high-order
planted model is denoted as M(n,m,r, k,p,q), where n is
the number of vertices, and m is the order of the model. It is
assumed that uniformly at random, rk out of n vertices are
grouped into r clusters of equal size k, and the remaining
n — rk vertices do not belong any cluster. p,q are signal
parameters bounded by 0 and 1.

Model M(n,m,r k,p,q) generates a random hyper-
graph G = (V,&) in the following way. For each subset
{viy,...yvi, } CV of mvertices, if all are from the same
cluster, nature adds the hyperedge (vi,,...,v;, ) to € with
probability p; otherwise, nature adds the hyperedge with
probability q.

Our goal is to recover the cluster membership of vertices
in model M from the observed hypergraph G. For any i € [r],
we use y(¥* € {0, 1} to denote the true membership vector
of cluster 7, such that yﬁz)* = 1 if vertex j is in cluster i,
and 0 otherwise. We introduce the agreement tensor J* =
Yoy y(@D*@m Tt is not hard to see that Y* is 0-1 valued,
as the clusters are non-overlapping. Thus, V* encodes all
cluster membership information (up to the permutation of
clusters, as there is no way to distinguish between clusters

without prior knowledge). In particular, in the two cluster

case with » = 2 and 7k = n, y(i)*’s can be encoded by a
single vector y € {—1,+1}". Let A be the adjacency tensor
of hypergraph G. From the definition above, A is a symmetric
tensor. Each entry in A is generated to be 1 with probability p
if the corresponding entry in )* is 1; otherwise it is generated
to be 1 with probability ¢q. The problem now reduces to recover
Y* from the observation of A.

Classical models. Here are some classical models covered
by our definition.

* Densest Subhypergraph: 0 < ¢ < p < 1,7 =1.1In
this case there exists a dense subhypergraph of size & in
the observed hypergraph G (see e.g., [7]).

* Hypergraph Stochastic Block Model: 0 < ¢ < p <
1,n = rk,r > 2. In this case there exists r dense
subhypergraphs of size k in the observed hypergraph G
(see e.g., [8, 16]).

* Disjoint Hypercliques: p = 1,0 < ¢ < 1. In this case,
r hypercliques of size k are planted in the observed
hypergraph G. A hyperclique is the generalization of
graph cliques. In a hyperclique, every distinct m-tuple
is connected by a hyperedge (see e.g., [10, 11]).

3. THEORETICAL GUARANTEES OF EXACT
PARTITIONING

In this section, we propose and analyze an algorithm which
recovers the true underlying cluster structures in high-order
planted models. Recall that )* is the true agreement tensor.
We say an algorithm achieves exact partitioning, if its output
Y is identical to Y*.

Algorithm 1 Exact Partitioning of High-order Models
Input: adjacency tensor A
Output: estimated agreement tensor )

max%/mize (AY)
subject to I, < rkm™?
<1®m, y> =rk™
0<y<i1 (1

In the following analysis we examine the statistical condi-
tions for problem (1) to succeed with high probability. Note
that the objective function and constraints in problem (1) are
convex. To be clear, while our convex optimization problem
might be NP-hard due to the tensor nuclear norm constraint
[15], the utility of this constructive procedure is as a proof
technique: it allows us to apply convex optimization tools to
characterize the statistical upper limits of exact partitioning
of high-order planted models. Our analysis establishes the
regime in which given the adjacency tensor .4, the true un-
derlying cluster structures )* can be recovered by problem
(1) perfectly.



Remark on exact partitioning. It is worth mentioning
that Algorithm 1 does not require any rounding step and out-
puts the exact solution. Hypergraph partitioning algorithms in
prior literature either are objective function approximation al-
gorithms [12, 13], or unfold hypergraphs into matrices [8, 14].
Note that the groundtruth V* is a feasible solution to problem
(1). Our analysis states that if certain statistical conditions
are satisfied, with high probability no other feasible solution
Y # Y* will achieve a better objective value.

We now present the main theorem, which provides a suffi-
cient condition for (1) to succeed with high probability.

Theorem 1. Consider any hypergraph G sampled from a high-
order model M(n,m,r, k,p,q). Let A be the adjacency ten-
sorof G. If

(p—q)? a (nmslogm> ’ )

p(l _ q) - km—1
then problem (1) recovers the underlying cluster structure of
M perfectly with probability at least 1 — O(1/n).

The proof can be found in Appendix B in the full version.

Remark on rates. In high-order planted models, p and ¢
are signal parameters that determine the signal-to-noise ratio
(SNR) of the model. This is implied by the left-hand side of
(2): as the gap p — g becomes larger, SNR becomes higher and
exact partitioning gets easier. On the right-hand side, one can
notice that as n gets larger, the whole term becomes smaller
(remember that n = rk). From an information-theoretical
point of view this is intuitive, as a larger number of samples
leads to easier recovery of the true signal.

It would also be interesting to compare our rates with
those of ordinary planted models. In the case of m = 2, our
condition becomes (p — q)?k% > Cp(1 — q)kn for some
constant C, while the condition in [17] is (p — ¢)?k* >
C(p(1 — q)klogn + q(1 — g)n). Comparison on the right-
hand sides shows that our bound only requires a slightly higher
order (Q2(kn) versus Q(klogn + n)).

Remark on convexity. To be clear, while the tensor nu-
clear norm constraint in problem (1) might be NP-hard to com-
pute [15], the constructive procedure has two utilities. First,
as a proof technique, it enables us to apply convex optimiza-
tion tools to characterize the statistical upper limits of exact
partitioning of high-order planted models. Second, the convex
formulation allows us to implement efficient gradient-based
solvers. This is customary in many fields of machine learning,
including deep learning and Bayesian networks: solving for
the exact solution is NP-hard, but numerical methods are feasi-
ble and efficient. To see this, we provide simulation results on
both synthetic and real-world datasets in the next section.

4. SIMULATION RESULTS

In this section, we test the proposed convex optimization for-
mulation (1) using a projected gradient descent solver. Pro-

jected gradient descent is a standard method to solve con-
strained convex optimization problems. Our projected gradient
descent solver in Algorithm 2 works as follows: starting from
an initial point J(*) until the stopping condition is met, the
algorithm repeats the assignment Y (*+1) « P(Y(*F) 4 5 A),
where 7) is the step size of each iteration, and P(-) is a projec-
tion operator. The projection operator tries to find the “closest”
point to ) k) 4 n.A, that fulfills all the constraints in the convex
problem (1). To fulfill |||, < r&™/?, (1™, Y) = rk™,
and 0 < Y < 1, the algorithm scales all diagonal of Y& so
that their summation is less than rk™/2, scales all entries in
Y*) 5o that their summation is 7k™, maps all negative entries
to 0, and maps all entries being greater than 1 to 1. In addition,
Algorithm 2 invokes the helper function in Algorithm 3, using
the method in Equation (3.1) in [18], which tries to find a unit
vector w € R"™ such that <y<k>, w®m> is minimized. Algo-
rithm 2 then subtracts the tensor (Y*), w®™) - w®™ from
Y*) making the projected tensor positive semidefinite in the
direction of w. We assume the point P(Y*) + nA) satisfies
the constraints, after repeating the projection procedure for a
number of iterations.

Experiment 1: To validate Theorem 1, we generate syn-
thetic fourth order planted models following the procedure
in Definition 1. We consider the setting of the hypergraph
stochastic block model with » = 2, k = n/2, and encode the
membership vector y* using +1 and —1’s. We test cases with
n being 30, 60, and 120, respectively. In the experiment the
signal parameters p and ¢ iterate over the range (0, 1), with
an interval of 0.05. We run 20 trials for each pair of p and q.
During each trial, a hypergraph G is sampled, and we invoke
Algorithm 2 to solve for the agreement tensor )7 To evaluate
the performance of the proposed algorithm, we run Algorithm
4 (similar to Algorithm 3 but finds positive eigenvalues; see
full version Appendix C) to compute ¢, the top tensor eigen-
vector of , and then compare the corresponding sign vector
sign(%) against the groundtruth y*.

We report the empirical probability of exact recovery

P {¢ = y*} in Figure 1. We plot the empirical probability
2

against C := log Iff’ f_qq)) 5 ) , which is equivalent to the log
of the left-hand side of (2) divided by its right-hand side. Our
result suggests that as long as C' is greater than the constant
threshold of 10, the proposed method performs well and
recovers the underlying group structure with high probability.
This matches our theoretic findings in Theorem 1.

Experiment 2: We implement the proposed algorithm
on a real-world dataset, email-Eu-core [19]. During each
trial, we extract n most connected nodes from the dataset, and
convert the induced subgraph into fourth order hypergraphs
by counting the existence of star motifs and cycle motifs (see
Figure 4). We then follow the same procedure used in the
previous experiment. We also compare our results with the
motif clustering algorithm [20].

We report the number of correctly recovered labels in Fig-



ure 2. The result suggests that our method performs well
compared to the motif clustering method on both hypergraphs.
In particular, the figure suggests that our tensor method is
more robust to noises (n > 70), since as n gets larger, newly
extracted nodes are less connected, and the community struc-
ture signal becomes weaker. We also report the runtime of
the proposed method in Figure 3. The runtime can be fitted
almost perfectly by a third order polynomial, suggesting the
polynomial efficiency of our method.
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Fig. 1: Simulations using synthetic fourth order planted models with
different values of signal parameters p and q. In this case m = 4. The

p(1—q)kF
of exact partitioning P {§j = y* }. This matches our theoretic findings
in Theorem 1.
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Fig. 2: Simulations using the real-world dataset email-Eu-core [19].
We generate fourth-order hypergraphs from the dataset using the star
motif and the cycle motif, respectively (Figure 4). In this case m = 4.
The dashed curve uses the motif clustering algorithm in [20]. The
result suggests that the proposed method performs well on real-world
datasets.
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Fig. 3: The runtime of Algorithm 2 versus the number of samples.
The runtime can be fitted almost perfectly by a third order polynomial,
suggesting the polynomial efficiency of our method.

T~ .
Fig. 4: Star motif and cycle motif. Motifs are small structured units
in networks. To convert an ordinary (pairwise) graph to a fourth
order hypergraph, we iterate over all 4-tuple of nodes (i, j, k, 1) in
the original graph. If the subgraph induced by (i, 5, k, ) has the same
structure as the desired motif, we add a hyperedge (3, j, k, 1) to the
new hypergraph.

Algorithm 2 Projected Gradient Descent Solver
Input: adjacency tensor A, step size ¢
Output: Agreement tensor
Y thqem
for each outer iteration do
YV«Y+(A
for each inner iteration do
w 4= Algorithm 3 (Y)
w — mw
W w®m
+— (W, Y) {run projection step if J is not PSD}
if ¢, < 0 then
Y« Y—c,Y {make) PSD in direction of w}
Y < min(max(),0),1) {project to [0, 1]}

{gradient descent step}

- rk™
Y Zil ,,,,, im Yii,rim Y {ensure
<1®m7 y> — Tkm}
if >, Vi.....i. > rk™/? then
Vi e Tk P {ensure

VIl < rkm/2}

Algorithm 3 Negative Tensor Eigenvalue Searcher

Input: Target tensor ), step size y
Output: Target vector w

Initialize w; f1 < oo

for each iteration do
f1 < f1 , {record previous obj. value}
f1 & o= (T, w®™)" + L (Y, w®™) {check obj. value}

2m m

if f1 < 0or (Y, w®™) <0 then

break {can certify negative definiteness}
if f1 > f| then
break {obj. is starting to grow; stop}

V1 (Z,w®™) Tw®m—1 4 yy®m-1

w <+ w—yVfi {gradient descent step}
if f1 > 0and (A, w®™) > 0 then

w <+ 0
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