
A Faster Decentralized Algorithm for Nonconvex
Minimax Problems

Wenhan Xian, Feihu Huang, Yanfu Zhang, Heng Huang
Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15213

wex37@pitt.edu, huangfeihu2018@gmail.com, yaz91@pitt.edu, heng.huang@pitt.edu

Abstract

In this paper, we study the nonconvex-strongly-concave minimax optimization
problem on decentralized setting. The minimax problems are attracting increasing
attentions because of their popular practical applications such as policy evaluation
and adversarial training. As training data become larger, distributed training has
been broadly adopted in machine learning tasks. Recent research works show
that the decentralized distributed data-parallel training techniques are specially
promising, because they can achieve the efficient communications and avoid the
bottleneck problem on the central node or the latency of low bandwidth network.
However, the decentralized minimax problems were seldom studied in literature
and the existing methods suffer from very high gradient complexity. To address
this challenge, we propose a new faster decentralized algorithm, named as DM-
HSGD, for nonconvex minimax problems by using the variance reduced technique
of hybrid stochastic gradient descent. We prove that our DM-HSGD algorithm
achieves stochastic first-order oracle (SFO) complexity of O(κ3ε−3) for decen-
tralized stochastic nonconvex-strongly-concave problem to search an ε-stationary
point, which improves the exiting best theoretical results. Moreover, we also prove
that our algorithm achieves linear speedup with respect to the number of workers.
Our experiments on decentralized settings show the superior performance of our
new algorithm.

1 Introduction

Minimax optimization has enormous applications in machine learning tasks such as Generative
Adversarial Net (GAN) [8], adversarial training [26] and multi-agent reinforcement learning [43].
Specifically, in minimax optimization, variable x aims to minimize a payoff loss function f(x, y) :
Rd1 × Rd2 → R while variable y tries to maximize the loss, which can be formulated as

min
x∈X

max
y∈Y

f(x, y), (1)

where X ⊆ Rd1 and Y ⊆ Rd2 . In the past a few decades, there are plenty of works to study minimax
optimization problem in a variety of research fields and many methods have been developed. The
most intuitive solution is Gradient Descent Ascent (GDA) algorithm [6, 29] with equal stepsize
ηx = ηy . Asymptotic and nonasymptotic convergence analysis has been provided when f is convex
in x and concave in y. Recently, many deterministic and stochastic gradient algorithms for nonconvex-
strongly-concave and nonconvex-concave problems were proposed. Some algorithms improve the
performance of vanilla GDA method by adopting different stepsize on x and y, such as [10, 19],
where the stepsize of y is typically larger than the stepsize of x. Some algorithms update x and y
at different frequency, such as [14, 25, 32]. These kind of algorithms usually involve a nested loop
structure that updates y more frequently than x to make f(x, y) close to function Φ(x), which is
defined by

Φ(x) = max
y∈Y

f(x, y). (2)

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

As more large-scale machine learning problems are arising, distributed training becomes a popular and
crucial framework because of its ability and efficiency to deal with large data. It is desired to generalize
minimax optimization to distributed training to solve large-scale minimax problems. In distributed
optimization, the original centralized optimization suffers from a bottleneck communication problem,
i.e. the communication traffic on the busiest central node, especially when the network is large
[18, 51]. To tackle this communication issue, decentralized optimization was proposed and has
emerged as a promising technique. It is a kind of distributed machine learning training paradigm that
does not rely on the centralized network topology. Different worker nodes collaboratively utilize
their own local data to implement large-scale training tasks and at each iteration they only have
to communicate with their neighbors. Decentralized algorithms have been shown to enhance the
communication efficiency by avoiding the communication overhead problem. Decentralized methods
are also advantageous when the network suffers from communication restriction or has low bandwidth
between some nodes and the central node. Besides, it is also an essential method in some situations
where data are geographically distributed and centralized data processing is not available or there are
concerns to preserve data privacy [48].

Recently many works were proposed to improve the performance of decentralized training. D-PSGD
[18] theoretically justifies the potential advantage of decentralized algorithm. D2 [38] improves
the convergence rate to outperform D-PSGD by eliminating the influence of data variance among
different workers. D-SPIDER-SFO [33] incorporates D2 and SPIDER [7, 44], which is a kind
of variance reduction technique [15], to further reduce the gradient complexity. DQSFW [45]
studies decentralized constrained problem with Frank-Wolfe method. GT-HSGD [46] extends hybrid
stochastic gradient descent to decentralized setting, which is a variance-reduced approach that does
not compute mega batch periodically. However, the decentralized minimax optimization is still
very limited and existing methods suffer from very high gradient complexity [21, 41]. Thus, we are
motivated to design an accelerated decentralized algorithm for minimax problems.

In this paper, thus, we propose a faster Decentralized Minimax Hybrid Stochastic Gradient De-
scent (DM-HSGD) algorithm to solve the following decentralized stochastic minimax optimization
problem:

min
x∈Rd1

max
y∈Y

f(x, y) =
1

n

n∑
i=1

fi(x, y), fi(x, y) := Eξ(i)∼Di
Fi(x, y; ξ(i)) (3)

where n is the number of worker nodes, Y is a convex set. Here the local component objective
function Fi(x, y; ξ(i)) is L-smooth, nonconvex in x, and strongly-concave in y. Di is the data
distribution on the i-th node. In this paper, the data distribution can be non-identical. Random
variable ξ(i) is an index sampled from the local data. We summarize our contributions as follows:

(1) In this paper, we propose a new accelerated decentralized stochastic first-order algorithm,
named as DM-HSGD, to solve the decentralized nonconvex-strongly-concave minimax
optimization problems. Our algorithm is the first stochastic gradient algorithm to solve
general decentralized minimax problem on non-identical distributed data with theoretical
guarantees. Besides, our algorithm does not require large batch size or nested loop which
makes it more practical and efficient to implement.

(2) We provide a completed proof to guarantee the convergence of our algorithm to solve decen-
tralized stochastic minimax optimization. Under nonconvex-strongly-concave condition, our
algorithm obtains SFO complexity of O(κ3ε−3) to search an ε-stationary point of function
Φ(x) = maxy∈Y f(x, y). This result is faster than the complexity of previous decentralized
minimax algorithms [21, 41]. Moreover, we also prove that our method achieves linear
speedup as the number of workers n increases, which verifies its ability to solve large-scale
problems.

The rest of this paper will be organized as follows. In Section 2, we will introduce related works. In
Section 3, we will introduce our new DM-HSGD algorithm. In Section 4, we will show the main
theorems of convergence and complexity analysis. In Section 5, we will discuss our experimental
results, and Section 6 will conclude the paper.

2

Table 1: Comparison of Related Algorithms for Minimax Optimization

Name SFO Decentralized Stochastic Implementation Reference

SGDA O(κ3ε−4) ×
√

single-loop [19]
SGDmax O(κ3ε−4 log(1

ε)) ×
√

double-loop [19]
SREDA O(κ3ε−3) ×

√
double-loop [25]

Acc-MDA O(κ3ε−3) ×
√

single-loop [11]
DPOSG O(ε−12)

√
(iid)

√
single-loop [21]

GT/DA O(Nε−2 log(1
ε))

√
(non-iid) × double-loop [41]

DM-HSGD O(κ3ε−3)
√

(non-iid)
√

single-loop Ours

2 Related Works

2.1 Centralized Minimax Optimization

In recent years, many algorithms for solving minimax optimization were proposed, and the majority
of them were studied under the nonconvex-strongly-concave condition. SGDmax [14] is a double
loop algorithm that achieves SFO complexity of O(κ3ε−4log(1/ε)) where κ = L/µ is the condition
number. Proximally Guided Stochastic Mirror Descent and Variance Reduction (PGSMD/PGSVRG)
[34] are double loop algorithms that achieve SFO complexity of O(κ3ε−4) for stochastic problem
and O(κ2Nε−2) for finite-sum problem whereN is the number of samples. Multistep GDA (MGDA)
[32] is a double loop algorithm and HiBSA [23] is a single loop algorithm. Both MGDA and
HiBSA are deterministic hence they can only solve finite-sum problems. Both of them achieve
SFO complexity of O(κ4Nε−2). Proximal Dual Implicit Accelerated Gradient (ProxDIAG) is a
deterministic triple loop algorithm whose SFO complexity for finite-sum problem is O(κ1/2Nε−2).

SGDA [19], Stochastic Recursive gradiEnt Descent Ascent (SREDA) [25], and Hybrid Variance-
Reduced SGD [40] are more related to our work. SGDA is a single loop algorithm to solve nonconvex-
strongly-concave and nonconvex-concave minimax problems. For nonconvex-strongly-concave
problem, it requires O(κ3ε−4) SFO complexity to find an ε-stationary point of Φ(x). In this paper,
we will prove that our method achieves a better SFO complexity.

SREDA [25] is a double loop algorithm that achieves O(κ3ε−3) SFO complexity. It accelerates
SGDA by using SPIDER, which is a variance reduction technique and utilizes the newest gradient
information [7, 30]. SREDA also involves a separated initialization algorithm called PiSARAH
[31] to ensure the convergence. More recently, [13] proposed an efficient mirror descent ascent
algorithm for nonconvex-strongly-concave minimax optimization with nonsmooth regularization
based on Bregman distance and variance reduced technique of SPIDER. In our paper, we use another
variance-reduced technique named STORM or hybrid stochastic gradient descent [3] to accelerate
the algorithm. We will discuss the challenges of using SPIDER on decentralized settings in Section 3.
Different from SREDA, our method only requires a large batch at the first iteration. Except the
first iteration, we can use either a single sample or a mini-batch to calculate the stochastic gradient.
However, SREDA loads a mega-batch with size O(ε−2) periodically (every q iterations) and needs
O(ε−1) gradient oracles at each iteration, which is not practical for large-scale problems. Besides,
the maximizer in SREDA is a nested loop to update variable y and if we count the loop of SPIDER
then SREDA is actually a triple algorithm. On the contrary, there is no nested loop in our DM-HSGD,
which makes our method more efficient and convenient to implement. Moreover, unlike SREDA, our
method does not require a separated initialization algorithm to calculate a precise initial value for y.

Hybrid Variance-Reduced SGD algorithm also takes advantage of hybrid stochastic gradient descent
to accelerate minimax optimization. For example, [40, 11] applied the Hybrid Variance-Reduced SGD
to minimax problems. More recently, [9, 12] proposed some efficient adaptive gradient descent ascent
methods for nonconvex-strongly-concave minimax optimization based on momentum techniques
including Hybrid Variance-Reduced SGD.

2.2 Decentralized Minimax Optimization

At decentralized setting, most minimax algorithms were proposed for convex-concave problem
[17, 28]. In [22] a nonconvex-nonconcave algorithm DPPSP was proposed. However, it is not

3

gradient-based and the closed-form solution to the subproblem is not ensured in our problem. Hence
we will not discuss it in this paper. Decentralized Parallel Optimistic Stochastic Gradient (DPOSG)
[21] is the first algorithm applicable to a general decentralized minimax problem with theoretical
guarantees. It is a single loop minimax algorithm that generalizes Optimistic Stochastic Gradient
(OSG) [2] to decentralized training. However, DPOSG has some obvious drawbacks. The first one is
that the gradient complexity O(ε−12) is too high and we are motivated to design a faster algorithm.
The second one is that DPOSG only works in the case where the data distribution is identical. When
the data distribution is non-identical, the Lemma 3 in [21] is not satisfied. Actually the assumption of
identical data distribution is not satisfied at most decentralized training tasks. Thus, in this paper, we
do not use this assumption.

More recently, [41] studied decentralized nonconvex-strongly-concave minimax problems and pro-
posed a double loop deterministic Gradient Tracking/Descent-Ascent algorithm which extends the
vanilla GDA to decentralized setting and combines it with gradient tracking. It achieves a gradient
complexity of O(ε−2). However, in large-scale machine learning tasks such as deep neural network,
generally the full gradient is unavailable and the application of deterministic algorithms is very
restricted. If we convert Gradient Tracking/Descent-Ascent to stochastic gradient version, the SFO
complexity should be at least O(ε−4), which is the same result as SGD in nonconvex optimization.
Under the same conditions, our new algorithm achieves a better SFO complexity of O(ε−3).

[24] studied decentralized reinforcement learning problem based on distributed constrained Markov
decision process model and proposed a decentralized policy gradient optimization method named
Safe Dec-PG, which achieves SFO complexity of O(ε−4). However, the problem studied in [24]
has a special form that is linear in y. In this paper, we focus on general minimax problem. [1] is
a simultaneous work of our work that studies a more general decentralized variational inequality
problem with higher complexity. We summarize the comparison of related algorithms for general
minimax optimization in Table 1. For decentralized algorithms DPOSG, GT/DA, and DM-HSGD,
we also discuss whether they can converge on non-identical distributed data.

3 Proposed New Algorithm

3.1 Preliminaries

Before we propose our algorithms, we will introduce the notations used in this paper and some
important concepts. We use lower case x(i)

t and y(i)
t to represent the column vector parameters on

i-th worker node. We use upper case Xt and Yt to represent the n-column matrix formed by x(i)
t and

y
(i)
t respectively, which means Xt = [x

(1)
t , x

(2)
t , . . . , x

(n)
t] and Yt = [y

(1)
t , y

(2)
t , . . . , y

(n)
t]. Column

vectors u(i)
t , v(i)

t , g(i)
t and h(i)

t are gradient estimators used in our algorithms. Upper case Ut, Vt, Gt
and Ht are matrices of which the i-th column is u(i)

t , v(i)
t , g(i)

t and h(i)
t respectively. Lower case with

a bar represents the mean vector. Upper case with a bar represents the matrix that each column is
the mean vector. For example, x̄t = 1

n

∑n
i=1 x

(i)
t and X̄t = [x̄t, x̄t, . . . , x̄t]. We define the optimal

maximum value of y as:

y∗(·) = arg max
y∈Y

f(·, y), ŷt = arg max
y∈Y

f(x̄t, y) (4)

Note that when f is strongly-concave in y, ŷt is unique. We also define:

δt = ‖ŷt − ȳt‖2 (5)

Bold number 0 and 1 are n× 1 column vectors that each entry is 0 and 1, respectively. For matrices,
we use ‖·‖F to denote Frobenius norm and ‖·‖2 to denote spectral norm. We use ∇x and ∇y to
denote the partial derivative with respect to x and y.

Mixing matrix W represents the weights of averaging among the communication network topology.
It is doubly stochastic which satisfies:

W1 = WT1 = 1 (6)

We should notice that here matrix W is not assumed to be symmetric so that the communication
network is not restricted to undirected graph.

4

Algorithm 1 DM-HSGD

Input: mixing matrix W , initial value x(i)
0 = x0, y(i)

0 = y0, v(i)
−1 = g

(i)
−1 = 0, u(i)

−1 = h
(i)
−1 = 0

Parameter: stepsize ηx, ηy , weight βx, βy , batch size b0, iteration T
Output: x̄ζ , where ζ is chosen randomly from {1, 2, · · · , T}

1: On i-th node:
2: for t = 0, 1, . . . , T − 1 do
3: if t = 0 then
4: g

(i)
t = ∇xFi(x(i)

t , y
(i)
t ; ξ

(i)
x,t), |ξ(i)

x,t| = b0

5: h
(i)
t = ∇yFi(x(i)

t , y
(i)
t ; ξ

(i)
y,t), |ξ(i)

y,t| = b0
6: else
7: g

(i)
t = ∇xFi(x(i)

t , y
(i)
t ; ξ

(i)
t) + (1− βx)(g

(i)
t−1 −∇xFi(x

(i)
t−1, y

(i)
t−1; ξ

(i)
t))

8: h
(i)
t = ∇yFi(x(i)

t , y
(i)
t ; ξ

(i)
t) + (1− βy)(h

(i)
t−1 −∇yFi(x

(i)
t−1, y

(i)
t−1; ξ

(i)
t))

9: end if
10: Communicate with neighbors and update gradient estimator as follows
11: v

(i)
t =

∑n
j=1 wij(v

(j)
t−1 + g

(j)
t − g

(j)
t−1)

12: u
(i)
t =

∑n
j=1 wij(u

(j)
t−1 + h

(j)
t − h

(j)
t−1)

13: Communicate with neighbors and update model parameter as follows
14: x

(i)
t+1 =

∑n
j=1 wij(x

(j)
t − ηxv

(j)
t)

15: y
(i)

t+ 1
2

=
∑n
j=1 wij(y

(j)
t + ηyu

(j)
t), y

(i)
t+1 = PY(y

(i)

t+ 1
2

)

16: end for

3.2 Decentralized Minimax Hybrid Stochastic Gradient Descent

In this subsection, we introduce our new Decentralized Minimax Hybrid Stochastic Gradient De-
scent (DM-HSGD) algorithm. Our algorithm is a single loop minimax algorithm (summarized in
Algorithm 1) which does not contain a nested loop structure.

The initial points of different nodes are the same, i.e. x(i)
0 = x0 and y(i)

0 . g(i)
t and h(i)

t are the gradient
estimators with respect to x and y on i-th node. g(i)

t and h(i)
t are computed in the same way as

STORM [3]. When t = 0, we load a large batch with size b0 to calculate the stochastic gradient (lines
4 and 5 in Algorithm 1). When t > 0, we can use either a single sample or a mini-batch to calculate
the gradient (lines 7 and 8 in Algorithm 1). g(i)

t can also be written as

g
(i)
t =βx∇xFi(x(i)

t , y
(i)
t ; ξ

(i)
t)+(1−βx)

(
g

(i)
t−1−∇xFi(x

(i)
t−1, y

(i)
t−1; ξ

(i)
t)+∇xFi(x(i)

t , y
(i)
t ; ξ

(i)
t)
)

(7)

which is a linear combination of the gradient estimators of stochastic gradient descent (the first part)
and SPIDER (the second part). As we have mentioned, SPIDER is a variance-reduced method that
utilizes the newest gradient information. Thus, estimator Eq. (7) is also called hybrid stochastic
gradient descent. It is the same with h(i)

t . Then each worker communicates with their neighbors
to compute gradient estimator v(i)

t and u(i)
t . Here we use gradient tracking [5, 47] to reduce the

consensus error (lines 11 and 12 in Algorithm 1). We will discuss why gradient tracking is necessary
in our method at next subsection. After we obtain u(i)

t and v(i)
t , each worker communicates with their

neighbors again and updates the model parameters x and y. Here PY(·) represents the projection
onto convex set Y . In the theoretical analysis, we define Y− 1

2
= Y0.

3.3 Discussions on STORM and Gradient Tracking

In this subsection, we will discuss the intuition of our algorithm and explain why we choose STORM
and gradient tracking rather than generalizing SREDA for decentralized setting. The first reason is
that SREDA requires large batch or full batch periodically, which is expensive and even unavailable.
Besides, there are too many nested loops in SREDA and it is not efficient or convenient. From the
view of theoretical analysis, normalization or projection are likely to cause divergence in decentralized
training on non-identical data distribution, which is indicated by the following Example 1. Therefore,
in the circumstance of this paper, SPIDER will probably not converge to a stationary point. Besides,

5

SREDA adopts smaller stepsize at the beginning and larger stepsize at the end when ‖vt‖ becomes
small enough. However, when the data distribution is non-identical, ‖vt‖ may not tend to 0 and the
stepsize of SREDA will probably always keep small. In contrast, STORM can avoid these issues and
we use STORM to accelerate the decentralized minimax algorithm.

In the standard decentralized framework D-PSGD [18], the consensus error satisfies ‖Xt − X̄t‖F ≤
O(ε) when the stepsize η is O(ε) and t is large enough. The following Example 2 is a simple example
to show that this bound is tight and there are cases where consensus error ‖Xt − X̄t‖F is exactly
Θ(η) when the data distribution is non-identical. However, according to the analysis of STORM
[3] without gradient tracking, the error term et = ḡt − ∇xf(x̄t, ȳt) between the averaged update
direction and the correct direction is supposed to satisfy:

‖et‖2 ≤ (1− βx)‖et−1‖2 +O(η4
x) . (8)

Nevertheless, the consensus error ‖Xt − X̄t‖2F is only O(η2
x) and cannot be as small as O(η4

x) if
there is no gradient tracking. Therefore, to inherit the analysis framework of STORM, the gradient
tracking in our algorithm is essential.

Example 1. Assume f(x) = f1(x) + f2(x), where x = (a, b) ∈ R2. f1(x) = a and f2(x) =
√

3b
are defined on two different nodes. Let W be the uniform weighted mixing matrix. We can compute
v1 = (1, 0) and v2 = (0,

√
3). The ideal averaged gradient direction is v∗ = (1/2,

√
3/2). However,

if we do normalization before making consensus, the obtained gradient estimator is v = (1/2, 1/2),
which is deviated from v∗.

Example 2. Suppose there are two sequences {pt} and {qt} defined on two different nodes with
p0 = q0. They are updated by pt+ 1

2
= pt − ηa and qt+ 1

2
= qt − ηb at each iteration respectively

where a and b are fixed gradient directions. As data distribution is non-identical, we have a 6= b.
Assume the mixing matrix is

W =

[
2/3 1/3
1/3 2/3

]
Then we have

pt+1−qt+1 =
1

3
(pt−qt)−

η

3
(a−b)=

1

3t+1
(p0−q0)−η(

t+1∑
s=1

1

3s
)(a−b)=

η

2
(1− 1

3t+1
)(b−a) (9)

Therefore, limt→∞‖pt − qt‖ = η
2‖a− b‖.

4 Convergence Analysis

In this section, we will show the main theorems of our convergence analysis. The theoretical results
show that the SFO complexity of our algorithm is O(κ3ε−3), which is the same as the best result in
centralized minimax problem [25]. First we will introduce the following assumptions.

Assumption 1. (Lipschitz Gradient). Each component function Fi(x, y; ξ) is L-smooth, which means
there exists a constant L such that for any (x, y) and (x′, y′), we have

‖∇Fi(x, y; ξ)−∇Fi(x′, y′; ξ)‖2≤L2(‖x− x′‖2+‖y − y′‖2)

Assumption 2. (Bounded Variance). The gradient of each component function Fi(x, y; ξ) is an
unbiased estimator of∇fi(x, y) and has bounded variance, i.e.,

E‖∇Fi(x, y; ξ)−∇fi(x, y)‖2 ≤ σ < +∞

Assumption 3. (Lower Bound). The function Φ(·) is lower bounded, i.e., infx Φ(x) = Φ∗ > −∞.

Assumption 4. (Spectral Gap). The doubly stochastic matrix W satisfies ‖W − 11T

n ‖2 = λ ∈ [0, 1).

Assumption 5. (Strongly Concave). The function fi(x, y) is µ-strongly-concave in y. That is, there
exists a constant µ > 0, for any x, y and y′, we have

fi(x, y) ≤ f(x, y′) + 〈∇yf(x, y′), y − y′〉 − µ

2
‖y − y′‖2

6

These are very common and mild assumptions that are frequently assumed in previous works.
Assumptions 1, 2 and 3 are also used in minimax methods [25] and [19]. Assumption 4 is used in [46].
Typically, the spectral gap assumption is stated as W is symmetric and |λ2| < 1, |λn| < 1 where
λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of W [16, 18, 51]. Our Assumption 4 is automatically
satisfied if the typical spectral gap assumption holds (see Lemma 16 in [16]). Assumption 5 is the
definition of strong concavity.

In nonconvex-strongly-concave problem, we use ε-stationary point of Φ(x), i.e. ‖∇Φ(x)‖ ≤ ε as the
convergence criterion. From Lemma 4.3 in [19], we know Φ(x) is differentiable and (L+κL)-smooth
and y∗(·) is κ-Lipschitz, which means ‖y∗(x1) − y∗(x2)‖ ≤ κ‖x1 − x2‖ for any x1, x2 ∈ Rd1 .
Furthermore, we have:

∇Φ(x̄t) = ∇xf(x̄t, ŷt) +∇yf(x̄t, ŷt) · ∂y∗(x̄t) = ∇xf(x̄t, ŷt) (10)

since∇yf(x̄t, ŷt) = 0. This criterion is broadly used in the analysis of nonconvex-strongly-concave
minimax optimization [19, 39]. Now we will provide the main theorems of our convergence analysis.
Completed proof can be found in the Supplementary Material.

Theorem 1. Let Assumptions 1 to 5 hold. When parameters βx = εmin{1,nε}
20 , βy = εmin{1,nε}

500κ2 ,

ηx = (1−λ)2 min{1,nε}
2000κ3L , ηy = (1−λ)2 min{1,nε}

500κL , b0 = 400
min{1,nε} , T = 4000κ3ε−2

(1−λ)2 min{1,nε} , our Algorithm
1 satisfies

1

T

T−1∑
t=0

E‖∇Φ(x̄t)‖2 ≤ L(Φ(x0)− Φ∗)ε2 + σ2ε2 + L2δ0ε
2 +

ε2

n

n∑
i=1

E‖∇xfi(x0, y0)‖2

+
ε2

n

n∑
i=1

E‖∇yfi(x0, y0)‖2 (11)

Corollary 1. When the parameters are defined as Theorem 1, we can see 1
T

∑T−1
t=0 E‖∇Φ(x̄t)‖2 ≤

O(ε2). Therefore, if n ≤ O(ε−1), the SFO complexity of Algorithm 1 is O(κ3ε−3). If n >
O(ε−1), the SFO complexity is O(κ3nε−2). Besides, from the proof of Theorem 1 we can see
error ‖ȳt − y∗(x̄t)‖2 is also bounded by the right side of Eq. (11).

Theorem 1 is the theoretical result when T is determined by ε. If the number of iteration T is not
fixed, we have the following conclusion.

Theorem 2. Let Assumptions 1 to 5 hold. We set the parameters as T = 4000κ3T0

(1−λ)2 , βx = n1/3

20T
2/3
0

,

βy = n1/3

500κ2T
2/3
0

, ηx = (1−λ)2n2/3

2000κ3T
1/3
0 L

, ηy = (1−λ)2n2/3

500κT
1/3
0 L

, b0 =
T

1/3
0

n2/3 , where we suppose T0 ≥ 10n2.

Then our algorithm satisfies

1

T

T−1∑
t=0

E‖∇Φ(x̄t)‖2 ≤
L(Φ(x0)− Φ∗) + σ2 + L2δ0

(nT0)2/3
+

1
n

∑n
i=1 E‖∇xfi(x0, y0)‖2

T0

+
1
n

∑n
i=1 E‖∇yfi(x0, y0)‖2

T0
(12)

Corollary 2. From Theorem 2, we know 1
T

∑T−1
t=0 E‖∇Φ(x̄t)‖2 ≤ O(1

(nT0)2/3
) + O(1

T0
) when

parameters are defined as above. As we suppose T0 ≥ O(n2), the dominating term in the convergence
rate is O(1

(nT0)2/3
), which indicates the linear speedup of our algorithm.

5 Experiments

5.1 Robust Logistic Regression

We conduct the experiment of decentralized robust logistic regression1 task as the first experi-
ment, which was proposed in [49] and was also conducted in the related work [25]. Given dataset

1https://github.com/TrashzzZ/DM-HSGD

7

https://github.com/TrashzzZ/DM-HSGD

{(ai, bi)}ni=1, where ai ∈ Rd is the feature and bi ∈ {−1, 1} is the label, the robust logistic regression
problem is formulated as follows:

min
x∈Rd

max
y∈∆n

f(x, y) =
n∑
i=1

yili(x)− V (y) + g(x) (13)

where yi is the i-th component of variable y. li(x) is the logistic loss function which is defined by
li(x) = log(1 + exp(−biaTi x)). V (y) is a divergence measure defined by V (y) = 1

2λ1‖ny − 1‖2.
∆n represents the simplex in Rn, which means

∆n = {y ∈ Rn|0 ≤ yi ≤ 1,
n∑
i=1

yi = 1} (14)

g(x) is a nonconvex regularization with form g(x) = λ2

∑d
i=1

αx2
i

1+αx2
i

. Following the experimental

settings in [25, 49], we let λ1 = 1
n2 , λ2 = 0.001 and α = 10 in our experiment.

Table 2: Descriptions of datasets used in our experiment

Name a9a covtype ijcnn1 phishing rcv1 w8a

N 32561 581012 49990 11055 20242 49749
d 123 54 22 68 47236 300

We conduct our experiment on six real-world training datasets “a9a", “covtype", “ijcnn1", “phish-
ing",“rcv1" and “w8a", which can be downloaded from LIBSVM2 repository. The description of
datasets is listed in Table 2 where N is the number of samples and d is the number of features. We
implement our code on an MPI cluster where each node is equipped with 12-core Intel Xeon E5-2620
v3 2.40 GHz processor.

(a) (b) (c)

(d) (e) (f)

Figure 1: Results of our decentralized robust logistic regression task. Figure (a) to (f) show the value
of Φ(x) with respect to the number of gradient oracles divided by 103. Figure (a), (b), (c), (d), (e) and
(f) are experimental results on “a9a", “covtype", “ijcnn1", “phishing", “rcv1" and “w8a" respectively.

We compare our DM-HSGD algorithm with baseline algorithms: SGDA [19], SREDA [25], DPOSG
[21], and stochastic Gradient Tracking/Descent Ascent (SGTDA) [41]. We consider the algorithms

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

8

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

for solving stochastic problem. We set the number of worker nodes to n = 20 and use the ring-based
topology as the communication network. For each algorithm, we grid search the learning rates ηx
and ηy from {0.1, 0.01, 0.001, 0.0001}. The mini-batch size is set to 20. The number of iterations in
the nested loop for double-loop algorithms is set to K = 5. For DM-HSGD, we set the batch size of
the first iteration to b0 = 10000. βx and βy are set to 0.01. For SREDA, we set ε = 0.1 in the factor
ε
‖vt‖ , period q = 50 and large batch size S1 = 1000. We compare the value of Φ(x) with respect
to the number of gradient oracles among different algorithms, which can also be calculated by the
projection onto simplex ∆n. The experimental results are shown in Figure 1. From the experimental
results in Figure 1, we can see our new DM-HSGD algorithm converges faster than other baseline
algorithms, which verifies the performance of our method.

5.2 Policy Evaluation

Our second experiment is the decentralized policy evaluation (PE) task. PE is an important task
in reinforcement learning, which aims to estimate the value function of a given policy. The most
intuitive and frequently used method for PE is temporal-difference (TD) method that relies on the
Bellman equation [4]. However, traditional TD method, which is probably not true gradient descent
method as pointed out in [20] and [37], are shown to be unstable in the case of off-policy sampling or
nonlinear function approximation. [36] first proposed a method to optimize the objective function
of mean-squared projected Bellman error (MSPBE) and MSPBE is proven to achieve asymptotic
convergence with arbitrary nonlinear smooth function approximation in [27]. In [42], the MSPBE
objective function with nonlinear approximation is converted into a nonconvex-strongly-concave
minimax problem by Fenchel’s duality. The problem can be formulated as:

min
θ

max
w

L(θ, w) =
1

nNi

n∑
i=1

Ni∑
j=1

L
(i)
j (θ, w) ,

L
(i)
j (θ, w) = 〈w, [Ri(sj , aj) + γVθ(sj+1)− Vθ(sj)]gθ(sj)〉 −

1

2
(wT gθ(sj))

2 (15)

where sj is a state and aj is an action. Ri represents the reward and γ ∈ (0, 1) is the discount factor.
V is a value function that maps the state space to a real number. θ is the parameter to estimate the
value function. Function gθ is the gradient of Vθ and parameter w is yield by Fenchel’s duality.

Mountaincar [35] is a preliminary task in reinforcement learning. [42] and [43] ran offline PE task
of this problem with primal-dual MSPBE, where the objective function is formulated as Eq. (15).
Following the experimental settings in [42], we use Sarsa [35] to generate trajectories of transitions
(si, ai, si+1, ri) with d features and N = 5000 samples on each worker node. We parameterize
value function Vθ as a 2-layer neural network with H hidden neurons. We use Sigmoid function as
activation and set discount factor to γ = 0.95. This experiment is run on an MPI cluster where each
node is equipped with 12-core Intel Xeon E5-2620 v3 2.40 GHz processor.

(a) (b) (c)

Figure 2: Results of our policy evaluation task. Figures (a), (b) and (c) show the value of Φ(θ) with
respect to the number of gradient oracles divided by 103. In Figures, (a) d = 200, H = 50; (b)
d = 300, H = 100; (c) d = 400, H = 200.

We compare our DM-HSGD algorithm with baseline algorithms: SGDA [19], SREDA [25], DPOSG
[21], and stochastic Gradient Tracking/Descent Ascent (SGTDA) [41]. We also consider algorithms

9

for solving stochastic problem. We set the number of worker nodes to n = 20. We also use a ring-
based topology with uniform weights as the communication network in this task. For each algorithm,
we grid search the learning rates ηx and ηy from {0.1, 0.01, 0.001, 0.0001}. The mini-batch size is
set to 20. The number of iterations in the nested loop for double-loop algorithms is set to K = 5.
For DM-HSGD, we set the batch size of the first iteration to b0 = 2500. βx and βy are set to 0.01.
For SREDA, we set ε = 0.1 in the factor ε

‖vt‖ , period q = 50 and large batch size S1 = 1000. We
compare the value of Φ(θ) with respect to the number of gradient oracles among different algorithms,
which can be calculated by quadratic optimization. The experimental results are shown in Figure 2.

Figure 2 (a), (b) and (c) show that our DM-HSGD algorithm achieves the fastest convergence
regarding the number of gradient oracles. From the experimental result, we can also see that nested
loop algorithm for minimax optimization usually consumes more gradient complexity during the
training process than single-loop algorithm.

6 Conclusion

In this paper, we proposed a novel accelerated decentralized minimax algorithm, Decentralized
Minimax Hybrid Stochastic Gradient Descent (DM-HSGD), to solve the stochastic nonconvex-
strongly-concave minimax optimization problems. We prove that our new method obtains SFO
complexity of O(κ3ε−3) which outperforms the existing results in decentralized minimax optimiza-
tion and matches state-of-the-art in centralized minimax optimization. Our method also achieves
linear speedup with respect to the number workers, which shows its ability to solve large-scale
problems. We also conduct experiments on two machine learning tasks, decentralized robust logistic
regression and policy evaluation to validate the superior performance of our algorithm. In our future
work, we will explore the decentralized nonconvex-concave minimax optimization without the strong
concavity so that it can solve a broader range of problems including the loss functions that are linear
in y. We will probably consider the methods that add a perturbation such as Catalyst [50].

Acknowledgments and Disclosure of Funding

This work was partially supported by NSF IIS 1845666, 1852606, 1838627, 1837956, 1956002, OIA
2040588.

References
[1] Aleksandr Beznosikov, Pavel Dvurechensky, Anastasia Koloskova, Valentin Samokhin, Se-

bastian U Stich, and Alexander Gasnikov. Decentralized local stochastic extra-gradient for
variational inequalities. arXiv preprint arXiv:2106.08315, 2021.

[2] Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin, and
Shenghuo Zhu. Online optimization with gradual variations. Conference on Learning Theory,
2012.

[3] Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex
sgd. Neural Information Processing Systems (NeurIPS), 2019.

[4] Christoph Dann, Gerhard Neumann, and Jan Peters. Policy evaluation with temporal differences:
A survey and comparison. Journal of Machine Learning Research, 2014.

[5] Paolo Di Lorenzo and Gesualdo Scutari. Next: In-network nonconvex optimization. IEEE
Transactions on Signal and Information Processing over Networks, 2(2):120–136, 2016.

[6] Simon S. Du and Wei Hu. Linear convergence of the primal-dual gradient method for convex-
concave saddle point problems without strong convexity. International Conference on Artificial
Intelligence and Statistics (AISTATS), 2019.

[7] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex
optimization via stochastic path integrated differential estimator. Neural Information Processing
Systems (NeurIPS), 2018.

10

[8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Neural Information
Processing Systems (NeurIPS), 2014.

[9] Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. On stochastic moving-average
estimators for non-convex optimization. arXiv preprint arXiv:2104.14840, 2021.

[10] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Neural
Information Processing Systems (NeurIPS), 2017.

[11] Feihu Huang, Shangqian Gao, Jian Pei, and Heng Huang. Accelerated zeroth-order and first-
order momentum methods from mini to minimax optimization. Journal of Machine Learning
Research, 22:1–70, 2021.

[12] Feihu Huang and Heng Huang. Adagda: Faster adaptive gradient descent ascent methods for
minimax optimization. arXiv preprint arXiv:2106.16101, 2021.

[13] Feihu Huang, Xidong Wu, and Heng Huang. Efficient mirror descent ascent methods for
nonsmooth minimax problems. Advances in Neural Information Processing Systems, 34, 2021.

[14] Chi Jin, Praneeth Netrapalli, and Michael I. Jordan. What is local optimality in nonconvex-
nonconcave minimax optimization? arXiv:1902.00618v2, 2019.

[15] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Neural Information Processing Systems (NeurIPS), 2013.

[16] Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic optimization
and gossip algorithms with compressed communication. In International Conference on
Machine Learning, pages 3478–3487. PMLR, 2019.

[17] Alec Koppel, Felicia Y. Jakubiec, and Alejandro Ribeiro. A saddle point algorithm for networked
online convex optimization. IEEE Transactions on Signal Processing, 2015.

[18] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. Neural Information Processing Systems (NeurIPS), 2017.

[19] Tianyi Lin, Chi Jin, and Michael I. Jordan. On gradient descent ascent for nonconvex-concave
minimax problems. arXiv:1906.00331v4, 2019.

[20] Bo Liu, Ji Liu, Mohammad Ghavamzadeh, Sridhar Mahadevan, and Marek Petrik. Finite-sample
analysis of proximal gradient td algorithms. Conference on Uncertainty in Artificial Intelligence,
2015.

[21] Mingrui Liu, Wei Zhang, Youssef Mroueh, Xiaodong Cui, Jerret Ross, Tianbao Yang, and Payel
Das. A decentralized parallel algorithm for training generative adversarial nets. Smooth Games
Optimization and Machine Learning Workshop (NeurIPS), 2019.

[22] Weijie Liu, Aryan Mokhtari, Asuman Ozdaglar, Sarath Pattathil, Zebang Shen, and Neng-
gan Zheng. A decentralized proximal point-type method for saddle point problems.
arXiv:1910.14380v1, 2019.

[23] Songtao Lu, Ioannis Tsaknakis, Mingyi Hong, and Yongxin Chen. Hybrid block successive
approximation for one-sided non-convex min-max problems: Algorithms and applications.
arXiv:1902.08294v1, 2019.

[24] Songtao Lu, Kaiqing Zhang, Tianyi Chen, Tamer Basar, and Lior Horesh. Decentralized
policy gradient descent ascent for safe multi-agent reinforcement learning. Association for the
Advancement of Artificial Intelligence (AAAI), 2021.

[25] Luo Luo, Haishan Ye, and Tong Zhang. Stochastic recursive gradient descent ascent for
stochastic nonconvex-strongly-concave minimax problems. Neural Information Processing
Systems (NeurIPS), 2020.

11

[26] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. International Conference on
Learning Representations (ICLR), 2018.

[27] Hamid Reza Maei, Csaba Szepesvári, Shalabh Bhatnagar, Doina Precup, David Silver, and
Richard S. Sutton. Convergent temporal-difference learning with arbitrary smooth function
approximation. Neural Information Processing Systems (NeurIPS), 2010.

[28] David Mateos-Núnez and Jorge Cortés. Distributed subgradient methods for saddle-point
problems. IEEE Conference on Decision and Control, 2015.

[29] Arkadi Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with
lipschitz continuous monotone operators and smooth convex-concave saddle point problems.
SIAM Journal on Optimization, 2004.

[30] Lam M. Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for
machine learning problems using stochastic recursive gradient. arXiv:1703.00102v2, 2017.

[31] Lam M. Nguyen, Katya Scheinberg, and Martin Takáč. Inexact sarah algorithm for stochastic
optimization. arXiv:1811.10105, 2018.

[32] Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, and Jason D. Lee. Solving a class of non-
convex min-max games using iterative first order methods. Neural Information Processing
Systems (NeurIPS), 2019.

[33] Taoxing Pan, Jun Liu, and Jie Wang. D-spider-sfo: A decentralized optimization algorithm with
faster convergence rate for nonconvex problems. Association for the Advancement of Artificial
Intelligence (AAAI), 2020.

[34] Hassan Rafique, Mingrui Liu, Qihang Lin, and Tianbao Yang. Non-convex min-max opti-
mization: Provable algorithms and applications in machine learning. arXiv:1810.02060v3,
2018.

[35] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

[36] Richard S. Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba
Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for temporal-difference learning
with linear function approximation. International Conference on Machine Learning (ICML),
2009.

[37] Csaba Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 2010.

[38] Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. d2: Decentralized training over
decentralized data. International Conference on Machine Learning (ICML), 2018.

[39] Kiran Koshy Thekumprampil, Prateek Jain, Praneeth Netrapalli, and Sewoong Oh. Efficient al-
gorithms for smooth minimax optimization. Neural Information Processing Systems (NeurIPS),
2019.

[40] Q. Tran-Dinh, D. Liu, and L.M. Nguyen. Hybrid variance-reduced sgd algorithms for minimax
problems with nonconvex-linear function. Neural Information Processing Systems (NeurIPS),
2020.

[41] Ioannis Tsaknakis, Mingyi Hong, and Sijia Liu. Decentralized min-max optimization: For-
mulations, algorithms and applications in network poisoning attack. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
5755–5759. IEEE, 2020.

[42] Hoi-To Wai, Mingyi Hong, Zhuoran Yang, Zhaoran Wang, and Kexin Tang. Variance reduced
policy evaluation with smooth function approximation. Neural Information Processing Systems
(NeurIPS), 2019.

12

[43] Hoi-To Wai, Zhuoran Yang, Zhaoran Wang, and Mingyi Hong. Multi-agent reinforcement
learning via double averaging primal-dual optimization. Neural Information Processing Systems
(NeurIPS), 2018.

[44] Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. Spiderboost: A class of faster
variance-reduced algorithms for nonconvex optimization. arXiv:1810.10690v2, 2018.

[45] Wenhan Xian, Feihu Huang, and Heng Huang. Communication-efficient frank-wolfe algorithm
for nonconvex decentralized distributed learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 10405–10413, 2021.

[46] Ran Xin, Usman A. Khan, and Soummya Kar. A hybrid variance-reduced method for decentral-
ized stochastic non-convex optimization. arXiv:2102.06752, 2021.

[47] Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie. Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant stepsizes. In 2015 54th
IEEE Conference on Decision and Control (CDC), pages 2055–2060. IEEE, 2015.

[48] Feng Yan, Shreyas Sundaram, S. Vishwanathan, and Yuan Qi. Distributed autonomous online
learning: Regrets and intrinsic privacy-preserving properties. IEEE Transactions on Knowledge
and Data Engineering, 2013.

[49] Yan Yan, Yi Xu, Qihang Lin, Lijun Zhang, and Tianbao Yang. Stochastic primal-dual al-
gorithms with faster convergence than O(1/

√
T) for problems without bilinear structure.

arXiv:1904.10112, 2019.

[50] Junchi Yang, Siqi Zhang, Negar Kiyavash, and Niao He. A catalyst framework for minimax
optimization. In NeurIPS, 2020.

[51] Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized gradient descent.
SIAM Journal on Optimization, 2016.

13

A Proof of Convergence Analysis

A.1 Basic Lemmas

First, we introduce following basic lemmas, which are broadly used in the convergence analysis of
optimization algorithms.
Lemma 1. Let vector X be a stochastic variable. Then we have

0 ≤ E‖X − EX‖2 = E‖X‖2 − ‖EX‖2 ≤ E‖X‖2 (16)

Lemma 2. Let X1, X2, · · · , Xn be n independent stochastic variables of which the means are 0.
Then we have

E‖
n∑
i=1

Xi‖2 =
n∑
i=1

E‖Xi‖2 (17)

Lemma 3. Suppose A and B are two matrices. Then it satisfies

‖AB‖F ≤ ‖A‖2‖B‖F (18)

A.2 Important Conclusions

Next, we will propose and prove some conclusions that are important to the proof our main theorems.
Lemma 4. (Lemma 4.3 in paper [19]) Φ(x) is (L + κL)-smooth and y∗(·) is κ-Lipschitz, which
means ‖y∗(x1)− y∗(x2)‖ ≤ κ‖x1 − x2‖ for any x1, x2 ∈ Rd1 .

Proof. As y∗(x1) and y∗(x2) achieve the maximum, we have ∇yf(x1, y
∗(x1)) = 0 and

∇yf(x2, y
∗(x2)) = 0. Then we have

‖y∗(x1)− y∗(x2)‖

≤ 1

µ
‖∇yf(x1, y

∗(x1))−∇yf(x1, y
∗(x2))‖

=
1

µ
‖∇yf(x2, y

∗(x2))−∇yf(x1, y
∗(x2))‖ ≤ L

µ
‖x1 − x2‖ = κ‖x1 − x2‖ (19)

where the first inequality is derived from µ-strong concavity and the second inequality is derived
from L-smoothness. Since∇Φ(x) = ∇xf(x, y∗(x)), from Assumption 1 we get

‖∇Φ(x1)−∇Φ(x2)‖ ≤ L‖x1 − x2‖+ L‖y∗(x1)− y∗(x2)‖ ≤ (L+ κL)‖x1 − x2‖ (20)

which implies Φ(x) is (L+ κL)-smooth.

Lemma 5. When ηy ≤ 1
5L we have following estimation for δt.

T−1∑
t=0

δt ≤
4κ

Lηy
δ0+

18ηy
µ

T−1∑
t=1

(1− µηy
4

)T−t−1
t−1∑
s=0

‖ūs −
1

n

n∑
i=1

∇fi(x(i)s , y(i)s)‖2+
72κ2

n

T−1∑
t=0

(‖Xt − X̄t‖2F

+ ‖Yt − Ȳt‖2F) +
20κ4η2x
L2η2y

T−1∑
t=0

‖v̄t‖2 −
12

5µ2

T−1∑
t=0

(1− (1− µηy
4

)T−t)‖ūt‖2 (21)

Proof. Define zt = ȳt + θūt for some constant θ. As function f is strongly-concave in y we have

f(x̄t, ŷt) ≤ f(x̄t, ȳt) + 〈∇yf(x̄t, ȳt), ŷt − ȳt〉 −
µ

2
‖ŷt − ȳt‖2

= f(x̄t, ȳt) + 〈ūt, ŷt − zt〉+ 〈∇yf(x̄t, ȳt)− ūt, ŷt − zt〉

+ θ〈∇yf(x̄t, ȳt), ūt〉 −
µ

2
‖ŷt − ȳt‖2 (22)

By Assumption 1, we also have

−Lθ
2

2
‖ūt‖2 ≤ f(x̄t, zt)− f(x̄t, ȳt)− θ〈∇yf(x̄t, ȳt), ūt〉 (23)

1

Add Eq. (22) and Eq. (23) together we obtain

0 ≤ 〈ūt, ŷt − zt〉+ 〈∇yf(x̄t, ȳt)− ūt, ŷt − zt〉 −
µ

2
‖ŷt − ȳt‖2 +

Lθ2

2
‖ūt‖2 (24)

where we also use the definition of ŷt so that f(x̄t, ŷt) ≥ f(x̄t, zt).

〈ūt, ŷt − zt〉 = −θ‖ūt‖2 + 〈ūt, ŷt − ȳt〉 (25)
Combining Eq. (24) and Eq. (25) we have

0 ≤ 〈ūt, ŷt − ȳt〉 −
µ

2
‖ŷt − ȳt‖2 + 〈∇yf(x̄t, ȳt)− ūt, ŷt − zt〉 − (θ − Lθ2

2
)‖ūt‖2 (26)

By Cauchy-Schwartz inequality we have

〈∇yf(x̄t, ȳt)− ūt, ŷt − zt〉 ≤
4

µ
‖∇yf(x̄t, ȳt)−ūt‖2+

µ

8
‖ŷt − ȳt‖2+

µθ2

8
‖ūt‖2 (27)

Therefore, we obtain

0 ≤ 〈ūt, ŷt − ȳt〉 −
µ

4
‖ŷt − ȳt‖2 +

4

µ
‖∇yf(x̄t, ȳt)− ūt‖2 − (θ − Lθ2

2
− µθ2

8
)‖ūt‖2

≤ 〈ūt, ŷt − ȳt〉 −
µ

4
‖ŷt − ȳt‖2 +

4

µ
‖∇yf(x̄t, ȳt)− ūt‖2 −

2

5µ
‖ūt‖2 (28)

where we let θ = 4
5µ . As we have

2ηy〈ūt, ŷt − ȳt〉 = ‖ȳt − ŷt‖2 + ‖ȳt+1 − ȳt‖2 − ‖ȳt+1 − ŷt‖2 (29)
Eq. (28) is equivalent to

‖ȳt+1 − ŷt‖2 ≤ (1− µηy
2

)‖ȳt − ŷt‖2 + ‖ȳt+1 − ȳt‖2 +
8ηy
µ
‖∇yf(x̄t, ȳt)− ūt‖2 −

4ηy
5µ
‖ūt‖2 (30)

When Lηy ≤ 1
5 , from Eq. (30) we know

‖ȳt+1 − ŷt‖2 ≤ (1− µηy
2

)‖ȳt − ŷt‖2 +
8ηy
µ
‖∇yf(x̄t, ȳt)− ūt‖2 −

3ηy
5µ
‖ūt‖2 (31)

According to Young’s inequality we have

‖ȳt+1 − ŷt+1‖2 ≤ (1 +
µηy
4

)‖ȳt+1 − ŷt‖2 + (1 +
4

µηy
)‖ŷt+1 − ŷt‖2

≤ (1− µηy
4

)‖ȳt − ŷt‖2 +
9ηy
µ
‖∇yf(x̄t, ȳt)− ūt‖2 +

5κ

Lηy
‖ŷt+1 − ŷt‖2 −

3ηy
5µ
‖ūt‖2

≤ (1− µηy
4

)‖ȳt − ŷt‖2 +
9ηy
µ
‖∇yf(x̄t, ȳt)− ūt‖2 +

5κ3η2x
Lηy

‖v̄t‖2 −
3ηy
5µ
‖ūt‖2 (32)

In the second inequality we use Eq. (31) and Lηy ≤ 1
5 . The last inequality is because function y∗(·)

is κ-Lipschitz. By Cauchy-Schwartz inequality and Assumption 1 we also have

‖∇yf(x̄t, ȳt)−ūt‖2 ≤ 2‖ūt −
1

n

n∑
i=1

∇fi(x(i)
t , y

(i)
t)‖2+

2L2

n
(‖Xt−X̄t‖2F +‖Yt−Ȳt‖2F) (33)

Using the definition of δt and the recursion in Eq. (32) we obtain

δt ≤ (1− µηy
4

)tδ0 +
9ηy
µ

t−1∑
s=0

(1− µηy
4

)t−s−1‖ūs −∇yf(x̄t, ȳt)‖2 +
5κ3η2x
Lηy

t−1∑
s=0

(1− µηy
4

)t−s−1‖v̄s‖2

− 3ηy
5µ

t−1∑
s=0

(1− µηy
4

)t−s−1‖ūs‖2 (34)

Summing above equation we have
T−1∑
t=0

δt ≤
4κ

Lηy
δ0+

18ηy
µ

T−1∑
t=1

(1− µηy
4

)T−t−1
t−1∑
s=0

‖ūs −
1

n

n∑
i=1

∇fi(x(i)s , y(i)s)‖2+
72κ2

n

T−1∑
t=0

(‖Xt − X̄t‖2F

+ ‖Yt − Ȳt‖2F) +
20κ4η2x
L2η2y

T−1∑
t=0

‖v̄t‖2 −
12

5µ2

T−1∑
t=0

(1− (1− µηy
4

)T−t)‖ūt‖2 (35)

where Eq. (33) is used.

2

Lemma 6. For all t ∈ {0, 1, · · · , T} we have v̄t = ḡt and ūt = h̄t.

Proof. As matrix W is doubly stochastic, we have

v̄t = v̄t−1 + ḡt − ḡt−1 (36)

which is equivalent to v̄t − ḡt = v̄t−1 − ḡt−1. Since ū−1 = ḡ−1, we have v̄t = ḡt for all
t ∈ {0, 1, · · · , T}. Similarly, we have ūt = h̄t.

Lemma 7. Let At, Bt be positive sequences satisfying

At+1 ≤ (1− c)At +Bt (37)

for some constant c ∈ (0, 1). Then for any positive integer T we have
T∑
t=0

At ≤
1

c
A0 +

1

c

T−1∑
t=0

Bt (38)

Proof. Using recursion on Eq. (37) we can obtain

At ≤ (1− c)tA0 +

t−1∑
s=0

(1− c)t−s−1Bs (39)

for ∀t ≥ 0. Sum above inequality and we achieve the desired conclusion Eq. (38), where we use the
condtion At, Bt are positive and the fact that

∑∞
t=0(1− c)t = 1

c .

Lemma 8. We can prove the following bound for gradient estimator v̄t and ūt.
t−1∑
s=0

E‖v̄s −
1

n

n∑
i=1

∇xfi(x(i)s , y(i)s)‖2 ≤ σ2

nβxb0
+

2βxσ
2t

n
+

12L2

n2βx

t−1∑
s=0

(E‖Xs − X̄s‖2F + E‖Ys − Ȳs‖2F)

+
6L2

nβx

t−2∑
s=0

(η2xE‖v̄s‖2 + η2yE‖ūs‖2) (40)

t−1∑
s=0

E‖ūs −
1

n

n∑
i=1

∇yfi(x(i)s , y(i)s)‖2 ≤ σ2

nβyb0
+

2βyσ
2t

n
+

12L2

n2βy

t−1∑
s=0

(E‖Xs − X̄s‖2F + E‖Ys − Ȳs‖2F)

+
6L2

nβy

t−2∑
s=0

(η2xE‖v̄s‖2 + η2yE‖ūs‖2) (41)

for all t ∈ {1, 2, · · · , T}.

Proof. By the definition of g(i)
t and Lemma 6 we have

v̄t −
1

n

n∑
i=1

∇xfi(x(i)
t , y

(i)
t)

= (1− βx)(v̄t−1 −
1

n

n∑
i=1

∇xfi(x(i)
t−1, y

(i)
t−1)) +

βx
n

n∑
i=1

(∇xFi(x(i)
t , y

(i)
t ; ξ

(i)
t)−∇xfi(x(i)

t , y
(i)
t))

+ (1− βx)
1

n

n∑
i=1

(
∇xFi(x(i)

t , y
(i)
t ; ξ

(i)
t)−∇xFi(x(i)

t−1, y
(i)
t−1; ξ

(i)
t) +∇xfi(x(i)

t−1, y
(i)
t−1)

−∇xfi(x(i)
t , y

(i)
t)
)

(42)

Taking expectation on ξ(i)
t the last two terms of Eq. (42) are 0. Therefore,

E‖v̄t −
1

n

n∑
i=1

∇xfi(x(i)
t , y

(i)
t)‖2

= (1− βx)2E‖v̄t−1 −
1

n

n∑
i=1

∇xfi(x(i)
t−1, y

(i)
t−1)‖2 + E‖βx

n

n∑
i=1

(∇xFi(x(i)
t , y

(i)
t ; ξ

(i)
t)

3

−∇xfi(x(i)
t , y

(i)
t)) + (1− βx)

1

n

n∑
i=1

(
∇xFi(x(i)

t , y
(i)
t ; ξ

(i)
t)−∇xFi(x(i)

t−1, y
(i)
t−1; ξ

(i)
t)

+∇xfi(x(i)
t−1, y

(i)
t−1)−∇xfi(x(i)

t , y
(i)
t)
)
‖2

≤ (1− βx)2E‖v̄t−1 −
1

n

n∑
i=1

∇xfi(x(i)
t−1, y

(i)
t−1)‖2 +

2β2
x

n2

n∑
i=1

E‖∇xFi(x(i)
t , y

(i)
t ; ξ

(i)
t)

−∇xfi(x(i)
t , y

(i)
t)‖2 +

2(1− βx)2

n2

n∑
i=1

E‖∇xFi(x(i)
t , y

(i)
t ; ξ

(i)
t)−∇xFi(x(i)

t−1, y
(i)
t−1; ξ

(i)
t)

+∇xfi(x(i)
t−1, y

(i)
t−1)−∇xfi(x(i)

t , y
(i)
t)‖2

≤ (1− βx)2E‖v̄t−1 −
1

n

n∑
i=1

∇xfi(x(i)
t−1, y

(i)
t−1)‖2 +

2β2
xσ

2

n
+

2L2(1− βx)2

n2
(E‖Xt −Xt−1‖2F

+ E‖Yt − Yt−1‖2F) (43)

The first inequality is obtained by Cauchy-Schwartz inequality. In the last inequality we use Lemma 2
on the last two terms and then use Assumption 2, Lemma 1 and Assumption 1. By Cauchy-Schwartz
inequality we have estimations

‖Xt −Xt−1‖2F ≤ 3‖Xt − X̄t‖2F + 3nη2
x‖v̄t−1‖2 + 3‖Xt−1 − X̄t−1‖2F (44)

‖Yt − Yt−1‖2F ≤ 3‖Yt − Ȳt‖2F + 3nη2
y‖ūt−1‖2 + 3‖Yt−1 − Ȳt−1‖2F (45)

Combining above two inequalities with Eq. (43) and Lemma 7 we have

t−1∑
s=0

E‖v̄s −
1

n

n∑
i=1

∇xfi(x(i)
s , y(i)

s)‖2

≤ 1

βx
E‖v̄0 −∇xf(x0, y0)‖2 +

2βxσ
2t

n
+

12L2

n2βx

t−1∑
s=0

(E‖Xs − X̄s‖2F + E‖Ys − Ȳs‖2F)

+
6L2

nβx

t−2∑
s=0

(η2
xE‖v̄s‖2 + η2

yE‖ūs‖2)

≤ σ2

nβxb0
+

2βxσ
2t

n
+

12L2

n2βx

t−1∑
s=0

(E‖Xs − X̄s‖2F + E‖Ys − Ȳs‖2F)

+
6L2

nβx

t−2∑
s=0

(η2
xE‖v̄s‖2 + η2

yE‖ūs‖2) (46)

for all t ∈ {1, 2, · · · , T}. In the first inequality we use the fact 1
1−(1−βx)2 ≤

1
βx

when βx ≤ 1. The

second inequality is because E‖v̄0 −∇xf(x0, y0)‖2 ≤ σ2

nb0
by Assumption 2 and Lemma 2. Note

that if we do not use Lemma 7 on the last term we will get

t−1∑
s=0

E‖v̄s −
1

n

n∑
i=1

∇xfi(x(i)
s , y(i)

s)‖2

≤ σ2

nβxb0
+

2βxσ
2t

n
+

12L2

n2βx

t−1∑
s=0

(E‖Xs − X̄s‖2F + E‖Ys − Ȳs‖2F)

+
6L2

nβx

t−2∑
s=0

(1− (1− βx)t−s−1)(η2
xE‖v̄s‖2 + η2

yE‖ūs‖2) (47)

Mimic above steps we can also prove the second conclusion in Lemma 8.

4

Lemma 9. The consensus error satisfies the following recursive relation

‖Xt+1 − X̄t+1‖2F ≤
1 + λ2

2
‖Xt − X̄t‖2F +

2λ2η2
x

1− λ2
‖Vt − V̄t‖2F (48)

‖Yt+1 − Ȳt+1‖2F ≤
1 + λ2

2
‖Yt − Ȳt‖2F +

2λ2η2
y

1− λ2
‖Ut − Ūt‖2F (49)

Proof. Let J = 11T

n . According to the update rule we have

‖Xt+1 − X̄t+1‖2F
= ‖(Xt − ηxVt)W − (X̄t − ηxV̄t)‖2F = ‖(Xt − X̄t)(W − J)− ηx(Vt − V̄t)(W − J)‖2F
≤ λ2‖Xt − X̄t‖2F + λ2η2

x‖Vt − V̄t‖2F − 2〈(Xt − X̄t)(W − J), ηx(Vt − V̄t)(W − J)〉

≤ (λ2 + θλ2)‖Xt − X̄t‖2F + (
λ2η2

x

θ
+ λ2η2

x)‖Vt − V̄t‖2F

≤ 1 + λ2

2
‖Xt − X̄t‖2F +

2λ2η2
x

1− λ2
‖Vt − V̄t‖2F (50)

In the first inequality we use Assumption 4 and Lemma 3. In the second inequality we use Young’s
inequality and θ is an arbitrary positive constant. Let θ = 1−λ2

2λ2 and we can get the last inequality.
Similar to Eq. (50), we can obtain the following estimation

‖Yt+1 − Ȳt+1‖2F = ‖(Yt + ηyUt)W − (Ȳt + ηyŪt)‖2F

≤ (λ2 + θλ2)‖Yt − Ȳt‖2F + (
λ2η2

x

θ
+ λ2η2

x)‖Ut − Ūt‖2F

≤ 1 + λ2

2
‖Yt − Ȳt‖2F +

2λ2η2
y

1− λ2
‖Ut − Ūt‖2F (51)

Lemma 10. For all t ∈ {0, 1, · · · , T − 1} we have

t∑
s=0

E‖Vs−V̄s‖2F ≤
2

1− λ2
E‖V0−V̄0‖2F +

48λ2L2

(1− λ2)2

t∑
s=0

(E‖Xs−X̄s‖2F + E‖Ys−Ȳs‖2F)

+
24nλ2L2

(1− λ2)2

t−1∑
s=0

η2
yE‖ūs‖2 +

24nλ2L2

(1− λ2)2

t−1∑
s=0

η2
xE‖v̄s‖2

+
8λ2β2

x

(1− λ2)2

t−1∑
s=0

n∑
i=1

E‖g(i)
s −∇xfi(x(i)

s , y(i)
s)‖2 +

6nλ2β2
xσ

2t

1− λ2
(52)

t∑
s=0

E‖Us−Ūs‖2F ≤
2

1− λ2
E‖U0−Ū0‖2F +

48λ2L2

(1− λ2)2

t∑
s=0

(E‖Xs−X̄s‖2F + E‖Ys−Ȳs‖2F)

+
24nλ2L2

(1− λ2)2

t−1∑
s=0

η2
yE‖ūs‖2 +

24nλ2L2

(1− λ2)2

t−1∑
s=0

η2
xE‖v̄s‖2

+
8λ2β2

y

(1− λ2)2

t−1∑
s=0

n∑
i=1

E‖h(i)
s −∇yfi(x(i)

s , y(i)
s)‖2 +

6nλ2β2
yσ

2t

1− λ2
(53)

Proof. By the definition of Vt, Assumption 4 and Lemma 3, we have

‖Vt+1 − V̄t+1‖2F
= ‖(Vt +Gt+1 −Gt)W − (V̄t + Ḡt+1 − Ḡt)‖2F
= ‖(Vt − V̄t)(W − J) + (Gt+1 −Gt)(W − J)‖2F
≤ λ2‖Vt − V̄t‖2F + λ2‖Gt+1 −Gt‖2F + 2〈(Vt − V̄t)(W − J), (Gt+1 −Gt)(W − J)〉 (54)

5

Review the definition of g(i)
t

g
(i)
t+1 − g

(i)
t = ∇xFi(x(i)

t+1, y
(i)
t+1; ξ

(i)
t+1)−∇xFi(x(i)

t , y
(i)
t ; ξ

(i)
t+1)− βx(g

(i)
t −∇xfi(x

(i)
t , y

(i)
t))

+ βx(∇xFi(x(i)
t , y

(i)
t ; ξ

(i)
t+1)−∇xfi(x(i)

t , y
(i)
t)) (55)

and take expectation on ξ(i)
t+1, then we have

E[g
(i)
t+1 − g

(i)
t] = ∇xfi(x(i)

t+1, y
(i)
t+1)−∇xfi(x(i)

t , y
(i)
t)− βx(g

(i)
t −∇xfi(x

(i)
t , y

(i)
t)) (56)

Taking expectation on ξ(i)
t+1 the last term of Eq. (54) can be bounded by

E〈(Vt − V̄t)(W − J), (Gt+1 −Gt)(W − J)〉
= 〈(Vt − V̄t)(W − J),E[Gt+1 −Gt](W − J)〉 ≤ λ‖Vt − V̄t‖F · λ‖E[Gt+1 −Gt]‖F

≤ 1− λ2

4
‖Vt − V̄t‖2F +

λ4

1− λ2
‖E[Gt+1 −Gt]‖2F

≤ 1− λ2

4
‖Vt − V̄t‖2F +

2λ4

1− λ2

n∑
i=1

‖∇xfi(x(i)
t+1, y

(i)
t+1)−∇xfi(x(i)

t , y
(i)
t)‖2

+
2λ4β2

x

1− λ2

n∑
i=1

‖g(i)
t −∇xfi(x

(i)
t , y

(i)
t)‖2

≤ 1− λ2

4
‖Vt − V̄t‖2F +

2λ4L2

1− λ2
(‖Xt+1 −Xt‖2F + ‖Yt+1 − Yt‖2F)

+
2λ4β2

x

1− λ2

n∑
i=1

‖g(i)
t −∇xfi(x

(i)
t , y

(i)
t)‖2 (57)

where the second inequality is resulted from Young’s inequality, the third inequality is resulted from
Cauchy-Schwartz inequality and the last inequality is resulted from Assumption 1. Besides, applying
Cauchy-Schwartz inequality to Eq. (55) we have

E‖g(i)
t+1 − g

(i)
t ‖2

≤ 3E‖∇xFi(x(i)
t+1, y

(i)
t+1; ξ

(i)
t+1)−∇xFi(x(i)

t , y
(i)
t ; ξ

(i)
t+1)‖2 + 3β2

xE‖g
(i)
t −∇xfi(x

(i)
t , y

(i)
t)‖2

+ 3β2
xE‖∇xFi(x

(i)
t , y

(i)
t ; ξ

(i)
t+1)−∇xfi(x(i)

t , y
(i)
t)‖2

≤ 3L2(E‖x(i)
t+1−x

(i)
t ‖2 + E‖y(i)

t+1−y
(i)
t ‖2) + 3β2

xE‖g
(i)
t −∇xfi(x

(i)
t , y

(i)
t)‖2 + 3β2

xσ
2 (58)

where in the last inequality we use Assumption 1 and Assumption 2. Combining Eq. (54), (57) and
(58) we can obtain

E‖Vt+1 − V̄t+1‖2F ≤
1 + λ2

2
E‖Vt − V̄t‖2F +

4λ2L2

1− λ2
(E‖Xt+1 −Xt‖2F + E‖Yt+1 − Yt‖2F)

+
4λ2β2

x

1− λ2

n∑
i=1

E‖g(i)
t −∇xfi(x

(i)
t , y

(i)
t)‖2 + 3nλ2β2

xσ
2 (59)

Then using Eq. (44) and (45) in above inequality we have

E‖Vt+1 − V̄t+1‖2F

≤ 1 + λ2

2
E‖Vt − V̄t‖2F +

12λ2L2

1− λ2
(E‖Xt+1 − X̄t+1‖2F + E‖Yt+1 − Ȳt+1‖2F)

+
12λ2L2

1− λ2
(E‖Xt − X̄t‖2F + E‖Yt − Ȳt‖2F) +

12nλ2L2η2
y

1− λ2
E‖ūt‖2

+
12nλ2L2η2

x

1− λ2
E‖v̄t‖2 +

4λ2β2
x

1− λ2

n∑
i=1

E‖g(i)
t −∇xfi(x

(i)
t , y

(i)
t)‖2 + 3nλ2β2

xσ
2 (60)

By Lemma 7, we can further achieve
t′∑
s=0

E‖Vs−V̄s‖2F ≤
2

1− λ2
E‖V0−V̄0‖2F +

48λ2L2

(1− λ2)2

t′∑
s=0

(E‖Xs−X̄s‖2F + E‖Ys−Ȳs‖2F)

6

+
24nλ2L2

(1− λ2)2

t′−1∑
s=0

η2
yE‖ūs‖2 +

24nλ2L2

(1− λ2)2

t′−1∑
s=0

η2
xE‖v̄s‖2

+
8λ2β2

x

(1− λ2)2

t′−1∑
s=0

n∑
i=1

E‖g(i)
s −∇xfi(x(i)

s , y(i)
s)‖2 +

6nλ2β2
xσ

2t′

1− λ2
(61)

for all t′ ∈ {0, 1, · · · , T − 1}. Here we should notice that term E‖Xt+1 − X̄t+1‖2F in Eq. (60)
is summed from E‖X1 − X̄1‖2F to E‖Xt′ − X̄t′‖2F , while term E‖Xt − X̄t‖2F is summed from
E‖X0 − X̄0‖2F to E‖Xt′−1 − X̄t′−1‖2F . As X0 = X̄0, these two terms can be merged together. And
it is the same with term E‖Yt+1 − Ȳt+1‖2F . Mimic above steps and we can prove the conclusion for∑t′

s=0 E‖Us − Ūs‖2F in the similar way.

Lemma 11. We can prove the gradient estimators ḡt and h̄t satisfy the following conclusion
t∑

s=0

n∑
i=1

E‖g(i)
s −∇xfi(x(i)

s , y(i)
s)‖2≤ nσ2

βxb0
+2nβxσ

2t+
12L2

βx

t∑
s=0

(E‖Xs−X̄s‖2F +E‖Ys−Ȳs‖2F)

+
6nL2

βx

t−1∑
s=0

(η2
xE‖v̄s‖2 + η2

yE‖ūs‖2) (62)

t∑
s=0

n∑
i=1

E‖h(i)
s −∇yfi(x(i)

s , y(i)
s)‖2≤ nσ2

βyb0
+2nβyσ

2t+
12L2

βy

t∑
s=0

(E‖Xs−X̄s‖2F +E‖Ys−Ȳs‖2F)

+
6nL2

βy

t−1∑
s=0

(η2
xE‖v̄s‖2 + η2

yE‖ūs‖2) (63)

for all t ∈ {0, 1, · · · , T − 1}.

Proof. According to the definition of g(i)
t we have

g
(i)
t −∇xfi(x

(i)
t , y

(i)
t)

= (1− βx)(g
(i)
t−1 −∇xfi(x

(i)
t−1, y

(i)
t−1)) + βx(∇xFi(x(i)

t , y
(i)
t ; ξ

(i)
t)−∇xfi(x(i)

t , y
(i)
t))

+ (1− βx)
(
∇xFi(x(i)

t , y
(i)
t ; ξ

(i)
t)−∇xFi(x(i)

t−1, y
(i)
t−1; ξ

(i)
t)

+∇xfi(x(i)
t−1, y

(i)
t−1)−∇xfi(x(i)

t , y
(i)
t)
)

(64)

The last two terms of Eq. (64) is 0 after taking expectation of ξ(i)
t . Hence we have

E‖g(i)
t −∇xfi(x

(i)
t , y

(i)
t)‖2

= (1− βx)2E‖g(i)
t−1 −∇xfi(x

(i)
t−1, y

(i)
t−1)‖2 + E‖βx(∇xFi(x(i)

t , y
(i)
t ; ξ

(i)
t)−∇xfi(x(i)

t , y
(i)
t))

+ (1− βx)
(
∇xFi(x(i)

t , y
(i)
t ; ξ

(i)
t)−∇xFi(x(i)

t−1, y
(i)
t−1; ξ

(i)
t)

+∇xfi(x(i)
t−1, y

(i)
t−1)−∇xfi(x(i)

t , y
(i)
t)
)
‖2

≤ (1− βx)2E‖g(i)
t−1 −∇xfi(x

(i)
t−1, y

(i)
t−1)‖2 + 2β2

xE‖∇xFi(x
(i)
t , y

(i)
t ; ξ

(i)
t)−∇xfi(x(i)

t , y
(i)
t)‖2

+ 2(1− βx)2E‖∇xFi(x(i)
t , y

(i)
t ; ξ

(i)
t)−∇xFi(x(i)

t−1, y
(i)
t−1; ξ

(i)
t)‖2

≤ (1− βx)2E‖g(i)
t−1 −∇xfi(x

(i)
t−1, y

(i)
t−1)‖2 + 2β2

xσ
2 + 2(1− βx)2L2(E‖x(i)

t − x
(i)
t−1‖2

+ E‖y(i)
t − y

(i)
t−1‖2) (65)

where we use Cauchy-Schwartz inequality and Lemma 1 in the first inequality and use Assumption 1
and Assumption 2 in the last inequality. Sum above inequality from i = 1 to n and we have

n∑
i=1

E‖g(i)
t −∇xfi(x

(i)
t , y

(i)
t)‖2 ≤ (1− βx)2

n∑
i=1

E‖g(i)
t−1 −∇xfi(x

(i)
t−1, y

(i)
t−1)‖2 + 2nβ2

xσ
2

+ 2(1− βx)2L2(E‖Xt −Xt−1‖2 + E‖Yt − Yt−1‖2) (66)

7

Then by Eq. (44) and (45) we have
n∑
i=1

E‖g(i)
t −∇xfi(x

(i)
t , y

(i)
t)‖2

≤ (1− βx)2
n∑
i=1

E‖g(i)
t−1 −∇xfi(x

(i)
t−1, y

(i)
t−1)‖2 + 2nβ2

xσ
2

+ 6(1− βx)2L2(E‖Xt − X̄t‖2F + E‖Yt − Ȳt‖2F + E‖Xt−1 − X̄t−1‖2F
+ E‖Yt−1 − Ȳt−1‖2F) + 6n(1− βx)2L2(η2

xE‖v̄t−1‖2 + η2
yE‖ūt−1‖2) (67)

Applying Lemma 7 to Eq. (67), similar to Eq. (61), we can obtain
t∑

s=0

n∑
i=1

E‖g(i)
s −∇xfi(x(i)

s , y(i)
s)‖2

≤ 1

βx

n∑
i=1

E‖g(i)
0 −∇xfi(x

(i)
0 , y

(i)
0)‖2 +

12L2

βx

t∑
s=0

(E‖Xs − X̄s‖2F + E‖Ys − Ȳs‖2F)

+
6nL2

βx

t−1∑
s=0

(η2
xE‖v̄s‖2 + η2

yE‖ūs‖2) + 2nβxσ
2t

≤ nσ2

βxb0
+ 2nβxσ

2t+
12L2

βx

t∑
s=0

(E‖Xs − X̄s‖2F + E‖Ys − Ȳs‖2F)

+
6nL2

βx

t−1∑
s=0

(η2
xE‖v̄s‖2 + η2

yE‖ūs‖2) (68)

for all t ∈ {0, 1, · · · , T − 1}. Here the last inequality is derived by E‖g(i)0 −∇xfi(x
(i)
0 , y

(i)
0)‖2 ≤ σ2

b0

due to Lemma 2. The estimation of h(i)
t can be achieved in the same way as above.

Lemma 12. Let ηx ≤ (1−λ)2

500L and ηy ≤ (1−λ)2

500L . The consensus error can be bounded by
t∑

s=0

(E‖Xs − X̄s‖2F + E‖Ys − Ȳs‖2F)

≤ 16λ2η2
x

(1− λ2)3
E‖V0 − V̄0‖2F +

16λ2η2
y

(1− λ2)3
E‖U0 − Ū0‖2F +

576nλ4L2(η2
x + η2

y)

(1− λ2)4

t−2∑
s=0

(η2
xE‖v̄s‖2

+ η2
yE‖ūs‖2) +

64nλ4(βxη
2
x + βyη

2
y)σ2

(1− λ2)4b0
+

196nλ4(β2
xη

2
x + β2

yη
2
y)σ2t

(1− λ2)4
(69)

for all t ∈ {0, 1, · · · , T}.

Proof. Combining Lemma 7 and Lemma 9, for all t ∈ {0, 1, · · · , T} we have
t∑

s=0

‖Xs − X̄s‖2F ≤
4λ2η2

x

(1− λ2)2

t−1∑
s=0

‖Vs − V̄s‖2F (70)

Substitute the right side with Lemma 10 we have
t∑

s=0

E‖Xs − X̄s‖2F ≤
8λ2η2

x

(1− λ2)3
E‖V0 − V̄0‖2F +

192λ4L2η2
x

(1− λ2)4

t−1∑
s=0

(E‖Xs−X̄s‖2F +E‖Ys−Ȳs‖2F)

+
96nλ4L2η2

x

(1− λ2)4

t−2∑
s=0

η2
yE‖ūs‖2 +

96nλ4L2η2
x

(1− λ2)4

t−2∑
s=0

η2
xE‖v̄s‖2

+
32λ4β2

xη
2
x

(1− λ2)4

t−2∑
s=0

n∑
i=1

E‖g(i)
s −∇xfi(x(i)

s , y(i)
s)‖2 +

24nλ4β2
xη

2
xσ

2(t− 1)

(1− λ2)3
(71)

8

Apply Lemma 11 and we get

t∑
s=0

E‖Xs − X̄s‖2F

≤ 8λ2η2
x

(1− λ2)3
E‖V0 − V̄0‖2F +

192λ4L2η2
x

(1− λ2)4

t−1∑
s=0

(E‖Xs − X̄s‖2F +E‖Ys − Ȳs‖2F)

+
96nλ4L2η2

x

(1− λ2)4

t−2∑
s=0

(η2
xE‖v̄s‖2 + η2

yE‖ūs‖2) +
32nλ4βxη

2
xσ

2

(1− λ2)4b0
+

64nλ4β3
xη

2
xσ

2(t− 2)

(1− λ2)4

+
24nλ4β2

xη
2
xσ

2(t− 1)

(1− λ2)3
+

384λ4βxL
2η2
x

(1− λ2)4

t−2∑
s=0

(E‖Xs − X̄s‖2F + E‖Ys − Ȳs‖2F)

+
192nλ4βxL

2η2
x

(1− λ2)4

t−3∑
s=0

(η2
xE‖v̄s‖2 + η2

yE‖ūs‖2)

≤ 8λ2η2
x

(1− λ2)3
E‖V0 − V̄0‖2F +

576λ4L2η2
x

(1− λ2)4

t−1∑
s=0

(E‖Xs − X̄s‖2F +E‖Ys − Ȳs‖2F)

+
288nλ4L2η2

x

(1− λ2)4

t−2∑
s=0

(η2
xE‖v̄s‖2+η2

yE‖ūs‖2)+
32nλ4βxη

2
xσ

2

(1− λ2)4b0
+

98nλ4β2
xη

2
xσ

2t

(1− λ2)4
(72)

where we use βx ≤ 1 to simplify the equation. Similarly, we have

t∑
s=0

E‖Ys − Ȳs‖2F

≤
8λ2η2

y

(1− λ2)3
E‖U0 − Ū0‖2F +

576λ4L2η2
y

(1− λ2)4

t−1∑
s=0

(E‖Xs − X̄s‖2F +E‖Ys − Ȳs‖2F)

+
288nλ4L2η2

y

(1− λ2)4

t−2∑
s=0

(η2
xE‖v̄s‖2+η2

yE‖ūs‖2)+
32nλ4βyη

2
yσ

2

(1− λ2)4b0
+

98nλ4β2
yη

2
yσ

2t

(1− λ2)4
(73)

Add Eq. (72) and (72) together. Then we have

t∑
s=0

(E‖Xs − X̄s‖2F + E‖Ys − Ȳs‖2F)

≤ 8λ2η2
x

(1− λ2)3
E‖V0 − V̄0‖2F +

8λ2η2
y

(1− λ2)3
E‖U0 − Ū0‖2F +

576λ4L2(η2
x + η2

y)

(1− λ2)4

t−1∑
s=0

(E‖Xs − X̄s‖2F

+ E‖Ys − Ȳs‖2F) +
288nλ4L2(η2

x + η2
y)

(1− λ2)4

t−2∑
s=0

(η2
xE‖v̄s‖2+η2

yE‖ūs‖2)

+
32nλ4(βxη

2
x + βyη

2
y)σ2

(1− λ2)4b0
+

98nλ4(β2
xη

2
x + β2

yη
2
y)σ2t

(1− λ2)4
(74)

As λ < 1, when ηx ≤ (1−λ)2

500L and ηy ≤ (1−λ)2

500L it satisfies

576λ4L2(η2
x + η2

y)

(1− λ2)4
≤ 1

2
(75)

9

Therefore, Eq. (74) implies

t∑
s=0

(E‖Xs − X̄s‖2F + E‖Ys − Ȳs‖2F)

≤ 16λ2η2
x

(1− λ2)3
E‖V0 − V̄0‖2F +

16λ2η2
y

(1− λ2)3
E‖U0 − Ū0‖2F +

576nλ4L2(η2
x + η2

y)

(1− λ2)4

t−2∑
s=0

(η2
xE‖v̄s‖2

+ η2
yE‖ūs‖2) +

64nλ4(βxη
2
x + βyη

2
y)σ2

(1− λ2)4b0
+

196nλ4(β2
xη

2
x + β2

yη
2
y)σ2t

(1− λ2)4
(76)

which reaches the conclusion of Lemma 12.

A.3 Proof for main Theorems

Now we will move forward to the main Theorems in our paper. Here we revise some constant
coefficients in the statement, but it does not actually affect the result in our convergence analysis.

Theorem 3. (Restatement of Theorem 1) Let Assumptions 1 to 5 hold. When parameters βx =
εmin{1,nε}

20 , βy = εmin{1,nε}
500κ2 , ηx = (1−λ)2 min{1,nε}

15000κ3L , ηy = (1−λ)2 min{1,nε}
1500κL , b0 = 400κ

min{1,nε} ,

T = 30000κ3ε−2

(1−λ)2 min{1,nε} , our Algorithm 1 satisfies

1

T

T−1∑
t=0

E‖∇Φ(x̄t)‖2 ≤ L(Φ(x0)− Φ∗)ε2 + σ2ε2 + L2δ0ε
2 +

ε2

n

n∑
i=1

‖∇xfi(x0, y0)‖2

+
ε2

n

n∑
i=1

‖∇yfi(x0, y0)‖2 (77)

Proof. Since Φ(x) is (κL+ L)-smooth we have

Φ(x̄t) ≤ Φ(x̄t−1)− ηx〈v̄t−1,∇Φ(x̄t−1)〉+ η2
xκL‖v̄t−1‖2

= Φ(x̄t−1)− ηx
2
‖v̄t−1‖2 −

ηx
2
‖∇Φ(x̄t−1)‖2 +

ηx
2
‖v̄t−1 −∇Φ(x̄t−1)‖2 + η2

xκL‖v̄t−1‖2

≤ Φ(x̄t−1)− ηx
2
‖∇Φ(x̄t−1)‖2 − (

ηx
2
− η2

xκL)‖v̄t−1‖2 + ηx‖v̄t−1 −∇xf(x̄t−1, ȳt−1)‖2

+ ηx‖∇Φ(x̄t−1)−∇xf(x̄t−1, ȳt−1)‖2 (78)

where the last inequality is caused by Cauchy-Schwartz inequality. As we have ∇Φ(x̄t−1) =
∇xf(x̄t−1, ŷt−1), by Assumption 1 the last term satisfies

‖∇Φ(x̄t−1)−∇xf(x̄t−1, ȳt−1)‖2 ≤ L2‖ŷt−1 − ȳt−1‖2 = L2δt−1 (79)

Besides, according to Cauchy-Schwartz inequality we also have

‖v̄t−1 −∇xf(x̄t−1, ȳt−1)‖2

≤ 2‖v̄t−1 −
1

n

n∑
i=1

∇xfi(x(i)
t−1, y

(i)
t−1)‖2 + 2‖ 1

n

n∑
i=1

∇xfi(x(i)
t−1, y

(i)
t−1)−∇xf(x̄t−1, ȳt−1)‖2

≤ 2‖v̄t−1 −
1

n

n∑
i=1

∇xfi(x(i)
t−1, y

(i)
t−1)‖2 +

2L2

n
(‖Xt−1 − X̄t−1‖2F + ‖Yt−1 − Ȳt−1‖2F) (80)

Combine Eq. (78), (79), (80) and rearrange the inequality

‖∇Φ(x̄t−1)‖2 ≤ 2(Φ(x̄t−1)− Φ(x̄t))

ηx
− (1− 2κLηx)‖v̄t−1‖2 + 2L2δt−1 +

4L2

n
(‖Xt−1 − X̄t−1‖2F

+ ‖Yt−1 − Ȳt−1‖2F) + 4‖v̄t−1 −
1

n

n∑
i=1

∇xfi(x(i)t−1, y
(i)
t−1)‖2 (81)

10

Telescoping and taking expectation on Eq. (81) we have

1

T

T−1∑
t=0

E‖∇Φ(x̄t)‖2

≤ 2(Φ(x0)− EΦ(x̄T))

ηxT
− (1− 2κLηx)

T

T−1∑
t=0

E‖v̄t‖2 +
2L2

T

T−1∑
t=0

Eδt +
4L2

nT

T−1∑
t=0

(E‖Xt − X̄t‖2F

+ E‖Yt − Ȳt‖2F) +
4

T

T−1∑
t=0

E‖v̄t −
1

n

n∑
i=1

∇xfi(x(i)
t , y

(i)
t)‖2 (82)

Applying Assumption 3, Lemma 5 and Lemma 8 we have

1

T

T−1∑
t=0

E‖∇Φ(x̄t)‖2

≤ 2(Φ(x0)− Φ∗)

ηxT
− (1− 2κLηx −

40κ4η2
x

η2
y

)
1

T

T−1∑
t=0

E‖v̄t‖2 +
8κL2δ0
TLηy

+
148κ2L2

nT

T−1∑
t=0

(E‖Xt − X̄t‖2F + E‖Yt − Ȳt‖2F) +
4

T

T−1∑
t=0

E‖v̄t −
1

n

n∑
i=1

∇xfi(x(i)
t , y

(i)
t)‖2

+
36κLηy
T

T−1∑
t=1

(1− µηy
4

)T−t−1
t−1∑
s=0

‖ūs −
1

n

n∑
i=1

∇fi(x(i)
s , y(i)

s)‖2

− 24κ2

5T

T−1∑
t=0

(1− (1− µηy
4

)T−t)E‖ūt‖2

≤ 2(Φ(x0)− Φ∗)

ηxT
− (1− 2κLηx −

40κ4η2
x

η2
y

)
1

T

T−1∑
t=0

E‖v̄t‖2 +
8κL2δ0
TLηy

+
4σ2

nb0T
(

1

βx
+

36κ2

βy
)

+
8σ2

n
(βx + 36κ2βy) +

4L2

nT
(47κ2 +

12

nβx
+

432κ2

nβy
)
T−1∑
t=0

(E‖Xt − X̄t‖2F + E‖Yt − Ȳt‖2F)

+
24L2

nβxT

T−1∑
t=0

(1− (1− βx)T−t)(η2
xE‖v̄t‖2 + η2

yE‖ūt‖2) +
864κ2L2

nβyT

T−1∑
t=0

(1− (1− µηy
4

)T−t)

· (η2
xE‖v̄t‖2 + η2

yE‖ūt‖2)− 24κ2

5T

T−1∑
t=0

(1− (1− µηy
4

)T−t)E‖ūt‖2 (83)

where we use Eq. (47) in the last inequality. As

1

βx
(1− (1− βx)T−t) =

T−t−1∑
s=0

(1− βx)s (84)

we know Eq. (84) is increasing when βx is decreasing. Hence 1
βx

(1− (1− βx)T−t) ≤ 300κ2

(1−λ)2βx
(1−

(1− (1−λ)2βx

300κ2)T−t). According to the definition of βx and ηy , we have (1−λ)2βx

300κ2 ≤ µηy
4 and

24L2

nβxT
(1− (1− βx)T−t) ≤ 7200L2κ2

n(1− λ)2βxT
(1− (1− µηy

4
)T−t) (85)

11

Therefore, using the definition of βx, βy and ηy we obtain

1

T

T−1∑
t=0

E‖∇Φ(x̄t)‖2

≤ 2(Φ(x0)− Φ∗)

ηxT
− (1− 2κLηx −

40κ4η2
x

η2
y

)
1

T

T−1∑
t=0

E‖v̄t‖2 +
8κL2δ0
TLηy

+
4σ2

nb0T
(

1

βx
+

36κ2

βy
)

+
8σ2

n
(βx + 36κ2βy) +

4L2

nT
(47κ2 +

12

nβx
+

432κ2

nβy
)
T−1∑
t=0

(E‖Xt − X̄t‖2F + E‖Yt − Ȳt‖2F)

+ (
24L2η2

x

nβx
+

864κ2L2η2
x

nβy
)

1

T

T−1∑
t=0

E‖v̄t‖2 −
κLηy
T

T−1∑
t=0

E‖ūt‖2 (86)

Besides, according to Lemma 12 we have

1

T

T−1∑
t=0

E‖∇Φ(x̄t)‖2

≤ 2(Φ(x0)− Φ∗)

ηxT
− (1− 2κLηx −

40κ4η2
x

η2
y

)
1

T

T−1∑
t=0

E‖v̄t‖2 +
8κL2δ0
TLηy

+
4σ2

nb0T
(

1

βx
+

36κ2

βy
)

+
8σ2

n
(βx + 36κ2βy) +

4L2

nT
(47κ2 +

12

nβx
+

432κ2

nβy
)
(16λ2η2

x

(1− λ2)3
E‖V0 − V̄0‖2F

+
16λ2η2

y

(1− λ2)3
E‖U0 − Ū0‖2F +

64nλ4(βxη
2
x + βyη

2
y)σ2

(1− λ2)4b0
+

196nλ4(β2
xη

2
x + β2

yη
2
y)σ2T

(1− λ2)4

)
+

4L2

nT
(47κ2 +

12

nβx
+

432κ2

nβy
)
576nλ4L2(η2

x + η2
y)

(1− λ2)4

T−1∑
t=0

(η2
xE‖v̄t‖2 + η2

yE‖ūt‖2)

+ (
24L2η2

x

nβx
+

864κ2L2η2
x

nβy
)

1

T

T−1∑
t=0

E‖v̄t‖2 −
κLηy
T

T−1∑
t=0

E‖ūt‖2 (87)

When βx, βy , ηx and ηy are defined as Theorem 3, we have

4L2

nT
(47κ2 +

12

nβx
+

432κ2

nβy
)
576nλ4L2(η2

x + η2
y)

(1− λ2)4
η2
y ≤

κLηy
2T

(88)

and

1− 2κLηx −
40κ4η2

x

η2
y

− 24L2η2
x

nβx
− 864κ2L2η2

x

nβy

− 4L2

n
(47κ2 +

12

nβx
+

432κ2

nβy
)
576nλ4L2(η2

x + η2
y)

(1− λ2)4
η2
x ≥

2

5
(89)

Thus, we obtain

1

T

T−1∑
t=0

E‖∇Φ(x̄t)‖2

≤ 2(Φ(x0)− Φ∗)

ηxT
+

8κL2δ0
TLηy

+
4σ2

nb0T
(

1

βx
+

36κ2

βy
) +

8σ2

n
(βx + 36κ2βy)

+
4L2

nT
(47κ2 +

12

nβx
+

432κ2

nβy
)
(16λ2η2

x

(1− λ2)3
E‖V0 − V̄0‖2F +

16λ2η2
y

(1− λ2)3
E‖U0 − Ū0‖2F

+
64nλ4(βxη

2
x + βyη

2
y)σ2

(1− λ2)4b0
+

196nλ4(β2
xη

2
x + β2

yη
2
y)σ2T

(1− λ2)4

)
(90)

12

By Assumption 4 and Cauchy-Schwartz inequality we also have

E‖V0 − V̄0‖2F = E‖G0(W − J)‖2F ≤ λ2E‖G0‖2F ≤
2nλ2σ2

b0
+ 2λ2

n∑
i=1

‖∇xfi(x0, y0)‖2 (91)

Similarly, we have

E‖U0 − Ū0‖2F ≤
2nλ2σ2

b0
+ 2λ2

n∑
i=1

‖∇yfi(x0, y0)‖2 (92)

Combine above three inequalities and substitute the parameters with their definitions. We achieve

1

T

T−1∑
t=0

E‖∇Φ(x̄t)‖2 ≤ L(Φ(x0)− Φ∗)ε2 + L2δ0ε
2 + σ2ε2 +

ε2

n

n∑
i=1

‖∇xfi(x0, y0)‖2

+
ε2

n

n∑
i=1

‖∇yfi(x0, y0)‖2 (93)

where we use following inequalities for simplification.

βx ≥ βy,
144κ2

nβyb0T
≤ 144κ2 · 500κ2(min{1, nε})2ε2

nεmin{1, nε}400κ · 30000κ3
≤ 3ε2

500

4L2(47κ2 +
12

nβx
+

432κ2

nβy
) ≤ 200L2κ2 +

1800L2κ2

nβy

8βx
n
≤ 8ε · nε

20n
=

2ε2

5
,

288κ2βy
n

≤ 288κ2ε · nε
500nκ2

≤ 288ε2

500

L2βxη
2
x

(1− λ)4b0T
≤ ε(min{1, nε})5ε2

20 · 400κ · 30000κ3(15000κ3)2
,

L2βyη
2
y

(1− λ)4b0T
≤ ε(min{1, nε})5ε2

500 · 400κ · 30000κ3(1500κ)2

L2β2
xη

2
x

(1− λ)4
≤ ε2(min{1, nε})4

400(15000κ3)2
,
L2β2

yη
2
y

(1− λ)4
≤ ε2(min{1, nε})4

(500κ2)2(1500κ)2
(94)

Theorem 4. (Restatement of Theorem 2) Let Assumptions 1 to 5 hold. We set the parameters as T =
30000κ3T0

(1−λ)2 , βx = n1/3

20T
2/3
0

, βy = n1/3

500κ2T
2/3
0

, ηx = (1−λ)2n2/3

15000κ3T
1/3
0 L

, ηy = (1−λ)2n2/3

1500κT
1/3
0 L

, b0 =
400κT

1/3
0

n2/3 ,

where we suppose T0 ≥ 10n2. Then our algorithm satisfies

1

T

T−1∑
t=0

E‖∇Φ(x̄t)‖2 ≤
L(Φ(x0)− Φ∗) + σ2 + L2δ0

(nT0)2/3
+

1
n

∑n
i=1 E‖∇xfi(x0, y0)‖2

T0

+
1
n

∑n
i=1 E‖∇yfi(x0, y0)‖2

T0
(95)

Proof. When the parameters are defined as Theorem 4, the conditions in Lemma 5 and Lemma 12 are
also satisfied. Hence we can prove Eq. (83) and (87) still hold. When βx, βy , ηx and ηy are defined
as Theorem 4, we also have

4L2

nT
(47κ2 +

12

nβx
+

432κ2

nβy
)
576nλ4L2(η2

x + η2
y)

(1− λ2)4
η2
y ≤

κLηy
2T

(96)

and

1− 2κLηx −
40κ4η2

x

η2
y

− 24L2η2
x

nβx
− 864κ2L2η2

x

nβy

− 4L2

n
(47κ2 +

12

nβx
+

432κ2

nβy
)
576nλ4L2(η2

x + η2
y)

(1− λ2)4
η2
x ≥

2

5
(97)

13

Similar to Theorem 3, we can also obtain

1

T

T−1∑
t=0

E‖∇Φ(x̄t)‖2

≤ 2(Φ(x0)− Φ∗)

ηxT
+

8κL2δ0
TLηy

+
4σ2

nb0T
(

1

βx
+

36κ2

βy
) +

8σ2

n
(βx + 36κ2βy)

+
4L2

nT
(47κ2 +

12

nβx
+

432κ2

nβy
)
(16λ2η2

x

(1− λ2)3
E‖V0 − V̄0‖2F +

16λ2η2
y

(1− λ2)3
E‖U0 − Ū0‖2F

+
64nλ4(βxη

2
x + βyη

2
y)σ2

(1− λ2)4b0
+

196nλ4(β2
xη

2
x + β2

yη
2
y)σ2T

(1− λ2)4

)
(98)

Substitute the parameters with their definitions and we have

1

T

T−1∑
t=0

E‖∇Φ(x̄t)‖2 ≤
L(Φ(x0)− Φ∗) + σ2 + L2δ0

(nT0)2/3
+

1
n

∑n
i=1 E‖∇xfi(x0, y0)‖2

T0

+
1
n

∑n
i=1 E‖∇yfi(x0, y0)‖2

T0
(99)

which achieves the conclusion of Theorem 4.

14

	Introduction
	Related Works
	Centralized Minimax Optimization
	Decentralized Minimax Optimization

	Proposed New Algorithm
	Preliminaries
	Decentralized Minimax Hybrid Stochastic Gradient Descent
	Discussions on STORM and Gradient Tracking

	Convergence Analysis
	Experiments
	Robust Logistic Regression
	Policy Evaluation

	Conclusion
	Proof of Convergence Analysis
	Basic Lemmas
	Important Conclusions
	Proof for main Theorems

