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ABSTRACT

Process technology scaling and hardware architecture specializa-
tion have vastly increased the need for chip design space explo-
ration, while optimizing for power, performance, and area. Hammer
is an open-source, reusable physical design (PD) flow generator
that reduces design effort and increases portability by enforcing a
separation among design-, tool-, and process technology-specific
concerns with a modular software architecture. In this work, we
outline Hammer’s structure and highlight recent extensions that
support both physical chip designers and hardware architects eval-
uating the merit and feasibility of their proposed designs. This is
accomplished through the integration of more tools and process
technologies—some open-source—and the designer-driven devel-
opment of flow step generators. An evaluation of chip designs in
process technologies ranging from 130nm down to 12nm across a se-
ries of RISC-V-based chips shows how Hammer-generated flows are
reusable and enable efficient optimization for diverse applications.

CCS CONCEPTS

« Hardware — VLSI system specification and constraints;
Physical design (EDA); - Software and its engineering —
Reusability; Abstraction, modeling and modularity; Open
source model.

1 INTRODUCTION

Demand for custom silicon has skyrocketed with the proliferation
of domains including IoT, AR/VR, and autonomous vehicles. Yet,
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non-recurring engineering (NRE) costs have exploded with every
generation of chips due to technological advancements (e.g., transis-
tor scaling, specialized architectures, and design heterogeneity) and
global forces (e.g., trade restrictions and manufacturing shortages).
It is therefore important for the semiconductor industry to adapt
to these challenges by increasing the productivity of PD flows.

Towards this goal, we proposed Hammer [12], an open-source
PD flow generator which demonstrated extensive flow reuse and
large reductions in design effort. Since then, Hammer has focused
on enhancing architectural design space exploration (DSE), teach-
ing PD in more university courses, and encouraging development
by its user base. Hammer’s recent integration into the Chipyard
framework [2] and expanded plugin library (Table 1) now enable
full-stack implementation of RISC-V SoCs. Due to its reusability,
Hammer has been used in at least 11 fabricated chips, 4 student
courses, and numerous hardware architecture explorations, some
of which are evaluated in this work in Sections 3 & 4.

2 OVERVIEW

Hammer abstracts away the intricacies of PD flows into a generic
form compatible with many computer-aided design (CAD) tools and
process technologies. It is not itself a CAD tool; rather, it is a Python
framework that invokes underlying tools with necessary options
and generated Tcl scripts to perform actions such as logic synthesis
(Fig. 1). Hammer lowers the barriers to learning and executing
PD flows, while encouraging flow reusability across all kinds of
hardware designs. To achieve this, Hammer’s design principles are:

(1) Separation of concerns: Hammer decouples concerns spe-
cific to tools, technologies, logical design, and physical design
from the flow construction itself.

(2) Standardization: Hammer codifies a data interchange schema
through which design constraints, flow options, and database
files can be specified and propagated.

(3) Modularity: Hammer defines abstractions that are imple-
mented by interchangeable and shareable plugins for specific
tools and process technologies.
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Figure 1: Hammer software architecture

(4) Incremental adoption: Hammer flows can mix reusable
and custom solutions (e.g. from foundries or tool vendors)
as needed to accelerate design and implementation.

These principles ensure that PD intent is encoded in a format that
is understandable by other users and applicable to other designs,
making Hammer-generated flows increasingly reusable over time.
Key components in Hammer’s software architecture (Fig. 1) are:

(1) Hammer intermediate representation (IR) is the stan-
dard configuration data interchange schema. It is serializable
in YAML for human readability and JSON for programmatic
generation. It uses metaprogramming, wherein snippets
of IR can use and modify other snippets, transclude files, and
much more. Notably, these features expose Hammer IR as an
annotation format for higher-level generators (see Sec. 6).

(2) Hammer tool & tech plugins implement Hammer’s ab-
stractions that encapsulate CAD tool- and process tech-
specific concerns. Plugins inherit common methods from
core Hammer classes and supply default Hammer IR config-
urations. Tool plugins define PD flow steps and methods for
generating tool-specific Tcl based on design configurations.
Tech plugins enumerate PDK source files and also supply
default IR. All supported plugins (Table 1) are interoperable,
but note that some tech plugins are proprietary.

(3) Hammer hooks are Python methods that replace, modify,
or add to a tool plugin’s default flow steps. Users write hooks
to inject Tcl to customize the flow as required by a design.
Tech plugins may also specify hooks to automatically include
commands needed by a given process technology. Hooks pro-
mote agile Hammer development, since users write them to
incrementally prototype features, before contributing them
to plugins and/or core Hammer for reuse.

(4) The Hammer driver is the command-line and Python in-
terface through which a user orchestrates their flow graph.
After the user selects plugins, specifies flow steps to execute,
and inserts custom hooks, Hammer generates a set of build
dependencies for the entire flow graph as a Make fragment.
In a hierarchical flow, Hammer builds a flow graph for each
submodule in the physical hierarchy and links them together
in the correct order of assembly up to the top level.
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Table 1: Supported tool (left) and tech (right) plugins

Action Tool ‘ ‘ Foundry Node

Logic GenusC, Yosys, A 16nm FinFET
Synthesis  Vivado®, DCS 28nm Planar
Place and Innovus®, VivadoX, B 16nm FinFET
Route OpenROAD [1], ICCS 22nm FinFET
CalibreM, ICVS, 12nm FinFET
DRC/LVS Magic/Netgen ¢ 14nm FinFET
Simulation VCSS, Xcelium® | D 28nm SOI
Power, c c . ASAP7
EM/IR Joules™, Voltus Education FreePDK45
LEC Conformal®, Magic ‘ ‘ Skywater 130
CCadence SSynopsys M Siemens Mentor X Xilinx

Additional high-level APIs enable users to specify complex design-
specific features with simple Hammer IR inputs. Boundary timing
constraints and power domains are generic inputs that Hammer
translates into standard constraint file formats like SDC and CPF.
Power meshes can be generated from simple target parameters
such as track allocation and density. Hammer combines these with
stackup information from the selected tech plugin to automati-
cally calculate legal widths and pitches. These APIs are useful for
reducing startup overhead and getting sane early physical feedback.

3 ACCELERATING ARCHITECTURE DSE

With deep transistor scaling and compute architecture specializa-
tion, it is increasingly important to evaluate the physical feasibility
and performance of an architecture at the exploration stage of
the design process. Hammer speeds up the creation of custom PD
flows, enabling architects to perform more accurate post-place-
and-route (P&R) analysis when they may have previously reported
post-synthesis metrics only. Below, we study cases of hardware
architects with no prior PD experience using Hammer to efficiently
evaluate design spaces in multiple process technologies.

3.1 Gemmini Deep-Learning Accelerator

The Gemmini systolic array generator [5] used a Hammer-generated
flow for simulation, synthesis, P&R, and power analysis. The de-
signers explored various design points across CPU, systolic array,
and scratchpad memory design parameters. Hammer enabled them
to rapidly experiment with different floorplans, clock frequencies,
and other physical parameters to optimize for timing, area, power
density, and energy consumption.

Some of Gemmini’s architectural features were constrained or
removed as a result of P&R feedback. For instance, routing conges-
tion and power limited systolic array dataflow reconfigurability and
informed the insertion of an arbiter between the L2 cache and DMA
in order to share memory ports. RTL simulation and physically-
aware synthesis—where most architects stop—did not reveal these
problems and post-synthesis power estimates were pessimistic by
up to 2x. Hammer’s flow generation capabilities and IR interface
streamlined this exploration by designers with little PD experience.
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Gemmini instances were hierarchically placed inside a many-
core SoC in Foundry A’s 16nm node (HugeFlyingSoC in Table 2)
and a heterogenous SoC in Foundry B’s 22nm node [6]. Another
version of Gemmini containing both floating-point and integer pro-
cessing elements was included in an SoC in Foundry C’s 12nm node
(MythicChip in Table 2). The interchangeability of Hammer tech
plugins meant the Gemmini designers could efficiently optimize
architectural parameters using PD feedback from multiple process
technologies.

3.2 Hyperdimensional Computing

An approach to hyperdimensional computing (HDC) is proposed
in [9], which drastically reduces power and area by generating
hypervectors (HVs) instead of storing them in memory [8]. A Ham-
mer flow in Foundry A’s 28nm node was used to perform rapid
exploration of the following design spaces:

HV memory: The designers needed to compare HV generation
against traditional methods of storing HVs in memory arrays such
as SRAMs. Having memory compilation and post-P&R power anal-
ysis in a unified flow tool enabled rapid comparison between many
memory configurations, resulting in an up to 87.2% reduction in
area for HV memory.

Vector folding: HDC presents opportunities to trade off leak-
age power and fanout with dynamic power, area, and latency by
folding (i.e. serializing) the datapath. This design space can be ex-
plored by changing PD parameters such as floorplans, clocks, supply
voltages, and cell threshold voltages. These parameters are stan-
dardized in Hammer IR and encapsulated separately from tool- and
tech-specific concerns, hence the Hammer inputs were trivial to
programatically generate. This optimization process reduced area
by up to 88.6% and leakage power by over two orders of magnitude.

Architecture comparison: A competing design based on a
support vector machine (SVM) algorithm was also pushed through
the same Hammer PD and analysis flow, providing a proper apples-
to-apples (i.e. same tools, process) comparison and lending credence
to the 9.5 better energy efficiency claims of HDC over SVM.

Impressively, a single part-time (8 hrs/week) undergraduate stu-
dent performed most of the DSE over a few months and reduced the
headline energy efficiency metric by 93.9% vs. an existing design.

4 FLOW REUSE ACROSS DIVERSE CHIPS

Hammer has been used to tape out a diverse set of chips since
those evaluated in [12]. Several noteworthy chips are compared
in chronological order in Table 2 and Fig. 2. The most revealing
metrics are 1) the portion of unique lines of code (LoC) in Fig. 2
(i-e. design-specific Hammer IR, hooks, and other scripts) and 2)
the person-months spent on PD in Table 2, which is the number
of designers multiplied by the equivalent number of months work-
ing full-time on PD. The drop in both metrics over time despite
little application and floorplan commonality (Fig. 3) demonstrates
Hammer’s increasing reusability. Over the same period, Hammer’s
codebase—excluding proprietary tech plugins—grew by 3x from
11,000 to 33,000 lines. Several clusters of chips designed simultane-
ously demonstrate effective reuse:

Eagle, HugeFlyingSoC, and NavRx: HugeFlyingSoC is an
evolution of Eagle and was taped out together with the NavRx chip
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Figure 3: Diversity of Hammer-generated chips

one year later. Between Eagle and HugeFlyingSoC/NavRx, 16,000
lines of reusable code were added to the Foundry A 16nm plugin
and Hammer, demonstrating how PD intent from Eagle was made
generic for subsequent chips.

WaterSerpent and MythicChip: The WaterSerpent chip was
taped out in Foundry B’s 22nm and drove development of the IC
Validator plugin. It was followed by MythicChip, which started
in Foundry B’s 22nm node before switching to Foundry C’s 14nm
node and finally its 12nm node. This underscores how users drive
Hammer plugin development and switching foundries and nodes is
made seamless by plugin interchangeability. Both chips also utilized
the hierarchical flow developed for the Eagle chip and were built
primarily by one graduate student.

MiniloT and HDBinaryCore: The MiniloT chip was designed
by undergraduates as part of a course and the HDBinaryCore chip
was designed by a single graduate student with little prior experi-
ence in PD. Hammer was an ideal tool in these chip designs because
flows are easy to compose and already encode PD experience from
advanced Hammer users. Again, due to plugin interchangeability,
MiniloT was taped out in SKY130 only a few weeks later.

5 RELATED WORK
5.1 Vendor/Foundry Reference Flows

Tool vendors and foundries provide reference flows for tools and
process technologies, which typically consist of Tcl template scripts,
but are not modular and require customization for any given design.
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Table 2: Comparison of Chips using Hammer
Eagle [10] HugeFlyingSoC NavRx WaterSerpent MythicChip MiniloT HDBinaryCore
Description 9-core 22-core RISC-V  GPS receiver MU-MIMO RISC-V SoC Bluetooth SoC ~ HDC processor
RISC-V SoC  SoC SoC baseband SoC  for ML
Foundry node A 16nm A 16nm A 16nm B 22nm C 12nm A 28nm, SKY130 A 28nm
Die Area (mm?) 24 56.3 24 32 16 0.33,7.6 4
Signoff frequency 1.05 GHz 1.05 GHz 500 MHz 2 GHz 1.1 GHz 50 MHz —
Hierarchy levels 3 3 1 3 2 1 1
Person-months 22 10 6 5 4 8,1 8

They also lack a framework for applying relevant customizations to
other designs, limiting reusability. In contrast, Hammer facilitates
initial customization via hooks, which can be made reusable by
integration into plugins in a design-agnostic way. Reference flows
also do not include safety checks such as input checking, which
can cause unexpected failures. Open-source flows like qFlow [4]
and OpenLane [11] avoid some of these issues but are not designed
to be modular and portable to other tools and technologies.

5.2 SiliconCompiler and mflowgen

SiliconCompiler and mflowgen [3] are the most comparable open-
source flow tools to Hammer. SiliconCompiler’s strengths are in
its API for its data schema and flow graph, parallelized cloud com-
pute, and metrics extraction. However, its data schema does not
enforce a separation of concerns and does not codify design inputs
as clearly as Hammer IR, which limits flow reusability between
designs. mflowgen’s strengths are in its flow graph management
and modularity via tool step and PDK nodes. However, the modu-
larity is so fine-grained that there is no method to inject common
functionality between nodes of a similar flow step in different tools.
Both tools do not currently have features analogous to Hammer
IR’s metaprogramming or Hammer hooks.

6 FUTURE WORK

Hammer auto-generates a full flowgraph as Make dependencies, but
future versions will include an interactive flow management inter-
face and robust metrics extraction and post-processing to further
enhance DSE. Hammer IR’s metaprogramming, while powerful,
should be traceable. Keys will be annotated with where they are
set, modified, and consumed, and then checked for validity. Ham-
mer will continue adding support for more open-source tools and
process technologies, additional PD analysis tools (e.g. aging and
manufacturability), and other features such as ECO flows for late
design closure. Continuous integration with sample designs will
be setup to ensure that plugins remain compatible across all tool
and PDK versions. Hammer will continue to deepen its integration
within Chipyard, including compiling physical design annotations
from Chisel generators, such as abstract floorplan constraints [7].

7 CONCLUSION

In this work, we demonstrate how Hammer helps hardware archi-
tects achieve design goals beyond what simulation and synthesis
alone can inform, while vastly reducing the PD effort when tap-
ing out large SoCs in a variety of process technologies. Hammer’s

design principles of separation of concerns, standardization, modu-
larity, and incremental adoption combined with open-source avail-
ability ensure that it can continuously be improved and maintained
by its user base. We hope that this work will enhance a growing
ecosystem of agile hardware generators that can lower the NRE
cost of implementing increasingly specialized hardware.
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