
Learning How to Dynamically Route
Autonomous Vehicles on Shared Roads

Daniel A. Lazar∗, Erdem Bıyık∗, Dorsa Sadigh, Ramtin Pedarsani

Abstract—Road congestion induces significant costs across the
world, and road network disturbances, such as traffic accidents,
can cause highly congested traffic patterns. If a planner had
control over the routing of all vehicles in the network, they
could easily reverse this effect. In a more realistic scenario, we
consider a planner that controls autonomous cars, which are a
fraction of all present cars. We study a dynamic routing game,
in which the route choices of autonomous cars can be controlled
and the human drivers react selfishly and dynamically. As the
problem is prohibitively large, we use deep reinforcement learning
to learn a policy for controlling the autonomous vehicles. This
policy indirectly influences human drivers to route themselves
in such a way that minimizes congestion on the network. To
gauge the effectiveness of our learned policies, we establish
theoretical results characterizing equilibria and empirically
compare the learned policy results with best possible equilibria.
We prove properties of equilibria on parallel roads and provide
a polynomial-time optimization for computing the most efficient
equilibrium. Moreover, we show that in the absence of these
policies, high demand and network perturbations would result
in large congestion, whereas using the policy greatly decreases
the travel times by minimizing the congestion. To the best of our
knowledge, this is the first work that employs deep reinforcement
learning to reduce congestion by indirectly influencing humans’
routing decisions in mixed-autonomy traffic.

Keywords—Dynamic routing, reinforcement learning, mixed-
autonomy traffic

I. INTRODUCTION

CONGESTION can result in substantial economic and
social costs [schrank2015] which have only been grow-

ing in recent years, especially with the advent of ride-hailing
services [henao2017impacts, beojone2021inefficiency]. Con-
gestion is formed by a number of mechanisms, such as
when many vehicles try to enter a road at the same time.
A higher-level cause is from how people choose their
routes – when people selfishly choose the quickest routes
available to them, this often results in greater congestion
and longer travel time than if people had their routes
chosen for them optimally in terms of the overall experi-
enced delay [roughgarden2002bad]. There are some existing
methods for fighting congestion, such as congestion pric-
ing [hu2019newYork], variable speed limits [lu2011novel]
and highway ramp metering [gomes2008behavior]. However,
they can be difficult to administer, and can require significant
changes to infrastructure.

The introduction of autonomous vehicles to public roads
provides an opportunity for better congestion management
[di2020survey]. Our key idea is that by controlling the routing

∗Authors contributed equally.
Daniel Lazar is with the Department of Electrical and Computer Engineering,

UC Santa Barbara dlazar@ece.ucsb.edu
Erdem Bıyık is with the Department of Electrical Engineering, Stanford

University ebiyik@stanford.edu
Dorsa Sadigh is with the Departments of Computer Science and Electrical

Engineering, Stanford University dorsa@cs.stanford.edu
Ramtin Pedarsani is with the Department of Electrical and Computer

Engineering, UC Santa Barbara ramtin@ece.ucsb.edu

of autonomous vehicles, we can change the delay associ-
ated with traversing each road, thereby indirectly influencing
peoples’ routing choices. By influencing people to use more
“socially advantageous” routes, we can eliminate long queues
and significantly reduce traffic jams on roads.

The model for mixed-autonomy traffic, meaning traffic with
both human-driven and autonomous vehicles, is complex,
involving very large and continuous state space and continuous
action space. Having human drivers dynamically respond to
the choices of the autonomous vehicles further complicates
the matter, making a dynamic programming-based approach
and other classical methods infeasible. Because of this, we
use model-free deep reinforcement learning (RL) to learn
a policy without requiring access to the dynamics of the
transportation network. Specifically, we show it is possible
to learn a policy via proximal policy optimization (PPO)
[schulman2017proximal] that mitigates traffic congestion by
managing routing of autonomous cars given the network state.

To understand the performance of the learned policy, we
investigate the equilibrium behavior of the network. Previous
works [krichene2017stackelberg, lazar2018altruism] have
shown that there is a wide spectrum of equilibria in traffic
networks, meaning situations in which everyone is taking
the quickest route immediately available to them, and these
equilibria can have greatly varying average user delay. We
establish efficient ways to compute equilibria in the network
and compare the best equilibrium (in terms of latency) with
the RL policy, which works regardless of whether equilibrium
conditions hold or not. We show that the learned policy reaches
the ‘desirable’ equilibria that have low travel times when
starting with varying traffic patterns, and can recover network
functionality after a disturbance such as a traffic accident. To
summarize, our contributions are as follows:
• Theoretical analysis: We characterize equilibria in the

network and derive a polynomial-time computation for
finding optimal equilibria of parallel networks.

• Finding a control policy via deep RL: We employ deep
RL methods to learn a routing policy for autonomous cars
that effectively saves the traffic network from unboundedly
large delays. We show via simulation that the RL policy is
able to bring our network to the best possible equilibrium
when starting from a congested state or after a network
disturbance on parallel networks. We further show that an
MPC-based approach and a greedy optimization method fail
to do so, and thus is outperformed by the RL-based method
in general networks.
We visualize our framework in the schematic diagram Fig. 1.
Literature review. Many works seek to understand how

much traffic network latency could be improved if vehicle
routing was controlled by a central planner, including
works on congestion games [dafermos1972multiclass_user,
hearn1984convex, roughgarden2002bad, lazar2020routing,

Fig. 1: The schematic diagram of our framework. Our deep RL agent processes the state of the traffic and outputs a control policy for
autonomous cars’ routing.
mehr2018can]. Some study how indirectly influencing peoples’
routing choices by providing them network state information
affects network performance [lazarus2018decision,
wu2018value]. Stackelberg Routing, in which only some of
the vehicles are controlled, is another way to influence routing
[roughgarden2004stackelberg, swamy2012effectiveness];
some works incorporate the dynamics of human routing choices
[krichene2018social]. While providing useful techniques for
analysis, the congestion game framework does not reflect
a fundamental empirical understanding about vehicle flow
on roads, namely that roads with low vehicle density have
a roughly constant latency, and roads with high density see
latency increase as flow decreases.

Works on CTM [daganzo1994cell,
muralidharan2009freeway] capture this phenomenon,
including works that characterize equilibria on roads
described with CTM [gomes2008behavior]. Notably, some
consider equilibria of parallel-path Stackelberg Games,
including with mixed autonomy [krichene2017stackelberg,
lazar2018altruism]. However, their analyses are limited
to steady-state and do not capture the dynamics.
[aswani2011game] considers a Fundamental Diagram
of Traffic-based model for slowly varying traffic. They
formulate this as a Stackelberg Game and design routing
information for users to minimize overall latency and bound
the resulting inefficiency in a simple network. However, they
only consider a single-vehicle type, not a mixed-autonomy
setting.

Some works look at the low-level control of
autonomous cars, specifically controlling acceleration
to smooth flow and ease congestion at bottlenecks
[cui2017stabilizing, wu2017emergent, wu2018stabilizing];
[vinitsky2018benchmarks] provides a benchmark for gauging
the performance of these techniques. Other works learn ramp
metering policies [belletti2018expert], localize congestion
[sivaranjani2015localization], and model lane-change
behavior with a neural network [wright2019neural].

In addition to these learning methods, there has also been an
effort to use RL for route selection [mao2018reinforcement]
and driver choice modeling in traffic assignment
problem [bazzan2016multiagent, zhou2020reinforcement,
ramos2018analysing, stefanello2016using]. Again using RL,
[grunitzki2014individual] shows reward shaping mechanisms
could be utilized to reach better equilibria. Recently,
[shou2020reward, shou2020multi] develop a hierarchical
approach to optimize fares, tolling and signal control in the

high-level whereas a multi-agent RL method models the
drivers in the lower level. Although these works show the
effectiveness and potential of RL methods in transportation, to
the best of our knowledge, these methods have not been used
in a routing game with mixed-autonomy traffic where a central
planner aims to reduce congestion by indirectly influencing
humans’ routing via the routing of autonomous vehicles.

Without any reinforcement learning component, some works
provide macroscopic models of roads shared between human-
driven and autonomous cars. [li2018modeling] models highway
bottlenecks in the presence of platoons of autonomous vehicles
mixed in with human-driven vehicles. The authors relate
their model to a CTM type-model similar to the model
presented below, though it is specific to a single highway.
[mahmassani201650th] describes a microscopic model to
determine the effect of autonomy on throughput, yielding
fundamental diagrams. The fundamental relationship between
autonomy level and critical density in our model mirrors that
of [levin2016multiclass], which develops a CTM model for
mixed autonomy traffic.

Some works solve the dynamic traffic assignment problem
for networks with a CTM-based flow model, including some
which decompose the optimization to enable optimizing flow
on large networks [mehrabipour2019decomposition]. In con-
trast, our works studies the setting in which some flow demand
is controlled to optimize the system performance, and some
flow demand updates according to a selfish update rule. This
precludes the use of such decomposition techniques, since the
optimization can no longer be formulated as a linear program.
Because of this, we use RL to solve for a routing policy in
our setting.

II. VEHICLE FLOW DYNAMICS: MODELING ROADS

In this section we describe dynamics governing how vehicle
flow travels on a road. We extend the CTM, a widely used
model that discretizes roads into cells, each with uniform
density [daganzo1994cell, muralidharan2009freeway], for
mixed-autonomy traffic. In CTM, each road segment has
a maximum flow that can traverse it. The key idea of our
extension is that since autonomous vehicles can keep a shorter
headway (distance to the car in front of it), the greater the
fraction of autonomous vehicles on a road, the greater the
maximum flow that the road can serve [lazar2018altruism].
Accordingly, our extension of CTM lies in the dependence
of cell parameters on the autonomy level, or the fraction of
autonomous vehicles, in each cell.

We use our capacity model in conjunction with Daganzo’s
CTM formulation in [daganzo1994cell, daganzo1995cell], the
combination of which we describe in the following. We consider
a network of roads with a single origin and destination for
all vehicles in the network. The origin and destination are
connected by the set of simple paths P . Each path is composed
of a number of cells, and we denote the set of cells composing
path p by Ip. We generally use i and p as indices for cells
and paths, respectively.

In the CTM, every cell has a critical density, and when
the density of a cell exceeds the critical density, that cell is
congested. We model the critical density as being dependent
on the autonomy level. This is because autonomous vehicles
maintain a different nominal headway than human-driven
vehicles; in other words, autonomous vehicles may require
more space in front of them due to prediction error, or less
space, as they may react faster than human drivers. Accordingly,
we use the model in [lazar2017routing] to model the capacity
of a cell.

Using this model, each cell i has a free-flow velocity, v̄i, as
well as a nominal headway for vehicles traveling at the free-
flow velocity — hh

i cells/vehicle for human-driven vehicles
and ha

i for autonomous vehicles. The capacity of the cell
then varies with the autonomy level, denoted αi ∈ [0, 1]. We
use bi to denote the number of lanes in a cell. We model
vehicles as slowing down when the headway experienced
decreases below the nominal headway required and accordingly
model the critical density as follows, as in [askari2017effect,
lazar2017routing, lazar2018altruism, mehr2018can]:

ñi(αi) := bi/(αih
a
i + (1− αi)h

h
i). (1)

Each cell also has a vehicle density, ni = nh
i + na

i , where
nh
i and na

i are, respectively, the number of human-driven and
autonomous vehicles. Thus, αi = na

i/(n
h
i + na

i). As the cells
are very large compared to the vehicles, we consider these
quantities to be continuous variables. As mentioned above,
CTM has two regimes for vehicle flow: free-flow, when cell
density is less than the critical density, and congestion, when
cell density is greater than the critical density but less than the
jam density n̄i, the density at which flow stops completely.

Three factors limit the flow from one cell to another. One
is the capacity, or maximum flow out of a cell, which is the
flow of vehicles that traverse the cell at the critical density:

F̄ i(αi) := v̄iñi(αi) . (2)

The flow out of a cell is limited by the sending function
of that cell, which is the minimum of the capacity of the
cell and the demand of vehicles in the cell: Si(αi(k)) =
min(F̄ i(αi), v̄ini(k)). The flow entering a cell is limited
by that cell’s receiving function, which is the minimum
of its capacity and its supply of vehicles: Ri(αi(k)) =
min(F̄ i(αi), (n̄i − ni)wi(αi)), where wi is the shockwave
speed, the speed at which slowing waves of traffic propagate
upstream: wi(αi) := v̄iñi(αi)/(n̄i− ñi(αi)). In the following,
we use fi(k) to denote the flow out of cell i at time k and yi(k)
to denote the flow into cell i. We use the standard superscripts
for human-driven and autonomous flow, with the relationships

f h
i (k)+f a

i (k) = fi(k) and yh
i (k)+ya

i(k) = yi(k). Accordingly,

nh
i (k+1) = nh

i (k)+yh
i (k)−f h

i (k) ,

na
i(k+1) = na

i(k)+ya
i(k)−f h

i (k) . (3)

Since some cells might be a part of more than one path,
we also track the paths of the human-driven and autonomous
vehicles in each cell. We use µh

i (p, k) and µa
i(p, k) to denote the

fraction of human-driven and autonomous vehicles, respectively,
in cell i at time k that are taking path p. If cell i is not on
path p, let µh

i (p, k) = µa
i(p, k) = 0.

Extending the development in [blubook_vol1_v085], we
formulate a calculation of the flow of mixed autonomous
vehicles through general junctions. We define O as the set
of intersections, or junctions, in the network. We use Ξ(o) to
denote the set of turning movements through intersection o, with
a turning movement denoted by a tuple, such as [i, o, j] ∈ Ξ(o),
where i denotes the incoming cell, and j denotes the outgoing
cell. As before, we consider all cells to have one direction
of travel. For intersection o we define a set of conflict points
C(o), and Ξ(c) denotes the set of turning movements through
the intersection which pass through conflict point c, where
c ∈ C(o). These routes may have different priority levels, so
for each [i, o, j] ∈ Ξ(c) we define βc

ioj > 0 as the priority of
turning movement [i, o, j] through conflict point c. Each conflict
point has some supply Rc, which we assume is independent of
the level of autonomy of the vehicles passing through it. The
relative priority of the turning movements will determine the
relative flow of each turning movement through the conflict
point. In a slight abuse of notation, we use fioj(k) to denote
the total flow of vehicles through turning movement [i, o, j]
at time k; we use f h

ioj(k) and f a
ioj(k) to denote the flow of

human and autonomous vehicles, respectively, through the
turning movement. We use Γ(o) and Γ−1(o) to denote the set
of cells exiting and entering junction o, respectively.

We then calculate the flows at each time step as in
Algorithm 1.

An interpretation of this algorithm is as follows. The set A
denotes the set of turning movements with flows that can yet
be increased, and each turning movement is assigned a rate at
which its flow increases. As sending and receiving limits are
reached, turning movements are removed from A until there
are no more turning movements left to increase.

In more concrete terms, first calculate the fraction of vehicles
in each incoming cell which are headed to each outgoing cell.
Then initialize all flows to 0 and initialized the unused sending
and receiving capacity for each cell and conflict point. We
then find relative rates of flow increase, δioj , for the turning
movements. In the loop, we calculate the similar rates of
flow increases for the receiving cells and conflict points based
on the rates previously found. Then, the flows are increased
by the established rates until either a sending limit, a cell
receiving limit, or conflict point capacity is reached. Any
turning movement that has reached its sending limit is removed
from the set of turning movements with further flow increases,
A. Similarly, any turning movement that exits from a cell which
has reached its receiving limit is removed from A, and the
same with turning movements through conflict points which
have reached their capacity. The loop repeats until A is empty.

Fig. 2: (a) Fundamental diagram of traffic governing vehicle flow in each cell of the Cell Transmission Model. The solid line corresponds
to a cell with only human-driven vehicles; the dashed line represents a cell with both vehicle types at autonomy level αi. Green and red
respectively represent a cell in free-flow and congestion. (b) The flow from one cell to another is a function of the density n and autonomy
level α in each cell. In both figures, we suppress the notation for path p.

Having calculated the flow through the intersection, the states
of each cell is updated as follows. We compute the incoming
flows for the outgoing cells as follows:

∀(o, j) ∈ Γ(o), yh
j(k) =

∑︂
[i,o,j]∈Ξ(o)

f h
ioj

ya
j(k) =

∑︂
[i,o,j]∈Ξ(o)

f a
ioj

yj(k) = yh
j(k) + ya

j(k) (4)

To calculate the outgoing flows of the incoming cells,

∀(i, o) ∈ Γ−1(o), f h
i (k) =

∑︂
[i,o,j]∈Ξ(o)

f h
ioj

f a
i (k) =

∑︂
[i,o,j]∈Ξ(o)

f a
ioj

fi(k) = f h
i (k) + f a

i (k) , (5)

where Γ−1(o) denotes the set of cells going into intersection o.
(3) updates the human-driven and autonomous vehicle densities
of each cell at the next time step. To update the fraction of
vehicles in the outgoing cells on each path,

∀(o, j) ∈ Γ(o),

µh
j(p, k + 1) =∑︁

[i′,o,j]∈Ξ(o) f
h
i (k)µ

h
i (p, k) + µh

j(p, k)(n
h
j(k)− f h

j (k))

nh
j(k + 1)

,

µa
j(p, k + 1) =∑︁

[i′,o,j]∈Ξ(o) f
a
i (k)µ

a
i(p, k) + µa

j(p, k)(n
a
j(k)− f a

j (k))

na
j(k + 1)

.

Accidents. To evaluate the performance of the developed
RL policy in reacting to disturbances, we consider stochastic
accidents occuring in the network, each of which causes one
lane to be closed. We let accidents occur in any cell at any
time with equal probability as long as the jam density does not
decrease below the current density of the cell. Each accident
is cleared out after some number of time steps, drawn from
a Poisson distribution. If b̄i lanes of cell i are closed due to
accidents, then the jam density and the critical density for
the cell reduce to (bi − b̄i)/bi of their original values. Thus,
accidents introduce time-dependency to these variables.

III. NETWORK DYNAMICS: ROUTING FOR HUMANS AND
AUTONOMOUS VEHICLES

As mentioned above, we consider a network with a set of
possible paths P . We use λh and λa to denote the human-driven
and autonomous vehicle demands, respectively. We model all
vehicles entering the network as entering a queue, a single cell
with infinite capacity. We use 0 for the index of this cell. The
routing choices of autonomous vehicles leaving the queue is
determined by the central controller, and the routing choices
of human-driven vehicles leaving it are determined from the
latencies associated with each path, detailed below.

A. Human choice dynamics

In general, people wish to minimize the amount of time
spent traveling. However, people do not change routing choices
instantaneously in response to new information; rather they
have some inertia and only change strategies sporadically.
Moreover, we assume people only account for current con-
ditions and do not strategize based on predictions of the
future [sandholm2010population]. Accordingly, we use an
evolutionary dynamic to describe how a population of users
choose their routes.1 Specifically, we model the human driver
population as following Hedge Dynamics, also called Log-
linear Learning [cesa2006prediction, marden2012revisiting,
blume1993statistical].

Let (µh
0(p, k))p∈P represent the initial routing of human-

driven vehicles at time k; accordingly,
∑︁

p∈P µh
0(p, k) = 1 for

all k. Humans will update their routes based on their estimates
of how long it will take to traverse each path. However, it is
not always possible to predict travel time accurately on general
networks, since vehicles entering later on a different path may
influence the travel time of vehicles entering earlier. Because
of this, we consider that humans have an estimate ℓ̂p(k) of the
true latency ℓp(k). With these estimates, the routing vector is
updated as follows.

µh
0(p, k + 1) =

µh
0(p, k) exp(−ηh(k)ℓ̂p(k))∑︁

p′∈P µh
0(p

′, k) exp(−ηh(k)ℓ̂p′(k))
. (6)

The ratio of the volume of vehicles using a path at successive
time steps is inversely proportional to the exponential of the
delay experienced by users of that path. The learning rate
ηh(k) may be decreasing or constant. Krichene et al. introduce

1Alternately, one could model individual users as learning agents, posing
it as a Multi-Agent Reinforcement Learning problem. However, we consider
large networks with too many human agents for this to be feasible.

Algorithm 1 Flow Calculation

1: procedure FLOW CALCULATION(Intersection o)
2: ∀[i, o, j] ∈ Ξ(o), ph

ioj ←
∑︂

p∈P:i,j∈Ip

µh
i (p, k)

pa
ioj ←

∑︂
p∈P:i,j∈Ip

µa
i(p, k)

pioj ←
nh
i (k)p

h
ioj + na

i(k)p
a
ioj

nh
i (k) + na

i(k)

3: ∀[i, o, j] ∈ Ξ(o), fioj ← 0

f h
ioj ← 0

f a
ioj ← 0

S̃ioj ← Si(αi(k))pioj

∀(o, j) ∈ Γ(o), R̃oj ← Rj(αj(k))

∀c ∈ C(o), R̃c ← Rc

4: For all [i, o, j] ∈ Ξ(o), set δioj such that

∀[i, o, j] ∈ Ξ(o),

∀[i′, o, j′] ∈ Ξ(o),
δioj
δi′oj′

=
pioj
pi′oj′

,

where i can equal i′ and j can equal j′, and
∀c ∈ C(o); ∀[i, o, j] ∈ Ξ(c)

∀[i′, o, j′] ∈ Ξ(c),
δioj
δi′oj′

=
βc
iojpioj

βc
i′oj′pi′oj′

,

where i can equal i′ and j can equal j′.

5: A← Ξ(o)
6: while A ̸= ∅ do
7: ∀(o, j) ∈ Γ(o), δoj ←

∑︂
[i,o,j]∈A

pioj

∀c ∈ C(o), δc ←
∑︂

[i,o,j]∈Ξ(c)∩A

pioj

8:
θ = min{ min

[i,o,j]∈A

S̃ioj

δioj
, min
(o,j)∈Γ(o),δoj>0

R̃oj

δoj
,

min
c∈C(o):δc>0

R̃c

δc
}

9: ∀[i, o, j] ∈ A, fioj ← fioj + θδioj

f h
ioj ← f h

ioj + θδioj(1− αi(k))

f a
ioj ← f a

ioj + θδiojαi(k)

S̃ioj ← S̃ioj − θδioj

∀(oj) ∈ Γ(o), R̃oj ← R̃oj − θδoj

∀c ∈ C(o), R̃c ← R̃c − θδoj

10: A← A \ {[i, o, j] ∈ A : S̃ioj = 0}
A← A \ {[i, o, j′] ∈ A : R̃oj = 0 ∧ pioj′ > 0}
A← A \ {[i, o, j] ∈ c : R̃c = 0 ∀c ∈ C(o)}

11: end while
12: return fioj , f h

ioj , f a
ioj , ∀[i, o, j] ∈ Ξ(o)

13: end procedure

this model in the context of humans’ routing choices and
simulate a congestion game with Amazon Mechanical Turk
users to show the model accurately predicts human behavior
[krichene2018learning]. We note that though we use this
specific model for human choice for our simulations, the control
method described later does not require this specific choice of
human choice model. Our theoretical analysis similarly is not
restricted to this choice of dynamics and works for any human
choice model in which all fixed points of the dynamics satisfy
human selfishness.
B. Autonomous vehicle control policy

We assume that we have control over the routing of
autonomous vehicles. We justify this by envisioning a future
in which autonomous vehicles are offered as a service rather
than a consumer product. We then assume that a city can
coordinate with the owner of an autonomous fleet to decrease
congestion in the city. Moreover, unlike traditional tolling,
coordination between autonomous vehicles and city infras-
tructure allows for fast-changing and geographically finely
quantized tolls, enabling routing control to be achieved through
incentives [biyik2019green, beliaev2021incentivizing]. The
initial routing of autonomous vehicles is then our control
parameter by which we influence the state of traffic on the
network. Consistent with the previous notation, we denote the
initial autonomous routing as (µa

0(p, k))p∈P ∈ R|P|
≥0 , where∑︁

p∈P µa
0(p, k) = 1.

We assume the existence of a central controller, or social
planner, which dictates µa

0 by processing the state of the
network. At each time step, we let the controller observe:
• the number of human-driven and autonomous vehicles in

each cell and in the queue,
• binary states for each lane that indicates whether the lane

is closed due to an accident or not.
We use deep RL to arrive at a policy for the social planner
to control the autonomous vehicle routing, µa

0. Since the
state space is very large and both state and action spaces
are continuous, a dynamic programming-based approach is
infeasible. For instance, even if we discretized the spaces, say
with 10 quantization levels, and did not have accidents, we
would have 1082 possible states and 10 actions for a moderate-
size network with only 2 paths and 40 cells in total.

We wish to minimize the total latency experienced by users,
which is equal to summing over time the number of users in
the system at each time step. Accordingly, the stage cost is:

J(k) =
∑︂
i∈I

ni(k) . (7)

Due to their high performance in continuous control tasks
[schulman2015trust, schulman2017proximal], we employ
policy gradient methods to learn a policy that produces µa

0

given the observations. Specifically, we use state-of-the-art
PPO with an objective function augmented by adding an en-
tropy bonus for sufficient exploration [schulman2017proximal,
mnih2016asynchronous]. We build a deep neural network,
and train it using Adam optimizer [kingma2014adam]. An
overview of the PPO method and the set of parameters we
use are presented in the appendix (Sec. VII-C and Sec. VII-D).
Each episode has a fixed number of time steps.

In order to evaluate the performance of our control policy,
we use three criteria. The first is the throughput of the network
– we wish to have a policy that can serve any feasible demand,
thereby stabilizing the queue. The second is the average delay
experienced by users of the network, which we measure by
counting the number of vehicles in the system. The third is
the convergence to some steady state; we wish to avoid wild
oscillations in congestion. To contextualize the performance
of our control policy in this framework, we first establish the
performance of equilibria of the network.

IV. EQUILIBRIUM ANALYSIS

In this section, we examine the possible equilibria of our
dynamical system, which characterize the possible steady state
behaviors of the system. A network with a given demand
can have a variety of equilibria with varying average user
delay. If our control achieves overall delay equal to that of the
best possible equilibrium, it is a successful policy. Section V
shows empirically that our learned policy can achieve the best
equilibrium in a variety of settings.

In this section, we first formulate an optimization which
solves for the most efficient equilibrium, which is computation-
ally hard. Motivated by this, we restrict the class of networks
considered and prove theoretical properties of this restricted
class. Using these properties, we formulate a new optimization
formulation to solve for the most efficient equilibrium and
prove it is solvable in polynomial time.

A. Equilibrium Formulation

We define two notions of equilibrium: one related to the
vehicle flow dynamics, and one related to human choice
dynamics.2

Definition 1 (Path Equilibrium). We define a path equilibrium
for path p as a set of cell densities (nh

i (k), n
a
i (k))i∈Ip that,

for a given constant flow entering the first cell on the path,
yh
i (k) and ya

i (k), the cell densities are constant.

Definition 2 (Network Equilibrium). We define a network
equilibrium as a set of cell densities (nh

i (k), n
a
i (k))i∈I and

human vehicle routing (µh
0(p, k))p∈P , such that for a given

constant entering flow yh
0(k) and ya

0(k) and a given constant
autonomous vehicle routing (µa

0(p, k))p∈P , the human vehicle
routing, subject to the dynamics in (6), is constant.

We are interested in satisfying both notions of equilibrium –
both the path equilibrium, which deals with the vehicle flow
dynamics, and the network equilibrium, which deals with
the human choice dynamics. Accordingly, the pair can be
considered a Stackelberg Equilibrium for a leader controlling
the autonomous vehicles who wishes to maximize the social
utility in the presence of selfish human demand. We formulate
the following optimization to solve for the most efficient
equilibrium (satisfying both notions of equilibrium defined
above), i.e. the equilibrium which minimizes the total travel

2These define equilibria in the sense of dynamical systems, and do not
strictly correspond to game-theoretic notions of equilibria. Under Assumption
3 below, the set of equilibria for the dynamics of human choice will correspond
to the set of Nash Equilibria where the payoff is the path latency.

time of all users of the network. We drop all time indices since
we consider quantities that are constant over time.

min
(nh

i,n
a
i,f

h
i ,f

a
i ,y

h
i,y

a
i,µ

h
i(p),µ

a
i(p),ℓp)i∈I,p∈P

∑︂
i∈I

ni

s.t. ∀o ∈ O : procedure FLOW CALCULATION(Intersection o)
(4), (5)

∀i ∈ I : yh
i = f h

i , ya
i = f a

i , αi = na
i/(n

h
i + na

i)∑︂
i′∈Ui

f h
i′µ

h
i′(p)=f h

i µ
h
i (p),

∑︂
i′∈Ui

f a
i′µ

a
i′(p)=f a

i µ
a
i(p)

ℓp =
∑︂
i∈p

(nh
i + na

i)/(f
h
i + f a

i)

∀p, p′ ∈ P : µh
0(p)(ℓp − ℓp′) ≤ 0

While this formulation solves for the most efficient equi-
librium of any traffic network, it is computationally difficult,
especially due to the final constraint. Due to this, we introduce
a restricted class of networks that we consider for the remainder
of this section, which allows us to compute equilibria in
polynomial time with respect to the number of paths.

Definition 3 (Bottleneck). We define a bottleneck as a regular
junction at which the number of lanes decreases, decreasing
the capacity of the cells.

Assumption 1. We consider a parallel network in which leaving
the first cell, vehicles choose a path and paths do not share cells,
meaning that each cell is identified with only one path, aside
from the downstream-most cell which has infinite capacity. We
further consider that all cells in the path have the same model
parameters, except for a bottleneck after the mn

p upstream-most
cells.

In other words, we consider a parallel network where each
path is composed of identical cells except for a single junction
with a decrease in the number of lanes. Fig. 1 shows an example
of such a network. For ease of analysis, we first establish
properties of Path Equilibria, then Network Equilibria.

B. Path equilibrium

As mentioned above, we restrict our considered class of
paths to those with a single bottleneck, meaning one point on
the path at which cell capacity drops. Formally, we consider
each path p to have mn

p cells, each with bn
p lanes, followed by

mb
p cells downstream, each with bb

p lanes, where bb
p < bn

p. We
define rp := bb

p/b
n
p ∈ (0, 1).

In a slight abuse of notation, we use the subscript p for
parameters that are constant over a path under Assumption 1,
and the superscript n for cells before the bottleneck and b for
the bottleneck and cells downstream of it. We now present a
theoretical result that completely analytically characterizes the
path latencies that can occur at equilibrium.

Theorem 1. Under Assumption 1 a path p with flow dynamics
described in Section II that is at Path Equilibrium will have
the same autonomy level in all cells. Denote this autonomy
level αp. If the vehicle flow demand is strictly less than the
minimum cell capacity, the path will have no congested cells.

Otherwise, the path will have one of the following latencies,
where γp ∈ {0, 1, 2, . . . ,mn

p}:

ℓp =
|Ip|
v̄p

+ γp
(1− rp)n̄

n
p(αph

a
p + (1− αp)h

h
p)

rpv̄pbn
p

.

Proof. The proof is composed of three lemmas. We first
establish a property of path equilibria that allows us to treat the
vehicle flow as if it were composed of a single car type. With
this, we use the CTM to characterize possible equilibria on a
path. We then derive the delay associated with each congested
cell. Combining the latter two lemmas yields the theorem.

Lemma 1. A path in equilibrium with nonzero incoming flow
has the same autonomy level in all cells of the path, which is
equal to the autonomy level of the vehicle flow onto the path.
Formally, a path p with demand (λ̄

h
p, λ̄

a
p) in equilibrium has,

for all cells i in Ip,

αi = λ̄
a
p/(λ̄

h
p + λ̄

a
p) .

We defer the proof of the lemma to the appendix. With
this, our path equilibria analysis simplifies to that of single-
typed traffic, with the autonomy level treated as a variable
parameter. The next lemma, similarly to Theorem 4.1 of
[gomes2008behavior], completely characterizes the congestion
patterns that can occur in cell equilibria. For this lemma, we
consider the cell indices in a path to be increasing, where the
cell immediately downstream from a cell i has index i+1.

Lemma 2. Under Assumption 1, if the demand on a path is less
than the minimum capacity of its cells, they will be uncongested
at path equilibrium. Otherwise, a path with demand equal to the
minimum cell capacity will have mn

p possible path equilibria,
corresponding to one of the following sets of congested cells,
where j is the index of the mn

pth cell:{︁
∅, {j}, {j − 1, j}, . . . , {j −mn

p + 1, . . . , j − 2, j − 1, j}
}︁
.

Proof. As mentioned above, this lemma relates closely to
Theorem 4.1 of [gomes2008behavior]. However, we cannot
directly apply that theorem due to differing assumptions;
namely they assume F̄ i+1 = (n̄i−ñi)wi for all i. We therefore
offer a similar proof, tailored to our assumptions.

For ease of notation, we drop all path subscripts p as well as
the cell index for the free-flow velocity parameter v̄. In light
of Lemma 1, we also suppress the autonomy level arguments
to capacity F̄ i and critical density ñi. The flow equation then
becomes fi = min(v̄ni, (n̄i+1 − ni+1)wi+1, F̄ i, F̄ i+1).

We begin by proving that if the vehicle flow demand is
strictly less than the minimum capacity, i.e. the bottleneck
capacity, then the only equilibrium has no congested cells.
Let us use j′ to denote the index of the final cell in the
path. Under Assumption 1 there is no supply limit to the flow
exiting a path, so fj′ = min(v̄nj′ , F̄ j′). Since f0 = fj′ < F̄ j′ ,
f0 = fj′ = v̄nj′ . The definition of capacity, F̄ i = v̄ñi, then
implies that nj′ < ñj′ , meaning that cell j′ is uncongested, so
v̄nj′ < (n̄j′ − nj′)wj′ .

This is the base case for a proof by induction. Consider cell i
that is uncongested (i.e. ni < ñi). Since by assumption all cells
have flow strictly less than the cell’s capacity, fi = v̄ni < F̄ i.

Then consider the flow entering cell i: fi−1=min(v̄ni−1, (n̄i−
ni)wi, F̄ i−1)=fi<F̄ i<(n̄i−ni)wi.

The fact that F̄ i ≤ F̄ i−1 then implies that fi−1 = v̄ni−1, so
cell i− 1 is uncongested, proving the lemma’s first statement.

The second statement assumes the flow on the path is equal
to the minimum capacity. The cells in the bottleneck segment
all have the same capacity, which we denote F̄

b; this capacity
is less than the capacity of the cells in the nonbottleneck
segment. This means all bottleneck cells will be operating
at capacity (and therefore have vehicle density equal to their
critical density); flow on the path is therefore equal to F̄

b.
We now turn to the nonbottleneck segment. We first note

that if a nonbottleneck cell is uncongested then the preceeding
cell must be uncongested as well, using the same reasoning
as that proving the first statement above. Next, consider the
flow out of the downstream-most cell of the nonbottleneck
segment: fj=min(v̄nj , (n̄j+1−nj+1)wj+1, F̄ j)= F̄

b
<F̄ j , so

fj=min(v̄nj , (n̄j+1−nj+1)wj+1). Cell j can be uncongested,
in which case the cell density is such that v̄nj = F̄

b, or the cell
can be congested, in which case the second term dominates.
Then, if nonbottleneck cell i is congested, the flow into it is
fi−1=min(v̄ni−1, (n̄i−ni)wi). Again, to achieve this flow, cell
i−1 can be either congested or uncongested. As shown above,
if uncongested, then all upstream cells must be uncongested
as well, yielding the second statement in the lemma.

We use these properties to find a closed-form expression
for the latency incurred by traveling through a bottleneck cell,
which when combined with Lemma 2, completes the proof.

Lemma 3. The latency incurred by traveling through a
congested cell is as follows.

1

v̄p
+

(1− rp)n̄
n
p(αph

a
p + (1− αp)h

h
p)

rpv̄pbn
p

.

Proof. Recall that we assume paths have a uniform free-
flow velocity across all cells in a path, where path p has
free-flow velocity v̄p. We define [mn

p] as the set of cells before
the bottleneck, which have bn

p lanes. The remaining cells, with
indices in the set Ip \ [mn

p], have bb
p lanes. Further recall the

definition rp = bb
p/b

n
p. Let F̄ n

p(αp) denote the capacity of the
cells before the bottleneck of path p with autonomy level αp

and let F̄ b
p(αp) be the same for the bottleneck cell. Note that

F̄
b
p(αp) = rpF̄

n
p(αp). Similarly, let wn

p(αp) and wb
p(αp) denote

the shockwave speed for prebottleneck cells and bottleneck cell,
respectively, on path p with autonomy level αp, as with jam
densities n̄n

p and n̄b
p and critical densities ñn

p(αp) and ñb
p(αp).

Lemma 2 establishes all possible combinations of congested
cells that a path at equilibrium can experience. We now
investigate how much delay each configuration induces on
the path, parameterized by the autonomy level of the path. By
Lemma 2 and the definitions of r and capacity (2),

fp = F̄
b
p = rpF̄

n
p(αp) = rpw

n
p(αp)(n̄

n
p − ñn

p(αp)) . (8)

Let nc
p(αp) denote the vehicle density in a congested cell on

path p, which we know must occur upstream of the bottleneck
(Lemma 2). Then, the flow entering a congested cell before

the bottleneck is fp = wn
p(αp)(n̄

n
p − nc

p(αp)). Equating this
with (8), we find nc

p(αp) = (1− rp)n̄
n
p + rpñ

n
p(αp).

To use this to find the latency incurred by traveling through
a congested cell, we divide the density by the flow, as follows.
nc
p(αp)

fp
=

nc
p(αp)

F̄
b
p(αp)

=
(1− rp)n̄

n
p + rpñ

n
p(αp)

rpv̄pñ
n
p(αp)

=
1

v̄p
+

(1− rp)n̄
n
p(αph

a
p + (1− αp)h

h
p)

rpv̄pbn
p

.

Together, the lemmas prove the theorem.

The two terms above are the free-flow delay and the per-
cell latency due to congestion, respectively. Theorem 1 allows
us to calculate the possible latencies of a path as a function
of its autonomy level αp. Since in a network equilibrium all
used paths have the same latency, we can calculate network
equilibria more efficiently than comprehensively searching over
all possible routings. However, equilibria may not exist, even
with a fine time discretization – in equilibrium the path latencies
must be equal, but by Theorem 1, road latency is a function of
the integer γp. To avoid this artifact, when analyzing network
equilibria we consider the cells to be small enough that we
can consider the continuous variable γp ∈ [0,mn

p].

C. Network equilibrium

We define the best equilibrium to be the equilibrium that
serves a given flow demand with minimum latency. We are
now ready to establish properties of network equilibria, as well
as how to compute the best equilibria. We use the following
two assumptions in our analysis of network equilibrium.

Assumption 2. No two paths have the same free-flow latency.

Assumption 3. The initial choice distribution has positive
human-driven and autonomous vehicle flow on each path.

Note that the Assumption 2 is not strictly necessary but
is useful for easing analysis. A similar analysis could be
performed in its absence. We justify Assumption 3 by noting
that humans are not entirely rational and that our choice model
does not capture all reasons a person may wish to choose a
route, and some small fraction of people will choose routes
that seem less advantageous at first glance.

Theorem 2. Under Assumptions 1 and 2, a routing that
minimizes total latency when all users (both human drivers
and autonomous users) are selfish can be computed in
O(|P|3 log |P|) time. A routing that minimizes total latency
when human drivers are selfish and autonomous users are
controlled can also be computed in O(|P|3 log |P|) time.

Proof. To establish properties of network equilibria, we in-
troduce some notation. We use ap = |Ip|/v̄p to denote the
free-flow latency of path p. We also use P≤ap = {p′ ∈ P :
ap′ ≤ ap}, which denotes the set of paths with free-flow latency
less than or equal to that of path p. We similarly define the
expression with other comparators, e.g. P<ap

or P>ap
.

This proposition follows from Definition 2 and Assumption 3.
The next lemma follows, with proof deferred to the appendix.

Proposition 1. In a network equilibrium,

1) All paths with selfish drivers have the same latency, and
2) All paths without selfish drivers have equal or greater

latency.

Lemma 4. If the set of equilibria contains a routing with
positive flow only on paths P≤ap , then there exists a routing
in the set of equilibria in which path p is in free-flow.

Lemma 5. Under Assumption 2, if some users are selfish and
some users are not selfish, then the best equilibrium will have
the following properties:
1) the path with largest free-flow latency used by selfish users

will be in free-flow,
2) all paths with lower free-flow latency will be congested,
3) paths with greater free-flow latency may have nonselfish

users, and
4) paths used with larger free-flow latency that have nonselfish

users on them will be at capacity, except perhaps the path
with largest free-flow latency used by nonselfish users.

Proof. Consider a network with some selfish and some non-
selfish (controlled) users. Let p denote the path with the longest
free-flow latency that contains selfish users. For the purpose
of contradiction, let this path contain congested cells, and let
this be the best equilibrium. Fix the nonselfish flow on all
roads with longer free-flow latency than p. By Lemma 4, there
exists an equilibrium for the selfish users in which p is in
free-flow. This results in less latency for the users on path
p, and no selfish user will have greater delay (Proposition 1).
This contradicts the premise, proving the first property.

The second property follows directly from Proposition 1 and
Assumption 2. The third property follows from the definition
of nonselfish users, which can take a path with a larger latency
than other available paths. The best equilibrium minimized total
latency. If there was a road with nonselfish users that was not
at capacity, while another path with higher latency has positive
flow, this would not be the best equilibrium, since a more
efficient routing would shift flow from the higher latency path
to the lower latency one. This yields the final property.

Using these properties, we prove Theorem 2. We first
consider the setting in which all users are selfish. We use
ℓc
p(αp) to denote the per-cell latency due to congestion, i.e.

ℓc
p(αp) =

(1−rp)n̄
n
p(αph

a
p+(1−αp)h

h
p)

rpv̄pbn
p

. Lemma 5 implies that for
a given demand, all equilibria in the set of most efficient
equilibria for that demand have one path that is in free-flow.
We can then formulate the search for a best equilibrium as an
optimization. We are helped by the fact that the best equilibria
will use the minimum number of feasible paths, since all users
experience the same delay. Then, for each candidate free-flow
path (denote with index p′), check feasibility of only using
paths P≤ap′ , and choose a routing that minimizes |P≤ap′ |,
i.e. the number of roads used. The reason for minimizing the
number of used roads is that all users are experiencing the
same latency (Proposition 1) and in the best equilibrium, the
road with flow on it that has longest free-flow latency will

be in free-flow (Lemma 5). The feasibility can be checked as
follows, with an optimization that utilizes Lemma 5.

argmin
(f h

p,f
a
p)p∈P≤a

p′
, γ∈

∏︁
p∈P<a

p′
[0,mn

p]

1

s.t.
∑︂

p∈P≤a
p′

f h
p = λ̄

h
,

∑︂
p∈P≤a

p′

f a
p = λ̄

a

f h
p′ + f a

p′ ≤ F̄ p′(
f a
p′

f h
p′ + f a

p′
)

∀p ∈ P<ap′ : γpℓ
c
p(

f a
p

f h
p + f a

p

) = ap′ − ap

f h
p + f a

p = F̄ p(
f a
p

f h
p + f a

p

)

The last constraint yields an affine relationship between f h
p

and f a
p for paths P<ap′ . Solving for f h

p and plugging into the
first constraint yields an affine relationship between γp and
f a
p. This way, the optimization can be converted to a linear

program, and we must solve log |P| linear programs to search
the minimum feasible p′.

This formulation assumes that all vehicles are selfish. If
instead we consider selfish human drivers and fully controlled
autonomous users, we can construct a similar optimization to
find the best equilibrium. For each choice of free-flow path p′,
we minimize the total latency of the autonomous vehicles not
on free-flow paths. We then choose the routing corresponding
to free-flow path p′ that minimizes total latency (which may
not necessarily minimize the number of paths used by human
drivers). For each candidate free-flow path p′ we solve the
following optimization.

argmin
(f h

p,f
a
p)p∈P , γ∈

∏︁
p∈P<a

p′
[0,mn

p]

∑︂
p∈P>a

p′

f a
pap

s.t.
∑︂

p∈P≤a
p′

f h
p = λ̄

h
,
∑︂
p∈P

f a
p = λ̄

a

f h
p′ + f a

p′ ≤ F̄ p′(
f a
p′

f h
p′ + f a

p′
)

∀p ∈ P<ap′ : γpℓ
c
p(αp) = ap′ − ap

f h
p + f a

p = F̄ p(
f a
p

f h
p + f a

p

)

∀p ∈ P>ap′ : f
a
p ≤ F̄

b
(1)

This can be reformulated as a linear program by the same
mechanism. Again, we solve log |P| linear programs and
choose the one corresponding to the minimum feasible p′.

Using these properties to compute optimal equilibria, we
establish a framework for understanding the performance of
our learned control policy. If the policy can reach the best
equilibrium latency starting from arbitrary path conditions we
view the policy as successful. We use this baseline to evaluate
our experimental results in the following section.

A question then arises: if we have computed the best possible
equilibria, why do we not directly implement that control? This
approach is not fruitful, since the theoretical analysis of best
equilibria gives the control policy only in the steady state. In

practice, the network can start in any state, including worse
equilibria, from which good equilibria will not emerge when
autonomous vehicles unilaterally use their routing in the best
equilibrium. Besides, our equilibrium analysis is limited to
parallel networks and extending it to more general networks
would yield a nonconvex optimization problem. A dynamic
policy which depends on the current traffic state is therefore
needed to guide the network to the best equilibrium. As
shown in the following section, the policy learned via deep
reinforcement learning achieves this guidance and reaches the
best equilibrium in a variety of settings.

V. EXPERIMENTS AND RESULTS

In all of the experiments3, we adopt the following parameters.
All vehicles are 4 meters long. Human drivers keep a 2 second
headway distance, whereas autonomous cars can keep 1 second.
Each time step corresponds to 1 minute of real-life simulation.
Each episode during deep RL training covers 5 hours of real-
life simulation (300 time steps). In test time, we simulate 6
hours of real-life (360 time steps) to ensure the RL policy did
not learn to minimize the latency in the first 300 time steps
and leave excess vehicles in the network at the end. We divide
paths into the cells such that it takes 1 time step to traverse
each cell in free-flow. We initialize ni(0) ∼ unif(0, 1.2ñi) for
all i ∈ Ip for all p ∈ P . We set the standard deviations of the
zero-mean Gaussian demand noise to be λ̄

h
/10 and λ̄

a
/10 for

human-driven and autonomous vehicles, respectively.
Our overall control scheme can be seen in Fig. 1. As the

learning model, we build a two-hidden-layer neural network,
with each layer having 256 nodes. We train an RL agent for
each configuration that we will describe later on in simulated
traffic networks that are based on the mixed-autonomy traffic
model and the dynamics that we described in Sections II and
III. All trainings simulate 40 million time steps.4 Depending
on whether we evaluate our RL-based approach with (or
without) the accidents, we enable (or disable) accidents at
the training phase. However, we note that the number of
possible accident configurations in the network is far more
than the expected number of accidents during all training
episodes. Hence, successfully handling accidents requires good
generalization performance. Similar to accidents, the demand
distributions match between training and test environments.

We compare our method with two baselines: first, a selfish
routing scheme, where all cars are selfish and use the human
choice dynamics presented in Sec. III-A, and second, a model
predictive control (MPC) based controller which can perfectly
simulate the network other than the uncertainty due to accidents
and noisy demand. It plans for the receding horizon of 4
minutes and re-plans after every 1 minute to minimize the
number of cars in the network using a Quasi-Newton method (L-
BFGS [andrew2007scalable]). To increase robustness against
the uncertainty, it samples 12 different simulations of the
network and takes the average. We note that this MPC can
only be useful in small networks where some cars can enter
the network and reach the destination within the MPC horizon

3We make the code available in the supplementary material.
4Other hyperparameter values we use for PPO are in the Appendix.

Fig. 3: The small general class network used for experiments.

of 4 minutes. While increasing the horizon may help MPC
operate in larger networks, it causes a huge computational
burden. In fact, even though we parallelized the controller
over 12 Intel® Xeon® Gold 6244 CPUs (3.60 GHz), it took
the controller 32 seconds on average to decide the routing
of autonomous vehicles for the next 1 minute, which clearly
indicates a practical problem. In all experiments, we set ηh(k)
(and ηa(k) for the selfish baseline) to be 0.5 for all k.

A. General Class of Networks
We first start by considering a small network of 9 cells

and 7 junctions (1 regular junction, 3 merges and 3 diverges)
as shown in Fig. 3, where the priority levels of cells at
merges are equal to their numbers of lanes. We set the
autonomy level of the demand ᾱ=0.6 and the total demand
λ̄

h
+ λ̄

a
= 2.60 cars per second. We set the probability of

accidents such that the expected frequency of accidents is 1 per
100 minutes, and clearing out an accident takes 30 minutes on
average [houstontranstar2018]. For human choice dynamics,
we assume humans’ latency estimates are based on the current
states of each cell, i.e., they estimate the latencies as if the
network is in steady-state.

Fig. 4: Time vs. number of cars under selfish, MPC and RL routing
on the small general class network.

Fig. 4 shows the number of cars in the network over time
(mean ± standard error over 100 simulations). While MPC
controller improves over the selfish routing, they both suffer
from linearly growing queues. On the other hand, RL controller
stabilizes the queue and keeps the network uncongested.

Next, we consider a larger network shown in Fig. 5 as a
graph where the numbers noted on the links denote the number

Fig. 5: OW network (adapted from [de2011modelling]) used for
experiments.

of cells in that link in one direction. Each cell, excluding queues
which has infinite capacity, has 2 lanes. This is a quantized
version of the OW network due to Ortúzar and Willumsen
[de2011modelling], and is widely used in the transporta-
tion literature [ramos2015towards, bazzan2016multiagent,
bazzan2014evolutionary, grunitzki2014individual]. This is
a larger network with 4 origin-destination pairs, 102 cells
(and 2 queues) and 41 junctions (28 junctions with only
one incoming and one outgoing cell, and 13 more general
junctions). We set the total demand to be λ̄

h
+ λ̄

a
= 3.46

cars per second, distributed equally to the 4 origin-destination
pairs in expectation. As there are 1752 possible different
simple paths that vehicles could be taking, our action space is
1752 dimensional. While such an optimization is still possible
with powerful computation resources, it might be unnecessary
because an optimal solution is unlikely to utilize the paths
that traverse too many cells. We therefore restrict our action
space to the 10 shortest paths (with respect to the free-flow
latencies) between each origin and destination, and so adopt
a 40-dimensional action space. We keep the other experiment
parameters the same as the small network experiment above.

Due to the network size and the computation cost to simulate
the OW network, the MPC-based controller does not produce
any useful results in a reasonable time as explained before.
We instead implemented the greedy optimization method of
krichene2018social as a baseline. Specifically we used a
genetic algorithm for the optimization with a constraint on
the run time of one minute, as it is an online algorithm. It
is important to note that RL policy makes a routing decision
within a millisecond during test time. We compare the RL
controller with this greedy method and the selfish routing.

Fig. 6 shows the number of cars in the network over
time (mean ± standard error over 100 simulations). Again,
the selfish routing and the greedy optimization method of
[krichene2018social] suffer from linearly growing queues,
while RL controller is able to stabilize the queues and keeps
the network uncongested even though the network may start
from a congested state. Furthermore, we check whether the
reduced action space is really sufficient. We observe that, over
100 episodes, 98.92% of the autonomous vehicles were routed
to the paths that are faster than the fastest path that is not in
the action space.

To analyze the performance RL controller in comparison with
the optimal equilibrium, we now move to parallel networks.

Fig. 6: Time vs. number of cars under selfish, greedy and RL routing
on OW network.

B. Parallel Networks

We consider a parallel network from downtown Los Angeles
to the San Fernando Valley with 3 paths. The highway numbers
and the approximated parameter tuples (length, number of lanes,
speed limit) are:
1) 110N (5 miles, 3 lanes, 60 mph); 101N (10 miles, 3 lanes

for 5 miles then 2 lanes, 60 mph)
2) 10E (5 miles, 4 lanes, 75 mph); 5N (10 miles, 4 lanes, 75

mph); 134W (5 miles, 3 lanes, 75 mph)
3) 10W; 405N (both 10 miles, 4 lanes, 75 mph); 101S (5 miles,

3 lanes, 75 mph)
As the cells are now not shared between the paths, we
employ better latency estimates for human choice dynamics:
we compute them as the actual latencies that would occur if
there were no accidents and no more demand into the network.

We perform 3 sets of experiments. In the first two, we disable
accidents and analyze the effects of varying the number of paths
and autonomy. As the shortest path has 15 cells, we exclude
MPC-based controller from our analysis as it is computationally
prohibitive to adopt a receding horizon longer than 15 minutes.

Varying number of paths. We first vary the number of
paths |P|∈{2, 3, 4} by duplicating, or removing, the third path.
We set the autonomy level of the demand ᾱ=0.6, and λ̄

h
+ λ̄

a

to be 95% of the maximum capacity under this autonomy
level. We plot learning curves in Fig. 7 (a). It can be seen that
even with |P|=4 when observation space is 144-dimensional,
the agent successfully learns routing within 40 million time
steps. With randomized initial states, the agents learn routing
policies that achieve nearly as good as optimal equilibrium
for all |P| ∈ {2, 3, 4}. In Fig. 7 (b), we plot the number of
cars (mean ± standard error over 100 simulations) in the
system over time. While selfish routing causes congestion by
creating linearly growing queues when |P|> 2, RL policies
successfully stabilize queues and even reach car numbers of
optimal equilibria.

Varying autonomy. We take |P|=3 and vary the autonomy
of demand ᾱ ∈ {0.4, 0.5, 0.6, 0.7} without changing the total
demand λ̄

h
+ λ̄

a. Note the demands are infeasible when ᾱ ∈
{0.4, 0.5}. In Fig. 8 (a), we plot the number of cars (mean
± standard error over 100 simulations) in the system over
time. The result is similar to the previous experiment when the
demand is feasible. With infeasible demand, RL agent keeps a
queue that is only marginally longer than the queue that optimal

equilibrium would create. On the other hand, selfish routing
grows the queue with much faster rates. These experiments
show RL policy successfully handles random initializations.

Accidents. In the third set, we fix |P| = 3 and ᾱ = 0.6 for
the same total average demand and enable accidents. As before,
the expected frequency of accidents is 1 per 100 minutes, and
clearing out an accident takes 30 minutes on average. Fig. 8 (b)
shows the RL policy successfully handles accidents, indicating
a good generalization performance by the RL controller. To
give a clearer picture, we provide the space-time diagrams and
the detailed information about the system states of a sample run
in Figs. 9 and 10, respectively. Fig. 9 shows that selfish routing
causes congestion by not utilizing the third route, whereas RL
can avoid congestion and handle accidents. Fig. 10 shows the
number of cars in each cell as well as the queue lengths over
time. The small oscillations, which occur even after the effect
of the accidents disappear (between third and fourth hours),
are due to noisy demand and the discretization of cells. With
selfish routing, the vehicles use the longest path only when
there is an accident in another path (around first and third
hours) or the other two paths are congested (third and fifth
hours). In contrast, RL makes good use of the network and
leads to altruistic behavior. It also handles the accidents by
effectively altering the routing of autonomous cars (around
third hour, autonomous cars start using the first route until the
accident in the third route is cleared). Hence, it manages to
stabilize the queue and prevent congestion. We provide video
visualizations of this run at https://youtu.be/XwdSJuUb09o.

VI. CONCLUSION

Summary. We presented a framework for understanding a
dynamic traffic network shared between selfish human drivers
and controllable autonomous cars. We show, using deep RL,
we can find a policy to minimize the average travel time
experienced by users of the network. We develop theoretical
results to describe and calculate the best equilibria that can
exist and empirically show that our policy reaches the best
possible equilibrium performance in parallel networks. Further,
we provide case studies showing how the training period scales
with the number of paths, and we show our control policy is
empirically robust to accidents and stochastic demand.

Limitations. We used the number of cars in each cell as
predictive features for RL training. Although this makes the
state space dimensionality grow only linearly with the number
of cells, it may not be scalable to much larger traffic networks.
Moreover, the action space grows linearly with the number of
source-destination pairs, also impacting the scalability of the
algorithm.

Future work. This work opens up many future directions for
research, including using multi-agent reinforcement learning to
model autonomous vehicles with competitive goals and/or en
route decision making ability, and improving how the training
time scales with the complexity of the network. Another
interesting future work is to investigate how an RL policy
can be deployed and the simulation imperfections (including
the dependency on the simulated human choice dynamics) can
be alleviated by collecting online data using sensors from the
real traffic network.

https://youtu.be/XwdSJuUb09o

Fig. 7: Varying number of paths. (a) Average number of cars in the system per episode during RL training. (b) Time vs. number of cars in
the system for the comparison of selfish and RL routing in parallel networks.

Fig. 8: (a) Varying autonomy. (b) Varying the presence of accidents and noise in the demand.

5 10 15

1

2

3

4

5

6

0

0.02

0.04

0.06

0.08

0.1

0.12

5 10 15 20

1

2

3

4

5

6

0

0.02

0.04

0.06

0.08

0.1

0.12

5 10 15

1

2

3

4

5

6

0

0.02

0.04

0.06

0.08

0.1

0.12

Ti
m

e
(h

ou
rs

)

Route 1 Route 2 Route 3 Route 1 Route 2 Route 3

All Selfish Vehicles Reinforcement Learning

Fig. 9: Space-time diagrams on a parallel traffic network with accidents and noisy demand. Orange rectangles represent accidents.

ACKNOWLEDGMENTS

This work was supported by NSF grant #1953032 and Toyota.
Toyota Research Institute (TRI) provided funds to assist the
authors with their research but this article solely reflects the
opinions and conclusions of its authors and not TRI or any
other Toyota entity.

VII. APPENDIX

A. Summary of notation

See Table I.

B. Proofs for Section IV-C

Proof of Lemma 1. By definition, at equilibrium, the number
of vehicles in each cell i in Ip, na

i(k) and na
i(k) is constant

for all times k. Since by definition the incoming flow is
also constant, by the definition of the sending and receiving
functions, constant cell densities implies constant flows. By
(3), a constant density also implies that the incoming and
outgoing flow in each cell are equal. This means that all cells
will have the same incoming flow as the first cell. Further, we
know that since the density of autonomous vehicles is constant
over time, incoming and outgoing autonomy levels are equal.
Accordingly, if cell i′ is the cell immediately upstream of i, then

Ro
ut

e
1

Ro
ut

e
1

Ro
ut

e
2

Ro
ut

e
3

Q
ue

ue
N

um
be

r o
f C

ar
s

Human-driven cars

Autonomous cars

Accidents

N
um

be
r o

f C
ar

s

Time (hours)

Ro
ut

e
2

Ro
ut

e
3

Q
ue

ue

Time (hours)
Fig. 10: The network under perturbations due to accidents and noisy demand. For each path and time step, from bottom to top, the stacked
color segments show the number of cars in the cells from origin to the destination. Congestion occurs only upstream to the bottlenecks. (a)
Selfish routing. (b) RL routing.

TABLE I: Summary of Notation

p Path index unitless
P Set of paths in the network set of paths
i Cell index unitless
I set of cells in the network set of cells
Ip set of cells in path p set of cells
Ui set of cells upstream of cell i set of cells
v̄i Free-flow velocity of cell i cells/time step
bi Number of lanes of cell i unitless
hh
i (ha

i) Nominal vehicle headway on cell i cells/vehicle
nh
i (na

i) Density of vehicles on cell i vehicles/cell
ni Total vehicle density on cell i vehicles/cell
fh
i (f a

i) Flow of vehicles from cell i vehicles/time step
yh
i (ya

i) Hum. (aut.) veh flow into cell i vehicles/time step
αi Autonomy level of cell i unitless
ñi(α) Critical density of cell i, at aut. α vehicles/cell
n̄i Jam (maximum) density of cell i vehicles/cell
F̄ i(α) Capacity of cell i, at aut. α vehicles/time step
wi(α) Shockwave speed of cell i, at aut. α cells/time step
k Time index unitless
ℓp(k) Latency of path p if starting at time k time steps
qi(k) Priority for cell i at a merge at time k unitless
µh
i(p, k) (µ

a) Frac. of hum. (aut.) vehs in i on p at k unitless
βh
i (i

′, k) (βa) Frac. of hum. (aut.) vehs i → i′ at k unitless
J(k) Stage cost at time k vehicles
mb

p (mn
p) # of (non)bottleneck cells on path p cells

bb (bn) # of lanes in (non)bottleneck cells on p unitless
rp := bb/bn unitless
γp Number of congested cells on path p cells

αi′(k)fi′(k) = αi(k)fi(k). Since we also have fi′(k) = fi(k),
this implies that αi′(k) = αi(k). Therefore the autonomy level
of all cells is the same. Let us denote this uniform autonomy
level αp. Let the index of the first cell in the path be 0. Then,
λ̄

h
p+λ̄

a
p = f0 and λ̄

a
p = αpf0. Combining these two expressions,

we find αp = λ̄
a
p/(λ̄

h
p + λ̄

a
p).

Proof of Lemma 4. Under Assumption 2, no two paths have
the same free-flow latency. With Proposition 1, this implies that
if an equilibrium has a used path with no congestion, it must be

the used path with greatest free-flow latency, as otherwise all
used paths would not have the same latency. Therefore, if an
equilibrium routing with positive flow on paths [p] has a path
in free-flow, it must be path p. Otherwise, we can construct an
equilibrium with the same demand that has path p in free-flow.
Recall that the latency on paths in equilibrium is increasing with
the length of the congested portion of the path, γp′ , and γp′ = 0
corresponds to an uncongested path. If all paths are congested,
we consider decreasing the length of congestion on all paths
simulatenously, at rates which keep the path latencies equal.
This continues until path p becomes completely uncongested.
This construction proves the lemma.

C. Overview of Proximal Policy Optimization (PPO)

In this section, we give a brief overview of the PPO method
[schulman2017proximal] we used for training our deep rein-
forcement learning model. We first start with formalizing the
problem. We then introduce the policy gradients and the details
of PPO. To keep the notation consistent with the reinforcement
learning literature, we abuse the notation for some variables.
Hence, this section of the appendix is written in a standalone
way, and the variables should not be confused with the notation
introduced in the main paper (e.g. f is going to denote the
transition distribution of the system as introduced below, instead
of flow values as in the main paper).

Problem Setting. We consider a sequential decision making
problem in a Markov decision process (MDP) represented by a
tuple (S,A, f, T, r, γ), where S is the set of states. A denotes
the set of actions, and the system transitions with respect to
the transition distribution f : S ×A×S → [0, 1]. For example,
if f(s, a, s′) = p, this means taking action a ∈ A at state
s ∈ S transitions the system into state s′ with probability p.
Next, T denotes the horizon of the system, i.e., the process

gets completed after T time steps. The reward function r :
S ×A → R maps state-actions to reward values. The decision
maker is then trying to maximize the cumulative reward over
T time steps by only observing the observations (not states).
Finally γ is a discount factor that sets how much priority we
give to optimizing earlier rewards in the system.

Let us now describe how we formulate a transportation
network with the CTM model as an MDP in this paper.
The state of the network is fully defined by the following
information:
• Location of each vehicle (which cell or queue it is in),
• Type of each vehicle (human-driven or autonomous),
• Accident information (where and when it happened), and
• Planned path of each vehicle (which cells it is going to

traverse).
In our model, we assumed the first three items in the above
list are available as observations. While this breaks the Markov
assumption, deep RL techniques often perform well in partially
observable MDPs, too. So our deep RL policy is trying to
make its decisions based only on those first three observations,
and the non-observability of the planned paths increases the
stochasticity of the problem. The action set of the decision
maker is defined by the set of available routing paths of
autonomous vehicles. The transition distribution follows the
dynamics of CTM, human choice dynamics, as well as the
accidents which also introduce stochasticity into the system.
Finally, as a reward function, one can think of using the negative
of the number of cars in the system as a proxy to negative of
overall latency in the network.

Policy Gradients. To solve this problem using deep neural
networks, we model the decision-maker agent with a stochastic
policy πθ parameterized with θ (e.g. weights of the neural
network), such that πθ(a | s) gives the probability of taking
action a when observing state s. The goal of the agent is to
maximize the expected cumulative discounted reward:

J(θ) = Eτ∼πθ

[︄
T−1∑︂
t=0

γtr(st, at)

]︄
where τ denotes a trajectory (s0, a0, . . . , sT−1, aT−1, sT) in
the system. The discount factor is to improve robustness and to
reduce susceptibility against high variance. We can equivalently
write this objective as:

J(θ) =

∫︂
Ξ

πθ(τ)r(τ)dτ

where Ξ is the set of all possible trajectories, πθ(τ) is the
probability of trajectory τ under policy πθ, and r(τ) is the
cumulative discounted reward of trajectory τ . The idea in policy
gradients is to take gradient steps to maximize this quantity
by optimizing θ:

∇θJ(θ) = ∇θ

∫︂
Ξ

πθ(τ)r(τ)dτ

=

∫︂
Ξ

∇θπθ(τ)
πθ(τ)

πθ(τ)
r(τ)dτ

=

∫︂
Ξ

πθ(τ)r(τ)∇θ log πθ(τ)dτ

= Eτ∼πθ
[r(τ)∇θ log πθ(τ)]

which we can efficiently approximate by sampling trajectories
using the policy.

Unfortunately, this vanilla policy gradient method is not
robust against variance (due to stochasticity in the environment
and trajectory sampling) and suffers from data-inefficiency. In
recent years, several works have developed alternative ways to
approximate the gradients. One such idea is based on using
baselines to reduce variance:

∇θJ(θ) = Eτ∼πθ

[︄
T−1∑︂
t=0

∇θ log πθ(a
τ
t | sτt)Â

τ

t

]︄
where Â is called the estimated advantage function, which is
usually defined as Gτ

t − V (sτt), where Gτ
t is the cumulative

discounted reward of the trajectory τ after (and including) time
step t, and V (sτt) is some baseline that quantifies the value
of state sτt . This new equation for ∇θJ(θ) holds due to the
Markov assumption and that the baseline is independent from
the policy parameter θ.

Having presented the policy gradients and the use of
baselines for variance reduction, we are now ready to give an
overview of PPO.

Proximal Policy Optimization (PPO). PPO further im-
proves the robustness and data-efficiency of policy gradient
methods by using a surrogate objective that prevents the policy
from being updated with large deviations. Instead of the usual
objective Eτ∼πθ

[︂
log πθ(a

τ
t | sτt)Â

τ

t

]︂
, PPO uses the following

objective:

J1(θ) = Eτ∼πθ

[︂
min(gτt (θ)Â

τ

t , clip(gτt (θ), 1− ϵ, 1 + ϵ)Â
τ

t)
]︂

where

gτt (θ) =
πθ(a

τ
t | sτt)

πθold(a
τ
t | sτt)

and clip(x, ϵ1, ϵ2)=

⎧⎪⎨⎪⎩
ϵ1 x < ϵ1,

x ϵ1 ≤ x ≤ ϵ2,

ϵ2 otherwise.

In addition to J1(θ), PPO uses two more objective functions
and converts the problem into a multi-objective optimization
problem. The first additional objective is for the baseline V (sτt).
Specifically, PPO learns a parameterized value function Vϕ

in a supervised way to minimize (Vϕ(s
τ
t) − V target

t)2 where
V target
t is calculated using the sampled trajectories as a sum of

discounted rewards after (and including) time step t. It should
be noted that this does not make Gτ

t − Vϕ(s
τ
t) = 0, because

Vϕ(s
τ
t) is an estimate of the true value function and is updated

after the computation of the estimated advantage. Therefore,

J2(ϕ) = −Eτ∼πθ

[︁
Vϕ(s

τ
t)− V target

t

]︁
.

Finally, PPO uses an entropy bonus (inspired by
[mnih2016asynchronous]) to ensure sufficient exploration:

J3(θ) = Eτ∼πθ
H(πθ(· | sτt)) ,

where H is information entropy. At the end, PPO tries to solve:

maximizeθ,ϕ J1(θ) + J2(ϕ) + cJ3(θ)

where c is the coefficient for the entropy term.

D. Experiment details

In implementation, we used J(k)−J(k−1) as a proxy cost
for time step k, where J(0) = 0.

Below are the set of hyperparameters we used for PPO. We
refer to Section VII-C and [schulman2017proximal] for the
definitions of PPO-specific parameters. While this set yields
good results as we presented in the paper, a careful tuning may
improve the performance.
• Number of Time Steps: 40 million
• Number of Actors: 32 (32 CPUs in parallel)
• Time Steps per Episode During Training: 300
• Time Steps per Actor Batch: 1200
• ϵ for Clipping in the Surrogate Objective: 0.2
• Optimization Step Size (OSS): 3× 10−4

• Annealing for ϵ (Clipping) and OSS: Linear (down to 0)
• Entropy Coefficient: 0.005
• Number of Optimization Epochs: 5
• Optimization Batch Size: 64
• γ for Advantage Estimation: 0.99

• λ for Advantage Estimation: 0.95
• ϵ for Adam Optimization: 10−5

Finally, we report the training times (for 40 million time
steps) and the number of time steps of empirical convergence
(in terms of reward value) for each RL policy in Table II. In
test time, RL policies produce an action in under 1 ms.

TABLE II: Training and Convergence Times

Policy Training Time Time Step of Convergence
Simple General Network 10.0 hours 26.3 million
OW Network 253.1 hours 31.0 million
|P| = 2 22.2 hours 0.7 million
|P| = 3 38.9 hours 10.0 million
|P| = 3, w/ accidents 40.5 hours 22.0 million
|P| = 3, ᾱ = 0.4 50.6 hours 25.5 million
|P| = 3, ᾱ = 0.5 43.1 hours 19.3 million
|P| = 3, ᾱ = 0.7 38.6 hours 6.6 million
|P| = 4 101.4 hours 23.3 million

	Introduction
	Vehicle flow dynamics: modeling roads
	Network dynamics: routing for humans and autonomous vehicles
	Human choice dynamics
	Autonomous vehicle control policy

	Equilibrium analysis
	Equilibrium Formulation
	Path equilibrium
	Network equilibrium

	Experiments and results
	General Class of Networks
	Parallel Networks

	Conclusion
	Appendix
	Summary of notation
	Proofs for Section IV-C
	Overview of Proximal Policy Optimization (PPO)
	Experiment details

