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Abstract
Coordination is often critical to forming prosocial
behaviors – behaviors that increase the overall sum
of rewards received by all agents in a multi-agent
game. However, state of the art reinforcement
learning algorithms often suffer from converging
to socially less desirable equilibria when multiple
equilibria exist. Previous works address this chal-
lenge with explicit reward shaping, which requires
the strong assumption that agents can be forced
to be prosocial. We propose using a less restric-
tive peer-rewarding mechanism, gifting, that guides
the agents toward more socially desirable equilibria
while allowing agents to remain selfish and decen-
tralized. Gifting allows each agent to give some of
their reward to other agents. We employ a theoreti-
cal framework that captures the benefit of gifting in
converging to the prosocial equilibrium by charac-
terizing the equilibria’s basins of attraction in a dy-
namical system. With gifting, we demonstrate in-
creased convergence of high risk, general-sum co-
ordination games to the prosocial equilibrium both
via numerical analysis and experiments.

1 Introduction
Reinforcement learning (RL) has shown great success in
training agents to solve many human-relevant tasks [Mnih et
al., 2013; Sutton et al., 1999]. In addition, there has been
increased interest in leveraging RL techniques in decentral-
ized multi-agent problems, motivated by outstanding perfor-
mance in two-player zero-sum games such as AlphaZero [Sil-
ver et al., 2017]. However, simply applying multi-agent RL
algorithms to train self-interested agents in a decentralized
fashion does not always perform well. Specifically, win-win
strategies – strategies that are beneficial for all agents – are
often challenging to achieve in more advanced settings, such
as general-sum games where win-win outcomes are only pos-
sible through coordination [Matignon et al., 2012].

Coordination is often coupled with risk. In the real world,
there are many applications where there is a safe action that
leads to guaranteed but lower rewards, and a risky action that

∗First three authors have contributed equally and listed randomly.

Stag Hunt is risky due to the penalty caused by hunting alone

With GiftingWithout Gifting

Figure 1: Progression of agents in a Stag Hunt game with and with-
out gifting. Agents choose either to hunt or forage. Hunting provides
more food, but requires coordination: an agent is severely penal-
ized for hunting alone. Foraging guarantees a small amount of food.
Without gifting, agents often learn to forage. With gifting, they gift
each other early in training, which mitigates risk, and they learn to
hunt together in a prosocial manner.

leads to higher rewards only if agents cooperate, such as al-
leviating traffic congestion [Bıyık et al., 2018; Lazar et al.,
2019], sustainably sharing limited resources [Hughes et al.,
2018], and altruistic human-robot interaction [Shirado and
Christakis, 2017]. In a game-theoretic framework, the class
of Stag Hunt games is a well-known instance of the trade-
off between social cooperation and safety. In Stag Hunt, two
players must independently decide between foraging mush-
rooms and hunting a stag. If both players choose to hunt the
stag, they succeed and are rewarded greatly, while if only one
of them goes hunting, they return empty-handed and injured.
On the other hand, foraging mushrooms guarantees a meal
for the night, although not as satisfying (as shown in Fig.
1). When confronted with this coordination problem, state
of the art RL algorithms and humans alike often choose the
safer, socially less desirable option of foraging, instead of the
riskier, prosocial option of hunting [Van Huyck et al., 1990;
Peysakhovich and Lerer, 2018]. This is because uncertainty
in the behavior of other players leads one to favor safer alter-
natives. Ideally, one would prefer reaching the most socially
desirable equilibrium – the prosocial equilibrium1 – to allow
all agents to maximize their rewards.

1When multiple equilibria are equally prosocial, we refer to
reaching any of them as reaching the prosocial equilibrium.



Previous attempts to address the problem of reaching the
prosocial equilibrium focus on using explicit reward shap-
ing to force agents to be prosocial, such as by making agents
care about the rewards of their partners [Peysakhovich and
Lerer, 2018]. This requires the strong assumption that a cen-
tral agent, e.g., a supervisor, can coerce the agents to be altru-
istic and to care about maximizing the total social utility. We
are interested in a less restrictive setting where we do not as-
sume access to a centralized supervisor, and the agents retain
their self-interest and only care about maximizing their own
received reward – while the objective is still to increase the
probability of reaching the prosocial equilibrium.

Our key insight is that gifting, a peer-rewarding mecha-
nism, can be used during training as a decentralized teach-
ing mechanism, mitigating risk and encouraging prosocial
behavior without explicit reward shaping. Gifting was first
introduced by Lupu and Precup [2020] and is an instance of a
larger class of algorithms that extend an agent’s action space,
providing them with a way to give part of their reward to other
agents through their actions. In contrast to centralized reward
shaping, which requires an external actor to force agents to
be prosocial apriori, gifting leaves it up to the agents them-
selves to use the new actions, enabling self-interested agents
to decide when and how to use the gifting actions.

One key advantage of gifting is that it can be used at train-
ing time as a behavior shaping mechanism by allowing agents
to take risk-mitigating actions, i.e., agent 1 can gift agent 2 in
order to decrease agent 2’s risk and incentivize agent 2 to take
a riskier action. We prove zero-sum gifting does not introduce
new pure-strategy Nash equilibria in one-shot normal-form
games. On the other hand, gifting can introduce new, com-
plex learned behaviors in a repeated normal-form game: new
equilibria may be introduced where one agent’s policy is con-
tingent on receiving a gift. In this paper, we only demonstrate
preliminary results in repeated normal-form games, and fo-
cus our analysis on one-shot normal-form games to carefully
examine the effects of gifting as a transient risk-mitigating
action used only at train time.

Our main contributions in this paper are as follows:
• We propose using a zero-sum gifting mechanism to

encourage prosocial behavior in coordination games
while allowing agents to remain decentralized and self-
interested.

• We provide insights on the effects of zero-sum gifting
for N -player one-shot normal-form games by formally
showing it does not introduce new equilibria and char-
acterizing conditions under which gifting is beneficial.

• We experimentally show that zero-sum gifting increases
the probability of convergence of selfish agents to
the prosocial equilibrium in general-sum coordination
games when the agents are trained with Deep Q-
Networks [Mnih et al., 2013].

2 Related Work
Game Theory: There has been significant recent work at-
tempting to reach the prosocial equilibrium in coordination
games. Several works use tools from both multi-agent RL
and game theory to investigate multi-agent learning in coop-

erative games. Balcan et al. [2015] study learning cooper-
ative games from a set of coalition samples. More related
to our work, Panait et al. [2008] investigate the effect of le-
niency, an agent’s tolerance of other agents’ non-cooperative
actions, from an evolutionary game theory perspective. In our
work, we investigate non-cooperative games in the scope of
gifting. Gifting allows agents to take a new action that may
lower the risk their opponent experiences, whereas leniency
allows agents to ignore rewards they received in the past.

Coordinated Exploration and Centralized Training: In
multi-agent games, researchers have tried coordinating the
exploration of agents to find the most prosocial Nash equi-
librium [Iqbal and Sha, 2019] or other equilibrium con-
cepts [Beliaev et al., 2020]. While coordinated exploration
improves exploration efficiency, it requires communication
among agents, which is not available in decentralized set-
tings. Centralized training methods with decentralized con-
trol have also been proposed as a way to learn multi-agent
policies [Lowe et al., 2017; Foerster et al., 2018b]. However,
similar to coordinated exploration, these approaches require
communication among agents during training, which is often
not applicable in practice.
Opponent Modeling: Reasoning about opponent behavior
can lead to more complex interactions. With opponent mod-
eling, agents can estimate their opponents’ policies, param-
eters, or updates in order to inform their own learning [Fo-
erster et al., 2018a; Sadigh et al., 2018; Sadigh et al., 2016;
Shih et al., 2021; Xie et al., 2020; Zhu et al., 2020]. While
opponent modeling has shown promising results, it often
provides approximation solutions that can be suboptimal.
Letcher et al. [2019] have shown that many opponent mod-
eling methods might prevent convergence to equilibria.
Explicit Reward Shaping: To encourage coordination, re-
searchers have explicitly shaped the reward of agents, such
as by encoding inequity aversion [Hughes et al., 2018].
Peysakhovich and Lerer [2018] define each agent’s reward
function to be the sum of all agents’ rewards in the envi-
ronment. Although successful, these approaches require the
strong assumption that an agent’s reward function can be ex-
ternally modified and that the agent can be forced to be proso-
cial and care about maximizing the total utility of all agents.
Gifting: Gifting is a recently proposed method that extends
the action space of learning agents to allow rewards to be
transferred among agents [Lupu and Precup, 2020]. It sim-
ply extends each agent’s action space with gifting actions,
but does not require that the agents use the new gifting ac-
tions in any particular way. In our work, we leverage the idea
of gifting for improving coordination in general-sum games
and examine the effects of the added gifting actions both an-
alytically and experimentally.

3 Problem Definition
We are interested in developing and analyzing algorithms that
encourage agents to exhibit prosocial behavior in multi-agent
environments with multiple equilibria. We formalize this
problem for general-sum one-shot coordination games.

General-sum one-shot coordination games are a class of



games with multiple pure-strategy Nash equilibria. Pure-
strategy Nash equilibria (PNE) are game-theoretic solution
concepts, in which each agent has no incentive to unilat-
erally deviate from a deterministic strategy given the strat-
egy of the other agents. When applying RL techniques to
these games, multi-agent systems reach one of the PNE if the
agents converge to deterministic policies [Harsanyi and Sel-
ten, 2001], although not always the best PNE for all agents.
Ideally, they would converge to the payoff-dominant PNE,
in which at least one player receives a strictly higher payoff
and no player would receive a higher payoff in another equi-
librium [Harsanyi and Selten, 2001]. If such an equilibrium
exists, then it is prosocial because the sum of rewards for all
agents is larger than that of any other equilibrium.

In practice, we are interested in reaching the prosocial
equilibrium; however, this is not trivial in settings such as
coordination games, where some of the equilibria are risk-
dominant, i.e., they have lower but more guaranteed payoffs
even if the other agents do not coordinate. These equilibria
have larger basins of attraction, so uncertainty in other play-
ers’ behaviors would lead one to choose the risk-dominant
strategy [Harsanyi and Selten, 2001]. In settings where both
payoff-dominant and risk-dominant equilibria exist, it is dif-
ficult to reach the prosocial equilibrium, as agents must be
willing to take risks and cooperate with each other. Stag
Hunt games are an excellent example of such a setting. Many
recent multi-agent RL works have studied Stag Hunt games
in depth [Peysakhovich and Lerer, 2018; Nica et al., 2017;
Leibo et al., 2017], as well as works that attempt to build AI
systems coordinating with humans [Shum et al., 2019].

The payoff matrix for a general two-action, two-player
game is shown in Table 1.

Action 1 Action 2
Action 1 a,A b,B
Action 2 c, C d,D

Table 1: Payoff matrix of a general two-player game

In a coordination game, multiple PNE exist, and they oc-
cur when players coordinate by choosing the same action.
This restricts the PNE to lie on the main diagonal of the
payoff matrix. Formally, in coordination games, we have
a > c,A > B, d > b,D > C [Harsanyi and Selten, 2001].
These inequalities place the PNE on the main diagonal, satis-
fying the condition that agents must coordinate on the same
action in order to reach a PNE. Furthermore, (Action 1, Ac-
tion 1) is the payoff-dominant equilibrium if a ≥ d,A ≥ D,
and at least one of the inequalities is strict. The specific val-
ues of these payoffs will determine what sub-class of coor-
dination games is being played: Pure Coordination, Bach or
Stravinsky (BoS), Assurance, or Stag Hunt. We are most in-
terested in the Stag Hunt setting because of the difficulty it
presents in reaching the prosocial equilibrium. Detailed de-
scriptions of the other sub-class games are in the Appendix.

3.1 Stag Hunt
• a > d,A > D

• a = A, d = D, c = B,
C = b = r

• a− c < d− r

Hunt Forage
Hunt 2, 2 r, 1

Forage 1, r 1, 1

Stag Hunt is a two-player game with a risk-dominant equi-
librium at (Forage, Forage) and a payoff-dominant equilib-
rium at (Hunt, Hunt). The payoff-dominant equilibrium is
more prosocial and provides each agent with higher reward,
but contains risk in the case where the agents do not coordi-
nate. The risk-dominant equilibrium is safer, since the reward
is less contingent on the other agent’s cooperation.

A Nash equilibrium risk dominates another if it has a
strictly higher Nash product [Harsanyi and Selten, 2001].
The Nash product of an equilibrium is the product of devi-
ation losses of both players. As shown in the third condition
above (a − c < d − r), all of the parameters influence risk
when comparing Nash products of the equilibria. However,
for simplicity, we characterize the risk in Stag Hunt with the
parameter r, the reward for hunting alone, and we keep our
analysis focused on r while holding all other values in the
payoff matrix constant. In our setting of Stag Hunt, the equi-
librium at (Hunt, Hunt) has a Nash product of (2 − 1)2 = 1,
while the equilibrium at (Forage, Forage) has a Nash product
of (1 − r)2. With r strictly negative, as r decreases, the risk
monotonically increases since the Nash product of (Forage,
Forage) grows larger. Thus, we refer to r as the risk-varying
parameter. In our analysis, we use three versions of Stag
Hunt with r = −2,−6,−10, referred to as the low, medium,
and high risk settings, respectively. If the corresponding set-
ting is not mentioned, then we default to medium risk.

3.2 Zero-Sum Gifting
To increase the probability of reaching the prosocial equi-
librium in settings with multiple equilibria, we investigate
adding zero-sum gifting actions based on the work by Lupu
and Precup [2020]. With zero-sum gifting, an agent may de-
cide to give some of its reward to the others, preserving the
total reward of agents. Although our main interest is with co-
ordination games, the method can be generally applied to all
normal-form games and is formalized below.

Take any normal-form game M with a finite set of N play-
ers, each with a set of actions (strategies) Si, and payoff func-
tion µi : S1 × S2 × . . .× SN → R where i ∈ {1, 2, . . . , N}.
We denote the subset SPNE ⊆ S1×S2× . . .×SN as the set
of PNE actions in M :

s ∈ SPNE if and only if

∀i ∈ {1, 2, . . . , N} and ∀s′i ∈ Si : µi(s) ≥ µi(s
′
i, s−i),

(1)

where s−i denotes the set of actions of all agents other than
agent i. To introduce gifting, we define a new finite set of
actions Gi, and function σi : G1 ×G2 × . . .×GN → R for
each player where:

0 ∈ Gi ,

∀gi ∈ Gi : gi ≥ 0 ,

σi(g) = −gi +
1

N − 1

∑︂
j∈−i

gj .
(2)

Here, σi formulates how the payoff of agent i changes by the
gifting actions of all agents, g.

We then formulate the new game M̄ with gifting actions.



In M̄ , the set of actions for each player is S̄i = Si ×Gi, and
the corresponding payoffs functions are µ̄i : S̄1 × S̄2 × . . .×
S̄N → R where:

∀s̄ ∈ S̄1 × S̄2 × . . .× S̄N and ∀i ∈ {1, 2, . . . , N} :

µ̄i(s̄) = µi(s) + σi(g) where s̄ = (s, g) .
(3)

Since
∑︁N

i=1 σi(g) = 0, introducing the gifting actions into
the game does not change the total reward among all agents.

Having formalized zero-sum gifting for any normal-form
game, we now proceed with analysis and experiments to high-
light its benefits. We focus our experiments on settings where
we add zero-sum gifting actions with each Gi = {0, γ}.

4 Analysis of Zero-Sum Gifting in One-Shot
Normal-Form Games

We analyze the effect of zero-sum gifting on the equilibria of
one-shot normal-form games in Section 4.1. In Section 4.2,
we characterize the behavior of learning agents in Stag Hunt
with gifting. Specifically, we formulate the learning process
of the agents as a dynamical system and show that gifting
increases the basin of attraction of the prosocial equilibrium.

4.1 Effects of Gifting on Equilibria
In this section, we state our main theoretical results. We pro-
vide the proofs for both Lemma 1 and Proposition 1 in the
Appendix. We show that agents gift each other 0 reward in
the PNE of M̄ . Moreover, S̄PNE, the set of PNE in M̄ , has a
one-to-one correspondence with SPNE, the PNE in the orig-
inal game M . Together, these imply having gifting actions
does not change the equilibrium behavior of the agents.
Lemma 1. In any one-shot normal-form game extended with
zero-sum gifting actions and for any si ∈ Si, (si, gi) is
strictly dominated by (si, 0) if gi ̸= 0, meaning (si, 0) al-
ways leads to higher payoff for agent i than (si, gi) for any
action profile s̄−i by other agents.

Corollary 1. In the set of PNE of any normal-form game
extended with zero-sum gifting actions, S̄PNE, all agents gift
0 reward.

∀s̄ ∈ S̄PNE and ∀i ∈ {1, 2, . . . , N} :

gi = 0 where s̄ = (s, g)
(4)

Proposition 1. For any normal-form game M extended to M̄
with zero-sum gifting, there exists a unique one-to-one map-
ping between their corresponding sets of PNE strategy pro-
files SPNE and S̄PNE, such that if an action set is a PNE in
M , then appending 0-gifting actions gives a PNE in M̄ :

N

×
i=1

si ∈ SPNE ⇐⇒
N

×
i=1

(si, 0) ∈ S̄PNE, and

N

×
i=1

(si, gi) ∈ S̄PNE =⇒ ∀i ∈ {1, 2, . . . , N} : gi = 0 .

(5)
Proposition 1 is a desirable result, because it means that in-

troducing gifting actions to one-shot normal-form games will
not change the final behavior of the learning agents in the
equilibria. Thus, we can carefully investigate gifting’s effect

on reaching the original equilibria of the game. Moreover,
we can view these extended actions as transient to the envi-
ronment – the gifting actions are only seen at training time.

While not changing the final equilibrium behavior, intro-
ducing gifting actions increases the frequency of converging
to a more desirable PNE in a dynamic learning environment:
prosocial behavior is observed more often after agents con-
verge to an equilibrium. Hence, it is reasonable to extend
agents’ action spaces with gifting actions specifically in sce-
narios with higher risk, as we can promote prosocial behavior
without directly shaping rewards in a centralized manner.

4.2 Effects of Gifting on the Agents’ Behavior
Since Stag Hunt is the most interesting and difficult game
among the games we introduced in Section 3, we now analyze
the behavior of learning agents in Stag Hunt with zero-sum
gifting. By Proposition 1, we know they will converge to
either (Hunt, Hunt) or (Forage, Forage) at PNE2 – they will
not give gifts. In this section, we analyze the deciding factors
that lead agents to a specific PNE.

Our idea is to formulate the game and the learning process
as a dynamical system. To do this, we first define the policies
of the two agents, πx and πy , respectively. Here, x and y pa-
rameterize the policies. While the policies may have various
forms, such as neural networks, what is important is how we
define the probability of each action. For that, we let x and y
be the logits of a softmax policy:

πx(s
(j)) =

exp(xj)∑︁4
j′=1 exp(xj′)

, (6)

and similarly for πy , where s(1) = Hunt, s(2) = Forage,
s(3) = Hunt + Gift, s(4) = Forage + Gift. As an example,
here x and y can be the outputs of a neural network. It can
be noted that only the relative differences of the parameters
are important: adding a scalar to all parameters of an agent
does not change the policy. The two PNEs of the game then
correspond to ∀i ∈ {2, 3, 4} : x1 − xi = y1 − yi = +∞ for
the prosocial and ∀i ∈ {1, 3, 4} : x2 − xi = y2 − yi = +∞
for the risk-dominant equilibrium.

We then write the expected reward of the agents as:

E[µ̄i] =
∑︂

s̄1∈S̄1

∑︂
s̄2∈S̄2

πx(s̄1)πy(s̄2)µ̄i(s̄1, s̄2) . (7)

While RL methods employ various methods to estimate
value functions or policy gradients, true gradients can be
closely estimated here by collecting large batches of data at
every learning iteration, as this is a one-shot game. Thus, we
use the true gradients:

∂E[µ̄i]

∂xj
=

∑︂
s̄1∈S̄1

∑︂
s̄2∈S̄2

∂πx(s̄1)

∂xj
πy(s̄2)µ̄i(s̄1, s̄2) , (8)

and similarly for ∂E[µ̄i]
∂yj

. Since both agents are only self-

2This game also has a mixed-strategy Nash equilibrium. How-
ever, that equilibrium is unstable, so learning agents do not converge
there in practice. Thus, we exclude the analysis of this equilibrium.



interested and want to maximize their reward, they will up-
date their policies following these gradients.

This formulation leads to an 8-dimensional autonomous
dynamical system (system with no input) with state z =
[x⊤,y⊤]⊤, and

ż = f(z) =

[︃
∂E[µ̄1]

∂x⊤ ,
∂E[µ̄2]

∂y⊤

]︃⊤
(9)

We visualize the phase portraits of this dynamical system in
Appendix D.

While our formulation so far in this section is general and
can be applied to any 2-player 4-action (including gifting)
normal-form games, we now focus on Stag Hunt. For the
remainder of this section, we take a = A = 2, r = b =
C = −6, B = c = 1, d = D = 1 (the same payoff matrix
as in Section 3.1 with medium risk) and gift value γ = 10.
Similarly, we formulate the original game without gifting as
a dynamical system.

We then want to compute the basins of attraction of the
equilibria, i.e., the initial states of the system that lead to that
specific equilibrium. This is possible, because we already
know the stable equilibria of the dynamical systems – they
are the PNEs of the corresponding normal-form games.

To this end, Fig. 2 shows the ratio of initial states that
reach the prosocial equilibrium when the relative differences
of gifting parameters with respect to x2 and y2 are taken as
uniformly spaced values in [−3, 3]3. The left heatmap shows
the two basins of attraction without gifting. Since the gift-
ing parameters are irrelevant in this setting, the map is binary.
The right heatmap corresponds to the extended game with
zero-sum gifting actions. The blue line shows the boundary
for the game without gifting for comparison. Overall, this
shows gifting is indeed beneficial for getting prosocial be-
havior in the equilibrium.
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Figure 2: Heatmaps show the probability of reaching the proso-
cial equilibrium when the policy parameters associated with gift-
ing (x3 − x2, x4 − x2, y3 − y2, y4 − y2) are taken uniformly from
[−3, 3]. The blue curve in the right heatmap shows the boundary
without gifting for comparison.

By repeating the same analysis of basin of attraction for
varying γ ∈ {1, 2, . . . , 20} and r ∈ {−10,−6,−2}, we an-
alyze how often the system converges to the prosocial equi-
librium under different conditions. Fig. 3 suggests that while
gifting is always helpful, its benefits become more significant
when agents are allowed to gift higher amounts.

3As only the differences between parameters are important, we
vary the gifting parameters with respect to x2 and y2.
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Figure 3: Frequency of reaching the prosocial equilibrium under
varying risk and gift γ amounts. The relative differences of gifting
parameters with respect to x2 and y2 are taken as uniformly spaced
values in [−3, 3] to compute the frequencies.

In the next section, we validate these results, which we
obtained by assuming access to the true gradients, in more
realistic learning settings where the payoffs are unknown to
agents.

5 Experiments
We first describe the environments used in our experiments
and implementation details. We then present experiment re-
sults to support our analysis.

5.1 Environments
Two-Player Environments: We test the effect of gifting in
multiple popular game-theoretic coordination games: Pure
Coordination, Bach or Stravinsky, Assurance, and Stag Hunt.

We perform the majority of our analysis on Stag Hunt
(low, medium, and high risk), as it contains both the payoff
and risk-dominated equilibria. Assurance is similar to Stag
Hunt but the payoff-dominant equilibrium is no longer risk-
dominated. BoS and Pure Coordination have two equally
prosocial PNE, so they are included in our experiments to
demonstrate our method still reaches a PNE in those settings.
N -Player Environments: We run experiments on Stag Hunt
with more than two players, where the game is defined by
a graph (similar to [Peysakhovich and Lerer, 2018]). Each
node in the graph represents an agent and the edges define the
individual Stag Hunts to be played. Thus, each agent chooses
an action to play with all neighbor agents and receives the
average reward of the games. We specifically examine three-
player and four-player fully connected graphs in the medium
risk setting: FC-3 Stag Hunt and FC-4 Stag Hunt.
Repeated Games: We further investigate the effect of zero
sum gifting in repeated interactions by running experiments
on a Repeated Stag Hunt environment. In Repeated Stag
Hunt, agents repeatedly play the medium risk, one-shot Stag
Hunt over a finite horizon H = 10. Each agent observes the
most recent action taken by the other agent. This setting is
interesting as agents have an expanded policy space: their
policies are conditioned on other players’ previous actions,
and so new Nash equilibria may emerge with gifting.

5.2 Implementation Details
We use the payoff matrices shown in Section 3. Unless oth-
erwise stated, we set γ = 10. For all experiments, we train
a Deep Q-Network (DQN) with independent ϵ-greedy explo-
ration for each agent. We use Adam optimizer with a learning



rate of 5 × 10−4. The replay buffer size is 105. The ϵ for
exploration begins at 0.3 and exponentially decays to 0.01
over 2 × 104 steps. Each target network updates every 250
episodes. For the one-shot games, all agents are given a con-
stant observation of 0. We provide supplementary code for
reproducibility of all the experiments.

Environment Without Gifting With Gifting

Bach or Stravinsky 100.0% 100.0%
Pure Coordination 100.0% 100.0%
Assurance 56.8% 63.3%
High Risk Stag Hunt 0.0% 19.0%
Med. Risk Stag Hunt 8.6% 21.4%
Low Risk Stag Hunt 25.4% 22.0%
FC-3 Stag Hunt 7.8% 12.1%
FC-4 Stag Hunt 5.1% 7.4%
Repeated Stag Hunt 0.0% 19.7%

Table 2: The percentage of 1024 runs with random initializations
that reached the prosocial equilibrium with multi-agent DQN.

5.3 Results
As shown in Table 2, zero-sum gifting increases the prob-
ability of converging to the most prosocial equilibrium in a
variety of coordination games. In BoS and Pure Coordina-
tion, all equilibria are equally prosocial, and we converge to
one of the equilibria 100% of the time with and without gift-
ing. In Assurance, the lack of risk makes the prosocial equi-
librium a favourable outcome even without gifting, but we
still see an improvement when adding gifting actions to the
agents. In Stag Hunt we see that gifting has a greater ben-
efit when risk is higher, but performance diminishes slightly
in the low risk setting when gifting is introduced. This in-
terdependence between varying risk and gifting is further ex-
plored later in this section. In the FC-3 and FC-4 Stag Hunts,
we can see that gifting helps increase the probability of con-
vergence to the prosocial equilibrium, but as the number of
agents increases, it becomes more difficult to coordinate all
agents and encourage risky prosocial behavior over safer ac-
tions. In Repeated Stag Hunt, gifting significantly increases
the probability of convergence to the prosocial equilibrium.
When compared to the results of the corresponding one-shot
medium risk Stag Hunt, we can see the likelihood of agents
coordinating at the prosocial equilibrium decreases both with
and without gifting, implying that coordination over repeated
instances of Stag Hunt is a more difficult, risky setting.
Interdependence of Risk and Gift Value: In Fig. 4, we
examine the relation between the gift value and the risk value
in Stag Hunt. The results show that in order for gifting to help
in coordination games with higher risk, the gift value needs
to increase to compensate for the added risk.

We can also see a slight negative effect gifting has in low
risk settings when training with DQN agents. One expla-
nation for this is that adding gifting actions to agents ex-
pands their action space and makes exploration more difficult,
and uncertainty in the other agent’s actions favors the risk-
dominant equilibrium. However, under high risk settings,
agents are more likely to behave prosocially with gifting, even
with increased difficulty in exploration.

Figure 4: This figure depicts the relationship between the risk and
gift value in Stag Hunt. In Stag Hunt, the payoff for hunting alone
(r) characterizes the risk. The results show that as risk increases,
the gift value γ must increase proportionally in order to be risk-
mitigating and improve convergence to the prosocial equilibrium.

6 Discussion
Summary: We formalize a zero-sum gifting mechanism and
show that it often increases the probability of convergence to
the prosocial equilibrium in coordination games. We prove
that zero-sum gifting does not alter the behavior under Nash
equilibria in one-shot normal-form games. With gifting, we
show via numerical analysis that the prosocial equilibrium’s
basin of attraction grows in Stag Hunt and empirically vali-
date these results with DQN in a broader set of environments.

Limitations: We analyze gifting as an alternative method for
encouraging prosocial behavior compared to explicit reward
shaping. In practice, gifting requires the ability to extend an
environment’s action space, so it can only be applied in set-
tings where agents’ action spaces can be modified.

Moreover, although our experimental results in Table 2
show that gifting negatively affects the low risk Stag Hunt
setting when trained with DQN, the performance loss is
marginal compared to the performance gain we see in higher
risk settings. Nonetheless, one should be cautious when ap-
plying gifting, as the benefits are dependent on the risk in the
respective environment.

Future Work: We focus the majority of our experiments on
one-shot games, since we are interested in isolating the set-
ting where no new equilibria are introduced by the gifting ac-
tions. We provide brief experiments of gifting in the repeated
game setting, but further exploring the emergence of complex
behaviors involving gifting in repeated interactions can help
shed light on what settings gifting would be most beneficial.
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A Sub-classes of Coordination Games
We formally define each sub-class of coordination game that we pro-
vide experimental results for in Table 2. We define the conditions for
each coordination game, as well as provide a concrete example in the
form of a payoff matrix.

A.1 Pure Coordination
• b = B = c = C = ζ

• a = d,A = D

• ζ < min(a,A)

Action 1 Action 2
Action 1 1, 1 0, 0
Action 2 0, 0 1, 1

In the simplest type of coordination game, there does not exist
a payoff-dominant equilibrium, as both PNE give identical payoffs
and are equally prosocial. There is also no additional risk associ-
ated with choosing Action 2 as opposed to Action 1, and hence,
we expect randomly initialized learning agents to converge to either
equilibrium with equal probability.

A.2 Bach or Stravinsky (BoS)
• b = B = c = C = ζ

• a > d,A < D

• ζ < min(a,A)

Action 1 Action 2
Action 1 2, 1 0, 0
Action 2 0, 0 1, 2

In BoS, the PNE are not identical, and neither PNE is payoff-
dominant. The row player prefers (Action 1, Action 1) and the col-
umn player prefers (Action 2, Action 2). When a = D, A = d, we
consider either PNE to be the prosocial equilibrium, as the sum of
rewards among players is identical. In this case, both equilibria have
the same risk, and we expect randomly initialized learning agents to
converge to either equilibrium with equal probability.

A.3 Assurance
• b = B = c = C = ζ

• a > d,A > D

• ζ < min(a,A)

Action 1 Action 2
Action 1 2, 2 0, 0
Action 2 0, 0 1, 1

In the game of Assurance, the payoff-dominant PNE is (Action 1,
Action 1). It is also risk-dominant, i.e., even if an agent thinks their
partner may not coordinate by taking the same action, there is no
incentive to go for Action 2. This makes it easy for agents to reach
the payoff-dominant equilibrium.

B Proof of Lemma 1
Lemma 1. In any one-shot normal-form game extended with zero-
sum gifting actions and for any si ∈ Si, (si, gi) is strictly dominated
by (si, 0) if gi ̸= 0, meaning (si, 0) always leads to higher payoff
for agent i than (si, gi) for any action profile s̄−i by other agents.

Proof. For any s̄−i = (s−i, g−i) ∈ S̄−i, the payoff for agent i
under the action (si, gi) is

µ̄i(s̄) = µi(s) + σi(g) = µi(s)− gi +
1

N − 1

∑︂
j∈−i

gj (10)

If agent i had (si, 0), its payoff would be µi(s) +
1

N−1

∑︁
j∈−i gj ,

which is strictly larger as gi > 0, regardless of s̄−i. Hence, (si, gi)
is strictly dominated by (si, 0), and this completes the proof.

C Proof of Proposition 1
Proposition 1. For any normal-form game M extended to M̄ with
zero-sum gifting, there exists a unique one-to-one mapping between
their corresponding sets of PNE strategy profiles SPNE and S̄PNE,

such that if an action set is a PNE in M , then appending 0-gifting
actions gives a PNE in M̄ :

N

×
i=1

si ∈ SPNE ⇐⇒
N

×
i=1

(si, 0) ∈ S̄PNE, and

N

×
i=1

(si, gi) ∈ S̄PNE =⇒ ∀i ∈ {1, 2, . . . , N} : gi = 0 .

(5)

Proof. We already know from Corollary 1 that actions involving
non-zero gifting cannot exist in the PNE of M̄ , so the latter state-
ment is true. We now prove the former statement. First, we define
S̄0 by appending 0-gifting actions to the action sets in SPNE:

S̄0 =

{︄
N

×
i=1

(si, 0) | s ∈ SPNE

}︄
. (11)

Next, we show that S̄0 = S̄PNE, proving the first statement.

∀s̄ ∈ S0 and ∀i ∈ {1, 2, . . . , N} :

µ̄i(s̄) = µi(s) + σi ((0, 0, . . . , 0)) = µi(s) + 0

Because s ∈ SPNE, we have

∀s′i ∈ Si : µi(s) ≥ µi(s
′
i, s−i) ,

implying changing si only does not increase the payoff for agent i.
Moreover, we know from Lemma 1 that any non-zero gifting action
is strictly dominated by the corresponding zero-gifting action. These
two results mean changing the gifting action gi, the original action
si, or both cannot increase the payoff for agent i:

∀s̄′i ∈ S̄i : µ̄(s̄) ≥ µ̄(s̄′i, s̄−i) , (12)

and therefore S̄0 = S̄PNE.

D Gradients of the Dynamical System
Figure 5 shows the normalized gradients of the system that gov-
ern the dynamics for various parameters of gifting actions (x3,
x4, y3 and y4). Again, as only the differences between param-
eters are important, we vary the gifting parameters with respect
to x2 and y2. Since the prosocial equilibrium is reached with
x1 − x2 = y1 − y2 = +∞ and the risk-dominated equilibrium
with x1 − x2 = y1 − y2 = −∞, these phase portraits show the two
regions of states that would be updated to move towards either of the
equilibria. It can be seen that higher gifting parameters enlarge the
region that moves towards the prosocial equilibrium.

It should be noted that while Fig. 5 gives a picture of system dy-
namics, it is limited in two aspects: first, it does not provide any
information about what happens when the gifting parameters are
not equal to each other. Second, the gradients of individual states
only give information about one-step updates learning agents would
have. However, because the gifting parameters will also be learned,
Fig. 5 does not show the initial states that will reach the prosocial
equilibrium. Therefore, the basin of attraction analyses we made in
Section 4.2 gives a more accurate picture.

E Transient Gifting Actions
As Proposition 1 shows, zero-sum gifting does not introduce any
new equilibria to one-shot normal-form games. Thus, we investigate
the usage of gifting actions at train time to provide insight on how
gifting encourages agents to be prosocial. Fig. 6 shows that, even
when agents start with frequent zero-sum gifting actions, they use
gifting as transient actions during training to encourage other agents
to update towards the more prosocial equilibrium. As the agents
optimize their own parameters selfishly, the agents take the gifting
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Figure 5: Phase portraits of the formulated dynamical system under various gifting parameters. Note the left-most figure shows the system of
the game without gifting. Axes show [−3, 3] for each plot.
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Figure 6: This plot shows the percentage of gifting actions in a batch
vs. the optimization step during one training run that starts with
frequent gifting actions and reaches the prosocial equilibrium in Stag
Hunt. Both agents are initialized to have a higher Q-value for the
gifting actions and equal Q-value for the non-gifting actions. This
provides an empirical example of Lemma 1 in practice, where agents
gift initially to encourage prosocial behavior, and learn not to gift in
the limit, while reaching the prosocial equilibrium.

actions less frequently, and their final converged policies never in-
clude gifting actions in the case of one-shot normal-form games.

F Compute Details
The basin of attraction code ran on an Elastic Compute Cloud (EC2)
instance in Amazon Web Services (AWS) with 16 vCPUs and 30
GB RAM. Each run took between 2 and 24 hours depending on how
fast the agents converge to equilibria.

The DQN training code ran on a personal computer with an
8C/16T processor and 32 GB RAM. Figure 4 took 36 hours to com-
plete. Each result in Table 2 took around 2 hours to complete.
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