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Abstract

When humans collaborate with each other, they often make deci-
sions by observing others and considering the consequences that
their actions may have on the entire team, instead of greedily do-
ing what is best for just themselves. We would like our AI agents
to effectively collaborate in a similar way by capturing a model of
their partners. In this work, we propose and analyze a decentral-
ized Multi-Armed Bandit (MAB) problem with coupled rewards
as an abstraction of more general multi-agent collaboration. We
demonstrate that naı̈ve extensions of single-agent optimal MAB
algorithms fail when applied for decentralized bandit teams. In-
stead, we propose a Partner-Aware strategy for joint sequential
decision-making that extends the well-known single-agent Upper
Confidence Bound algorithm. We analytically show that our pro-
posed strategy achieves logarithmic regret, and provide extensive
experiments involving human-AI and human-robot collaboration
to validate our theoretical findings. Our results show that the pro-
posed partner-aware strategy outperforms other known methods,
and our human subject studies suggest humans prefer to collabo-
rate with AI agents implementing our partner-aware strategy.

1 Introduction
One of the key characteristics of human-human interaction
is people’s ability to seamlessly anticipate and take com-
plementary actions when working with others. For exam-
ple, the moment our partner reaches for a box of cereal,
we automatically walk to the fridge to grab milk. The suc-
cess of multi-agent systems or human-AI teams usually de-
pends on not only each agent’s actions, but also how well
they model other agents’ policies and the interplay between
them. As another example, consider a semi-autonomous car
where both the actions of the driver, e.g., keeping or chang-
ing lanes, and assistive guidance, e.g., corrections that keep
the car inside the lanes, determine the control of the vehicle.
Here, we expect the guidance to predict the driver’s intent
and augment their actions to enhance safety and comfort.

Decentralized learning is particularly challenging when
some agents have limited information of the outcomes of the
actions taken by the team. In the car example, even though
both human and assistive guidance share the same goal of
safety and comfort, the guidance may not fully observe the
driver’s internal objective of, for instance, changing lanes
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to exit and get gas at a cheaper station. Although explicit
communication can alleviate some of these challenges, it is
often impractical or expensive: we cannot expect the guid-
ance system to ask for and expect feedback after every de-
cision of the driver. On the other hand, humans rely on im-
plicit communication for coordination in many interactive
settings (Breazeal et al. 2005; Che, Okamura, and Sadigh
2020; Losey et al. 2020). They generally make effective in-
ferences by simply observing and reasoning over their part-
ner’s actions. Hence, we question if AI agents can accurately
model others’ policies without explicit communication to ef-
fectively coordinate and cooperate.

Previous works such as theory of mind (Simon 1995;
Baker et al. 2017; Brooks and Szafir 2019; Lee, Sha, and
Breazeal 2019) and opponent modeling in multi-agent learn-
ing (Foerster et al. 2018; Shih et al. 2021; Xie et al.
2020) showed the performance of human-AI and multi-
agent teams may significantly increase if the agents accu-
rately model each other’s policies. However, most of these
approaches require recursive belief modeling or rely on
learned partner representations, which can often be complex
and computationally intractable.

Our goal is to develop a simple and tractable approach for
modeling partners in decentralized multi-agent teams that
is guaranteed to improve performance. We specifically fo-
cus on decentralized Multi-Armed Bandit (MAB) problems,
which extend the stochastic MAB, a fundamental model
for sequential decision-making to explore an agent’s en-
vironment efficiently. Our decentralized MAB formulation
captures the essential elements of multi-agent collaborative
learning. First, we model the team reward to be dictated by
the actions of all agents, which is common in many real-
istic collaborations, e.g., the safety and comfort of a semi-
autonomous vehicle depend on both the driver’s and the
guidance system’s actions. Second, we model the hetero-
geneity in the information available to each agent by in-
troducing partial observability over rewards, e.g., the vehi-
cle does not always accurately observe whether the human
is looking for the fastest route or the cheapest gas station.
Hence, our formulation requires collaboration among agents
to accomplish the task of learning the optimal team action
while only observing each others’ actions.

One might hope that naı̈ve extensions of well-known ban-
dit algorithms such as Thompson Sampling and Upper Con-



fidence Bound (UCB) would be sufficient for effective col-
laboration in these settings. However, we demonstrate these
extensions fail to provide logarithmic regret. Our key in-
sight is to leverage the simplicity of these well-known al-
gorithms while predicting our partner’s actions — make the
agent with lower observability of rewards follow the agent
with the higher observability. Specifically, we propose a
computationally simple partner-aware bandit learning algo-
rithm where the follower learns to predict its partner’s ac-
tions while choosing its own action. We analytically show
that this algorithm incurs regret logarithmic in time horizon.

Our main contributions are:

• We propose a computationally efficient partner-aware
bandit algorithm, which anticipates the partner’s action
and effectively coordinates with the partner.

• We analytically prove our proposed algorithm signif-
icantly improves the team performance and provides
logarithmic regret.

• Finally, we conduct extensive simulations and an in-
lab collaborative robot experiment shown in Fig. 1. Our
results suggest our algorithm significantly improves the
team performance and is preferred by the users.

2 Related Work
Multi-Agent Multi-Armed Bandits. Existing decentral-
ized cooperative MAB algorithms make one or more of
the following assumptions: (i) agents independently interact
with the same MAB (Lupu, Durand, and Precup 2019), (ii)
they use sophisticated communication protocols to exchange
information about rewards and the number of times ac-
tions were played (Landgren, Srivastava, and Leonard 2016;
Martı́nez-Rubio, Kanade, and Rebeschini 2019; Sankarara-
man, Ganesh, and Shakkottai 2019; Shahrampour, Rakhlin,
and Jadbabaie 2017; Barrett et al. 2014), (iii) when sophisti-
cated communication is not possible, agents share their latest
action and reward (Madhushani and Leonard 2019).

These assumptions are often required to simplify the anal-
ysis, but are not realistic in most human-AI interactions, e.g.,
collaborative transport, assembly, cooking, or autonomous
driving, where (i) agents’ actions influence the outcome for
the whole team, (ii) they do not have explicit communication
channels or might have different state, action representations
that are difficult to communicate, or (iii) they have different
capabilities, e.g., noisier sensors.

In our work, we do not make any of these assumptions.
We advance the current literature by analyzing a more re-
alistic model suited for collaborative human-AI interaction,
where we: (i) relax the assumption of independent agents
through coupled rewards, (ii) allow only implicit commu-
nication, i.e., agents can only observe each other’s actions
and not the rewards, (iii) relax the assumption on homogene-
ity of agents, i.e., some agents may receive noisier rewards.
Hence, existing algorithms in multi-agent multi-armed ban-
dits are not applicable in our setting. Our contribution is a
novel and computationally simple partner-aware algorithm
for decentralized collaboration, and proving it incurs loga-
rithmic regret for any finite number of arms.

Multi-Agent Learning. Recent works have shown the im-
portance of partner modeling in multi-agent environments
(Devin and Alami 2016; Zhu, Biyik, and Sadigh 2020). Fo-
erster et al. (2018) proposed an algorithm that improves
performance in repeated prisoner’s dilemma using oppo-
nent modeling. Losey et al. (2020) showed that agents can
implicitly communicate through their actions. Other works
have learned partner representations for effective coordina-
tion (Shih et al. 2021; Xie et al. 2020; Grover et al. 2018).
However, these approaches are either not guaranteed to ef-
fectively coordinate as they heavily rely on learned repre-
sentations or can lead to suboptimal solutions in multi-agent
MAB, where agents need to take the optimal action more
frequently over time to avoid linearly growing regrets.
Humans in Multi-Armed Bandits. Zhang and Yu (2013)
compared how various algorithms match with the actions
of humans playing a stochastic MAB. While our algorithm
does not specifically model the partner as an agent incorpo-
rating the imperfections humans have, we observe via our
user studies that it can collaborate well not only in multi-AI
teams but also with human partners.

3 Problem Setting
In this section, we present a decentralized MAB formulation
that captures essential aspects of multi-agent decentralized
collaborative learning.
Running Example. Consider a human-robot team tasked
with stacking burgers in a fast-food restaurant, where they
stack the ingredients together (see Fig. 1). Suppose the hu-
man is responsible for the patty and the cheese in the burger,
whereas the robot stacks tomatoes and lettuce. As many peo-
ple have strong opinions about in what order these ingredi-
ents should be stacked (Burge 2017), the robot should pre-
dict the human’s actions to better coordinate on stacking
the burger. If the robot only has partial information about
whether a guest liked a burger, it might take suboptimal ac-
tions even though the human may have already discovered
the optimal action and expected the robot to comply.

Formally, at every time instant t each agent i, where i ∈
{1, 2},1 chooses an action a

(i)
t ∈ Ai locally. The team action

is defined as the union of both agents’ actions, i.e., at :=

(a
(1)
t , a

(2)
t ). The team action space is denoted by A = A1 ×

A2. It is helpful to think of A as a team action matrix and
each possible team action as a cell of the matrix. Thus, at any
time instant t, agent 1 selects one row out of the |A1| rows
and agent 2 selects one column out of the |A2| columns. We
assume the agents select their local actions simultaneously,
i.e., before observing their partner’s current action.

For each team action a ∈ A, the rewards {r∗t (a)}t≥1 are
sampled independently from a Bernoulli distribution with
unknown mean µa ∈ [0, 1]. Note the reward is a function of
both agents’ actions. We refer to such scenarios as settings
with coupled rewards, where the actions of all agents gov-
ern the reward received by each agent. This necessitates that
each agent learns to account for others’ actions instead of
greedily optimizing its own rewards. In the burger example,

1We generalize to more agents in Section 5.



Figure 1: AI agents collaborating with humans should model their human partners. (Left) A robot and a human collaborate on
a burger stacking task. (Right) The robot decides its actions by modeling the actions of the human.

the robot learns to choose actions to stack the ingredients in
the right order while learning to predict the human’s action.

We assume the agents observe the rewards with a fixed
probability pi, i.e., r(i)t (a) = r∗t (a) with probability pi, and
the agent incorrectly assumes r

(i)
t (a) = 0 with probability

1 − pi.2 We refer to such scenarios as settings with partial
reward observability. Going back to our burger stacking ex-
ample, humans may have better reward observability—they
could better sense when a guest has been happy about the
burger—whereas the robot needs an explicit feedback.

We assume agents observe each other’s actions but not the
rewards: at any time t they have the knowledge of all past
team actions {aτ}t−1

τ=1 and only their own local rewards.
To summarize, our setting considers truly realistic coor-

dination scenarios where the agent’s actions influence the
outcome for the whole team. In addition, the agents only
observe each other’s actions and do not have access to
direct communication channels, which covers the difficult
case where agents are heterogeneous and might have dif-
ferent modes of communication—a human can easily use
language, but that might not be as easy for an AI agent to
interpret or use. Finally, as most realistic teams, we assume
agents have different capabilities (e.g. sensing capabilities)
leading to different observations corresponding to their own
local reward observations.

The goal of the team at every time step t is to se-
lect an action at that maximizes the average team reward
rt(at) =

1
2r

(1)
t (at) +

1
2r

(2)
t (at).3 Let a∗ denote the optimal

team action, i.e., a∗ = argmaxa∈A E[rt(a)]. Thus, agent
1 seeks to identify the optimal row (a

(1)
∗ , ·) and agent 2

tries to identify the optimal column (·, a(2)∗ ). Their inter-
section is the optimal cell a∗ = (a

(1)
∗ , a

(2)
∗ ). Alternatively,

the team aims to minimize the cumulative regret defined
as R(T ) := E

[︂∑︁T
t=1 (rt(a∗)− rt(at))

]︂
. In this work, we

aim to design decentralized team action strategies for each

2Agents do not know when they failed to observe the reward.
Knowing it is a simpler setting, where agents update their local
reward statistics only when a reward is observed.

3Since the rewards are coupled, our analysis and Theorem 1
will extend to the case where the team reward is any linear combi-
nation of agents’ rewards.

agent i that select a(i)t as a function of past local rewards
r
(i)
1 (a1), . . . , r

(i)
t−1(at−1) and the team actions a1, . . . , at−1.

We are interested in cases where at least one agent has par-
tial reward observability, i.e, pi ̸= 1 for some i ∈ {1, 2}.

4 Partner-Aware Bandit Learning
We now present a learning algorithm for the decentralized
collaborative MAB when the agents have partial reward ob-
servability, and their rewards are coupled. Different local ob-
servations due to partial reward observability can lead to
the agents wanting to select different team actions. Since
the agents’ rewards are coupled, such a mismatch in the
agents’ action-choices can cause them to explore their ac-
tion space inefficiently as a team. To successfully collabo-
rate, the agents need to learn to predict their partners’ ac-
tions correctly. Modeling partner’s belief states and action-
strategy has been well-studied in the theory of mind litera-
ture; however, such recursive belief modeling techniques can
get computationally prohibitive and do not scale well with
the number of agents (Hellström and Bensch 2018). Instead,
we introduce a computationally simple way of predicting
the partner’s actions in the collaborative multi-armed bandit
domain—which is a useful abstraction that enables theoret-
ically analyzing multi-agent interactions. The core ideas of
our approach, though simple, lead to an analytical algorithm
with logarithmic regret, and can provide insight for partner
modeling beyond multi-armed bandits.

Let pmax := max{p1, p2} and pmin := min{p1, p2}. We
refer to the agent with higher reward observability (pmax) as
the leader and the other agent as the follower.4 In our ap-
proach, the follower learns to predict the leader’s actions. It
chooses its local action assuming the leader’s current action
will match its prediction. As its predictions become more
accurate, the leader leads the follower to explore the opti-
mal row in the action matrix A. Since the leader has higher
reward observability, the team can efficiently explore the ac-
tion matrix. We rewrite the team action based on leader and
follower assignment as: at=(a

(L)
t , a

(F )
t )∈A :=AL× AF .

4Our algorithm extends to the case where p1 and p2 are un-
known, in which case leader and follower roles are assigned ran-
domly and the pmax terms in the denominators of Theorem 1 will
be replaced with pmin.



Algorithm 1: Partner-Aware UCB: Follower

Input: δ>0, W ≥1, exploration constant: c(F )>0
1 Definition: Denote empirical mean

µ̂(F )
a (t) =

∑︁t
τ=1 r(F )

τ (aτ )1{aτ=a}
na(t)

∀ a ∈ A
2 Denote upper confidence bound

f
(F )
a (t, δ) = µ̂(F )

a (t− 1) +
√︂

c(F ) log 1/δ
na(t−1) ∀ a ∈ A

3 Initialize: na(0) = 0, µ̂(F )
a (0) = 0, f (F )

a (1, δ) =∞
for all a ∈ A, set ρ(L)

t (a) = 1
|AL| ∀a ∈ AL

4 for t = 1, . . . , T do
5 Predict leader’s action by sampling ã

(L)
t ∼ ρ

(L)
t

6 Select a(F )
t ← argmaxa∈AF

f
(F )

(ã
(L)
t ,a)

(t, δ)

7 Perform a
(F )
t

8 Observe partner’s action a
(L)
t and reward r

(F )
t (at)

9 Update nat
(t)←nat

(t− 1) + 1

10 Update µ̂(F )
at

(t) and f
(F )
at (t, δ)

11 Update ρ(L)
t+1(a)←

∑︁t
τ=max{1,t−W+1}1{a

(L)
τ =a}

min{t,W} ∀a∈AL

We denote the optimal team action as a∗ = (a
(L)
∗ , a

(F )
∗ ).

Similarly, r(L)
t and r

(F )
t denote the observed rewards.

Partner-Aware UCB: Follower. We provide the pseu-
docode in Algorithm 1. At every time step t, the follower
predicts the leader’s current action by sampling from a dis-
tribution ρ̃

(L)
t over leader’s action space AL (line 5), which

is obtained by normalizing the histogram computed from the
leader’s past W actions. Intuitively, ρ̃(L)

t serves an approxi-
mation of the leader’s action selection strategy. As the leader
becomes more confident about the optimal action and starts
to exploit, the distribution ρ̃

(L)
t concentrates over the optimal

action. Hence, the follower gets more accurate in its predic-
tions of the leader’s actions. At every time step, the follower
uses its prediction of leader’s action ã

(L)
t to fix a row in the

action matrix A and choose one of the |AF | columns. To
do so, it computes an upper confidence bound on the mean
value for the actions in the row ã

(L)
t , and chooses the action

maximizing the upper confidence bound (line 6):

a
(F )
t := argmax

a(F )∈AF

µ̂
(F )

(ã
(L)
t ,a(F ))

(t−1) +
√︄

c(F ) log 1/δ

n
(ã

(L)
t ,a(F ))

(t−1)
,

where µ̂(F )
a denotes the empirical mean of the follower’s lo-

cal rewards, na denotes the action count for any team action
a, and c(F ), δ > 0 are exploration parameters.

In short, the follower predicts the leader’s action by look-
ing at its past W actions. If the leader takes some actions
more frequently, then the follower predicts those actions
with high probability and aids the leader in exploring them.
Partner-Aware UCB: Leader. Now we present our partner-
aware UCB algorithm for the leader. This algorithm is an ex-
tension of the well-known UCB algorithm. We provide the
pseudocode in Algorithm 2. For each team action, the leader
computes an upper confidence bound on its mean value us-
ing the local observations. The leader then selects a team

Algorithm 2: Partner-Aware UCB: Leader

Input: δ > 0, L ≥ 1, exploration constant: c(L) > 0
1 Definition: Denote empirical mean

µ̂(L)
a (t) =

∑︁t
τ=1 r(L)

τ (aτ )1{aτ=a}
na(t)

∀ a ∈ A
2 Denote upper confidence bound

f
(L)
a (t, δ) = µ̂(L)

a (t− 1) +
√︂

c(L) log 1/δ
na(t−1) ∀ a ∈ A

3 Initialize: na(0) = 0, µ̂(L)
a (0) = 0, f (L)

a (1, δ) =∞
for all a ∈ A

4 for t = 1, . . . , T do
5 if t mod L = 1 then
6 Select

(︂
a
(L)
t , ·

)︂
← argmaxa∈A f

(L)
a (t, δ)

7 else
8 a

(L)
t ← a

(L)
t−1

9 Perform a
(L)
t

10 Observe partner’s action a
(F )
t and reward r

(L)
t (at)

11 Update nat
(t)← nat

(t− 1) + 1

12 Update µ̂(L)
at

(t) and f
(L)
at (t, δ)

action that maximizes the upper confidence bound (line 6),
similar to the follower’s selection criterion. The leader then
plays its own coordinate of the team action it selected, and
it repeats every action it selects for L consecutive time steps
(line 8).

As the follower predicts the leader’s action based on each
action’s frequency in the past W time steps, the leader re-
peating its actions more than once (L > 1) ensures the fol-
lower’s prediction matches the leader’s action with a high
probability. We use this for our analysis, but employ L= 1
in practice to avoid potential losses due to repetitive actions.
Theorem 1. For any horizon T , if δ = 1

T 2 , L = 2 and W =
1, the cumulative regret of partner-aware bandit learning
algorithm, as defined in Algorithms 1 and 2, is logarithmic
in the horizon T . Specifically, the cumulative regret R(T )
can be upper bounded by

(pmax + pmin)∆max

[︄ ∑︂
i ̸=a

(L)
∗

16

p2max∆
2
(i,j∗(i))

log T+

∑︂
i∈AL

∑︂
j ̸=j∗(i)

16

p2max∆̃
2

(i,j)

log T +
3|AL||AF |

2

]︄
,

where ∆max = maxa∈A ∆a, j∗(i) := argmaxj∈AF
µ(i,j),

∆̃(i,j) = µ(i,j∗(i))−µ(i,j) for i ∈ AL and j ̸= j∗(i), and

∆(i,j∗(i))=µa∗−µ(i,j∗(i)) for i ̸=a
(L)
∗ .

This theorem analyzes a special case, L= 2 and W = 1,
where the follower predicts the leader will take the same
action it took in the last time step. As the leader repeats its
actions twice, these predictions are correct for at least half
of all time steps.5 Thus, the agents jointly explore the row
which the leader intends to explore for at least half of the
time steps. After the leader converges to the optimal row

5Similarly, the proof can be generalized to any ⌊W/2+1⌋<L.



a
(L)
∗ , the leader and the follower jointly explore the optimal

column to learn the optimal cell (a(L)
∗ , a

(F )
∗ ). The proof of

Theorem 1 uses this intuition (see Appendix B).

5 Simulations
We now assess the performance of our Partner-Aware UCB
algorithm through a set of simulations.6 Unless otherwise
noted, we set |A1| = |A2| = 2, p1 = 1, p2 = 0.5, c(L) =
c(F ) = 0.025 in these simulations.
Validation of Theoretical Results. We start with validating
the theoretical results we established in Theorem 1. For this,
we ran a simulation with fixed reward means.7

Figure 2 (left) shows the results that validate the theorem.
It also provides a comparison between different L values.
Having seen that the algorithm performs comparably with
no significant difference with varying L, we use L = 1 for
the rest of the simulations and experiments, because it re-
duces the leader to a standard UCB agent and relaxes the
assumption that the leader repeats its actions, which is par-
ticularly desirable in human-AI interaction with the human
acting in the leader role.

Time Steps Time Steps
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Figure 2: Cumulative regret values over 100 runs for varying
(left) L and (right) W . Shaded regions show standard error.

We compare different W in Fig. 2 (right). Here, W = 1
outperforms larger window widths. However, this assumes
the follower is paired with a UCB leader, who selects the
next action based on the entire history of actions and local
rewards. This is unrealistic when interacting with a human
leader. Humans are often bounded rational and make deci-
sions only based on the most recent information (Zhang and
Yu 2013; Simon 1995). We thus will use higher values of
W in practice to increase the follower’s horizon to the past,
which can potentially improve robustness (see Appendix C).
Effect of Partner-Awareness. When established MAB al-
gorithms, such as UCB and Thompson sampling, are naı̈vely
used in the multi-agent case, each agent attempts to solve a
single-agent MAB problem in the team action space. While
they are known to produce logarithmic regret in the single-
agent case, the collaborative problem is much more chal-
lenging, since agents can only decide their part of the team
action. Hence, we empirically show that simply pairing such
standard algorithms in the multi-agent setting fails whereas
our Partner-Aware UCB achieves sublinear regret.

For this, we ran two simulations: one with fixed reward
means (the same as before), and one where the reward means

6Code at: https://sites.google.com/view/partner-aware-ucb
7We set A1 = A2 = {0, 1} and µ(0,0) = 0.8, µ(0,1) = 0.4,

µ(1,0) = 0.2, µ(1,1) = 0.6. This is a difficult setting, as agents may
easily converge to the local optimum a = (1, 1).
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Figure 3: Cumulative regrets over 100 runs for different al-
gorithms with (left) fixed and (right) random reward means.

are generated randomly from a Unif[0, 1] prior. For Partner-
Aware UCB, we set L = 1, W = 25. Figure 3 shows the re-
sults. While Naı̈ve UCB and Naı̈ve Thompson Sampling re-
sult in linear regrets, our algorithm achieves sublinear regret
in both cases. This result provides strong empirical evidence
for our claim and demonstrates the importance of partner-
awareness and partner-modeling. Additional simulations are
presented in Appendix D.
Varying Other Conditions. Having demonstrated the suc-
cess of Partner-Aware UCB, we investigate its performance
under varying conditions. Specifically, we check the effects
of observability.

Time Steps Time Steps

C
um

ul
at

iv
e 

Re
gr

et

Figure 4: Cumulative regret values over 100 runs under dif-
ferent (left) leader and (right) follower observabilities.

For this, we ran simulations with fixed reward means
(the same as before) and vary p1 ∈ {0.6, 0.8, 1.0}, p2 ∈
{0.2, 0.5, 0.8}. We set L = 1, and W = 25.

Figure 4 shows the results for both varying p1 (left), and
p2 (right) experiments. In all cases, Partner-Aware UCB in-
curs only sublinear regret.8
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Figure 5: Average regret values over 100 runs with varying
number of available actions for both agents.

We also experiment with varying number of available ac-
tions to the agents. Figure 5 (left) shows the results for
|A1| = |A2| ∈ {2, 3, 4}, averaged over 100 runs.9 While
the incurred regret naturally increases with higher number
of actions, Partner-Aware UCB achieves sublinear regret in

8As the cumulative regret takes partial observability into ac-
count, it does not necessarily increase with lower observability.

9Similar to the fixed reward values as in the two-action case, we
designed the rewards such that there are |A1| = |A2| local optima.

https://sites.google.com/view/partner-aware-ucb


all cases. Due to different scale, we present the results with
30 actions on a separate plot in Fig. 5 (right) under the ran-
dom reward setting.
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Figure 6: Average regret values over 100 runs with varying
number of agents with the extended algorithm.

Generalization to More Agents. We now generalize our al-
gorithm to more than two agents, a useful formalism for ap-
plications in human-robot teams. For this, we first note there
is a leader and a follower in the original algorithm, and only
one of them models the other. The primary motivation for
this is to avoid deadlock situations where agents oscillate
between actions to “catch” the other agent’s behavior.

While agents should not model each other, it would also
not be enough if they modeled only the agent with the high-
est reward observability. Even if they could accurately pre-
dict that agent’s actions, they would still need to solve a de-
centralized MAB among themselves.

This informs us about the following recursive approach.
Suppose we have an N -agent problem. As in the original
Partner-Aware UCB, the agent with the highest observabil-
ity does not model the others and tries to optimize its own
action as if the others will comply. All other agents model
and attempt to predict this leader agent. They now have to
deal with an (N − 1)-agent problem. Hence, the agent with
the second highest observability does not model the remain-
ing N−2 agents who, on the other hand, model this “second
leader”. This hierarchy we impose based on observability
continues until the problem reduces to a single-agent prob-
lem for the last agent.

To test if the extended algorithm achieves sublinear regret,
we ran simulations with varying number of agents from N ∈
{2, 3, 4}, and |Ai| = 2 for all agents and pi = i/N . The
reward means were fixed10, and we set c(i) = 0.025, L = 1,
and W = 25 for all agents. Fig. 6 shows the results averaged
over 100 runs. The extended Partner-Aware UCB achieves
sublinear regret in all cases.
Generalization to Other Bandits. The reason why Partner-
Aware UCB performs successfully is that it allows the fol-
lower agent to learn its best individual action conditioned on
the leader’s action, which allows the agents to discover the
team-optimal action. We hypothesize this idea could solve a
broader class of decentralized cooperative bandit problems.

To test this, we simulated two settings: (i) a flipped set-
ting where the agents get a reward of 1 instead of 0 with
probability of pi (and still get r∗t (a) with probability 1−pi),
(ii) a Gaussian bandits setting where r∗t (a) comes from an

10Similar to the other experiments, we designed the reward val-
ues such that there are |A1| = · · · = |AN | = 2 local optima.

action-dependent stationary Gaussian distribution with un-
known mean and variance, and agents get reward r∗t (a)+ νi
where νi ∼ N (0, σi) for different σi (we set the agent with
higher σi to be the follower as it has noisier rewards).
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Figure 7: Average regret values over 100 runs in the (left)
flipped and (right) Gaussian settings.

As it can be seen in Fig. 7, where we ran simulations with
random reward means (and random std for r∗t ∈ [0.1, 0.5]
in Gaussian bandits with σ1 = 0.1 and σ2 = 0.5), Partner-
Aware UCB outperforms Naı̈ve UCB and achieves a sublin-
ear regret even in these modified settings.

6 Experiments
We now empirically analyze our algorithm through an in-lab
human-subject study where the participants collaborate with
a robot arm to stack burgers. While this experiment involves
a short horizon, we also present an online human-subject
study where the participants collaborate with a robot for
long horizons to maximize their profit on a grid of slot ma-
chines in Appendix F. Our user studies have been approved
by the local research compliance office. Subjects were com-
pensated with $15/hour for their participation.
Experimental Setup. We designed a collaborative burger
stacking experiment as shown in Fig. 1.11 Subjects were told
they work at a burger store with a robot to stack burgers.
They are responsible for placing the patty and the cheese,
whereas the robot is for the tomatoes and lettuce. They de-
cide whether the patty or the cheese should go on top of the
bottom bun, and the robot decides the second layer. Deci-
sions are simultaneous without knowing each other’s action.

The participants were told there is a fixed probability as-
sociated with whether a customer liked the burger. After
stacking each burger, the robot and the human are informed
about if a customer was satisfied. The robot has a sensor
defect and observes only half of the satisfied customers. It
senses the others as unsatisfied (human’s observability is
p1=1 and robot’s p2=0.5). The goal of both the human and
the robot is to maximize the number of satisfied customers.
Independent Variables. We varied the robot’s algorithm:
Naı̈ve UCB and Partner-Aware UCB. We set, when relevant,
L = 1, W = 2 and c(L) = c(F ) = 0.01.
Procedure. We conducted a within-subjects study with a
Fetch robot (Wise et al. 2016) for which we recruited 58 par-
ticipants (22 female, 36 male, ages 18 – 69). Due to the pan-
demic conditions, the first five of the subjects participated
the study with a real robot in the lab, and the rest partic-
ipated remotely with an online interface. The participants

11Video at: https://sites.google.com/view/partner-aware-ucb

https://sites.google.com/view/partner-aware-ucb


interacted with the robot to prepare 40 burgers together, 20
with each algorithm. The participants knew the number of
burgers they are going to prepare in advance.

Initially, MAB requires significant exploration, so com-
parison between the two algorithms at early stages will
not yield any meaningful results. However, evaluating later
stages of collaboration would require many repeated long-
term interactions with the robot, which is not feasible due
to limitations on the duration of in-lab studies with a robot.
Instead, we warm-start each algorithm by allowing them to
collaborate with a simulated Naı̈ve UCB agent for stack-
ing 20 burgers to proceed forward in the exploration stage
so that the robot’s algorithm will be more critical for per-
formance. After these 20 burgers, the simulated agent is
replaced with the study participant for preparing 20 more
burgers with each algorithm.

The user interface aided the participants by providing in-
formation about: the number of satisfied and unsatisfied cus-
tomers for each burger configuration, the total number of
burgers stacked, the configuration of the latest burger and
whether it made the customer satisfied.

For a fair comparison, we randomized the reward means
only between the users and not between the algorithms. We
swapped the actions to prevent participants from realizing
they are dealing with the same problem instance. Hence, be-
tween the two sets, for example, µ(0,1) of the first set was
equal to µ(1,0) in the second. To further avoid any bias due
to ordering, half of the participants first worked with Naı̈ve
UCB and the other half with the Partner-Aware UCB.
Dependent Measures. We measured cumulative regret and
the total number of satisfied customers. We excluded the
first 20 simulated time steps for a fair comparison. Addition-
ally, the participants took a 5-point rating scale survey (1-
Strongly Disagree, 5-Strongly Agree) consisting of 5 ques-
tions for each algorithm: “I was usually able to stack the
burger I wanted” (Ability), “The robot insisted on some sub-
optimal burgers” (Insisting), “The robot was easy to collab-
orate with” (Easy), “The robot was annoying” (Annoying),
and “I could get more happy customers if I were stacking
burgers alone” (Alone).
Hypotheses.

H1. Users interacting with Partner-Aware UCB robot will
incur smaller regret and keep the customers more satisfied.
H2. Users will subjectively perceive the Partner-Aware
UCB robot as a better partner who can effectively collab-
orate with them.

Results-Objective. Partner-Aware UCB achieves lower re-
gret (2.7± 0.31) compared to Naı̈ve UCB (3.6± 0.31) with
statistical significance (p < .005). Fig. 8 (left) shows the
cumulative regret incurred over time with both algorithms.

The significant difference in the cumulative regret is also
reflected in the number of satisfied customers supporting
H1: Partner-Aware UCB achieved significantly higher num-
ber of satisfied customers (13.5 ± 0.6) than Naı̈ve UCB
(12.7± 0.6), with p < .05.
Results-Subjective. The Naı̈ve UCB robot often decides
stacking an under-explored burger and insists on the same
action until that burger is made. While this occasionally
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Figure 8: (Left) Average regret over time, (right) survey re-
sults for the burger-stacking robot experiment. Single and
double asterisks indicate p<.05 and p<.005, respectively.

helps the humans to exploit a burger, it often causes dead-
lock situations where both agents are unable to stack their
intended burgers. On the other hand, Partner-Aware UCB
keeps a model of the human, and avoids such situations. We
believe this explains the subjective preferences of the users.

We plot the users’ survey responses in Fig. 8 (right).
The responses were reliable with Cronbach’s alpha > 0.95.
The users indicated they were able to stack the burger they
wanted (Ability) more frequently with the Partner-Aware
UCB (p < .005), and thought it was easier to collaborate
with (Easy, p ≈ .07), whereas found the Naı̈ve UCB robot
more annoying (Annoying, p ≈ .05). They also indicated the
Naı̈ve UCB insisted more on the suboptimal burgers (Insist-
ing, p < .005). Finally, the users think they could have more
satisfied customers if they were stacking burgers alone with
a higher confidence when partnered with the Naı̈ve UCB
robot (Alone, p < .05). These results strongly support H2.
We further analyze and discuss how different populations of
human users perform differently in Appendix E.

7 Conclusion
Summary. We studied multi-agent decentralized MAB,
where the reward obtained by the team depends on all
agents’ actions. We showed naı̈ve extensions of optimal
single-agent MAB algorithms – where each agent disre-
garded others’ actions – fail when rewards are coupled. We
proposed a simple yet powerful algorithm for partners to
model and coordinate with the partners who have higher
observability over the task. Our algorithm only relies on
the observation of partner’s actions and accomplishes the
coordination without explicit communication. We analyti-
cally showed it achieves logarithmic regret and tested our
hypotheses through simulations and experiments.
Limitations and Future Work. The decentralized MAB is
a useful abstraction for many real-world coordination tasks,
and we are excited that our algorithm yet simple demon-
strates significant improvements to enable seamless coordi-
nation. However, many applications require more complex
formulations such as Markov Decision Processes. In the fu-
ture, we plan to extend the intuitions gained by our algorithm
and analysis to some of these more complex settings.

Another interesting direction is pairing the partner-aware
strategy with algorithms other than UCB, e.g., Thompson
sampling. Our preliminary results indicate it still gives sig-
nificant improvements over the naı̈ve counterparts.
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Appendix
In the Appendix, we first discuss the effect of parameters W and L in our Partner-Aware UCB algorithm (Appendix A). We then
present the proof of Theorem 1 in Appendix B. Appendix C presents the simulation results for what happens when a Partner-
Aware UCB follower collaborates with a leader who employs knowledge gradient algorithm. Appendix D gives additional
simulation results where agents completely ignore the multi-agent aspects of the problem. In Appendix E, we make further
analysis on the burger stacking robot experiments that show how different populations of human users perform differently.
Appendix F demonstrates the effectiveness of Partner-Aware UCB in long-term human-robot collaboration through an online
human-subject study. Finally, Appendix G presents the computation infrastructure we used for our simulations and experiments.

A Effect of parameters W and L

The parameter W denotes the number of leader’s past actions used by the follower to compute the sampling distribution ρ̃
(L)
t

at any time t. Larger values of W imply that the follower accounts for more number of past actions by the leader and hence
ρ̃
(L)
t , i.e., the follower’s predicted leader action is less sensitive to its recent actions. When W = 1, the follower only looks

at the leader’s latest action and predicts that the leader will repeat its action. As shown in Fig 2, regret incurred when W = 1
is smaller than any W > 1. This is because the leader uses the upper confidence bound over each action, which is computed
using the entire past history. We also note that W = 1 may not be optimal when humans are involved, because unlike our
partner-aware leader algorithm, humans tend to be more myopic in their decision making. The parameter L denotes the number
of times the leader repeats its local action. In all our experiments we fix L = 1, and to simplify our analysis we assume L > 1,
specifically L = 2.

Before we provide the proof of our main result, we provide the following fact which shows that agents do not need to model
each other when all agents have full reward observability.

Fact 1. Let |A1|= |A2|=K and define ∆a := µa∗−µa for all a ∈ A. Consider a decentralized team where p1 = p2 = 1,
i.e., both agents have full reward observability. Then, the team reduces to a single agent MAB. Implementing UCB algorithm
at single MAB agent achieves logarithmic regret (Lattimore and Szepesvári 2020). Hence, if each agent implements the UCB
algorithm locally, applying Theorem 7.1 in (Lattimore and Szepesvári 2020), the team achieves logarithmic cumulative regret.

However, when there is an agent with partial reward observability, if they do not model each other then the regret grows
linearly with time, as we have seen in Fig. 3.

B Proof of Main Theorem
Let u(i,j) denote a positive integer to be defined later for each team action (i, j) ∈ A. For all rows i in leader’s action space
AL, define the optimal column with highest pay-off as

j∗(i) := argmax
j∈AF

µ(i,j).

Define the following good event

G
(F )
i :=

{︃
µ
(F )
(i,j∗(i))<min

t∈[T ]
f
(F )
(i,j∗(i))(t, δ)

}︃⋂︂
⎧⎨⎩ ⋂︂

j∈AF \{j∗(i)}

{︄
µ̂
(F )
(i,j)(u(i,j)) +

√︄
2 log 1/δ

u(i,j)
< µ

(F )
(i,j∗(i))

}︄⎫⎬⎭ .

On the good event G(F )
i , the mean value of optimal column in row i, i.e., µ(F )

(i,j∗(i)) will never be underestimated by the follower’s

upper confidence bound for the mean of action (i, j∗(i)). Furthermore, on event G(F )
i the follower’s upper confidence bound

obtained for the mean of action (i, j) after u(i,j) observations are taken by the team is below the pay-off of the best action in
the row (i, j∗(i)) when j is a sub-optimal column.

Recall that for the special case of L = 2 in our partner-aware learning algorithm, leader takes each action twice. Thus, at odd
time instants leader takes a new action according to its UCB and at even time instants it repeats the same action. Since W = 1,
the follower predicts the leader’s action correctly at every even time instant.

Lemma 1. Conditioned on the event
⋂︁

i∈AL
G

(F )
i , on even time instants the row sub-optimal columns will not be chosen by the

team for more than
∑︁

i∈AL

∑︁
j ̸=j∗(i) u(i,j) times.

Proof. Suppose event G(F )
i holds true. Suppose there exists some even time instant t where leader chooses row i, we have

n(i,j)(t−1) = u(i,j) for all sub-optimal columns j ∈ AF \{j∗(i)} and follower chooses a sub-optimal column j ∈ AF \{j∗(i)}.



Hence, team action at = (i, j) gets played at time t. Then, we get

f
(F )
(i,j)(t, δ) = µ̂

(F )
(i,j)(t− 1) +

√︄
2 log 1/δ

n(i,j)(t− 1)

(a)
= µ̂

(F )
(i,j)(u(i,j)) +

√︄
2 log 1/δ

u(i,j)

(b)
< µ

(F )
(i,j∗(i))

(c)
< f

(F )
(i,j∗(i))(t, δ), (1)

where (a) follows from the assumption that n(i,j)(t − 1) = u(i,j), (b) and (c) follow from the definition of the event G(F )
i .

The inequality in (1) is a contradiction to the fact that a sub-optimal column j of row i was played at time t. In other words,
sub-optimal action (i, j) on the event G(F )

i will be played at most u(i,j) times given the leader chooses the sub-optimal row
i. Hence, the sub-optimal columns of the action matrix will not be played for more than

∑︁
i∈AL

∑︁
j ̸=j∗(i) u(i,j) on even time

instants.

After
∑︁

j ̸=j∗(i) u(i,j) even time instants, for all future even time instants whenever the leader chooses row i, follower will
choose the optimal column j∗(i). Now, we want to show that the leader explores the action (i, j∗(i)) for at most u(i,j∗(i)) time
steps. For all i ∈ AL \ {a(L)

∗ }, define

G
(L)
i =

{︃
µ
(L)
(i,j∗(i)) < min

t∈[T ]
f
(L)
(i,j∗(i))(t, δ)

}︃⋂︂
⎧⎨⎩ ⋂︂

j∈AF \{j∗(i)}

{︄
µ̂
(L)
(i,j)(u(i,j)) +

√︄
2 log 1/δ

u(i,j)
< µ

(L)
(i,j∗(i))

}︄⎫⎬⎭⋂︂{︃
µ
(L)
a∗ < min

t∈[T ]
f
(L)
a∗ (t, δ)

}︃⋂︂{︄
µ̂
(L)
(i,j∗(i))(u(i,j∗(i))) +

√︄
2 log 1/δ

u(i,j∗(i))
< µ

(L)
a∗

}︄
.

The good event G(L)
i for the leader has events similar to the good event G(F )

i for follower and some additional events. On
the event G(L)

i , the mean value of optimal column in row i, i.e., µ(L)
(i,j∗(i)) will never be underestimated by the leader’s upper

confidence bound for the mean of action (i, j∗(i)). Furthermore, on event G(L)
i the leader’s upper confidence bound obtained

for the mean of action (i, j) after u(i,j) observations are taken by the team is below the pay-off of the best action in the row
(i, j∗(i)) when j is a sub-optimal column. Additionally, on this event the leader’s upper confidence bound for the optimal action
is never underestimated by the leader and the leader’s upper confidence bound for the optimal action in the row is below the
pay-off of the optimal team action.

Lemma 2. Conditioned on the event
⋂︁

i ̸=a
(L)
∗

G
(L)
i

⋂︁
G

(F )
i , the sub-optimal rows will be chosen for at most

2
∑︁

i ̸=a
(L)
∗

∑︁
j∈AF

u(i,j) time instants.

Proof. From Lemma 1, we know that conditioned on the event G(L)
i

⋂︁
G

(F )
i there exists a time instant t such that n(i,j)(t−1) =

u(i,j) for all j ∈ AF \{j∗(i)} and n(i,j∗(i))(t−1) = u(i,j∗(i)). This is true because even if the optimal column in row i is never
explored until all the sub-optimal columns are explored, we know that the sub-optimal columns will be explored for at most∑︁

j ̸=j∗(i) u(i,j) even time instants. After this point, the follower will choose the optimal column at even time instants whenever
the leader chooses row i. Hence, now we want to show that optimal column of a sub-optimal row i will be explored at most
u(i,j∗(i)) times. Now suppose at time t, team chooses action (i, j), this will happen if the leader chooses an action (i, j′) for
some j′ ∈ AF \ {j∗(i)} or if the leader chooses the optimal column in the row (i, j∗(i)). Consider the first case, then we get

f
(L)
(i,j′)(t, δ) = µ̂

(L)
(i,j′)(t− 1) +

√︄
2 log 1/δ

n(i,j′)(t− 1)

(a)
= µ̂

(L)
(i,j′)(u(i,j′)) +

√︄
2 log 1/δ

u(i,j′)

(b)
< µ

(L)
(i,j∗(i))

(c)
< f

(L)
(i,j∗(i))(t, δ), (2)

where (a) follows from the assumption that n(i,j′)(t − 1) = u(i,j′), (b) and (c) follow from the definition of the event G(L)
i .

The inequality in (2) is contradiction to the fact that the leader chose a sub-optimal column in the row. Now consider the second



case where the leader chooses the optimal column (i, j∗(i)). Then, we get

f
(L)
(i,j∗(i))(t, δ) = µ̂

(L)
(i,j∗(i))(t− 1) +

√︄
2 log 1/δ

n(i,j∗(i))(t− 1)

(a)
= µ̂

(L)
(i,j∗(i))(u(i,j∗(i))) +

√︄
2 log 1/δ

u(i,j∗(i))

(b)
< µ

(L)
a∗

(c)
< f

(L)
a∗ (t, δ), (3)

where (a) follows from the assumption that n(i,j∗(i))(t − 1) = u(i,j∗(i)), (b) and (c) follow from the definition of the event
G

(L)
i . The inequality in (3) is contradiction to the fact that the leader chose the optimal column in the row. In other words, it

takes
∑︁

i ̸=a
(L)
∗

∑︁
j∈AF

u(i,j) time instants to never choose sub-optimal rows in future time instants. In the worst case, it will
take at most 2

∑︁
i̸=a

(L)
∗

∑︁
j∈AF

u(i,j) time instants for the team to explore all the sub-optimal rows.

Define an overall good event for the team as

G :=

⎧⎨⎩ ⋂︂
i ̸=a

(L)
∗

G
(L)
i

⋂︂
G

(F )
i

⎫⎬⎭⋂︂G
(F )

a
(L)
∗

.

Then, we can write

E

⎡⎣∑︂
a̸=a∗

na(T )

⎤⎦ = E

⎡⎣∑︂
a ̸=a∗

na(T )1{G}

⎤⎦+ E

⎡⎣∑︂
a̸=a∗

na(T )1{Gc}

⎤⎦
(a)

≤ 2
∑︂

i ̸=a
(L)
∗

∑︂
j∈AF

u(i,j) + 2
∑︂

j ̸=a
(F )
∗

u
(a

(L)
∗ ,j)

+ TP(Gc), (4)

where (a) follows from Lemma 1 and Lemma 2.
Next, we choose the constants u(i,j) for all team actions (i, j). For any i ∈ AL and j ̸= j∗(i), set

u(i,j) =

⎡⎢⎢⎢ 8 log 1/δ

p2min∆̃
2

(i,j)

⎤⎥⎥⎥ ,

where we define ∆̃(i,j) = µ(i,j∗(i)) − µ(i,j) and for i ̸= a
(L)
∗ , set

u(i,j∗(i)) =

⌈︄
8 log 1/δ

p2max∆
2
(i,j∗(i))

⌉︄
,

where recall that ∆(i,j∗(i)) = µa∗−µ(i,j∗(i)). Similar to the analysis of UCB algorithm presented in Theorem 7.1 in (Lattimore
and Szepesvári 2020), using Chernoff bound along with union bound we get

P(Gc) ≤
∑︂

i ̸=a
(L)
∗

{︄
Tδ + exp

(︄
−
u(i,j∗(i))p

2
max∆

2
(i,j∗(i))

8

)︄}︄
+

∑︂
i∈AL

∑︂
j ̸=j∗(i)

⎧⎨⎩Tδ + exp

⎛⎝−u(i,j)p
2
min∆̃

2

(i,j)

8

⎞⎠⎫⎬⎭ .

Substituting the above inequality in (4), using δ = 1
T 2 , we can write the cumulative regret for the team as follows

R(T ) =
∑︂
a̸=a∗

(pmax + pmin)

2
∆aE[na(T )] ≤

(pmax + pmin)∆max

2
E

⎡⎣∑︂
a ̸=a∗

na(T )

⎤⎦
≤ (pmax + pmin)∆max

⎡⎣ ∑︂
i ̸=a

(L)
∗

16

p2max∆
2
(i,j∗(i))

log T +
∑︂
i∈AL

∑︂
j ̸=j∗(i)

16

p2max∆̃
2

(i,j)

log T +
3|AL||AF |

2

⎤⎦ .

C Partner-Aware UCB with Knowledge Gradient
The work by (Zhang and Yu 2013) has found that humans’ behavior in multi-armed bandit problems are best captured by
knowledge gradient algorithms among the many they have experimented. Therefore, we tested our Partner-Aware UCB follower
agent with a leader agent who follows knowledge gradient. The idea behind knowledge gradient is as follows: the agent assumes
it only has one free action left and it will then have to keep pulling the same arm which it thinks to be the optimal, i.e. it will
keep exploiting. By calculating the expected return under the initial free action based on the posterior distributions at that time,
the agent decides on what action to take. It then repeats the same procedure in all time steps.
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Figure 9: Regret values are averaged over 100 runs for varying W when Partner-Aware UCB follower is collaborating with a
knowledge gradient leader.

Therefore, we ran simulations using the same setup as in Sec. 5, and varying W . Fig. 9 shows the incurred regret over time.
Due to the suboptimalities of knowledge gradient, all three W values led to linear regret. Nevertheless, W = 25 performed the
best. Moreover, our experiments presented in Sec. 6 empirically demonstrate humans often achieve sublinear regret. Further
research may investigate the conditions when humans manage to find the optimal action in finite time.

D Additional Simulations
One may wonder what happens if agents employ single-agent UCB that completely ignores the multi-agent aspects of the
problem. Put another way, what happens if agents choose their actions as if the action space only consists of their actions,
as opposed to Naı̈ve UCB where agents are aware of the multi-agent formulation of the problem but assumes the other agent
is going to comply? We name this version “Very Naı̈ve UCB”, as it completely ignores the existence of the other agent. We
implemented this as an additional baseline and ran simulations in the same setup as Fig. 3 (right), but for a longer interaction
to better highlight the difference. We present the results in Fig. 10, which shows Partner-Aware UCB significantly outperforms
Very Naı̈ve UCB, too.

Figure 10: Cumulative regrets over 100 runs for different algorithms with random reward means.

E Additional Analysis on Burger Stacking Robot Experiments
Having conducted the in-lab experiments with the actual robot first, we realized there is a significant difference between the
team performances depending on whether the subject is an AI researcher or not. Specifically, 19 of the subjects are researchers
in AI while the other 39 come from various other backgrounds. In Fig. 11, we show this difference.

It can be seen that when paired with Naı̈ve-UCB, AI researchers incur a cumulative regret of 2.8±0.58 whereas other people
incur 4.1± 0.35. Similarly, when paired with Partner-Aware UCB, the cumulative regret values are 1.8± 0.47 and 3.1± 0.39,
respectively. In both cases, the teams with AI researchers perform significantly better (p < 0.05, two-sample t-test).

This difference between the populations may imply that humans might be employing different algorithms or strategies de-
pending on how familiar they are with the problem setup. While Partner-Aware UCB outperforms Naı̈ve UCB in both cases,
this observation opens new possibilities for research: it might be possible to develop and use different algorithms based on the
end-users even in the environments that are as abstract as bandit problems.

F Online Casino Study
We conduct an online human-subject study to investigate longer interactions between the agents. In this experiment, the humans
collaborate with the AI agent for 1000 time steps at each episode.
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Figure 11: Cumulative regret over time for (left) AI researchers and (right) the others.

Experimental Setup. We designed a simple casino interface with four slot machines, placed on a 2-by-2 grid. Human subjects
were told they are in a casino with a budget of 1000 units that should all be spent on these slot machines, and they can only
select the row in the 2-by-2 grid. The column is automatically selected by the AI agent which is not aware of the human’s
selection at that time, until the team’s selection is revealed to both the human and the AI agent. Each human action costs 1 unit
and there is a fixed probability of earning a coin from each machine. After selecting the slot machine, the AI agent and the
participant are informed about whether they earned a coin. However, the AI agent observes only 40% of the coins and thinks
the others resulted in no earnings (human’s observability is p1 = 1 and AI agent’s p2 = 0.4). The goal of both the human and
the AI agent is to maximize the total number of coins earned together.
Independent Variables. We varied the algorithm the AI agent is using to collaborate with the human partner with two algo-
rithms: Naı̈ve UCB and Partner-Aware UCB. For both algorithms we set, when relevant, L = 1, W = 5 and c(L) = c(F ) = 0.01.
Procedure. We conducted an online within-subjects study with 24 participants (11 female, 13 male, ages 18 – 58). None of
the participants had prior experience with the experiment interface. Hence, they were given a chance to experience the setup in
a trial casino whose reward means for each machine were randomly chosen. After the trial casino, each participant played in
50 casinos (25 with each algorithm) in each of which they collaborated with the AI agent to select slot machines 1000 times.
The participants knew these numbers in advance, which potentially helped them in deciding on their exploration strategy. The
keyboard controls helped them complete each casino within a minute.

(a) Cumulative regret over 25 casinos: each plot shows the results
of one user. The last plot is the average over both 25 casinos and 24
users.

(b) Cumulative regret over 24 users: each plot shows the results of
one casino with different reward means.

Figure 12: Results of Online Casino Study

For fair comparison, we selected the same r∗t throughout the 1000 time steps for the two sets of 25 casinos. However, the
participants did not know this, and the order of algorithms the participants partner with first was randomized.

The interface provided the participants the information about: the number of lucky (resulting in a coin) and unlucky selections
for each machine, the total number of machines selected so far in the current casino, the most recently selected machine and
whether it led to earning a coin.
Dependent Measures. As an objective measure, we report the cumulative regret at each casino. We also gave the participants
a 5-point rating scale survey (1-Strongly Disagree, 5-Strongly Agree) consisting of 5 questions for each algorithm, analogous
to the burger stacking experiments: “I was usually able to select the machine I wanted” (Ability), “The AI agent insisted on
some suboptimal machines” (Insisting), “The AI agent was easy to collaborate with” (Easy), “The AI agent was annoying”
(Annoying), and “I could earn more coins if I were playing alone” (Alone).



Hypotheses.
H3. Partner-Aware UCB algorithm will help the users earn more coins, and lead to lower regrets.
H4. Users will subjectively perceive the Partner-Aware UCB robot as a better partner.

Results-Objective. We report the cumulative regret for each participant and casino in Figs. 12a and 12b, respectively. The last
plot of Fig. 12a shows the average over both casinos and users.

For 23 of the 24 participants, the Partner-Aware UCB helped achieving lower regret with statistical significance for 14 of the
participants (paired-sample t-test, p < .005 for 4 users denoted with double asterisks in the figure, and 0.005 ≤ p < .05 for
10 users denoted with a single asterisk). To avoid p-hacking, we also performed a two-way repeated measures ANOVA, which
again resulted in p < .005 between the algorithms.

Similarly, in 21 of the 25 casinos, the users incurred lower regret with the Partner-Aware UCB. The regrets are comparable
for the remaining 4 and this can be explained with either the casino being very difficult and thus both algorithms incurring
high regrets, or the casino being so easy that both algorithms quickly find the optimal arm with most participants (e.g. the plots
with green background). An example of a difficult casino is highlighted with a red background, where both algorithms receive
high regrets – however, Partner-Aware UCB has a sublinear trend and the regret with Naı̈ve UCB is increasing linearly, so
Partner-Aware UCB could potentially outperform if there were more time steps. Out of the 21 casinos where Partner-Aware
UCB outperformed, the comparison is statistically significant in 16 casinos (p<0.005 in 8 and 0.005≤p<0.05 in the other 8).

Aligned with the regret values, the Partner-Aware UCB robot also led to higher earnings. While the participants earned
18,825.8 ± 39.3 coins over all 25 casinos with Partner-Aware UCB, this number is only 17,717.2 ± 235.0 with Naı̈ve UCB.
Together with the results on cumulative regret, these strongly support H3.
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Figure 13: Survey results of the online casino study. Comparisons are significantly in favor of Partner-Aware UCB.

Results-Subjective. Our survey results indicate users significantly prefer Partner-Aware UCB: we plot the users’ responses
to our 5-point rating scale survey in Fig. 13. We first confirmed the responses were reliable with Cronbach’s alpha > 0.85.
The users indicated they were able to select their desired machine (Ability) more frequently with the Partner-Aware UCB, and
thought the Naı̈ve UCB robot was more frequently insisting on suboptimal machines (Insisting). Moreover, Partner-Aware UCB
was easier to collaborate with (Easy), and significantly less annoying (Annoying). While the participants, on average, indicated
they could earn more coins if they were playing alone12, they were significantly more confident in this after partnered with
Naı̈ve UCB. All of these subjective results are statistically significant with p < .005 and strongly support H4.

G Computation Infrastructure
The bandit algorithms in all simulations and the in-lab burger stacking robot experiments have been run on a Lenovo ThinkPad
P1 Gen 2 computer with 16 GB RAM and an 8th Generation Intel® Core™ i7-8850H processor (2.60 GHz, up to 4.30 GHz
with Turbo Boost, 6 Cores, 12 Threads, 9 MB Cache). Online portion of the burger stacking robot experiments and all of online
casino experiments are conducted using Amazon Web Services (AWS) on an Elastic Compute Cloud (EC2) instance with 4
vCPUs and 16 GB RAM.

12This is reasonable given that single-agent MAB is easier as it does not require decentralized coordination.
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