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Abstract

In this paper, we study the nonconvex-strongly-concave minimax optimization
problem on decentralized setting. The minimax problems are attracting increasing
attentions because of their popular practical applications such as policy evaluation
and adversarial training. As training data become larger, distributed training has
been broadly adopted in machine learning tasks. Recent research works show
that the decentralized distributed data-parallel training techniques are specially
promising, because they can achieve the efficient communications and avoid the
bottleneck problem on the central node or the latency of low bandwidth network.
However, the decentralized minimax problems were seldom studied in literature
and the existing methods suffer from very high gradient complexity. To address
this challenge, we propose a new faster decentralized algorithm, named as DM-
HSGD, for nonconvex minimax problems by using the variance reduced technique
of hybrid stochastic gradient descent. We prove that our DM-HSGD algorithm
achieves stochastic first-order oracle (SFO) complexity of O(x3e~3) for decen-
tralized stochastic nonconvex-strongly-concave problem to search an e-stationary
point, which improves the exiting best theoretical results. Moreover, we also prove
that our algorithm achieves linear speedup with respect to the number of workers.
Our experiments on decentralized settings show the superior performance of our
new algorithm.

1 Introduction

Minimax optimization has enormous applications in machine learning tasks such as Generative
Adversarial Net (GAN) [8], adversarial training [26] and multi-agent reinforcement learning [43].
Specifically, in minimax optimization, variable x aims to minimize a payoff loss function f(z,y) :
R% x R — R while variable y tries to maximize the loss, which can be formulated as

min max [z, y), (1)
where X C R% and )) C R%. In the past a few decades, there are plenty of works to study minimax
optimization problem in a variety of research fields and many methods have been developed. The
most intuitive solution is Gradient Descent Ascent (GDA) algorithm [6, 29] with equal stepsize
7s = 1y. Asymptotic and nonasymptotic convergence analysis has been provided when f is convex
in z and concave in y. Recently, many deterministic and stochastic gradient algorithms for nonconvex-
strongly-concave and nonconvex-concave problems were proposed. Some algorithms improve the
performance of vanilla GDA method by adopting different stepsize on x and y, such as [10, 19],
where the stepsize of y is typically larger than the stepsize of . Some algorithms update = and y
at different frequency, such as [14, 25, 32]. These kind of algorithms usually involve a nested loop
structure that updates y more frequently than z to make f(z,y) close to function ®(x), which is
defined by

O(z) = max f(z,y). (2)
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As more large-scale machine learning problems are arising, distributed training becomes a popular and
crucial framework because of its ability and efficiency to deal with large data. It is desired to generalize
minimax optimization to distributed training to solve large-scale minimax problems. In distributed
optimization, the original centralized optimization suffers from a bottleneck communication problem,
i.e. the communication traffic on the busiest central node, especially when the network is large
[18, 51]. To tackle this communication issue, decentralized optimization was proposed and has
emerged as a promising technique. It is a kind of distributed machine learning training paradigm that
does not rely on the centralized network topology. Different worker nodes collaboratively utilize
their own local data to implement large-scale training tasks and at each iteration they only have
to communicate with their neighbors. Decentralized algorithms have been shown to enhance the
communication efficiency by avoiding the communication overhead problem. Decentralized methods
are also advantageous when the network suffers from communication restriction or has low bandwidth
between some nodes and the central node. Besides, it is also an essential method in some situations
where data are geographically distributed and centralized data processing is not available or there are
concerns to preserve data privacy [48].

Recently many works were proposed to improve the performance of decentralized training. D-PSGD
[18] theoretically justifies the potential advantage of decentralized algorithm. D? [38] improves
the convergence rate to outperform D-PSGD by eliminating the influence of data variance among
different workers. D-SPIDER-SFO [33] incorporates D? and SPIDER [7, 44], which is a kind
of variance reduction technique [15], to further reduce the gradient complexity. DQSFW [45]
studies decentralized constrained problem with Frank-Wolfe method. GT-HSGD [46] extends hybrid
stochastic gradient descent to decentralized setting, which is a variance-reduced approach that does
not compute mega batch periodically. However, the decentralized minimax optimization is still
very limited and existing methods suffer from very high gradient complexity [21, 41]. Thus, we are
motivated to design an accelerated decentralized algorithm for minimax problems.

In this paper, thus, we propose a faster Decentralized Minimax Hybrid Stochastic Gradient De-
scent (DM-HSGD) algorithm to solve the following decentralized stochastic minimax optimization
problem:
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where n is the number of worker nodes, ) is a convex set. Here the local component objective
function F;(x,y;¢ (i)) is L-smooth, nonconvex in x, and strongly-concave in y. D, is the data
distribution on the i-th node. In this paper, the data distribution can be non-identical. Random
variable £(*) is an index sampled from the local data. We summarize our contributions as follows:

(1) In this paper, we propose a new accelerated decentralized stochastic first-order algorithm,
named as DM-HSGD, to solve the decentralized nonconvex-strongly-concave minimax
optimization problems. Our algorithm is the first stochastic gradient algorithm to solve
general decentralized minimax problem on non-identical distributed data with theoretical
guarantees. Besides, our algorithm does not require large batch size or nested loop which
makes it more practical and efficient to implement.

(2) We provide a completed proof to guarantee the convergence of our algorithm to solve decen-
tralized stochastic minimax optimization. Under nonconvex-strongly-concave condition, our
algorithm obtains SFO complexity of O(x3e~3) to search an e-stationary point of function
®(z) = maxyecy f(z,y). This result is faster than the complexity of previous decentralized
minimax algorithms [21, 41]. Moreover, we also prove that our method achieves linear
speedup as the number of workers n increases, which verifies its ability to solve large-scale
problems.

The rest of this paper will be organized as follows. In Section 2, we will introduce related works. In
Section 3, we will introduce our new DM-HSGD algorithm. In Section 4, we will show the main
theorems of convergence and complexity analysis. In Section 5, we will discuss our experimental
results, and Section 6 will conclude the paper.



Table 1: Comparison of Related Algorithms for Minimax Optimization

Name SFO Decentralized Stochastic Implementation Reference

SGDA O(k3e™4) X N4 single-loop [19]
SGDmax  O(x*¢ *log(1)) X Vv double-loop [19]
SREDA O(k3e™3) X Vv double-loop [25]
Acc-MDA O(k3e73) X Vi single-loop [11]
DPOSG O(e712) V/ (iid) vV single-loop [21]
GT/DA O(Ne ?log(1))  / (non-iid) X double-loop [41]
DM-HSGD O(k3e3) \/ (non-iid) Vv single-loop Ours

2 Related Works

2.1 Centralized Minimax Optimization

In recent years, many algorithms for solving minimax optimization were proposed, and the majority
of them were studied under the nonconvex-strongly-concave condition. SGDmax [14] is a double
loop algorithm that achieves SFO complexity of O(k3¢~*log(1/¢)) where x = L/ is the condition
number. Proximally Guided Stochastic Mirror Descent and Variance Reduction (PGSMD/PGSVRG)
[34] are double loop algorithms that achieve SFO complexity of O(x*e~*) for stochastic problem
and O(x%Ne~2) for finite-sum problem where N is the number of samples. Multistep GDA (MGDA)
[32] is a double loop algorithm and HiBSA [23] is a single loop algorithm. Both MGDA and
HiBSA are deterministic hence they can only solve finite-sum problems. Both of them achieve
SFO complexity of O(k*Ne~2). Proximal Dual Implicit Accelerated Gradient (ProxDIAG) is a
deterministic triple loop algorithm whose SFO complexity for finite-sum problem is O(x'/2Ne~2).

SGDA [19], Stochastic Recursive gradiEnt Descent Ascent (SREDA) [25], and Hybrid Variance-
Reduced SGD [40] are more related to our work. SGDA is a single loop algorithm to solve nonconvex-
strongly-concave and nonconvex-concave minimax problems. For nonconvex-strongly-concave
problem, it requires O(x3e~*) SFO complexity to find an e-stationary point of ®(x). In this paper,
we will prove that our method achieves a better SFO complexity.

SREDA [25] is a double loop algorithm that achieves O(x3¢~3) SFO complexity. It accelerates
SGDA by using SPIDER, which is a variance reduction technique and utilizes the newest gradient
information [7, 30]. SREDA also involves a separated initialization algorithm called PiSARAH
[31] to ensure the convergence. More recently, [13] proposed an efficient mirror descent ascent
algorithm for nonconvex-strongly-concave minimax optimization with nonsmooth regularization
based on Bregman distance and variance reduced technique of SPIDER. In our paper, we use another
variance-reduced technique named STORM or hybrid stochastic gradient descent [3] to accelerate
the algorithm. We will discuss the challenges of using SPIDER on decentralized settings in Section 3.
Different from SREDA, our method only requires a large batch at the first iteration. Except the
first iteration, we can use either a single sample or a mini-batch to calculate the stochastic gradient.
However, SREDA loads a mega-batch with size O(e~?2) periodically (every g iterations) and needs
O(e™1) gradient oracles at each iteration, which is not practical for large-scale problems. Besides,
the maximizer in SREDA is a nested loop to update variable y and if we count the loop of SPIDER
then SREDA is actually a triple algorithm. On the contrary, there is no nested loop in our DM-HSGD,
which makes our method more efficient and convenient to implement. Moreover, unlike SREDA, our
method does not require a separated initialization algorithm to calculate a precise initial value for y.

Hybrid Variance-Reduced SGD algorithm also takes advantage of hybrid stochastic gradient descent
to accelerate minimax optimization. For example, [40, 11] applied the Hybrid Variance-Reduced SGD
to minimax problems. More recently, [9, 12] proposed some efficient adaptive gradient descent ascent
methods for nonconvex-strongly-concave minimax optimization based on momentum techniques
including Hybrid Variance-Reduced SGD.

2.2 Decentralized Minimax Optimization

At decentralized setting, most minimax algorithms were proposed for convex-concave problem
[17, 28]. In [22] a nonconvex-nonconcave algorithm DPPSP was proposed. However, it is not



gradient-based and the closed-form solution to the subproblem is not ensured in our problem. Hence
we will not discuss it in this paper. Decentralized Parallel Optimistic Stochastic Gradient (DPOSG)
[21] is the first algorithm applicable to a general decentralized minimax problem with theoretical
guarantees. It is a single loop minimax algorithm that generalizes Optimistic Stochastic Gradient
(OSG) [2] to decentralized training. However, DPOSG has some obvious drawbacks. The first one is
that the gradient complexity O(e~'2) is too high and we are motivated to design a faster algorithm.
The second one is that DPOSG only works in the case where the data distribution is identical. When
the data distribution is non-identical, the Lemma 3 in [21] is not satisfied. Actually the assumption of
identical data distribution is not satisfied at most decentralized training tasks. Thus, in this paper, we
do not use this assumption.

More recently, [41] studied decentralized nonconvex-strongly-concave minimax problems and pro-
posed a double loop deterministic Gradient Tracking/Descent-Ascent algorithm which extends the
vanilla GDA to decentralized setting and combines it with gradient tracking. It achieves a gradient
complexity of O(e~2). However, in large-scale machine learning tasks such as deep neural network,
generally the full gradient is unavailable and the application of deterministic algorithms is very
restricted. If we convert Gradient Tracking/Descent-Ascent to stochastic gradient version, the SFO
complexity should be at least O(e~*), which is the same result as SGD in nonconvex optimization.
Under the same conditions, our new algorithm achieves a better SFO complexity of O(e~2).

[24] studied decentralized reinforcement learning problem based on distributed constrained Markov
decision process model and proposed a decentralized policy gradient optimization method named
Safe Dec-PG, which achieves SFO complexity of O(¢~*). However, the problem studied in [24]
has a special form that is linear in y. In this paper, we focus on general minimax problem. [1] is
a simultaneous work of our work that studies a more general decentralized variational inequality
problem with higher complexity. We summarize the comparison of related algorithms for general
minimax optimization in Table 1. For decentralized algorithms DPOSG, GT/DA, and DM-HSGD,
we also discuss whether they can converge on non-identical distributed data.

3 Proposed New Algorithm

3.1 Preliminaries

Before we propose our algorithms, we will introduce the notations used in this paper and some
ii) and yf@ to represent the column vector parameters on
i-th worker node. We use upper case X; and Y; to represent the n-column matrix formed by xgi) and
' respectively, which means X; = 2V, z(?, ... 2] and V; = [y{"),4!?, ..., y{"]. Column
vectors ugi), vﬁi), gf) and hii) are gradient estimators used in our algorithms. Upper case Uy, V4, G
and H; are matrices of which the i-th column is u,(f), U,@, gt(i) and hgi) respectively. Lower case with

a bar represents the mean vector. Upper case with a bar represents the matrix that each column is

important concepts. We use lower case x

the mean vector. For example, Z; = % S xgi) and X; = [Z4, %y, ..., 7;]. We define the optimal
maximum value of y as:

*(. = . 7, — T 4
v () argr;leagfby)’ Ut argr;leaﬁcf(xuy) 4)

Note that when f is strongly-concave in ¥, §; is unique. We also define:
e 5)

Bold number 0 and 1 are n x 1 column vectors that each entry is 0 and 1, respectively. For matrices,
we use ||-|| 7 to denote Frobenius norm and ||-||2 to denote spectral norm. We use V, and V,, to
denote the partial derivative with respect to x and y.

Mixing matrix W represents the weights of averaging among the communication network topology.
It is doubly stochastic which satisfies:

wWi=wT1=1 6)

We should notice that here matrix W is not assumed to be symmetric so that the communication
network is not restricted to undirected graph.



Algorithm 1 DM-HSGD

Input: mixing matrix W, initial value x(()i) = o, yéi) = 90, v(_l)l = g(_z)1 =0, u(i)1 = h(i)1 =0
Parameter: stepsize 1, 1,, weight 3;, 3y, batch size by, iteration T

Output: %, where ¢ is chosen randomly from {1,2,--- , T}
1: On i-th node:
2: fort=0,1,...,7T —1do
3: ift =0 then

I A

5: h“ VyFi(a w60, 1 =bo

o else() (i) (), )
T ( 7i‘/t 7 )+( )(gt 1= Ve Fi(r 2, 921367))
8: Fi(ay " 67) + (L= B,) () = Vy Fi(a . y1:67)
9: end 1f

10: Cqmmunicate with neighbors and update gradient estimator as follows

11 (l) = Z —1 Wij (Ut(])l +9t( 2 gt(])l)

ol = ¥y wig(u?y + b = b))

13: Commumcate with neighbors and update model parameter as follows

14: xﬁl Py 1w”(x§]) — Ny (J))

15: yij:l - Z =1 'LUU (Z/g ) + 77y (J))y yt(le = Py(y,&:%)
16: end for

3.2 Decentralized Minimax Hybrid Stochastic Gradient Descent

In this subsection, we introduce our new Decentralized Minimax Hybrid Stochastic Gradient De-
scent (DM-HSGD) algorithm. Our algorithm is a single loop minimax algorithm (summarized in
Algorithm 1) which does not contain a nested loop structure.

The initial points of different nodes are the same, i.e. xé i)

estimators with respect to x and y on ¢-th node. gt(i) and h§ ") are computed in the same way as
STORM [3]. When t = 0, we load a large batch with size by to calculate the stochastic gradient (lines

4 and 5 in Algorithm 1). When ¢ > 0, we can use either a single sample or a mini-batch to calculate
the gradient (lines 7 and 8 in Algorithm 1). gf@ can also be written as

=BV Fy(al yl56)+ (1= 8,) (01~ Vo Fi (ol 02 60) + Vo Byl 55 67)) @)

which is a linear combination of the gradient estimators of stochastic gradient descent (the first part)
and SPIDER (the second part). As we have mentioned, SPIDER is a variance-reduced method that
utilizes the newest gradient information. Thus, estimator Eq. (7) is also called hybrid stochastic

gradient descent. It is the same with h%i). Then each worker communicates with their neighbors
to compute gradient estimator vt(l) and uy) Here we use gradient tracking [5, 47] to reduce the

consensus error (lines 11 and 12 in Algorithm 1). We will discuss why gradient tracking is necessary

in our method at next subsection. After we obtain u§ " and vg ), each worker communicates with their

neighbors again and updates the model parameters « and y. Here Py (-) represents the projection
onto convex set ). In the theoretical analysis, we define Y_% =Y.

(i)

= xg and y; ( ) and h( ") are the gradient

3.3 Discussions on STORM and Gradient Tracking

In this subsection, we will discuss the intuition of our algorithm and explain why we choose STORM
and gradient tracking rather than generalizing SREDA for decentralized setting. The first reason is
that SREDA requires large batch or full batch periodically, which is expensive and even unavailable.
Besides, there are too many nested loops in SREDA and it is not efficient or convenient. From the
view of theoretical analysis, normalization or projection are likely to cause divergence in decentralized
training on non-identical data distribution, which is indicated by the following Example 1. Therefore,
in the circumstance of this paper, SPIDER will probably not converge to a stationary point. Besides,



SREDA adopts smaller stepsize at the beginning and larger stepsize at the end when ||v;|| becomes
small enough. However, when the data distribution is non-identical, ||v;|| may not tend to 0 and the
stepsize of SREDA will probably always keep small. In contrast, STORM can avoid these issues and
we use STORM to accelerate the decentralized minimax algorithm.

In the standard decentralized framework D-PSGD [18], the consensus error satisfies || X; — X¢||r <
O(e) when the stepsize 77 is O(¢) and ¢t is large enough. The following Example 2 is a simple example
to show that this bound is tight and there are cases where consensus error | X; — X;||r is exactly
©(n) when the data distribution is non-identical. However, according to the analysis of STORM
[3] without gradient tracking, the error term e; = §; — V. f(Z¢, ;) between the averaged update
direction and the correct direction is supposed to satisfy:

lleell* < (1 = Ba)llec—1]1* + O(1nz) - ®

Nevertheless, the consensus error || X; — X;||% is only O(n?) and cannot be as small as O(n?) if
there is no gradient tracking. Therefore, to inherit the analysis framework of STORM, the gradient
tracking in our algorithm is essential.

Example 1. Assume f(z) = fi(x) + fao(z), where x = (a,b) € R?. fi(x) = a and fo(x) = /3b
are defined on two different nodes. Let W be the uniform weighted mixing matrix. We can compute
v1 = (1,0) and vy = (0,/3). The ideal averaged gradient direction is v* = (1/2,+/3/2). However,
if we do normalization before making consensus, the obtained gradient estimator is v = (1/2,1/2),
which is deviated from v*.

Example 2. Suppose there are two sequences {p;} and {q;} defined on two different nodes with
Po = qo. They are updated by p, 1 =p—na and q; 1= q - nb at each iteration respectively
where a and b are fixed gradient directions. As data distribution is non-identical, we have a # b.
Assume the mixing matrix is

W= {2 /3 1 /3]

1/3 2/3

Then we have

1 n 1 angy n 1
Di1—Gr41 = g(Pt—Qt)—g(a—b):@(po—%)—ﬁ(; §)(a—b):§(1—3t+1)(b—a) )]

Therefore, lim; o ||ps — ¢¢|| = 5/|a — b]|.

4 Convergence Analysis

In this section, we will show the main theorems of our convergence analysis. The theoretical results
show that the SFO complexity of our algorithm is O(k3¢~2), which is the same as the best result in
centralized minimax problem [25]. First we will introduce the following assumptions.

Assumption 1. (Lipschitz Gradient). Each component function F;(z,y; &) is L-smooth, which means
there exists a constant L such that for any (x,y) and (x',y’), we have

IVFi(2,y:6) = VF;(«',y 5 OIP < L (lz — 2" +ly — y/'II*)

Assumption 2. (Bounded Variance). The gradient of each component function F;(x,y;€) is an
unbiased estimator of V f;(x,y) and has bounded variance, i.e.,

E|[VFi(z,y:€) = VSi(z,9)|* < o < +o0
Assumption 3. (Lower Bound). The function ®(-) is lower bounded, i.e., inf, ®(x) = ®* > —oc.

Assumption 4. (Spectral Gap). The doubly stochastic matrix W satisfies |W — % l2=AX€]o0,1).

Assumption 5. (Strongly Concave). The function f;(x,y) is u-strongly-concave in y. That is, there
exists a constant . > 0, for any x, y and y', we have

Jila.y) < F(ey) + (V0 @9y = o) = Glly = oI



These are very common and mild assumptions that are frequently assumed in previous works.
Assumptions 1, 2 and 3 are also used in minimax methods [25] and [19]. Assumption 4 is used in [46].
Typically, the spectral gap assumption is stated as W is symmetric and |A\z| < 1, |A,| < 1 where
A1 > Ay > --- > )\, are the eigenvalues of W [16, 18, 51]. Our Assumption 4 is automatically
satisfied if the typical spectral gap assumption holds (see Lemma 16 in [16]). Assumption 5 is the
definition of strong concavity.

In nonconvex-strongly-concave problem, we use e-stationary point of ®(z), i.e. [|[V®(x)|| < € as the
convergence criterion. From Lemma 4.3 in [19], we know ®(x) is differentiable and (L4« L)-smooth
and y*(-) is s-Lipschitz, which means ||y*(x1) — y*(22)| < &l|x1 — 2| for any z1, 2o € R,
Furthermore, we have:

VO&(z;) = Vo f(Ze, ) + Vy f(Ze,0:) - Oy (%4) = Vi f (T, 1) (10)

since V,, f(Z+, §:) = 0. This criterion is broadly used in the analysis of nonconvex-strongly-concave

minimax optimization [19, 39]. Now we will provide the main theorems of our convergence analysis.

Completed proof can be found in the Supplementary Material.

emin{l,ne}
500K2

our Algorithm

Theorem 1. Let Assumptions 1 to 5 hold. When parameters 3, = M , By =

— (1=XA)?min{1,ne} — (1=X\)?min{1,ne} , bo 400 T — 4000& e~
Nz = 2000s3L v = 500 L = min{lnep T T ToN2 min{l,ne}’
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2 n
€
Z E[VE(z0)|* < L(®(x0) — D) + 0%e® + L?doe” + . > BV fi(wo, yo) |

i=1

2 n
€
+ gZ;Envyfi(xo,yo)HQ (1)

Corollary 1. When the parameters are defined as Theorem 1, we can see Z?;J E(|V®(z)]? <
O(€?). Therefore, if n < O(e~1), the SFO complexity of Algorithm 1 is O(k3¢=3). If n >
O(e™1), the SFO complexity is O(k3ne=2). Besides, from the proof of Theorem 1 we can see
error ||, — y*(z,)||? is also bounded by the right side of Eq. (11).

Theorem 1 is the theoretical result when 7 is determined by e. If the number of iteration 7" is not
fixed, we have the following conclusion.

: __ 4000k3Ty _ _n'/8
Theorem 2. Let Assumptions I to 5 hold. We set the parameters as T = a—nz B = 20T2 73,
. nl/3 (- )\)2 2/3 (- )\)2 2/3 . T1/3
By = 500,722 Ne = S000m STIL Ny = 5001 /L 0 = ~%73, where we suppose To > 10n2.

Then our algOrtthm satisfies

7 Z]Envq)

”2 L(‘I)(Z‘o) — ®* )+O’ +L2 4o 1 Zz 1IE||v fz(x(vaO)H
(nTQ)2/3 T()

+7%§X;1Eﬂvyﬁ(MLde2
T

12)

Corollary 2. From Theorem 2, we know Z LE|Ve(z,)|? < (W) + O(%O) when

parameters are defined as above. As we suppose Ty 2 O(n?), the dominating term in the convergence
rate is O(W), which indicates the linear speedup of our algorithm.

S Experiments

5.1 Robust Logistic Regression

We conduct the experiment of decentralized robust logistic regression' task as the first experi-
ment, which was proposed in [49] and was also conducted in the related work [25]. Given dataset

"https://github. com/TrashzzZ/DM-HSGD
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{(ai, b))}, where a; € R%is the feature and b; € {—1, 1} is the label, the robust logistic regression
problem is formulated as follows:

ll 13
min max f(z,y) = Zy V(y) +g() (13)

where y; is the i-th component of variable y. ll(a:) is the logistic loss function which is defined by
li(z) = log(1 + exp(—b;al x)). V(y) is a divergence measure defined by V' (y) = 2\ [|ny — 1|°.
A, represents the simplex in R™, which means

n={WERNO<y; <1,Y yi=1} (14)
i=1

=1 T +o; Following the experimental

A2 = 0.001 and o = 10 in our experiment.

g(x) is a nonconvex regularization with form g(z) = A, ¢
settings in [25, 49], we let \; =

n27

Table 2: Descriptions of datasets used in our experiment

Name | a9 | covtype | ijennl | phishing | revl | w8a
N 32561 581012 49990 11055 20242 49749
d 123 54 22 68 47236 300

(LT3

We conduct our experiment on six real-world training datasets “a9a", “covtype", “ijcnnl", “phish-
ing",“rcv1" and “w8a", which can be downloaded from LIBSVM? repository. The descrlptlon of
datasets is listed in Table 2 where N is the number of samples and d is the number of features. We
implement our code on an MPI cluster where each node is equipped with 12-core Intel Xeon E5-2620
v3 2.40 GHz processor.
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Figure 1: Results of our decentralized robust logistic regression task. Figure (a) to (f) show the value
of ®(x) with respect to the number of gradient oracles divided by 103. Figure (a), (b), (c), (d), (¢) and
(f) are experimental results on “a9a", “covtype"”, “ijjecnnl", “phishing”, “rcv1" and “w8a" respectively.
We compare our DM-HSGD algorithm with baseline algorithms: SGDA [19], SREDA [25], DPOSG
[21], and stochastic Gradient Tracking/Descent Ascent (SGTDA) [41]. We consider the algorithms

’https://www.csie.ntu.edu.tw/"cjlin/libsvmtools/datasets
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for solving stochastic problem. We set the number of worker nodes to n = 20 and use the ring-based
topology as the communication network. For each algorithm, we grid search the learning rates 7,,
and 7, from {0.1,0.01,0.001, 0.0001}. The mini-batch size is set to 20. The number of iterations in
the nested loop for double-loop algorithms is set to K = 5. For DM-HSGD, we set the batch size of
the first iteration to by = 10000. /3, and 3, are set to 0.01. For SREDA, we set € = 0.1 in the factor
m, period ¢ = 50 and large batch size S; = 1000. We compare the value of ®(z) with respect

to the number of gradient oracles among different algorithms, which can also be calculated by the
projection onto simplex A,,. The experimental results are shown in Figure 1. From the experimental
results in Figure 1, we can see our new DM-HSGD algorithm converges faster than other baseline
algorithms, which verifies the performance of our method.

5.2 Policy Evaluation

Our second experiment is the decentralized policy evaluation (PE) task. PE is an important task
in reinforcement learning, which aims to estimate the value function of a given policy. The most
intuitive and frequently used method for PE is temporal-difference (TD) method that relies on the
Bellman equation [4]. However, traditional TD method, which is probably not true gradient descent
method as pointed out in [20] and [37], are shown to be unstable in the case of off-policy sampling or
nonlinear function approximation. [36] first proposed a method to optimize the objective function
of mean-squared projected Bellman error (MSPBE) and MSPBE is proven to achieve asymptotic
convergence with arbitrary nonlinear smooth function approximation in [27]. In [42], the MSPBE
objective function with nonlinear approximation is converted into a nonconvex-strongly-concave
minimax problem by Fenchel’s duality. The problem can be formulated as:

LY (0, w) = (w, [Ri(s5,a;) + WVa(s541) — Va(s;)]g0(s;)) — %(nge(Sj))z (15)

where s; is a state and a; is an action. R; represents the reward and v € (0, 1) is the discount factor.
V is a value function that maps the state space to a real number. 6 is the parameter to estimate the
value function. Function gy is the gradient of V, and parameter w is yield by Fenchel’s duality.

Mountaincar [35] is a preliminary task in reinforcement learning. [42] and [43] ran offline PE task
of this problem with primal-dual MSPBE, where the objective function is formulated as Eq. (15).
Following the experimental settings in [42], we use Sarsa [35] to generate trajectories of transitions
(84, i, Si+1,7;) with d features and N = 5000 samples on each worker node. We parameterize
value function Vy as a 2-layer neural network with H hidden neurons. We use Sigmoid function as
activation and set discount factor to v = 0.95. This experiment is run on an MPI cluster where each
node is equipped with 12-core Intel Xeon E5-2620 v3 2.40 GHz processor.

——DM-HSGD

= DM-HSGD = DM-HSGD
——SGDA
DPOSG
s SGTDA
e SREDA

0 0 0
0 0 a0 &0 &0 1000 1200 1400 1600 o 00 a0 0 80 doo0 1200 0 100 20 0 40 0 0 700 80 S0 1000
gradient oracles (k) gradient oracles (k) gradient oracles (k)

(a) () (©

Figure 2: Results of our policy evaluation task. Figures (a), (b) and (c) show the value of ®(6) with
respect to the number of gradient oracles divided by 103. In Figures, (a) d = 200, H = 50; (b)
d = 300, H = 100; (¢) d = 400, H = 200.

We compare our DM-HSGD algorithm with baseline algorithms: SGDA [19], SREDA [25], DPOSG
[21], and stochastic Gradient Tracking/Descent Ascent (SGTDA) [41]. We also consider algorithms



for solving stochastic problem. We set the number of worker nodes to n = 20. We also use a ring-
based topology with uniform weights as the communication network in this task. For each algorithm,
we grid search the learning rates 7, and 7,, from {0.1,0.01,0.001,0.0001}. The mini-batch size is
set to 20. The number of iterations in the nested loop for double-loop algorithms is set to K = 5.
For DM-HSGD, we set the batch size of the first iteration to by = 2500. 3, and 3, are set to 0.01.
For SREDA, we set ¢ = 0.1 in the factor IITiH period ¢ = 50 and large batch size S; = 1000. We

compare the value of ®(#) with respect to the number of gradient oracles among different algorithms,
which can be calculated by quadratic optimization. The experimental results are shown in Figure 2.

Figure 2 (a), (b) and (c) show that our DM-HSGD algorithm achieves the fastest convergence
regarding the number of gradient oracles. From the experimental result, we can also see that nested
loop algorithm for minimax optimization usually consumes more gradient complexity during the
training process than single-loop algorithm.

6 Conclusion

In this paper, we proposed a novel accelerated decentralized minimax algorithm, Decentralized
Minimax Hybrid Stochastic Gradient Descent (DM-HSGD), to solve the stochastic nonconvex-
strongly-concave minimax optimization problems. We prove that our new method obtains SFO
complexity of O(k3¢~3) which outperforms the existing results in decentralized minimax optimiza-
tion and matches state-of-the-art in centralized minimax optimization. Our method also achieves
linear speedup with respect to the number workers, which shows its ability to solve large-scale
problems. We also conduct experiments on two machine learning tasks, decentralized robust logistic
regression and policy evaluation to validate the superior performance of our algorithm. In our future
work, we will explore the decentralized nonconvex-concave minimax optimization without the strong
concavity so that it can solve a broader range of problems including the loss functions that are linear
in y. We will probably consider the methods that add a perturbation such as Catalyst [50].
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A Proof of Convergence Analysis

A.1 Basic Lemmas

First, we introduce following basic lemmas, which are broadly used in the convergence analysis of
optimization algorithms.

Lemma 1. Let vector X be a stochastic variable. Then we have

0 <E[IX - EX||* = E|| X||* - [[EX|* <E[X]* (16)
Lemma 2. Let X1, Xo,--- , X, be n independent stochastic variables of which the means are 0.
Then we have N N
ElY_ Xl = D EIX:|? (17)
Lemma 3. Suppose A and B are two :naltrices. Th;n 1it satisfies
IAB|r < [|All2] Bl (18)

A.2 Important Conclusions

Next, we will propose and prove some conclusions that are important to the proof our main theorems.

Lemma 4. (Lemma 4.3 in paper [19]) ®(x) is (L + xL)-smooth and y*(-) is k-Lipschitz, which
means ||y*(x1) — y*(z2)|| < kl|x1 — 22| for any v, 5 € R,

Proof. As y*(x1) and y*(x2) achieve the maximum, we have V,f(z1,y*(z1)) = 0 and
Vyf(22,y*(22)) = 0. Then we have

ly* (1) — " ()]
< invyﬂxhy*(m)) — Yy @y (22))]

1 L
= LIV f e,y (@2)) = Vo f @y (@)l < ;lel — x| = &z — o (19)

where the first inequality is derived from p-strong concavity and the second inequality is derived
from L-smoothness. Since V®(x) = V, f(x, y*(x)), from Assumption 1 we get

[V@(z1) = V@(22)|| < Lllzy — 22| + Llly*(21) — y*(z2)|| < (L + &L)[|z1 — 22| (20)
which implies ®(z) is (L + «L)-smooth. O

Lemma S. Whenn, < ¢ L we have following estimation for d;.

= 4K 1877 ;m 7267 -
2 0 < pdot ”Zl ul 1Z||us—fZsz (2 )P4 == DX = Xl
t=0 t=0
20n4n§T . 12« mz _
Y — Vi) ZH 7| 5—2 =T e @1
My =0

Proof. Define z; = g, + 0, for some constant 6. As function f is strongly-concave in y we have
. _ NN _ Mo _
F(@en) < @90 + (Vo f @0 5), e = 90 = 5190 = 0el)”
= f(@t,9e) + (s Gr — 26) + (Vo f (Be, ) — Uey Gt — 2¢)
6V, (0, 50), ) — 5 e — 5l (22)
By Assumption 1, we also have

Lo o oy
—7||Ut|| < (&, 20) — f(Ze,Ge) — OV o f(Zt, Tt ), ) (23)



Add Eq. (22) and Eq. (23) together we obtain
L6?

0 < (U, 9t — 20) + (Vo f (Tt, Gt) — Ut Gt — 20) — g”yt gl + 7||Ut||2 (24)
where we also use the definition of §; so that f(Z;,G:) > f(Tt, 2¢).
(@, 91 — z¢) = =0l @e||® + (@, G — Gt (25)
Combining Eq. (24) and Eq. (25) we have
il Lo

0 < (U, 9 — Us) — g”@t - + (Vyf(Ze,Ge) — U, Ge — 2¢) — (0 — T)HUtHQ (26)

By Cauchy-Schwartz inequality we have
I, 4 oy L 0% _
(Vyf(Ze,5e) —ue, 90 — 20) < ;I\Vyf(xt,yt)—ut||2+%||yt - th*‘%HUtHQ 27

Therefore, we obtain

0 < (U, gt — Yr) — HHQt — gl + %HVyf(ftvﬂt) —w* - (0 - %02 - ﬂ)||Ut||2
< Gt = 30) = e = Gl + 19 ) =l = - P @8)
where we let § = E‘ As we have
2y (tie, G — o) = 1Ge — GellI” + 1Te41 — Gell® = [Ger — Gell? (29)

Eq. (28) is equivalent to

W7y )

_ N 8 _ 4 _
1Fe1 = Gell* < (1= B2 g — gull® + Fesr — 7ell* + m’HVyf(xt,yt) utn%%nutw (30)

When L, < £, from Eq. (30) we know
_ . Hn 8n - _ 30y -
1Ge1 — 9ell® < (1= y)||yt all” + Tyllvyf(xt,yt) — wl|* - 5—:\|ut||2 (€1

According to Young’s inequality we have

_ N 4. "
g1 = G < (U g = ol + (L )l =

9 . 3 _
<(1- 'Lmy)HZ/t gell” + T]y IVy f(@e, ) — @e|)® + 7”yt+l gell* — %HutHQ

N I _ 5K _ 3Ny -
< (1= E)lig — g + %nvyf(m,yt) — | + ﬁumn? gl G2

In the second inequality we use Eq. (31) and L7, < % The last inequality is because function y*(-)
is k-Lipschitz. By Cauchy-Schwartz inequality and Assumption 1 we also have

Iy f (@0, o) — e <2I\Ut—*zvfz )| 22 (HXt XllF+1Y-YilE)  33)
1=1
Using the definition of §; and the recursion in Eq. (32) we obtain
t—1 t—1

! 9 L1y - SK°1N; s—
o< (1= 2yt 4 PSP By, g+ e (1 My
4 K s=0 4 Lny s=0 4
Snyz l”]y t—s— 1”— H (34)
Summlng above equatlon we have
1877 /m 7262
Z5z<—5o+ ! Z(l =0T 1Z|lusffZVf1 P+ D (11X = Xl
t=0
20/# 2 12« )
Y= Tall) + Tt 3 ol 5—2 =BT el (35)
t=0
where Eq. (33) is used. O



Lemma 6. Forallt € {0,1,---,T} we have v; = g; and t; = hy.

Proof. As matrix W is doubly stochastic, we have

Uy = V-1 + Gt — Ge—1 (36)
which is equivalent to ¥y — gt = U¢—1 — gt—1. Since 4_; = g_1, we have vy = g for all
t €{0,1,---,T}. Similarly, we have @; = h;. O
Lemma 7. Let A;, B; be positive sequences satisfying

At+1 S (1 — C)At + Bt (37)
for some constant ¢ € (0,1). Then for any positive integer T we have

T 1 =
DA< Aot B (38)
t=0 ¢ € =0

Proof. Using recursion on Eq. (37) we can obtain
A< (1=0)'Ag+ ) (1-0)' "B, (39)

for vt > 0. Sum above inequality and we achieve the desired conclusion Eq. (38), where we use the
condtion A;, B, are positive and the fact that > ;o (1 — ¢)t = 1. O

C

Lemma 8. We can prove the following bound for gradient estimator v, and ;.

02 2B,0%t 1212 <A
Eljo. — ~ > Vafi(el?,y (E|| X, — X, E||Y, — Y,
Z 1. Z Fia NP < e T n Tz, Z [ I+ +E| %)
6L2 — 2 P 2 — 2
+ o8 > (ZElvs )1 + nyEllas ) (40)
T s=0
t—1 2 2 2=
_ o 2Byo°t  12L
E||a. — Vo fi(@®, gy < (B[ X, — X, E||Y, — Y,
> Ela Z WFil@ P < nﬂyb0+ PR Ty Z [ |7+ Ell %)
6L2 — _ 2 2~ (12
anHvsll + nyEllas]”) (41)

=0

forallt € {1,2,--- ,T}.

(4)

Proof. By the definition of g, * and Lemma 6 we have

Uf**Zv fz It 7yt )

(1_ﬂw) 'Ut 1 _7ZV fz -Tt 17yt 1)) ﬁL Z(V F(xt ayt 7€tl)) V fz('xt 7yt(z)))

i=1
1 . 7 (7) 2
(1= 85 3 (VaFila "1 67) = Vo Fi(e?y s 67) 4 Vafila o)
=1
- Vafilat” ")) “2)

Taking expectation on E,Ei) the last two terms of Eq. (42) are 0. Therefore,

El|o, — fZV £z g2

= (1 - f,)°E|v,— 1—72v fi@® Ly @I BN Z(v Fy(a{”, 4t €)

i=1



I 0 (1) £(0) (i i
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+ Vo fi(at Ly = Ve filel ™)) 12
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+ Vo fi(@ 0y = Vo fi(alD g2
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i=1

+E|Y; - Yio1|%) (43)

26820%  2L%(1 - B,)?
27 2P0 P ) x, - xl

The first inequality is obtained by Cauchy-Schwartz inequality. In the last inequality we use Lemma 2
on the last two terms and then use Assumption 2, Lemma 1 and Assumption 1. By Cauchy-Schwartz
inequality we have estimations

1X: = Xeall < 301X — Xl + 30025 [1? + 3] X1 — Xea |7 (44)
1Y = Yeoillfe < 8I1Y: = Yell% + 3napg a1 ]| + 3] i1 = Vi || (45)

Combining above two inequalities with Eq. (43) and Lemma 7 we have

t—1 1
DBl = > Vafi y{)?
s=0 =1

28,02 1212 X

1. _ _
< —El|to — Va f(2o,50) > + + =5 > (B X, — X3 +E|Y: - Yal|7)
B n? By P
6L2 t—2
e > ZE[os|* + mEl )
T =0
o2 2B,0%t 1212 ‘2 _ _
< + =+ E|| X, — X;||3 + E||Y; — Y3
it g LB~ Xl BN - Yal)
6L2 t—2
B, > ZE[os|* + mElas|?) (46)
s=0
forallt € {1,2,---,T}. In the first inequality we use the fact W < when Bz < 1. The
second inequality is because E||tg — V. f (0, y0)||* < e by Assumption 2 and Lemma 2. Note

that if we do not use Lemma 7 on the last term we will get

ZEHvb—va i@,y )|

o? 2B,0°t 12L2
~ nBzbo n n2,6

ZEIIX X% +E|Y, - Ya|)

6L o t—s—1\(, 2T 15 (|2
g 21— (1= B T T RENE 1 + mE . ) (47)
T s=0
Mimic above steps we can also prove the second conclusion in Lemma 8. [



Lemma 9. The consensus error satisfies the following recursive relation

- 1 + A2 /\2 -
[ X41 = K|l < 1% = X7 + 75 IV = Vill% (48)
_ 1 + )\2 2)\ n? _
A A m%+T:§m—mﬁ~ 9)
Proof. Let J = Accordmg to the update rule we have

[ Xet1 —Xt+1||F
= [[(Xy = m V)W — (Xy = nVO)|F = (X = X)) (W = J) = (Ve = Vi) (W = J) |3
S NNXy — X[+ N2V = Vel — 2((Xe = X)) (W = J), e (Ve = Vi) (W = )

< (V40N Xy — Xell7 +

(g IV - T

1+)\2 - 2)\ 2
I1X; — X% + ”nw Vil (50)

IN

In the first 1nequahty we use Assumpt1on 4 and Lemma 3. In the second inequality we use Young’s

inequality and 6 is an arbitrary positive constant. Let § = 2 /\2 ® and we can get the last inequality.
Similar to Eq. (50), we can obtain the following estimation

Y1 = Yl = (Ve + ny U)W — (Y + 0, Uyl

_ 2?2 ~
(2 + O0)||Y; = Yillh + (55 + Nn2) U = Uil

IN

1+>\2 2X\%1;
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A

Lemma 10. Forallt € {0,1,--- ,T — 1} we have
480212 ¢
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A?ﬁZ S . 6nA23202t
T 2o 2Bl = Vafi@ O+ == 6D
s=0 i=1
A8N2L2 &
ZIEIIU ~Usl7 <7—2EIU—Tol7 + ﬁz E|| X, — X, |7 + B[V~ Ysl[7)
2 t—1 9 t—1

24n)\2L 24n)\2L
(ESYE ZniEH o7+ (e ZTL:Z]EIIUSII2

)\262 i 6n\25202t
T 2 2B = Vil P+ 5= Y
s=0i=1

Proof. By the definition of V;, Assumption 4 and Lemma 3, we have

[Vigr = Vi Il
= [[(Vi + Gep1 = G)W — (Vi + Gryr — G|
= (Vi =V))(W = J) + (Gry1 — G)(W = J) |3
SN Vi = VilIF + X NGrp1 = Gill7 + 2{(Vi = V) (W = J), (Gegr — G)(W = J))  (54)



Review the definition of gt(i)

91521 =V F(xt+17yt21;§t(21) Vv F('rt ayt(zv t+1) Bm( -V fl(xt 7y7§)))

+ Bo(Va Fi(a() y5€0)) = Vo iz, 4i)) (55)

and take expectation on ft {1, then we have

Elgity — 9”1 = Vadilayi i) = Vafila 9i”) = Balgl” = Voiia? u) - (56)
Taking expectation on §t-l+1 the last term of Eq. (54) can be bounded by
E((V; = Vi)(W = J), (Gry1 — Gi)(W = J))

= (Ve = Vi)(W = J),E[Ges1 — GJ(W = J)) < X|Vi = Villp - M|E[Ges1 — Gil||p

_ A
< —Vill% + m”E[Gt+1 — G{||%
1— )2 _ 22X & i
<——Ivi —vtu%+ﬁ2||vzfi<x££1,yt+l> Vofile )P
2)\ 5
Zn = Vo iz i)
1— _ 2)\4L2
< HVt—VtH% T (X = XllE + Yo = YillE)
)\462 n

Zn @D v, fi(2, )12 (57)

where the second mequahty is resulted from Young’s inequality, the third inequality is resulted from
Cauchy-Schwartz inequality and the last inequality is resulted from Assumption 1. Besides, applying
Cauchy-Schwartz inequality to Eq. (55) we have

Elgffy — o |2

< 3E||V, F(a:tﬂ,ym,sw) V. Fi(x “,yt“, ODIP + 362E 9" — Vafilet” 4|2
+352EHV Fi( xt 7yt ’£t+1) \% fl(a:t ayt )H2

< 32 (Ellzl)y — a2 + Bl —uI1?) + 382E )t — Vo fi(al” i )|2 + 35202 (58)

where in the last inequality we use Assumption 1 and Assumption 2. Combining Eq. (54), (57) and
(58) we can obtain

1 + A2 ) 4)\2L2

E||Vis1 — Vig]|% < E|V; — Vi||7 + (]E||Xt+1 Xi|% +E|Yip1 — Yi||F)
4)\252 - ;
ZEH = Sy + 30228207 (59)

Then using Eq. (44) and (45) in above mequahty we have
El[Vir1 = Ve |7

1+>\2 _ 12)\2L2 _ _
E[[Ve ~ Vil + 220 (8] Xer — Kealp + ElYern — Fral3)
12>\2L2 _ _ 12n\2L?n;
+ — EBIX: = X% +E[lY; - Vi|%) + _7)\21}1[‘3”“4”2
12n\2L? AN B2
1_—&@@\\2 e DBl - Vel ol )P it (e

By Lemma 7, we can further achieve
t/

2 48\ L2
S BV Vollf < T BIVo=Toll + (3 LB~ Xolfh + BV =T )

s=0 (



2dnN2L2 ' 24nA2L
“Ellas|* + (=SSP ZUEEH%HQ

—2)2
(I=A)? =
)\262 ik 6n\2B2a%t
T 2 2Bl = Vafilel) yDIP + 5= (6D
s=0 =1
forallt’ € {0,1,---,T — 1} Here we should notice that term E|| X1 — X;41]|% in Eq. (60)

is summed from ]E||X1 X1|% 0 E|| Xy — Xy[|3. while term E||X; — X, |3 is summed from
E[|Xo — Xo||% o E|| Xy —1 — Xy —1]|%. As Xo = Xo, these two terms can be merged together. And

it is the same with term E||Y;;1 — Y;41||%. Mimic above steps and we can prove the conclusion for
S E|Us — Us||% in the similar way. O

Lemma 11. We can prove the gradient estimators G, and h, satisfy the following conclusion

no> 1212 & _ _
ZZEllg =V filal g < om0tk 2 S EX = X B, - Vil )
s=0 i=1 z70 T 5=0
6nL? <= )
3 > ZE|vs]* + nElas)?) (62)
T s=0
- 2 - no® 2, , 1207 . v 112 112
Z Ellh ~Vy fi(zD, )| Bb+2nﬁy0 th > (B X~ X |3 +E| Y.~ Y4 1)
s=0i=1 yv0 By s=0
6nL2 il
+3 > (2El|vs]? + niE ) (63)
Y s=0

forallte {0,1,--- , T —1}
Proof. According to the definition of ggi) we have
-V fot,th
<1—/3L>(gt 1= Vafile ) + B (Ve Fila” ™ 67) = Vadi(al? u))
+(1_ﬂx)(vxFi(zg)ay§); t )—VxF(l"gz)l:yt(l)la t )
+ Vo fila2yi2) = Vo il ) (64)
The last two terms of Eq (64) is 0 after taking expectation of ft(i). Hence we have
Ellg” v ﬁ(xt Sl
= (1= B)°Ellgt?y = Vafila )1 + BBV Fief” 07 67) = Vil i)
+(1_5a:)(v F(xt),ygl), ti) v F(xt 1:ZU§ )17 zg))
+ Vafilat o) = Vafile® u™)) 12
< (1= Bo)*Ellg?y = Vafila2 1, ui?))I? + 262E||V, F(xt ) = Vo filaf? )|
+2(1 — B2)°E| Vo i), v §”>> VoFi(a i 60)?
< (1—5x)21E||9§i1 Vefiw? yDIP +2820% +2(1 - B2)* L (Bl — (2,

+Elly” — 52 [1°) (65)
where we use Cauchy-Schwartz inequality and Lemma 1 in the first inequality and use Assumption 1
and Assumption 2 in the last inequality. Sum above inequality from 7 = 1 to n and we have

ST Elg? - Vafila?, y))? < Z Elg\”, — Vo filz21, 412 + 2n820°

i=1

+2(1 - Bw) LZ(EHXt — X 1| +E|Y: — Yiq]?)  (66)



Then by Eq. (44) and (45) we have

ZEng” Vo fi(z?, y)|?

VZEIIgF Vo fi(zD 1y D)2 + 208202
=1

+6(1— 8,) L (BII X, — Xill% + B[V = Vi3 + Bl Xe1 — Koo |7
+E|Yi1 = Y l[f) + 6n(1 = B2) 2L (G E (|01 ||* + 1 Ellae—1 %) (67)
Applying Lemma 7 to Eq. (67), similar to Eq. (61), we can obtain

t n
SO ENgY - Ve fi(z 0,y )2

s=0 i=1

1 <& ; 1202 <& _ _
< FZEngé) Vo fil@$ ush|1? + ST (EIX, - X3+ EIIY: - Ya]3)
T =1

Be pord
6nL? =22 B
o D (ZEIP + mENE) + 208.0°t
T =0
1212 & ~ B
Bt > (EIX, — X7 + B[ - Vi 7)
ﬁxbo /B;z s=0
6nL2 =2 5 5
3 > (ZEl|vs])* + niE ) (68)
z s=0

forallt € {0,1,--- ,T — 1}. Here the last inequality is derived by IE||g0 -V fz(ac0 ,yO N2 < o2

= bO
due to Lemma 2. The estimation of h(l) can be achieved in the same way as above. O

Lemma 12. Let 1, < <! 506\ L) and 1y < (égo)\ L)z. The consensus error can be bounded by

t

> (BIX, — X[ +E[Y. — Ya|| %)

s=0
162212 _ 16722 _ 576n\ L2 (12 + n2) =2 )
WEHVO Voll% + ﬁEHUo Uoll% + =YL . Z(niEHUsW
s=0
El?) + 64n\ (Bon} + Byng)o® 1960\ (6202 + Bon;) ot 69)
Tyl (1 - 22)ib, (1-2)1
forallt € {0,1,--- ,T}.
Proof. Combining Lemma 7 and Lemma 9, for all ¢ € {0 1,---,T} we have
leX ~XlE < g0 ZIIV Vil (70)
Substitute the right side w1th Lemma 10 we have
t t—
- 822 192)\4L2 - _
Z]E”Xs - X, < ﬁEHVO Vol + ——F1 Z E[|X:— X, |5 +E[Y. - Yill3)
=0
96n)\4L2 22, 2, 96nA4L2ng =, )
T Z%EH sI7+ T Z%Ellvsll
32A4ﬁ2 2 NN (i ; 24X B2n20%(t — 1)
T 2 2Bl = Ve i@l I+ (71)
s=0 i=1



Apply Lemma 11 and we get

t
ZM&—&%

8A22 192041272 X _ _
< 7( 22) SEIVo — Voll7 + (7)\2)4 (B[| Xs — Xo|[Z+E[Ys — Yal|7)
s=0
4L22t2 4 2 2 AnMAB83n252(t — 2
XL e S (B |12 + 2Bl ) + P $n AP (£~ 2)
- 2 (1= A2)ibg (1-7)
UnNB2n202(t — 1) 384NB,L2n2 2 _ _
(1 _ )\2)3 ( )\2) Z E”XS - XSH% +EHYS - Ys”%)
s=0
192043, L2n2 2 )
—( ) > (ZEl[vs )1 + niElas)?)
s=0
8A2p)2 5T6AL2n2 A _ _
< 7( %) sE[Vo — Voll% + 7( Ny (B|Xs — X, B +E|Y: — Ys|%)
s=0
288n A1 L212 2 9 32n\1B,m2a?  98nA1B2n2ot
e 7z E Ts 2 Ella x z'lz
T B Bl )+ S S

where we use 3, < 1 to simplify the equation. Similarly, we have

t
ZHM—K%
8\2p 5761022 21
< 71@ Uo = Uollf + IE X, — X, E|Y, — Y,
288n)\4L2 2 =2 32n\1B,n20  98nA1 2202t

N _ _
T 2 BB )

Add Eq. (72) and (72) together. Then we have

t

> EIX - X3 +ElIYs - Yol3)

s=0

8A212 _ 8AZn2 i, BT6ATL2 (02 + n2) o
7EV Vol + ——23ElUo — Uo7 v
( )\2) || 0 OHF + (1 — )\2)3 || 0 0||F + (1 — )\2)4 pa

_ 288nAL2(n2 + n2) L2 B
+E[Y; - Y;|I%) + a _A2’;4 L2 (R0 1>+ n2El|as %)
s=0
320X (BemZ + Bynz)o®  98nXY(B2n2 + Bin2)o’t
(1 —A%)%bo (1 =A%)

As A < 1, when 7, < (;80)‘22 and 7, < (IOOL) it satisfies

ST6AL2(n2 +n2) 1
(1 — A2)4 =2

(72)

(73)

> (ENX, - X3

(74)

(75)



Therefore, Eq. (74) implies

t
Y (EIXs — XllF +E|Ys - YillF)

s=0
16202 1622032 _ 576nM\ L2 (12 + n2) =2 -
WEH% Vollz + WEHUO —Uoll7 + TS . Z(ﬁiEHvsHQ
s=0
64n\* (Boms + Byny)o®  196nA* (8202 + Byn; ot
+77y]E|| 8” ) 2\4 = 2 4y . (76)
(1= A2)4bg (1-X2)

which reaches the conclusion of Lemma 12. O

A.3 Proof for main Theorems

Now we will move forward to the main Theorems in our paper. Here we revise some constant
coefficients in the statement, but it does not actually affect the result in our convergence analysis.

Theorem 3. (Restatement of Theorem 1) Let Assumptions 1 to 5 hold. When parameters 3, =

cminflne} g _ emin{linc} — (=2 min{l,ne} — (=N?min{lne} 5 400k

y = T 5002 Tl = 15000r3L  * v = 1500k L 0 = min{lne}’
— __30000x%¢2 ; :

T = A=M\Z min{Tne]’ our Algorithm 1 satisfies

2 n
€
- E ]EHV‘I’ DII? < L(® (w0 )—¢*)62+0262+L25o€2+g E 1V fi(zo, yo)|I?
i=1

6

+— ; 1V, fi(zo, o) |2 77)

Proof. Since ®(z) is (kL + L)-smooth we have

O(7y) < P(Ty-1) = 0 (-1, VO(Te—1)) + Mok L] Te—1 >

= 8@ 1) — Lo~ LIV )+ Z o~ V()| + Lo
)

< O(Tp— —*HV@(% DI? - (Tg ek L)||Te—1|* + nal|Be—1 — Vo f (Ze1, 1)1
+ 12 [VO(Z—1) — Vo f (Be—1, Je—1)|? (78)

where the last inequality is caused by Cauchy-Schwartz inequality. As we have V& (Z:—,) =
Vaf(Z¢—1,9t—1), by Assumption 1 the last term satisfies

IV®(Zi—1) = Vo f (Zr—1,Ge-1)I* < L?||Ge—1 — Je—1]* = L*644 (79)
Besides, according to Cauchy-Schwartz inequality we also have

|01 — Va f(fft 1, Yt— 1)“2

< 2||p—1 _*vafz xt 1ayt 1 ||2+2|| vafz xt 1ayt 1) Vel (@1, 517

=1

< 201 - *ZV R DI+ 21Xy = BB+ Vi~ Tia3) (80)

Combine Eq. (78), (79), (80) and rearrange the inequality

_ . _ 2 ~
2(‘1’(”“73 S Y LY 2 AR A/ S Y

IVe(z—1)]* <

_ 1 <&
Vi1 — Y1 ||%) + 4|51 — o fi(@D @ 81
+ [[Yem1 = Yieall7) + 4|01 nZV filz? u )12 (81)

10



Telescoping and taking expectation on Eq. (81) we have

= Z E[Ve(z,)|*

T-1 T—1 T-1
2(®(z0) — E®(z7)) (1 — 2kLn,) 2L 412 .
< - Bllol? + 22 3" Ba+ 22 3 (B - X
=T T tZ:; T t=0 nT t=0 "
4 T-1 1 n ) )
+E|Y, = Vill) + 7 D Elwe— Y Vafila” y?)? (82)
t=0 i=1
Applying Assumption 3, Lemma 5 and Lemma 8 we have
=
= SB[V
T
D(zg 40547] 8/€L (50
20 2 (1~ anin, - Z]En Bl +
N
1485212 . . 4=
—T Y (EIX: - X7 +ENY: - YilIF) + T > Ello - *ZV fila?, u)|?
t=0 t=0 i=1
36kLn = /m
e T 1Z||us——Zsz (@I
t=1
242 2 Un
o 1—(1— HPHYyNT—t Ella 2
S (- g
t=0
2(® (o) — D*) 4On4n 2 8k L? 50 402 1 36K2
< ——— — (1 —2kLn, — E —
U Z o+ F L+ r (5 * 5
80 AL 12 432/{ - _ i
+ 2B 30620,) + (T 4 ; ()X, ~ X} + ENY; - ¥il}3)
2412 864K2L2 2 1
1— 1_$T—t 2E—2 E 1_1_7?/T—t
g S (= B I + ) + S S 1=
24K2 un
BT + Bl — S (- (1= By Togg, 2 )
t=0
where we use Eq. (47) in the last inequality. As
1 T—t—1
—(1=(1=8)"= D (1-5)° (84)
Ba —~
we know Eq. (84) is increasing when [3; is decreasing. Hence - (1 —(1-8,)TH < (1?:03)'22[31 (1-
(1— %)T %). According to the definition of /3, and 7,,, we have % < # and
B0ty < PO ey 9
nB,T ’ ~— n(l—X))?258,T 4

11



Therefore, using the definition of 3;, 3, and 7, we obtain

. Z BV (z,)|?

_ 2D (o) — @)
N NeT

40r* E) 8/£L ] 402 1 36K2
L ZEW Sl

— (1 —2kLn,; — —
( e nbOT 6$+ 51/

)

T-1

Z (B[l X: — Xel7 +EIY; - Yi7)
=0

802 , AL?, .12 432/1
+7(ﬁx—|—36 By) + T( K nﬁ

241212 864n2L2 1 ~ kL
+(53 Z]EII fll” - yZEHutH? (86)

Besides, according to Lemma 12 we have

ZEIIW’ )|

2(P(zo) = @)
Nz T

802 9 412 5 12 4325 16X%n?2

o eSO T(“"*nﬁﬁnﬂy (e

16)\2 64n\* 2+ Ho? 1960\ (8202 + B2n2)a*T
(—A) (1= A%)*bo (1-X%)

12 43262 5T6nAL2 (12 +n2) R
x E 2 E
RS 1) > RE||5e* + nyElla|*)

t=0

40/14772 ZEH a2 + 8k L? 50 402 1 36K2

< —+
TLn, nboT ( B By

)

SEl[Vo — Voll%

4172
—(47K?
+nT( K+

24L°n? 864/12L217 nLn
(gt ZEH ol = = ZEH o? (87)
xT

When 8, By, 7. and 7, are defined as Theorem 3, we have

AL2 12 43262 5T6nML2(2 +172)

kLn
ATk 2 < Y
nT T nﬁw + nBy (1—=X2)4 =

2T

(88)

and
406402 24L%n%  864k%L%n32
2 nBe np,
AP e, 12 4323 STERNLEGE 4 )
n nﬂw nBy (1—X2)4

1—-2kLn, —

2
2> 2 89
2 5 (89)

Thus, we obtain

= Z E[Vo(z)|”

2((1)( 0) —®*)  8rL2*5y 402 1 3642 82 )
s —+ =)+ — (8, +36
4L2 12 432k2 16/\2 162272
—(47K° E|Vp — Vo2 + ———%
* nT( A N8 * nBy )(( )\2) Vo = Vallz + (1—A2)3
64n\* (B.n2 + ﬂyn§)02 196nM* (3202 + Bjnz)azT)
(1 — A2)4by (1—X2)4

E||Uo — Uol|%

(90)
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By Assumption 4 and Cauchy-Schwartz inequality we also have

_ 2nA2g?
E[Vo — VolE = E[|Go(W — J)||% < NE||Gol|E < + 222 Z IV fi(zo, yo)|I> (91)
i=1
Similarly, we have
— 9 2nA\2o? 9 - 9
E|Uo - Uol3 < +2)0) |V, filzo, 90) | 92)

i=1

Combine above three inequalities and substitute the parameters with their definitions. We achieve

2 n
* €
= Z E|V®(z:)|* < L(®(x0) — D*)e* + L?0oe” + o¢* + w > Ve filwo, yo)|I®

i=1
6 n
2
— (o, 93
+ - ;IIVyf (0, 9o) (93)
where we use following inequalities for simplification.
144k2 144k? - 500k2(min{1, ne})%e?  3€2
Be > By, < 1w 500s"(min{l, ne))7e”  3e
nByboT ~ ne mln{l, ne}400x - 30000k 500
12 432 1800L%k?
42T+ 2 B v 432675 o022 4 180OLTR
Bz  npy npy
% < 8e-ne ﬁ 288/{259 < 288k2€ - ne < 288¢2
n = 20n 5’ m ~ 500mk? ~ 500
L2B.m? - e(min{1,ne})’e L?Byn; < e(min{1,ne})’e

(1 = X)%beT — 20 - 400k - 30000x3(15000£3)2" (1 — XN)4beT — 500 - 400k - 3000043 (1500 )2
L*gznz _ S(min{l,ne})!  L2Bjng _ c(min{l,ne})*
(1—X)* = 400(15000x3)2 7 (1 — X)* — (500%2)2(1500k)2

(94)

O

Theorem 4. (Restatement of Theorem 2) Let Assumptions 1 to 5 hold. We set the parameters as T =
1/3 nl/3 1-)\)2n2/3 1-)\)2n2/3 400 Tl/3
30000£3Ty B, = = B, = (1-=M"n _ (A=X"n by = K

(I=A)2 7 7% T gor/8r Y T 50052T2/3’ e = Ts000ms1 L’ W T 1500nT L TOE

where we suppose Ty > 10n2. Then our algorithm satisfies

1 Z B[V ()| < L(®(z0) — ®*) + 02 + L?6 n Ly LBV fi(zo, yo)|?
(nTp)?/3 Ty
1 ¢ 2
= - E|IV (Lo,
ND Z,_1 [ Tyf( 0, %0)|l (95)
0

Proof. When the parameters are defined as Theorem 4, the conditions in Lemma 5 and Lemma 12 are
also satisfied. Hence we can prove Eq. (83) and (87) still hold. When ., 8, 1, and n,, are defined
as Theorem 4, we also have

AL 2y 12 48267 STORNLE(r, +my) Ly (96)
nT nﬁx nBy (1—X2)4 v— 2T
and
|~ %L, — 40/&2172 _ 24L°n?2 _ 864k2 L%n?
ny nBz nBy
AL ey 12 8260 STV ) 2 97)
n nﬂw npy (1—=XA2)4 75
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Similar to Theorem 3, we can also obtain

1 T-1
= S E[Vo@)|?
t=0

< 2(®(w) = 2Y) 8kL%0g 402 1  36K% 802

— — (B, + 36K3
412 12 43252 162272 _ 162232 _
- 4 2 x E V _ 2 7?!1@ _ 2
P AT S (g BIVo = Volli + (=35 ElI0 — Dol
G4nX (Bor + By)o® | 1960\ (G202 + B22)o°T o
O (1 — a2y ) ©8)
Substitute the parameters with their definitions and we have
T-1 1 ¢ 2
1 B L(®(xg) — %) + 02+ L35, = > Bl Va fi(zo, yo)||
= E P 2 < n )
7 2 EIve@)|” < T + =
1 n
L L3 EVy fi(zo, yo)l1? (99)
Ty
which achieves the conclusion of Theorem 4. O
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