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Abstract. Significant research on deep neural networks, culminating in
AlphaFold2, convincingly shows that deep learning can predict the na-
tive structure of a given protein sequence with high accuracy. In contrast,
work on deep learning frameworks that can account for the structural
plasticity of protein molecules remains in its infancy. Many researchers
are now investigating deep generative models to explore the structure
space of a protein. Current models largely use 2D convolution, leveraging
representations of protein structures as contact maps or distance matri-
ces. The goal is exclusively to generate protein-like, sequence-agnostic
tertiary structures, but no rigorous metrics are utilized to convincingly
make this case. This paper makes several contributions. It builds on
momentum in graph representation learning and formalizes a protein
tertiary structure as a contact graph. It demonstrates that graph repre-
sentation learning outperforms models based on image convolution. This
work also equips graph-based deep latent variable models with the abil-
ity to learn from experimentally-available tertiary structures of proteins
of varying lengths. The resulting models are shown to outperform state-
of-the-art ones on rigorous metrics that quantify both local and distal
patterns in physically-realistic protein structures. We hope this work will
spur further research in deep generative models for obtaining a broader
view of the structure space of a protein molecule.

Keywords: graph representation learning · protein structure plasticity
· conformation sampling

1 Introduction

Deep neural networks can learn directly from sequences and structures of pro-
teins and accurately predict contacts of a novel amino-acid sequence. ResNet [21]
was a precursor to AlphaFold2 [11], which recently showed that deep learning
can predict tertiary structure from a sequence with high accuracy. This seminal
development will support many structure-centric studies. Decades of research
also show that a single-structure view ignores the inherent structural plastic-
ity that proteins harness to regulate molecular interactions [2]. The Protein
Data Bank (PDB) [1] is rich in proteins arrested in diverse biologically-active
three-dimensional (3D)/tertiary structures [14]. Obtaining a broader view of the
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structure space accessed by a protein is essential to advance our understanding of
molecular mechanisms and support the development of therapeutics. Literature
on methods for exploring the protein structure space is rich [15]. The majority
operate under the umbrella of optimization and enhance the sampling capability
of Monte Carlo- or Molecular Dynamics-based methods.

Momentum in deep generative models has recently spilled to protein struc-
ture modeling. A detailed review is beyond the scope of this paper, but we
highlight here several lines of observation. Most related work confounds protein
design, folding, and structure modeling. The objective is often not clearly stated.
Largely, the goal is to show that generated tertiary structures look like structures
of proteins, but rigorous evaluation is lacking. Most work does not connect with
the long body of work and domain-specific insight that should inform and guide
a quantitative evaluation of the realism of generated structures. Finally, most
work leverages the generative adversarial network (GAN) architecture and builds
over image-based convolution, representing a tertiary structure as a contact map
or distance matrix, which are both 2D-based representations of a 3D structure.
A more comprehensive survey of the landscape of deep generative models for
protein structure modeling can be found in [10]. Several questions remain unan-
swered: (1) does 2D-based convolution suffice? (2) Which generative architecture
is more powerful? (3) Are generated tertiary structures realistic?

In this paper, we provide answers to some of these questions and establish a
clear, quantitative evaluation of the capability of deep generative models. First,
we clarify our modest objective: Given known protein tertiary structures, learn to
generate physically-realistic conformations of type-less amino-acid chains. Note
how we utilize the concept of a conformation, which indicates a specific choice
of representing a tertiary structure. A contact map is a conformation; a distance
matrix is a conformation, resulting from a different representation choice. In this
paper, our choice of conformation is a contact graph, which allows us to capture
and leverage local and distal constraints inherent in a protein tertiary structure.

Guided by this objective, in this paper we carry out a detailed comparison
that considers different architectures, such as GANs, Recurrent Neural Networks
(RNNs), and Variational Autoencoders (VAEs). We evaluate the quality of gen-
erated conformations along several metrics that capture both local and distal
patterns in (physically realistic) protein tertiary structures. Our most important
contribution, from a methodological point of view, is our leveraging of graph rep-
resentation learning, inspired by its promise for small molecule generation; we
present for the first time a graph-based model for protein conformation sampling.
We thus provide an additional dimension to the comparative evaluation, 2D con-
volution versus graph convolution models, and show through rigorous metrics
that graph representation learning is more powerful to further advance protein
conformation sampling. Before proceeding with methodological details, we first
provide a concise review of the related work.

1.1 Related Work

Current deep generative methods represent a tertiary structure as a contact map
or distance matrix, encoding the spatial proximity of pairs of amino acids (often
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collapsing an amino acid to its central carbon(CA) atom). Two CA’s not further
than 8Å in Euclidean space are considered in contact, and this is denoted by a 1
in the corresponding [i, j] entry in the contact map/matrix, which is indexed by
the position of CAs along the protein chain (from N- to C-terminus). A distance
matrix records the actual Euclidean distances between CA pairs.

As the review in [10] shows, early works employed dihedral angle-based rep-
resentations, but generated conformations contained many steric clashes, as such
representations are under-constrained. State-of-the-art (SOTA) work uses con-
tact maps or distance matrices and leverage 2D convolution (C)GANs popular
in computer vision. Some methods specialize the loss function to focus the net-
work to learn the symmetry of contact maps [9] or the sparse contacts/distances
between amino acids far apart in the chain [5]. Recent work in [18] shows that,
while GANs have become predominant frameworks, the quality of the contact or
distance matrices they produce varies. Work in [18] proposes a Wasserstein GAN
(WGAN) model that improves the quality of generated contact maps, and we
use it as a baseline model here. We recall that WGAN uses 2D convolution, effec-
tively treating a contact map or distance matrix as an image. Work in [18] also
debuts metrics that quantify the local and distal patterns in physically-realistic
tertiary structures, which we extend here to evaluate generated conformations
of chains of varying lengths.

2 Methods

A conformation here is a contact graph, where amino acids become vertices, and
contacts between pairs of CAs representing amino acids become edges. Vertices
are labeled with the position of the corresponding CA atom in the chain. Using
such graph representations allows us to adapt and evaluate GraphRNN and
GraphVAE. As a baseline, to show the power of the graph representation, we
utilize WGAN, which uses 2D convolution over contact maps. We summarize
next GraphRNN and provide more details into GraphVAE, which we extend to
learn from tertiary structures of varying-length protein chains.

GraphRNN: Consider an undirected graph G = (A,E), where A represents
the adjacency matrix of the graph, and E represents the edge attributes/features
attached to each edge [22]. The goal of GraphRNN is to learn a distribution p(G)
over a set of observed graphs. GraphRNN defines a mapping fS from graphs to
sequences fS(G, π) = (Sπ1 , ..., S

π
n), where π is a vertex ordering, and Sπi denotes

an adjacency vector representing edges between vertex vi and previous vertices
already in the graph. GraphRNN recasts p(G) as the marginal distribution of
the joint distribution p(G,Sπ): p(G) =

∑
Sπ p(Sπ)1[fG(Sπ) = G]. Here, p(Sπ)

is the distribution that needs to be learned. By approaching graph generation as
a sequential process, GraphRNN formulates p(Sπ) as a product of conditional
distributions over the elements; that is, p(Sπ) =

∏
i=0 np(S

π
i |Sπ0 , ..., Sπi−1). Fur-

ther details can be found in [22]. GraphRNN has been applied to learn grid
networks, community (network) structures, and other real networks. It has also
been employed in the generation of small molecules of a few dozen atoms. This
paper evaluates it for the first time on the generation of protein structures.
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GraphVAE: First proposed in [20], GraphVAE is able to generate proba-
bilistic fully-connected graphs, where the output tensor consists of graphs of a
fixed size. As illustrated in Fig. 1, GraphVAE, like traditional VAEs, consists
of two separate networks, an encoder and a decoder that are trained simultane-
ously [6–8]. Let G = (A,E, F ) be a graph specified with its adjacency matrix A,
edge features E, and node features F . The encoder maps a graph G to a latent
space z by calculating the variational posterior q(z|G) . The decoder, a densely-
connected layer, reconstructs the input graph in the form of G̃ = (Ã, Ẽ, F̃ )
from the latent space z by a generative distribution p(G|z). It subsequently em-
ploys a reparameterization trick that allows backpropagation of loss. Similar to
VAEs [13], GraphVAE’s loss also consists of Kullback-Liebler divergence (KL)
loss and reconstruction loss. These respectively measure the divergence between
q(z|G) and p(z) and the accuracy of the reconstructed graph G̃ as compared to
the original graph G. One important aspect in which our GraphVAE differs from
that of [20] is that we have circumvented the need for an explicit likelihood loss
by making the encoder node-invariant through employing graph convolutions
and node aggregation, inspired by the work in [4]. This also implies that the
encoder can choose any one of the possible node orderings for a particular task,
whereas the GraphVAE in [20] utilizes a max pooling matching algorithm [3].

Fig. 1. Schematic shows the main components of GraphVAE.

vGraphVAE: We extend GraphVAE so that it can handle variable-size in-
put contact graphs. We refer to the resulting model as vGraphVAE. We first find
the longest chain in the input dataset. This becomes our target length (the target
number of vertices in contact graphs). Each contact graph of a tertiary struc-
ture whose chain is shorter than the maximum length is padded with dummy
vertices; the dummy vertices participate in no edges. During the interpretation
of the output contact graph, we look for the first position where the aforemen-
tioned dummy vertex occurs, and we conduct the subsequent calculation up to
that particular position.

Datasets: Our input dataset of tertiary structures is as in [16, 18]; 115, 850
tertiary structures are extracted from the PDB from entries listed in [16]. This
set contains proteins of different lengths, which both GraphRNN and vGraph-
VAE can handle, but WGAN cannot. We create three different views/training
datasets of fixed-length chains to evaluate WGAN. We refer to these as FL=16,
FL=64, and FL=128 to indicate respective chain lengths of 16, 64, and 128 amino
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acids. As in [18], non-overlapping protein fragments of a given length l are ex-
tracted from chain ‘A’ for each protein structure starting at the first residue. The
corresponding contact map is calculated and added to the training dataset for
WGAN. This process is followed to obtain 115, 850 maps in the FL=16 dataset
and 98, 966 maps in the FL=64 and FL=128 datasets. Each model, WGAN,
GraphRNN, and GraphVAE are separately trained on each of these datasets
and then evaluated in each setting. Finally, GraphRNN and vGraphVAE are
compared to one another when the restriction of fixed-length is lifted. In that
case, we consider the whole dataset of 115, 850 structures, from which we ex-
tract contact graphs. In each case, a 0.8 : 0.1 : 0.1 split is followed for training,
validation, and testing.

Metrics to Evaluate a Conformation: Inspired by the work in [18], we
use domain-specific metrics to evaluate a generated conformation. First, we eval-
uate the presence of a backbone in a contact graph, which should be evident as
an edge between two nodes corresponding to consecutive CAs. We sum up the
number of such edges and refer to this metric as BackboneScore, thus summariz-
ing each contact graph/conformation with a BackboneScore. Ideally, for a model
trained over an FL = l dataset, the average BackboneScore value over generated
conformations should be l − 1. Smaller values indicate missing portions of the
backbone. The order of amino acids in a given protein sequence tells us where the
backbone is. So, we do not really need to learn it. However, it is a fundamental
task and intrinsic characteristic in every structure that a powerful model ought
to learn easily. Learning off-backbone, distal patterns is more challenging. We
employ the concept of short- versus long-range contacts, inspired by the work
in [18]. For short-range contacts, we count the number of (i, j) edges (which con-
nect vertices labeled i and j) in a contact graph, where 1 < |j− i| ≤ 4 (the lower
bound excludes the backbone). For long-range contacts, we restrict |j − i| > 4.
Work in [18] considers contact maps of a fixed size. Here we evaluate models
that can learn from a training dataset of varying-size contact graphs. So, we
propose modifications of the above metrics to evaluate a contact graph by we
normalizing them (dividing them by the number of vertices in a graph).

Metrics to Compare Distributions: The above metrics provide us with
various ways to summarize a contact graph/conformation. They allow comparing
the training to the generated dataset by comparing distributions of specific met-
rics. We make use of the Bhattacharya distance (BD) and the Earthmover Dis-
tance (EMD). BD [12] measures the distance between two distributions p(x) and
q(x) defined over the same domain X. It is defined as BD(p, q) = − ln(BC(p, q)).
The Bhattcharaya coefficient BC(p, q)=

∑
x∈X

√
p(x)q(x). BC varies from 0 to

1. BD varies from 0 to ∞. EMD [19] is also known as the Wasserstein distance.
If the distributions are interpreted as two different ways of piling up a certain
amount of dirt over the domain, EMD returns the minimum cost of turning
one pile into the other. The cost is assumed to be the amount of dirt moved
times the distance by which it is moved. EMD can be computed by solving an
instance of the transportation problem, using any algorithm for minimum cost
flow problem, such as the network simplex algorithm [19].
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Implementation Details: All models are implemented using Pytorch [17].
Experiments are run on an NVIDIA Tesla V100 GPU, where an epoch of
GraphRNN, vGraphVAE, and WGAN takes 19.51, 425.77, and 184.0 seconds,
respectively.

3 Results

3.1 Experimental Setup

Part I of our experiments compare the performance of models trained on ex-
perimental protein tertiary structures of fixed-length chains. Trained WGAN,
GraphRNN, and GraphVAE are compared on the quality of the dataset gener-
ated from each, using domain-agnostic and domain-specific metrics. Part II of
our experiments compares the performance of models trained on experimental
tertiary structures of varying-length chains. In each setting, we carry out three
major analyses. We evaluate whether a trained model has learned to generate
a backbone, short-range contacts, and long-range contacts. We make use of BD
and EMD to compare distributions over the generated versus training dataset,
as well as some visualizations of selected distributions. We arrest models at 10,
20, 30, and 50 epochs during the training process, so we can obtain a dynamic
view. Inspection of loss over epochs shows that all models converge fast, within
a few epochs (data not shown).

3.2 Evaluation of Models on Fixed-Length Chains

As described in Section 2, we design three experiments, constructing three sep-
arate training datasets; contacts graphs of 16, 64, and 128 vertices; for WGAN,
these correspond to the number of rows and columns in contact maps. We re-
fer to these datasets as FL = 16, FL = 64, and FL = 128, respectively. Each
model is trained separately on each dataset and then utilized to generate contact
graphs (of the corresponding size as in the respective training dataset), and the
generated contact graphs are evaluated.

We first evaluate the presence of a backbone. Table 1 reports the average
BackboneScore value over all instances generated by a model. Ideally, we ex-
pect average values to be nearly identical to FL − 1. Table 1 allows making
several observations. The worst-performing model is GraphRNN. The average
BackboneScore values it reports deviate significantly from the ideal ones. In
comparison, WGAN and GraphVAE perform much better. However, WGAN’s
performance increases when the fragment length increases. The model has trou-
ble on the shorter chains (see FL = 16). While better performing on the longer
chains, FL=64 and FL=128, its performance varies significantly over training
epochs; that is, this model is not stable with respect to learning the backbone.
In contrast, GraphVAE is both the best performing, reporting values nearly
identical to what is expected and stable over the training epochs.

The distribution of the number of short-range contacts over generated con-
formations is now compared to the corresponding distribution over the training
data via BD and EMD. In the interest of space, we show here only the BD values,
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Table 1. For each training dataset, the table reports the average of the generated
distribution of BackboneScores from models arrested at 10, 20, 30, and 50 epochs.

FL
WGAN GraphRNN GraphVAE

10 20 30 50 10 20 30 50 10 20 30 50
128 126.98 125.26 114.23 71.37 6.17 6.09 6.17 6.29 126.86 126.90 126.91 126.89
64 63.0 61.45 62.04 55.87 5.39 5.56 5.14 5.43 62.93 62.95 62.96 62.93
16 1.82 0.84 0.31 0.04 2.60 2.83 2.81 3.81 14.99 14.99 14.99 14.99

FL=16 FL=64 FL=128

Fig. 2. The distribution of the number of short-range contacts in the generated dataset
is compared to that in the training dataset via BD. The progression of BD’s as a
function of the number of training epochs for a specific model is tracked to show its
impact on the quality of the generated dataset. This comparison is conducted separately
for the models trained on the FL=16, FL=64, and FL=128 datasets.

plotted in Fig. 2 for each model (on each training dataset) over epochs 10, 20, 30,
and 50. Fig. 2 shows that WGAN’s generated distribution deviates significantly
from the training distribution for the FL=16 setting and does not improve with
further training. The model improves with further training on the longer chains
(FL=64 and FL=128). While GraphVAE and GraphRNN are close in perfor-
mance, GraphVAE outperforms GraphRNN for the longer chains. There is an
increase after 30 epochs on FL=128, which suggests local instability. Altogether,
the results suggest that GraphVAE is very effective at learning and reproducing
the patterns of short-range contacts as in the training dataset. The EMD-based
analysis confirms this (data not shown). We also show the actual distributions

WGAN GraphRNN GraphVAE

Fig. 3. The distribution of the number of short-range contacts corresponding to the
generated dataset for each of the models is shown here. The visualization is limited to
models trained on the FL=64 dataset and arrested at 50 training epochs.

of short-range contacts over the training and generated dataset. The visualiza-
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tion in Fig. 3 is limited to models trained on the FL=64 dataset and arrested at
50 training epochs. Fig. 3 visually confirms the quantitative, rigorous analysis
above, showing that the distribution of short-range contacts over the generated
dataset is closer to the training distribution for GraphVAE, followed then by
GraphRNN and by WGAN.

We repeat the above analysis but now for long-range contacts, again show-
ing only BD values. Fig. 4 shows that WGAN is not the best-performing model
at any of the three training regimes. On FL=16 and FL = 64, GraphVAE and
GraphRNN performs similarly. On FL=128, the performance of GraphVAE im-
proves steadily over training epochs. The experiments suggest that GraphRNN
is the more stable, followed closely by GraphVAE. The EMD-based analysis and
the visualization of distributions confirm these observations (data not shown).

FL=16 FL=64 FL=128

Fig. 4. The distribution of the number of long-range contacts in the generated dataset is
compared to that in the training dataset via BD. The progression of BD’s as a function
of the number of training epochs for a specific model is tracked here to show its impact
on the quality of the generated dataset. This comparison is conducted separately, for
the models trained on the FL=16, FL=64, and FL=128 datasets.

3.3 Evaluation of Models on Variable-Length Chains

The rest of the experiments compare GraphRNN to vGraphVAE. We fist eval-
uate the presence of a backbone. Table 2 reports the average of the normal-
ized BackboneScore over all contact graphs in the generated dataset (x 100%).
A dynamic view is provided over training epochs. Table 2 clearly shows that
GraphRNN fails to produce even 50% of the backbone on average, whereas
vGraphVAE produces over 95% of the backbone on average.

Table 2. The table reports the average of the generated distribution of normalized
BackboneScores (x 100%) from each model arrested at 10, 20, 30, and 50 epochs.

Epochs
Model 10 20 30 50
GraphRNN 42.67 40.03 36.87 39.77
vGraphVAE 98.36 95.04 97.56 92.68

The distribution of normalized short-range contacts values over the training
and generated dataset is compared for each model via BD and EMD and reported



Representation Learning for Protein Conformation Sampling 9

in the top panel of Fig. 5 over the training epochs. The bottom panel shows the
actual distributions. Fig. 5 clearly shows that vGraphVAE achieves the best
performance (lowest BD and EMD values) over all training epochs, as well.

The distribution of normalized long-range values over the training and gen-
erated dataset is compared for each model via BD and EMD and reported in the
top panel of Fig. 6 over the training epochs. The bottom panel shows the actual
distributions. The top panel of Fig. 6 shows that both models achieve low BD
and EMD values. vGraphVAE achieves lower EMD values. The bottom panel
shows a better overlap between the input and generated distributions, which
EMD seems to capture better.

Finally, we visualize some contact graphs selected at random over those gen-
erated by GraphRNN and vGraphVAE. Fig. 7 draws them as contact maps,
with bright yellow indicating edge/contact and dark blue indicating absence.
The drawn contact maps are of high quality, with backbone, short-range, and
long-range contacts, but those obtained by vGraphVAE are of higher quality.
The visualization lends additional support to the conclusion that vGraphVAE
is more effective than GraphRNN.

4 Conclusion

This paper shows that the contact graph formalization is a very useful modality
that advances representation learning for protein tertiary structures. A detailed
comparison that pitches convolution-based to graph-based models, considers dif-
ferent architectures, such as GANs, RNNs, and VAEs, and evaluates the quality
of protein tertiary structures along several informative metrics, suggests that
the GraphVAE architecture is a good step towards generative models for protein
structure generation. The ability to learn directly from experimental structures
of proteins of varying lengths deposited in databases, such as the PDB, further
advances the state of the art.

While the focus of this paper has been on improving the quality of gen-
erated structures, our end goal is to advance deep generative models, so that
they can give us a complete and detailed view of the structure space of a given
protein molecule. Further directions of work will include making such models
sequence-specific. In this paper, we utilize the highly informative contact graph
representation of a tertiary structure. Many algorithms exist to reconstruct ter-
tiary structures from contact maps, and a natural direction is to expand our
work to end-to-end models that readily provide tertiary structures.
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GraphRNN vGraphVAE

Fig. 5. Top panel: the distribution of normalized short-range contacts over the training
and generated dataset are compared via (left) BD and (right) EMD. Bottom panel: the
distributions are shown, superimposing the generated over the training distribution.

GraphRNN vGraphVAE

Fig. 6. Top panel: the distribution of normalized long-range contacts over the training
and generated dataset are compared via (left) BD and (right) EMD. Bottom panel: the
distributions are shown, superimposing the generated over the training distribution.



Representation Learning for Protein Conformation Sampling 11

GraphRNN vGraphVAE

Fig. 7. Contact graphs are selected at random over generated data. Bright yellow
indicates the presence of an edge/contact, and dark blue indicates the absence.
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