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Abstract

This paper studies model transferability when human decision subjects respond to
a deployed machine learning model. In our setting, an agent or a user corresponds
to a sample (X,Y’) drawn from a distribution D and will face a model h and
its classification result A(X). Agents can modify X to adapt to h, which will
incur a distribution shift on (X, Y’). Therefore, when training h, the learner will
need to consider the subsequently “induced” distribution when the output model
is deployed. Our formulation is motivated by applications where the deployed
machine learning models interact with human agents, and will ultimately face
responsive and interactive data distributions. We formalize the discussions of the
transferability of a model by studying how the model trained on the available source
distribution (data) would translate to the performance on the induced domain. We
provide both upper bounds for the performance gap due to the induced domain shift,
as well as lower bound for the trade-offs that a classifier has to suffer on either the
source training distribution or the induced target distribution. We provide further
instantiated analysis for two popular domain adaptation settings with covariate
shift and target shift.

1 Introduction

Decision makers are increasingly required to be transparent on their decision making to offer the “right
to explanation” [13, 35, 42] !. Being transparent also invites potential adaptations from the population,
leading to potential shifts. We are motivated by settings where the deployed machine learning models
interact with human agents, which will ultimately face data distributions that reflect how human
agents respond to the models. For instance, when a model is used to decide loan applications,
candidates may adapt their features based on the model specification in order to maximize their
chances of approval; thus the loan decision classifier observes a data distribution caused by its own
deployment (e.g., see Figure 1 for a demonstration). Similar observations can be articulated for
application in insurance sector (i.e. developing policy s.t. customers’ behaviors might adapt to lower
premium [16]), education sector (i.e. developing courses when students are less incentivized to cheat
[22]) and so on.

This paper investigates model transferability when the underlying distribution shift is induced by the
model being deployed. What we would like is to have some guarantee on the transferability of a
classifier — that is, how training on the available source distribution Dg translates to performance
on the induced domain D(h), which depends on the model h being deployed. A key concept in our

'See Appendix A.1 (supplemental material) for more detailed discussions.
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FEATURE WEIGHT H ORIGINAL VALUE ADAPTED VALUE

Income 2 $ 6,000 — $ 6,000
Education Level 3 | College — College
Debt -10 || $40,000 — $20,000
Savings 5 $20,000 — $0

Figure 1: An example of an agent who originally has both savings and debt, observes that the classifier
penalizes debt (weight -10) more than it rewards savings (weight +5), and concludes that their most
efficient adaptation is to use their savings to pay down their debt.

setting is the induced risk, defined as the error a model incurs on the distribution induced by itself:
Induced Risk :  Errpp)(h) := Pppy(h(X) #Y) (D

Most relevant to the above formulation is the strategic classification literature [17, 7]. In this literature,
agents are modeled as rational utility maximizers and game theoretical solutions were proposed to
characterize the induced risk. However, our results are motivated by the following challenges in more
general scenarios:

e Modeling assumptions being restrictive In many practical situations, it is often hard to faithfully
characterize agents’ utilities. Furthermore, agents might not be fully rational when they response.
All the uncertainties can lead to a far more complicated distribution change in (X, Y’), as compared
to often-made assumptions that agents only change X but not Y [7].

e Lack of access to response data Another relevant literature to our work is performative prediction
[33]. In performative prediction, one would often require knowing D(h) or having samples
observed from D(h) through repeated experiments. We posit that machine learning practitioners
may only have access to data from the source distribution during training, and although they
anticipate changes in the population due to human agents’ responses, they cannot observe this new
distribution until the model is actually deployed.

e Retraining being costly Even when samples from the induced data distribution are available,
retraining the model from scratch may be impractical due to computational constraints.

The above observations motivate us to understand the transferability of a model trained on the source
data to the domain induced by the deployment of itself. We study several fundamental questions:

e Source risk = Induced risk For a given model %, how different is Errp(y)(h), the error on
the distribution induced by h, from Errp,(h) := Pp,(h(X) # Y), the error on the source
distribution?

e Induced risk = Minimum induced risk How much higher is Errp(;)(h), the error on the
induced distribution, than miny, Errp(p,)(h'), the minimum achievable induced error?

e Induced risk of source optimal = Minimum induced risk Of particular interest, and as a special
case of the above, how does Eer(hg) (hg), the induced error of the optimal model trained on the
source distribution 2§ := miny, Errpg(h), compare to min, Errps)(h)?

e Lower bound for learning tradeoffs What is the minimum error a model must incur on either
the source distribution Errp (h) or its induced distribution Errp ) (h)?

For the first three questions, we prove upper bounds on the additional error incurred when a model
trained on a source distribution is transferred over to its induced domain. We also provide lower
bounds for the trade-offs a classifier has to suffer on either the source training distribution or the
induced target distribution. We then show how to specialize our results to two popular domain
adaptation settings: covariate shift [36, 47, 38, 39, 50] and target shift [25, 15, 50].

All omitted proofs can be found in the Appendix (supplementary materials).
1.1 Related works

Most relevant to us are three topics: strategic classification [17, 7, 10, 11, 6, 29, 22], a recently
proposed notion of performative prediction [33, 28], and domain adaptation [20, 3, 39, 51, 21, 49].



Hardt et al. [17] pioneered the formalization of strategic behavior in classification based on a
sequential two-player game between agents and classifiers. Subsequently, Chen et al. [7] addressed
the question of repeatedly learning linear classifiers against agents who are strategically trying to
game the deployed classifiers. Most of the existing literature focuses on finding the optimal classifier
by assuming fully rational agents (and by characterizing the equilibrium response). In contrast, we
do not make these assumptions and primarily study the transferability when only having knowledge
of source data.

Perdomo et al. [33] advocate minimizing the error I, p gy [€(6; 2)], which they call the performative
prediction risk: in above 6 is the model parameter to be optimized. This falls into the same category
as induced risk, but the two concepts differ due to different requirements of knowing the distribution
of a D(0). Again, our focus is on the transferability when learning on the source training data. In
addition, we study specific domain adaptation setting which generally do not assume the knowledge
of D(0) (and particularly we will not assume the knowledge of the supervision/label information on
the transferred domain).

Our result was inspired by the transferability results in domain adaptations [3, 8, 9]. Later works
examined specific domain adaptation models, such as covariate shift [36, 47, 14, 39, 50, 48] and
target/label shift [25, 2]. A commonly established solution is to perform reweighted training on the
source data, and robust and efficient solutions have been developed to estimate the weights accurately
[39, 50, 48, 25, 15].

Our work, at the first sight, looks similar to several other area of studies. For instance, the notion of
observing an “induced distribution” resembles similarity to the adversarial machine learning literature
[27, 19, 44]. One of the major differences between us and adversarial machine learning is the true
label Y stays the same for the attacked feature while in our paper, both X and Y might change in the
adapted distribution D(h). In Appendix A.2, we provide detailed comparisons with some areas in
domain adaptations, including domain generalization, adversarial attack and test-time adaptation.

2 Formulation

Suppose we are learning a parametric model h € H for a binary classification problem. Its training
data set S := {x;,y; }}¥, is drawn from a source distribution Dg, where z; € R? and y; € {—1,+1}.
However, h will then be deployed in a setting where the samples come from a test or farget distribution
Dr that can differ substantially from Dg. Therefore instead of minimizing the prediction error
on the source distribution Errp, (h) := Pp,(h(X) # Y), the goal is to find ~* that minimizes
Errp,. (h) := Pp, (h(X) # Y). This is often referred to as the domain adaptation problem, where
typically, the transition from Dg to Dr is assumed to be independent of the model & being deployed.

We consider a setting in which the distribution shift depends on h, or is thought of as being induced
by h. We will use D(h) to denote the induced domain by h:

Ds — encounters model h — D(h)

Strictly speaking, the induced distribution is a function of both Dg and h and should be better denoted
by Dg(h). To ease the notation, we will stick with D(h), but we shall keep in mind of its dependency
of Dg. For now, we do not restrict the dependency of D(h) of D and h, but later in Section 4 and 5
we will further instantiate D(h) under specific domain adaptation settings.

The challenge in the above setting is that when training h, the learner needs to carry the thoughts that
D(h) should be the distribution it will be evaluated on and that the training cares about. Formally, we
define the induced risk of a classifier & as the 0-1 error on the distribution % induces:

Induced risk :  Errpp)(h) := Ppy (M(X) #Y) 2)

Denote by h}. := arg miny,c4, Errp(p)(h) the classifier with minimum induced risk. More generally,
when the loss may not be the 0-1 loss, we define the induced ¢-risk as

Induced (-risk :  Erry pp)(h) := argmin E. p) [€(h; 2)]
heM

The induced risks will be the primary quantities that we are interested in minimizing. The following
additional notation will also be helpful:



e Distributions of Y on a distribution D: Dy := Pp(Y = y)?, and in particular Dy (h) :=
Ppiy (Y =y), Dy|s :=Ppy (Y =y).

e Distribution of h on a distribution D: Dy, := Pp(h(X) = y), and in particular Dy, (h) =
Ppny (MX) =), Dpis := Pps (M(X) = y).

e Marginal distribution of X for a distribution D: Dy := Pp(X = z), and in particular Dx (h) :=
Ppny (X = z), Dx|s :=Ppg (X = x)’.

e Total variation distance defined between D and D’ [1]: drv (D, D’) := supy |Pp(O) — Pp/ (O)].

2.1 Examples of Distribution Shifts Induced by Model Deployment

We provide two exemplery models to demonstrate the use cases for the distribution shift models
described in our paper. We provide more details in Section 4.3 and Section 5.3.

Strategic Classification An example of distribution shift is the setting where decision subjects
perform strategic response to a decision rule. It is well-known that when human agents are subject
to a decision rule, they will adapt their feature so as to get a favorable prediction outcome. In the
literature of strategic classification, we say the human agents perform strategic adaptation [17].

It is natural to assume that the feature distribution before and after the human agents’ best response
satisfies covariate shift: namely the feature distribution P(X') will change, but P(Y'| X), the mapping
between Y and X, remain unchanged. We use Figure 2 (Left) as a demonstrating of how distribution
might shift for strategic response setting. In Section 4.3, we will use the strategic classification setup
to verify our obtained results.

Figure 2: Example causal graph annotated to demonstrate covariate shift (Left) / target shift (Right)
as a result of the deployment of i. Grey nodes indicate observable variables and transparent nodes
are not observed at the training stage. Red arrow emphasises h induces changes of certain variables.

Replicator Dynamics Replicator dynamics is a commonly used model to study the evolution of an
adopted “strategy” in evolutionary game theory [41, 12, 40, 34]. The core notion of it is the growth or
decline of the population of each strategy depends on its “fitness”. Consider the label Y = {—1,+1}
as the strategy, and the following behavioral response model to capture the induced target shift:

Ppy(Y =+1)  Fitness(Y = +1)
Pp,(Y = +1)  E[Fitness(Y)]

In short, the change of the Y = +1 population depends on how predicting Y = +1 “fits” a certain
utility function. For instance, the “fitness” can take the form of the prediction accuracy of h for class
+1. With assuming P(X|Y") stays unchanged, this instantiates one example of a specific induced
target shift. We will specify the condition for target shift in Section 5. We use Figure 2 (Right) as a
demonstrating of how distribution might shift for the replicator dynamic setting. In Section 5.3, we
will use a detailed replicator dynamics model to further instantiate our results.

The “:=" defines the RHS as the probability measure function for the LHS.
3For continuous X, the probability measure shall be read as the density function.



3 Transferability of Learning to Induced Domains

In this section, we first provide upper bounds for the transfer error of a classifier i (that is, the
difference between Errp ) (h) and Errpg (h)), as well as between Errp ) (h) and Errp () (h7). We
then provide lower bounds for max{Errpg (h), Errp()(h)}; that is, the minimum error a model h
must incur on either the source distribution Dg or the induced distribution D(h).

3.1 Upper Bound

We first investigate upper bounds for the transfer errors. We begin by showing generic upper bounds,
and further strengthen the bound for specific domain adaptation settings in Section 4 and 5 . We
begin with answering a central question in domain adaptation:

How does a model h trained on its training data set fare on the induced distribution D(h)?

To that end, define the minimum and maximum combined error of two distributions D and D’ as:

L . (B 1 , = AR /
)\'D_yD/ = l?lén?}t EI‘I‘D (h ) + EITD(h ), AD—)D }I}lg% EI‘I‘D (h ) + EI‘I‘D(h )

and the H-divergence [3] as
dwxn(D,D') = 2hShHPH [Pp(h(X) # I (X)) — P (R(X) # I (X))]
e

The #H-divergence is celebrated measure proposed in the domain adaptation literature [3] which will
be useful for bounding the difference in errors of two classifiers. Repeating classical arguments from
[3], we can easily prove the following:

Theorem 3.1 (Source risk = Induced risk). The difference between Errpp,y(h) and Errpg(h) is
upper bounded by: Errppy(h) < Errpg(h) + Apgp(n) + %dng(Dg, D(h)).

The transferability of a model h between Errp () (h) and Errpg (h) looks precisely the same as
in the classical domain adaptation setting [3]. The above practice informs us that the classical
transferability bounds under domain adaptation still hold when the adaptation is induced by the model
too. Nonetheless, an arguably more interesting quantity in our setting to understand is the difference
between the induced error of a given model h and the error induced by a globally optimal model:

Errp(ny (k) — Errp(as ) (A7) €)

The proof is slightly more involved, and the bound differs from the one in Theorem 3.1:

Theorem 3.2 (Induced risk = Minimum induced risk). The difference between Errp ) (h) and
Errpn:.) (hi) is upper bounded by:

AD(h)=D(hz) T AD(h)—D(nz,

Errp(ny(h) — Errpzy (hr) < 5

L4 5 -y (D(), D))

The above theorem informs us that the induced transfer error is bounded by the “average” achievable
error on both distributions D(h) and D(h}.), as well as the H x H divergence between the two
distributions. Reflecting on the difference between the bounds of Theorem 3.1 and Theorem 3.2, we
see that the primary change is replacing the minimum achievable error A with the average of A and A.

3.2 Lower Bound
Now we provide a lower bound on the induced transfer error. We particularly want to show that at
least one of the two errors Errpg (h), Errp(p,y (h) must be lower-bounded by a certain quantity.

Theorem 3.3 (Lower bound for learning tradeoffs ). Any model h must incur the following error
on either the source or induced distribution:

drv(Dy|s, Dy (h)) — drv(Dps, ,Dh(h)).

max{Errp,(h), Eer(h)(h)} > 5



The proof leverages the triangle inequality of dry. This bound is dependent on h; however, by the
data processing inequality of drvy (and f-divergence functions in general) [24], we have

drv(Dps, Pr(h)) < drv(Dx s, Dx (h))
Applying this to Theorem 3.3 gives the following model-independent bound:
Corollary 3.4. For any model h,

drv(Dy|s, Dy (h)) — drv(Dx|s, Dx (h))
5 .

max{Errpg(h), Errpy(h)} >

A couple of remarks:

e Without further assumptions, it is unclear if drv(Dy|s, Dy (h)) — drv(Dps, Pr(h)) > 0. After
introducing specific domain adaption settings, we will revisit this bound.

e When drv(Dy s, Dy (h)) —drv(Dx|s, Px (h)) > 0, we know there is a positive tradeoff between
a model’s achievable training error on the source distribution and the induced distribution.

4 Covariate Shift

In this section, we focus on a particular domain adaptation setting known as covariate shift, in which
the distribution of features changes, but the distribution of labels conditioned on features does not:

Ppiny (Y =y|X = 2) =Pps (Y = y|X =), Ppun)(X =) # Ppy(X = 2) )

Thus with covariate shift, we have

Pp)(X =2,Y =y) =Ppp) (Y = y|X =) - Pp) (X = 2)

Let w,(h) := % be the importance weight at x, which characterizes the amount of adapta-
o (X=

tion induced by h at instance . Then for any loss function ¢ we have

Proposition 4.1 (Expected Loss on the New Distribution).
IED(h) [E(hv X, Y)} =Ep, [wz(h) A(h; y)]

The above derivation was not new and offered the basis for performing importance reweighting when
learning under coviarate shift [39]. The particular form informs us that w, (k) controls the generation
of D(h) and encodes its dependency of both Dg and h, and is critical for deriving our results below.

4.1 Upper Bound

We now derive an upper bound for transferability under covariate shift. We will focus particularly on
the optimal model trained on the source data Dg, which we denote as h§ := arg miny, ¢4, Errg(h).
Recall that the classifier with minimum induced risk is denoted as h%, := argminy, <4, Errp () (h).
We can upper bound the difference between h§ and b7 as follows:

Theorem 4.2 (Suboptimality of ). Let X be distributed according to Dg. We have:

Brrons (13) = Errogus (1) < B () - (yVartox (1) + V(7))

This result can can be interpreted as follows: A7, incurs an irreducible amount of error on the source
data set, represented by +/Errp, (h.). Moreover, the difference in error between h§ and A’ is at its
maximum when the two classifiers induce adaptations in “opposite” directions; this is represented by
the sum of the standard deviations of their importance weights, \/Var(wx (h%)) + /Var(wx (h}.)).




4.2 Lower Bound

Recall from Theorem 3.3, for the general setting, it is unclear whether the lower bound is strictly

positive or not. In this section, we provide further understanding for when the lower bound

drv(Dys,Dy (h))—dtv(Dp|s,Dn(h))
2

We show under several assumptions, our previously provided lower bound in Theorem 3.3 is indeed

strictly positive in the covarite shift setting. Details of the required conditions are specified in the

Appendix, but the intuitions of the conditions are:

is indeed positive under covariate shift.

e Increased w, (h) value points are more likely to have positive labels. (Assumption A.3)

e Increased w, (h) value points are more likely to be classified as positive instances. (Assumption
A4)

e For a classifier h, within all A(X) = +1 or h(X) = —1, a higher Pp(Y = +1|X = ) associates
with a higher w, (h). (Assumption A.5)

Theorem 4.3. With A.3 - A.5, the following lower bound is strictly positive for covariate shift:

S drv(Dy|s, Dy (h)) — drv(Dps, Di(h))

max{Errp,(h), Eer(h)(h)} > 5 > 0.

4.3 Example Using Strategic Classification

As introduced in Section 2.1, we consider a setting caused by strategic response in which agents are
classified by and adapt to a binary threshold classifier.

Consider a setup where each agent is associated with a d dimensional continuous feature € R% and
a binary true qualification y(x) € {—1, +1}, where y(z) is a function of the feature vector .

Consistent with the literature in strategic classification [17], a simple case where after seeing the
threshold binary decision rule h(z) = 2 - 1|z > 7] — 1, the agents will best response to it by
maximizing the following utility function:

u(z,2’) = h(x') — h(z) — c(z,2")

where ¢(x, 2') is the cost function for decision subjects to modify their feature from x to 2.

Assume all agents are rational utility maximizers: they will only atfempt to change their features
when the benefit of manipulation is greater than the cost (i.e. when ¢(x, 2’) < 2) and agent will not
change their feature if they are already accepted (i.e. h(xz) = +1). For a given threshold 7, and
manipulation budget B, the theoretical best response of an agent with original feature x is:

A(z) = argmaxu(z, ') s.t.c(z,z') < B 5)

We show that under some further characterizations of the agents’ responsive behaviors (see Assump-
tion A.6 - A.9 in Appendix A.9), we can specify the bound in Theorem 4.2 for the strategic response
setting as follows:

Proposition 4.4 (Upper bound for the Strategic Response Setting). Under assumption Assumption
A.6 - A.9, we can bound the differences between Errp =) (hs) and Errp(: ) (h7) by

Errp(ns)(hs) — Errpnz) () <4/ ?E”’Ds(hT)'

To interpret this result, we can see that the upper bound for strategic response depends on the
manipulation budget B, and the error the ideal classifier made on the source distribution Errp (h%.).
This aligns with our intuition that the smaller manipulation budget is, the less agents will change their
features, thus leading to a tighter upper bound on the difference between Errp, (hg) and Errp,: (A7)
This bound also allows us to bound this quantity even without the knowledge of the mapping between
D(h) and h, since we can directly compute Errp (k%) from the source distribution and an estimated
optimal classifier ..



S Target Shift

We consider another popular domain adaptation setting known as farget shift, in which the distribution
of labels changes, but not the distribution of features conditioned on the label:

Py (X =2|Y =y) =Pps (X =2|Y =y), Ppp)(Y =y) #Pp, (Y =y) (6)

In the case of binary classification, let w(h) := Pp(;) (Y = +1), and Pp() (Y = —1) = 1 —w(h).
Again, w(h) encodes the induced adaptation from Dg and h. Then we have for any proper loss
function ¢:
Epm[b(h; X, Y)] =w(h) - Epg [6(h; X, Y)Y = +1] + (1 — w(h)) - Ep)[£(h; X, Y)Y = —1]
—w(h) - Epg[0(h; X, Y)|Y = +1] + (1 = w(h)) - Epg [((h: X, V)|V = —1]
We will adopt the following shorthands:
Erry (h) :=Ep [l(h; X, Y)Y = +1], Err_(h) :=Ep [l(h; X, Y)Y = —1]

Note that Err (h), Err— (h) are both defined on the conditional source distribution, which is invariant
under the target shift assumption.

5.1 Upper bound

We again upper bound the transferability of h5 under target shift. Denote by D, the positive
label distribution on Dg (Pp, (X = z|Y = +1)) and D_ the negative label distribution on Dg
(Ppy (X =2|Y = —1)). Let p :=Pp, (Y = +1).

Theorem 5.1. For target shift, the difference between Errp ) (h%) and Errppz ) (h7) bounds as:

Errp(ng) (hs) = Errp(ny) (hr) < |w(hs) — w(hr)]
+ (1+p) - (drv(D(hs), Dy (hy)) + drv(D—(hg), D-(h7)) -

The above upper bound consists of two components. The first quantity captures the difference
between the two induced distributions D(h%) and D(h%). The second quantity characterizes the
difference between the two classifiers h§, h7. on the source distribution.

5.2 Lower Bound

Now we discuss lower bounds. Denote by TPRg(h) and FPRg(h) the true positive and false positive
rates of i on the source distribution Dg. We prove the following:

Theorem 5.2. For target shift, any model h must incur the following error on either Dg or D(h):
(h)| - (1 — |TPRs(h) — FPRs(h)|)

5 .
The proof extends the bound of Theorem 3.3 by further explicating each of drv(Dy s, Dy (h)),
drv(Dp)s. and Dy (h)) under the assumption of target shift. Since [TPRg(h) — FPRg(h)| < 0 unless
we have a trivial classifier that has either TPRg(h) = 1, FPRg(h) = 0 or TPRg(h) = 0, FPRg(h) =
1, the lower bound is strictly positive. Taking a closer look, the lower bound is determined linearly
by how much the label distribution shifts: p — w(h). The difference is further determined by the
performance of h on the source distribution through 1 — |TPRg(h) — FPRg(h)|. For instance, when
TPRs(h) > FPRg(h), the quality becomes FNRg (k) + FPRg(h), that is the more error h makes,
the larger the lower bound will be.

max{Errpg(h), Errpg,y(h)} > p—w

5.3 Example Using Replicator Dynamics

Let us instantiate the discussion using a specific fitness function for the replicator dynamics model
(Section 2.1), which is the prediction accuracy of h for class +1:

Fitness(Y = y) := Pp (h(X) =y|Y =y) )

Then we have E [Fitness(Y)] = 1 — Errp, (h), and —0) - — Pros (WX)=H|Y=11)

Pog(Y=F1) T—Errpg (h) - Plugging

the result back to our Theorem 5.1 we have
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Figure 3: Results for synthetic experiments on simulated and real-world data. Diff := Errp,+) (hs) —
Errp s ) (h7), Max := max{Errpg (h7), Errpz ) (h7)}, UB := upper bound specified in Theo-
rem 4.2 for covarite shift or in Theorem 5.1 for target shift, LB := lower bound specified in
Theorem 4.3 for covariate shift or in Theorem 5.2 for target shift.

Proposition 5.3. Under the replicator dynamics model in Eqn. (7), |w(h%) — w(h})| bounds as:
 |Errpg (hs) — Errps (h7)| - |[TPRs(hs) — TPRs(h7 )|
(1 = Errpg(hg)) - (1 — Errpg (h7)) '

whs) —w(hy)| < Ppg (Y = +1)

That is, the difference between Errp(p, ) (k) and Errp(p,s ) (h7) is further dependent on the difference
between the two classifiers’ performances on the source data Dg. This offers an opportunity to
evaluate the possible error transferability using the source data only.

6 Experiments
We present synthetic experimental results on both simulated and real-world data sets.

Synthetic experiments using simulated data We generate synthetic data sets from structural
equation models described on simple causal DAG in Figure 2 for covariate shift and target shift. To
generate the induced distribution D(h), we posit a specific adaptation function A : R? x H — R4,
so that when an input 2 encounters classifier h € H, its induced features are precisely 2’ = A(x, h).
We provide details of the data generation processes and adaptation functions in Appendix B.

We take our training data set {z1, ...,z } and learn a “base” logistic regression model h(z) = o(w -
x)*. We then consider the hypothesis class H := {h, | 7 € [0, 1]}, where h,(z) := 2 1[o(w - x) >
7] — 1. To compute h%, the model that performs best on the source distribution, we simply vary 7
and take the /. with lowest prediction error. Then, we posit a specific adaptation function A(z, ;).
Finally, to compute h?%., we vary 7 from O to 1 and find the classifier s that minimizes the prediction
error on its induced data set {A(z1, h;), ..., A(zy, hy)}. We report our results in Figure 3 (a).

Synthetic experiments using real-world data The FICO credit score data set [4] contains more
than 300k records of TransUnion credit score of clients from different demographic groups. For our
experiment on the preprocessed FICO data set [18], we convert the cumulative distribution function
(CDF) of TransRisk score among different groups into group-wise credit score densities, from which
we generate a balanced sample to represent a population where groups have equal representations.
‘We demonstrate the application of our results in a series of resource allocations.

Similar to the synthetic experiments on simulated data, we consider the hypothesis class of threshold
classifiers and treat the classification outcome as the decision received by individuals. For each time
step K = k, we compute h}, the statistical optimal classifier on the source distribution (i.e., the
current reality for step K = k), and update the credit score for each individual according to the
received decision as the new reality for time step K = k + 1. Details of the data generation is again
deferred to Appendix B. We report our results in Figure 3 (b).

For both sets of our results, we do observe positive gaps Errp ;) (hs) — Errp(ns.) (h7), indicating
the suboptimality of training on Dg. The gaps are well bounded by the theoretical upper bound

*o(+) is the logistic function and w € R® denotes the weights.



(UB). Our lower bounds (LB) do return meaningful positive gaps, demonstrating the trade-offs that a
classifier has to suffer on either the source distribution or the induced target distribution.

7 Concluding Remarks

We presented a sequence of model transferability results for settings where agents will respond to
a deployed model. The response leads to an induced distribution that the learner would not know
before deploying the model. Our results cover for both a general response setting and for specific
ones (covariate shift and target shift). Our paper ends with empirical results that supported our
claims. Unawareness of the potential distribution shift might lead to unintended consequence when
training a machine learning model. One goal of this paper is to raise awareness of this issue for a safe
deployment of machine learning methods in high-stake societal applications.

A subset of our results are developed under assumptions (e.g., Theorem 4.3). Therefore we want to
caution readers of potential misinterpretation of applicability of the reported theoretical guarantees.
Our contributions are mostly theoretical and our experiments use synthetic agent models to simulate
distribution shift. A future direction is to collect real human experiment data to support the findings.
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A Appendix

We arrange the appendix as follows:

Appendix A.l provides some real life scenarios where transparent models are useful or required.
Appendix A.2 provides comparisons of our setting and other sub-areas in domain adaptation.

Appendix A.3 provides proof for Theorem 3.1.
Appendix A.4 provides proof for Theorem 3.2.
Appendix A.5 provides proof of Theorem 3.3.
Appendix A.6 provides proof for Proposition 4.1.
Appendix A.7 provides proof for Theorem 4.2.
Appendix A.8 provides proof for Theorem 4.3.
Appendix A.9 provides omitted assumptions and proof for Section 4.3.
Appendix A.10 provides proof for Theorem 5.1.
Appendix A.11 provides proof for Theorem 5.2.
Appendix A.12 provides proof for Proposition 5.3.
Appendix B provides missing experimental details.

A.1 Example Usages of Transparent Models

As we mentioned in Section 1, there is an increasing requirement of making the decision rule to be
transparent due to its potential consequences impacts to individual decision subject. Here we provide
the following reasons for using transparent models:

* Government regulation may require the model to be transparent, especially in public services;

* In some cases, companies may want to disclose their models so users will have explanations
and are incentivized to better use the provided services.

* Regardless of whether models are published voluntarily, model parameters can often be
inferred via well-known query “attacks”.

In addition, we name some concrete examples of some real-life applications:

* Consider the Medicaid health insurance program in the United States, which serves low-
income people. There is an obligation to provide transparency/disclose the rules (model
to automate the decisions) that decide whether individuals qualify for the program — in
fact, most public services have “terms” that are usually set in stone and explained in the
documentation. Agents can observe the rules and will adapt their profiles to be qualified if
needed. For instance, an agent can decide to provide additional documentation they need to
guarantee approval. For more applications along these lines, please refer to this report’.

* Credit score companies directly publish their criteria for assessing credit risk scores. In loan
application settings, companies actually have the incentive to release criteria to incentivize
agents to meet their qualifications and use their services.Furthermore, making decision
models transparent will gain the trust of users.

* It is also known that it is possible to steal model parameters, if agents have incentives to do
s0®. For instance, spammers frequently infer detection mechanisms by sending different
email variants; they then adjust their spam content accordingly.

A.2 Comparison of our setting and Some Areas in Domain Adaptation

We compare our setting (We address it as IDA, representing “induced domain adaptation”) with the
following areas:

Shttps://datasociety.net/library/poverty-lawgorithms/
Shttps://www.wired.com/2016/09/how-to-steal-an-ai/
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* Adversarial attack [5, 32, 37]: in adversarial attack, the true label Y stays the same for
the attacked feature, while in IDA, we allow the true label to change as well. One can
think of adversarial attack as a specific form of IDA where the induced distribution has
a specific target, that is to maximize the classifier’s error by only perturbing/modifying.
Our transferability bound does, however, provide insights for how standard training results
transfer to the attack setting.

* Domain generalization [46, 23, 30]: the goal of domain generalization is to learn a more
general model that can be generalized to any unseen distribution; On the contrary, our
focus is to understand how the performance of a classifier trained on the source distribution
degrades when evaluated on the induced distribution (which depends on how the population
of decision subjects responds); this degradation depends on the classifier itself.

 Test-time adaptation [43, 45, 31]: the issue of test-time adaptation falls into the classical
domain adaptation setting where the adaptation is independent of the model being deployed.
Applying this technique to solve our problem requires accessing data (either unsupervised or
supervised) drawn from Dg(h) for each h being evaluated during different training epochs.

A.3 Proof of Theorem 3.1

Proof. We first establish two lemmas that will be helpful for bounding the errors of a pair of classifiers.
Both are standard results from the domain adaption literature [3].

Lemma A.1. For any hypotheses h,h' € H and distributions D, D’,

dpxu(D, D’
|Errp(h,h') — Errp(h,h')| < %

Proof. Define the-cross prediction disagreement between two classifiers h, h’ on a distribution D as
Errp(h,h') := Pp(h(X) # h'(X)). By the definition of the H—divergence,

dyxn(D,D') = 2 sup [Pp(h(X) # h'(X)) = Ppr (h(X) # 1'(X))]

=2 sup |Errp(h,h') — Errpr(h, h')|
hoh' €M

> 2|Errp(h, h') — Errp (b, B')] .
O
Another helpful lemma for us is the well-known fact that the 0-1 error obeys the triangle inequality
(see, e.g., [8]):

Lemma A.2. For any distribution D over instances and any labeling functions f1, fs, and f3, we
have Errp(f1, fa) < Errp(f1, f3) + Errp(fa, f3).

Denote by h* the ideal joint hypothesis, which minimizes the combined error:

h* := arg min Errp ) (') + Errpg ()
h'eH

‘We have:

Errp(p) (h) < Errpny (R*) + Brrp(ny (h, h*) (Lemma A.2)
< Errpy (R*) + Errpg (b, ) + |Errp(ny (h, B*) — Errpg (b, h*)|

_ - 1
< Errp(py (h*) + Errpg (h) + Errpg (h*) + idHX’H(DS, D(h)) (Lemma A.1)
1 _
= EI‘I‘DS (h) + >\D5—>D(h) + idﬂ XH(DSa D(h)) (Definition of h*)

O
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A.4 Proof of Theorem 3.2

Proof. Invoking Theorem 3.1, and replacing h with k%, and S with D(h}.), we have
* * 1 *
EI‘I‘D(h) (hT> S Eer(h})(hT) + )\D(h)ﬁp(h;) + §d7.[><7.[(D(hT), D(h)) (8)
Now observe that

Errp(n) (h) < Errp(ny(hy) + Errpgny (h, )
< Errp(n) (h7) + Ertp(nz) (hs hp) + Errpy (hy hp) — Errpgas )y (hy h)
1 .
< Errp(n) (h) + Errp s, (b, hy) + §de7-L(D(hT)a D(h))  (by LemmaA.1)
* * 1 *

< Brrpy (h7) + Ettpen) (h) + Etrpes ) (hr) + 5 duxn(D(hr), D(h))

(by Lemma A.2)

1 .

< Errp(nz) () + Ap(n)y—»D(ns) + §deH(D(hi})7 D(h)) (by equation 8)

* 1 *
+ Errppz ) (h) + Brrpgns ) (h) + §deH(D(hT)7D(h))
Adding Errp(p,) (h) to both sides and rearranging terms yields

2Brrp () (h) — 2Brrp ) (h7) < Errp(n)(h) + Ertp(ns) (h) + Aoy (ng) + duxn(D(hT), D(h))
< Ap(nysp(hs) T Ay =D(hz) + duxu(D(hy), D(h))
Dividing both sides by 2 completes the proof. O

A.5 Proof of Theorem 3.3
Proof. Using the triangle inequality of drvy, we have

drv(Dy s, Dy (h)) < drv(Dy s, Dyis) + drv(Dhis, Pr(h)) + drv(Dn(h), Dy (R))  (9)
and by the definition of drv, the divergence term dtv(Dy|s, Dy (h)) becomes

drv(Dy|s, Dhjs) = [Ppg (Y = +1) — Pp (h(z) = +1)|
_ ’EDS[Y] +1  Epg[h(X)] + 1’

2 2
- ’EDS Y] _ Ep, WXH’
2 2
< 3 Eny [V — h(X)]

= EI‘I‘DS (h)

Similarly, we have

drv(Dp(h), Dy (h)) < Errpy (h)

As a result, we have

Errpg (h) + Errppy (h) > drv(Dy s, Dhis) + drv(Dn(h), Dy (h))
> drv(Dy s, Dy (h)) — drv(Dps, Pr(h)) (by equation 9)

which implies

drv(Dy\s, Dy (h)) — drv(Dps, Dn(h)) '

max{Errp (h), Errp(y (h)} > 5
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A.6 Proof of Proposition 4.1

Proof.
Epm[6(h; X, Y)]

Z/th)(X =x,Y =y)l(h;z,y) dedy

- / Py (Y =yl X = &) - Ppgyy (X = 2)(hs 2, y) dedy

Ppy (X =)

-l(h;x,y) dxd
P (X = 1) (hy@,y) dedy

— [ Pou(¥ = yix =) Bp, (X =)

:/PDS(Y = y‘X = x) 'PDS(X = x) wa:(h) Z(h,x,y) dl’dy
=Epgfwe(h) - £(h; 2, y)]

A.7 Proof of Theorem 4.2

Proof. We start from the error induced by h¥. Let the average importance weight induced by h; be
w(hs) = Epglwz(h%)]; we add and subtract this from the error:

Errp () (hs) = Epg [wa(hy) - L(hg(z) # y)]
=Ep, [w(hy) - L(hg(z) # y)] + Epg [(wa(hy) — w(hs)) - L(hs(z) # y)]

In fact, w(h§) = 1, since

(h) =Ep, [wa(h3)] = / (W) Py (X = 2)dz

[ Pppy(X =2) B B - B
— / mPDS(X =z)dx = /]P’D(h)(x =z)dr =1

Now consider any other classifier h. We have
Errp(ny) (hs)
= Epg [L(hs(2) # y)] + Ep [(we(hg) — @(hs)) - L(hs(z) # y)]

< Epg [1(h(z) # y)] + Epg [(wa(hs) — 0(hs)) - Lhs(z) #y)]
(by optimality of A5 on D)

= Ep; [0(h) - L(h(x) # y)] + Eps [(wa(hs) — @(hs)) - L(hs(x) # y)] )
(multiply by w(h%) = 1)

= Epg [wa(h) - L(h(z) # y)] + Epg [(@(h) — wa(h)) - L(h(z) # y)] )
(add and subtract w(h¥))

+ Epg [(wa(hy) — (b)) - L(hs(x) # y)]
= Errp() (h) + Cov(we (hs), 1(hs(x) # y)) — Cov(we(h), L(h(z) # y))

Moving the error terms to one side, we have
Errp(ns) (hs) — Errpy (h)
< Cov(wq (hg), L(hs(x) # y)) — Cov(wa(h), L(h(x) # y))
< Var(w, (k) - Var(L (i3 (x) # 1)) (ICov(X, Y)| < \/Var(X) - Var(Y))
\/Var (wz(h)) - Var(L(h(z) # y))
= \/Var(w, (h3)) - Breg(h) (1 — Errs () + v/Var(wa (1)) - Errp, ()(1 — Errp, (1))

< \/Var (we (%)) - Errg(hy) + v/ Var(w, (b)) - Errpg (h) (1 —Errpg(h) <1)

< \/Errpg(h) - ( Var(w, (h%)) + Var(wz(h)))
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Since this holds for any h, it certainly holds for h = h7.

A.8 Omitted Assumptions and Proof of Theorem 4.3

Denote X (h) = {x : w,(h) > 1} and X_(h) = {x : wy(h) < 1}. First we observe that

/ Ppy (X = 2)(1 —wy(h))dx
X4 (h)

This is simply because of | Ppy (X = ) - wy(h)de = [ Pp)(X = z)de = 1.
Now we provide detailed specifications of the assumptions for proving Theorem 4.3:

Assumption A.3 (increased w,(h) value points are more likely to have Y = +1).

>

/ Pp, (Y =41, X =z)(1 — wy(h))dx
X4 (h)

/ Pp, (Y =+41,X =2)(1 — wy(h))dx
X_(h)

Assumption A.4 (increased w,(h) value points are more likely to be classified as +1).

>

/ Pp, (h(z) = +1, X = 2)(1 — wy(h))dz
Xy (h)

/ Pp, (h(z) = +1, X = )(1 — wy(h))dz
X_(h)

Assumption A.5. Pp (Y = +1|X = z) — Pp,(h(z) = +1|X = z) and w,(h) is positively
correlated:

Cov(Ppy (Y = +1|X = z) — Pp, (h(z) = +1|X = z),w,(h)) > 0

The above assumption states that for a deterministic classifier h, within all h(X) = +1 or h(X) =
—1, ahigher Pp(Y = +1|X = z) associates with a higher w,,(h). With the help of Assumption A.3 -
Assumption A.5, we proceed to proof for Theorem 4.3:

Proof. Notice that in the setting of binary classification, we can write the total variation distance
between Dy|g and Dy (h) as the difference between the probability of Y = +1 and the probability
of Y = —1:

drv(Dy s, Dy (h))
= |Pps (Y = +1) — oy (Y = +1))|

= ‘/}P’DS (Y =4+1|X = 2)Ppy (X = z)dx — /]P’DS (Y = +1|X = 2)Ppy (X = x)w,(h)dz

= '/PDS Y =+1|X =2)Pps (X =2) - (1 —wy(h))dz (10)
Similarly we have
d/TV(Dh|S7Dh(h)) = ’/]P)Ds (h(.’li) = +1|X = LC)IPDS (X = .’L‘) . (1 - wz(h))dm (11)
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We can further expand the total variation distance between Dy g and Dy (h) as follows:

drv(Dy s, Dy (h))

= ‘/PDS(Y =+1|X =2)Pp (X =2) - (1 — wy(h))dx

:‘/ Po(Y = +1|X = 2)Ppy (X = 2) - (1 — wa(h))da
X (h)

<0

+/ Pp. (Y = +1|X = 2)Pp, (X =z) - (1 — wz(h))dx‘
X_(h)

>0

=— / Pp, (Y =4+1|1X = 2)Pp (X =2) - (1 —wy(h))dx
X4 (h)
_ / Pp, (Y = +1|X = 2)Pp, (X = 2)- (1 —wa(h))dz  (by Assumption A.3)
X_(h)
:/ Pp, (Y = 41X = 2)Pp (X = 2) - (wy(h) — 1)dx
X4 (h)
+ / Pp, (Y = 41X = 2)Pp (X = z) - (wz(h) — 1)dx (by equation 10)
X_(h)

:/IP’DS Y =+1|X = 2)Ppy (X = 2) - (wgy(h) — 1)dx
Similarly, by assumption A.4 and equation equation 11, we have

drv(Dpis, Dr(h)) = /]P’DS (h(z) = +11X = 2)Ppy (X =) - (we(h) — 1)dz

Thus we can bound the difference between drv(Dy s, Dy (h)) and drv(Dp|s, Dr(h)) as follows:
drv(Dy\s, Dy (h)) — drv(Dp)s, Dn(h))

:/]PDS (Y =4+1|X = 2)Ppy (X = x) - (wg(h) — 1)dx
- /Pp(h(x) =+1|X = 2)Pp (X =z) - (wy(h) — 1)dz

B /[PDS (Y = +1|X = 2) — Pps(h(z) = +1|X = 2)|Ppy (X = 2) - (wz(h) — 1)dz
=Epy[(Pps (Y = +1|X = 2) — Pp, (h(2) = +1|X = 7)) (wa(h) — 1)]
(by Assumption A.5)
> Epy [Ppg (Y = +1|1X = 2) — Pp, (h(z) = +1|X = 2)|Epg[w.(h) — 1]
=0
Combining the above with Theorem 3.3, we have

max{Errp, (h), Errp(n (h)} > drv(Dy|s, Dy (h)) ; dry(Dhys, D (h))

>0

A.9 Omitted details for Section 4.3

To make the problem tractable and meaningful, we make the following assumptions:

Assumption A.6. (Agent’s Initial Feature Distribution) Agents’ initial features are uniformly
distributed between [0, 1] € R!:

1, if x €[0,1]
P =
D § (z) { 0, otherwise
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Assumption A.7. (Agent’s Cost Function) The cost of changing from x to 2’ is proportional to the
distance between them: ¢(x,z’) = ||z — z’||.

Under Assumption A.7, only agents whose features are in between [r, — B, 73,) will astempt to change
their feature. We also assume that feature updates are probabilistic, such that agents with features
closer to the decision boundary 7, have a greater chance of updating their feature and each updated
feature 2’ is sampled from a uniform distribution depending on 73, B, and x (see Assumption A.8
and Assumption A.9):

Assumption A.8 (Agent’s Success Manipulation Probability). For agents who attempt to update
their features, the probability of a successful feature update is

Pr(x’ £ x) =1~ LT (12)

Intuitively this assumption means that the closer the agent’s original feature z is to the decision
boundary 73, the more likely they can successfully change their feature to cross the decision boundary.

Assumption A.9 (Newly Adapted Feature’s Distribution). An agent’s updated feature z’, given
original feature x, manipulation budget B, and classification boundary 73, is sampled as

X' ~ Unif(7p,, 7, + B — ) (13)

This assumption aims to capture the fact that even though agent targets to change their feature to the
decision boundary 73, (i.e. the least cost action to get a favorable prediction outcome), they might end
up reaching to a feature that is beyond the decision boundary.

With Assumption A.7 - Assumption A.9, we can further specify the important weight w,. (h) for the
strategic response setting:

Lemma A.10. Recall the definition for the covariate shift important weight coefficient w,(h) :=

P X=x . .
M, for our strategic response setting, we have,

PDS(X:I)
1, [0 Th — )
Th_T — B, 13)
o(h)y=¢ B €m i 14
ws (1) L(—z+7,+2B), x€l[m,m+B) a4
1, [Th-‘rB 1}

Proof for Lemma A.10:
Proof. We discuss the induced distribution D(h) by cases:

* For the features distributed between [0, 75, — B]: since we assume the agents are rational,
under assumption A.7, agents with feature that is smaller than [0, 7, — B] will not perform
any kinds of adaptations, and no other agents will adapt their features to this range of
features either, so the distribution between [0, 7, — B] will remain the same as before.

* For the target distribution between |7, — B, 75,] can be directly calculated from assumption
A8.

* For distribution between [1p,, 7, + B], consider a particular feature z* € |15, 7, + B], under
Assumption A.9, we know its new distribution becomes:

Th 1 _ Th—Z
Pr(m—x*)zl—i—/ —— B 4
D(h)

[
—
+
3
oo
o]
IS8
N

1
= E(—x* + 7 +QB)

* For the target distribution between |75, + B, 1]: under assumption A.7 and A.9, we know
that no agents will change their feature to this feature region. So the distribution between
[Tn, + B, 1] remains the same as the source distribution.
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Ppn) (X=z)

Recall the definition for the covariate shift important weight coefficient w,,(h) := Fp. (X=2) * the
distribution of w, (h) after agents’ strategic responding becomes:
1, x €[0,7, — B)and x € [, + B, 1]
Th L x €|t — B,
wa(h) = %?—x—FTh—FQB), T € %TZ,T}L—FB?L; (15
0, otherwise
O

Proof for Proposition 4.4:

Proof. According to Lemma A.10, we can compute the variance of w,(h) as Var(w,(h)) =
E(wg(h)?) — E(wg(h)?) = 2 B. Then by plugging it to the general bound for Theorem 4.2 gives us
the desirable result. O

A.10 Proof of Theorem 5.1

Proof. Defining p := Pp_ (Y = +1), we have
Errp(ns) (hs) = w(h) - Erry (hg) + (1 — w(hg)) - Brr_(hy)

(by definitions of w(h¥), Erry (hY), and Err_(hY))
— - Ere (W) + (1 p) - Ere_ () +(w(h’) — p)[Erry (h) — Ere_(h%)] (16)
@

We can expand (I) as follows:
p-Erry () + (1 p) - Err_ (k%)
<p-EBrry(h}) + (1 —p)-Err_(hy) (by optimality of A on Dg)
= w(hy) - Erry (hy) + (1 — w(h7)) - B (A7) + (p — w(hy)) - [Brry (hy) — Err(h7)]
= Errp(ns.) (hp) + (p — w(hyp)) - [Erry(h7) — Err_ ()] -
Plugging this back into equation 16, we have
Errp(ny) (hs) — Errpng,) (hr) < (w(hs) — p)[Erry (hs) — Brr_(hg)] + (p — w(hy)) - [Brry (hy) — Err_(h7)]
Notice that
0.5(Erry(h) —Err_(h)) =05-1—-05-P(h(X) = +1|Y = +1) — 0.5 - P(h(X) = +1|Y = —-1)
=0.5-Pp, (h(X)=+1)
where D, is a distribution with uniform prior. Then
(w(h) = p)[Brry (hg) — Brr_(hg)] = 2(w(hs) = p) - (0.5 = Pp, (h(X) = +1))
(p —w(hy))[Brry (h7) = Err_(h7)] = 2(p — w(h7)) - (0.5 = Pp, (A(X) = +1))
Adding together these two equations yields
(w(hs) = p)[Erry (hg) — Brr—(h)] + (p — w(hy)) - [Erry (h7) — Err_(h7)]
=2(w(hs) —p) - (0.5 = Pp, (h5(X) = +1)) + 2(19 w(hy)) - (0.5 = Pp, (hp(X) = +1))
= (w(hs) —w(hr)) = 2 (w(hg)Pp, (h5(X) = +1) — w(hy)Pp, (h7(X) = +1))
+2p- (Pp, (h5(X) = +1) = Pp, (hp(X) = +1))
< lw(hs) —w(bp)]- (14 2[Pp, (hs(X) = +1) = Pp, (h(X) = +1)))
+2p - |Pp, (hs(X) = +1) = Pp, (R7(X) = +1)| 17)
Meanwhile,
Pp, (hs(X) = +1) = Pp,, (h7(X) = +1)]
< 0.5 [Ppjy—t1(h5(X) = +1) = Ppjy—t1(hp(X) = +1)|
+ 0.5 [Ppjy——1(hs(X) = +1) = Ppjy—_1 (hp(X) = +1)]
= 0.5 (drv(D4.(hs), D4 (h7)) + drv(D-(hg), D-(hy)) (18)

21



Combining equation 17 and equation 18 gives
whs) —w(hr)|- (1 +2-[Pp, (hs(X) = +1) = Pp, (h7(X) = +1)])
+2p - |Pp, (hs(X) = +1) — Pp, (hy(X) = +1)]
< |w(hs) —w(hp)] - (1+ drv(Dy(hs), Dy (b)) + dov(D-(hs), D—(h7))
+p - (drv(D+(hs), D+ (h7)) + drv(D—(hs), D-(h7))
< |w(hs) —w(hp)| + (L+p) - (drv(Dy(hs), Dy (hr)) + drv(D-(hs), D-(h7)) -

O
A.11 Proof of Theorem 5.2
We will make use of the following fact:
Lemma A.11. Under label shift, TPRs(h) = TPRy (h) and FPRs(h) = FPRp,(h).
Proof. We have
:/IPD(h)(h(X) = +1,X = g]Y = +1)dx
:/Pp(h)(h(X) =+1|X =2,Y = +1)P’D(h)(X =z|Y = +1)dx
- / 1(h(z) = +1)Ppguy(X = 2Y = +1)da
= / 1(h(z) = +1)Pp (X = z|Y = +1)dx (by definition of label shift)
:/Pps(h(X) = 41X =2,Y = +1)Pp, (X = 2|V = +1)dz
=TPRg(h)
The argument for TPR;,(h) = TPRg(h) is analogous. O

Now we proceed to prove the theorem.

Proof of Theorem 5.2. In section 3.2 we showed a general lower bound on the maximum of Errp (h)
and Errp ) (h):

drv(Dy|s, Dy (h)) — drv(Dps, Dp(h))

max{Errpg (h), Errp,y (h)} >

2
In the case of label shift, and by the definitions of p and w(h),
drv(Dy|s, Dy (h)) = |[Pps (Y = +1) — Ppu) (Y = +1)| = |p — w(h)] (19)

In addition, we have

Dpjs = Ps(h(X) = +1) = p- TPRs(h) + (1 — p) - FPRg(h) (20)
Similarly

Dy (h) = Pppy (M(X) = +1)
= w(h) - TPR,(h) + (1 — w(h)) - FPR,(h)
=w(h) - TPRs(h) + (1 —w(h)) - FPRg(h) (by Lemma A.11) (21)

Therefore
drv(Dps, Dr(h)) =Ppg (M(X) = +1) — Pp(n)(h(X) = +1)]

=[(p —w(h)) - TPRs(h) + (w(h) — p) - FPRs ()]
(By equation 21 and equation 20)

=|p — w(h)| - |TPRg(h) — FPRg(h)| (22)
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which yields:

drv(Dy|s, Dy (h)) = drv(Dnjs, Pu(h)) = [p —w(h)|(1 — [TPRs(h) — FPRs(h)])
(By equation 19 and equation 22)

completing the proof. O

A.12 Proof of Proposition 5.3

Proof.
fw(hg) ~ ()] 5t
Pp, (Y = +1)
_|(1 = Errpg (hs))TPRs(h) — (1 — Errpg (b)) TPRg(h7)]
- (1 - Errp, (hy)) - (1~ Brrp, (h))
B, (%)  Errp, (hi)] - [TPRs(hg) — TPRs(h)| o
= (1~ Errp, (h%)) - (1 — Errp, (h))
The inequality above is due to Lemma 7 of [26]. O

B Missing Experimental Details

B.1 Synthetic Experiments Using DAG

Covariate Shift We specify the causal DAG for covariate shift setting in the following way:
X; ~ Unif(—1,1)
Xy ~ 1.2X; + N(0,03)
X3~ =X7 +N(0,03)
Y = 2sign(Xs > 0) —1
where 03 and o3 are parameters of our choices.

Adaptation function We assume the new distribution of feature X will be generated in the following
way:

X[ = A(X) = X + ¢+ (h(X) = 1)
where ¢ € R! > 0 is the parameter controlling how much the prediction h(X) affect the generating
of X, namely the magnitude of distribution shift. Intuitively, this adaptation function means that if a
feature x is predicted to be positive (h(z) = +1), then decision subjects are more likely to adapt to

that feature in the induced distribution; Otherwise, decision subjects are more likely to be moving
away from z since they know it will lead to a negative prediction.

Target Shift We specify the causal DAG for target shift setting in the following way:
(Y +1)/2 ~ Bernoulli(«)
X1|Y =y ~ N1 (1y, o)
Xy = —0.8X; + N(0,03)
X3 =0.2Y + N(0,03)

where /\/[0_’1] represents a truncated Gaussian distribution taken value between 0 and 1. o, f1y, 02,03

and o3 are parameters of our choices.
Adaptation function We assume the new distribution of the qualification Y’ will be updated in the
following way:

P(Y' = 4+1|h(X) = h,Y = y) = cpy, where {h,y} € {—1,+1}
where 0 < ¢, € R < 1 represents the likelihood for a person with original qualification Y = y

and get predicted as h(X) = h to be qualified in the next step (Y’ = +1).
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B.2 Synthetic Experiments Using Real-world Data

On the preprocessed FICO credit score data set [4, 18], we convert the cumulative distribution
function (CDF) of TransRisk score among demographic groups (denoted as A, including Black,
Asian, Hispanic, and White) into group-dependent densities of the credit score. We then generate
a balanced sample where each group has equal representation, with credit scores (denoted as Q)
initialized by sampling from the corresponding group-dependent density. The value of attributes for
each data point is then updated under a specified dynamics (as detailed below) to model the real-world
scenario of repeated resource allocation (with decision denoted as D). Since we are considering the
dynamic setting, we further specify the data generating process in the following way (from time step
T=ttoT=t+1):

X1~ 1.5Q¢ + Ul—e1, €]

X ~ 0.84; + Ul—ea, €3]

X3~ Ay + N(O, 02)
Y: ~ Bernoulli(g;) for a given value of Q; = ¢,
Dy = fi(As, Xi1, Xe 2, Xt.3)

Qi1 ={Q: - [1+ ap(Dy) + ay (Vi) o1

A¢y1 = A; (fixed population)

where {-}o,1] represents truncated value between the interval (0, 1], f(-) represents the decision
policy from input features, and €1, €5, o are parameters of our choices.

Within the same time step, i.e., for variables that share the subscript ¢, Q); and A; are root causes for
all other variables (X; 1, X¢ 2, X¢ 3, Dy, Yy). For different time steps, e.g., fromT =ttoT =t + 1,
the new distribution at 7' = ¢ 4 1 is induced by the deployment of the decision policy D;. Such
impact is modeled by a multiplicative update in Q¢4 from (); with parameters (or functions) ap(-)
and ay (+) that depend on D; and Y, respectively.
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