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Abstract
This paper studies how B+ -tree could take full advantage of
modern storage hardware with built-in transparent compres-
sion. Recent years witnessed significant interest in applying
log-structured merge tree (LSM-tree) as an alternative to B+ -
tree, driven by the widely accepted belief that LSM-tree has
distinct advantages in terms of storage cost and write amplifi-
cation. This paper aims to revisit this belief upon the arrival
of storage hardware with built-in transparent compression.
Advanced storage appliances and emerging computational
storage drives perform hardware-based lossless data compres-
sion, transparent to OS and user applications. Beyond straight-
forwardly reducing the storage cost gap between B+ -tree and
LSM-tree, such storage hardware creates new opportunities to
re-think the implementation of B+ -tree. This paper presents
three simple design techniques that can leverage such modern
storage hardware to significantly reduce the B+ -tree write
amplification. Experiments on a commercial storage drive
with built-in transparent compression show that the proposed
design techniques can reduce the B+ -tree write amplification
by over 10× . Compared with RocksDB (a key-value store
built upon LSM-tree), the enhanced B+ -tree implementation
can achieve similar or even smaller write amplification.

1 Introduction

This paper investigates the implementation of B+ -tree upon a
growing family of data storage hardware that internally carry
out hardware-based lossless data compression, transparent
to the host OS and user applications. Modern all-flash array
products (e.g., Dell EMC PowerMAX [9], HPE Nimble Stor-
age [14], and Pure Storage FlashBlade [28]) always come with
the built-in hardware-based transparent compression capabil-
ity. Commercial solid-state storage drives with built-in trans-
parent compression are emerging (e.g., computational storage
drive from ScaleFlux [31] and Nytro SSD from Seagate [13]).
Moreover, Cloud vendors have started to integrate hardware-
based compression capability into their storage infrastructure,

e.g., Microsoft Corsia [7] and emerging DPU (data processing
unit) [5], leading to imminent arrival of cloud-based storage
hardware with built-in transparent compression. With dedi-
cated hardware compression engines, such storage hardware
support high-throughput data (de)compression at very low
latency and zero host CPU overhead.
As the most widely used indexing data structure, B+ -

tree [12] powers almost all the relational database manage-
ment systems (RDBMs) today. Recently, log-structured merge
tree (LSM-tree) [25] has attracted significant interest as a con-
tender to B+ -tree, mainly because its data structure could
enable better storage space usage efficiency and lower write
amplification. The arrival of storage hardware with built-in
transparent compression could straightforwardly reduce or
even eliminate the storage cost gap between B+ -tree and LSM-
tree. This paper shows that such storage hardware can also be
leveraged to significantly reduce B+ -tree write amplification.
The key is to exploit the fact that in-storage transparent com-
pression allows data management software employ sparse
data structure without sacrificing the true physical storage
cost. When running on such storage hardware, data manage-
ment software could leave 4KB LBA (logical block address)
blocks partially filled or even completely empty, without wast-
ing the physical storage space usage. Intuitively, the feasibility
of employing sparse data structure creates a new spectrum of
design space for innovating data management systems [36].
This paper shows that B+ -tree could employ sparse data

structure enabled by in-storage transparent compression to
largely reduce its write amplification. We note that write am-
plification is measured based on the amount of data being
written to the physical storage media (i.e., after in-storage
compression), other than the amount of data being written by
the host (i.e., before in-storage compression). In particular,
this paper presents three simple yet effective design tech-
niques: (1) deterministic page shadowing that can ensure
B+ -tree page update atomicity without incurring extra write
overhead, (2) localized page modification logging that can
reduce the write amplification caused by the mismatch be-
tween the B+ -tree page size and the size of data modification,
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and (3) sparse redo logging that can reduce the write am-
plification caused by B+ -tree redo logging (or write-ahead
logging). With significantly reduced write amplification, B+ -
tree can support much higher insert/update throughput, and
more readily accommodate low-cost, low-endurance NAND
flash memory (e.g., QLC NAND flash memory).
Accordingly, we implemented a B+ -tree (called B!-tree)

that incorporates the three design techniques. We further com-
pared it with LSM-tree (RocksDB [30]) and normal B+ -tree
(WiredTiger [33]). We carried out experiments on a commer-
cial computational storage drive with built-in transparent com-
pression [31]. The results well demonstrate the effectiveness
of the proposed design techniques on reducing the B+ -tree
write amplification. For example, under random write work-
loads with 128B per record, RocksDB and WiredTiger (with
page size of 8KB) have write amplification of 14 and 64, re-
spectively, while our B!-tree (with 8KB page size) has a write
amplification of only 8, representing 43% and 88% reduc-
tion compared with RocksDB and WiredTiger, respectively.
The smaller write amplification can directly translate into a
higher write throughput. For example, our results show that,
under random write workloads, B!-tree can achieve about 85K
TPS (transactions per second), while the TPS of RocksDB and
WiredTiger is 71K and 28K, respectively. Moreover, we note
that the proposed design techniques mainly confine within
the I/O module of B+ -tree and are largely orthogonal to the
other modules. Hence, it is relatively easy to incorporate these
techniques into existing B+ -tree implementations. For exam-
ple, upon a baseline B+ -tree implementation, we only modi-
fied/added about 1,200 LoC to realize the B+ -tree.

2 Background

2.1 B+ -tree Data Compression
B+ -tree manages its data storage in the unit of page. To re-
duce data storage cost, B+ -tree could apply block compres-
sion algorithms (e.g., lz4 [23], zlib [37], and ZSTD [38]) to
compress each on-storage page (e.g., the page compression
feature in MySQL and MongoDB/WiredTiger). In addition to
the obvious CPU overhead, B+ -tree page compression suffers
from compression ratio loss due to the 4KB-alignment con-
straint, which can be explained as follows: Modern storage
devices serve I/O requests in the unit of 4KB LBA blocks. As
a result, each B+ -tree page (regardless of compressed or un-
compressed) must entirely occupy one or multiple 4kB LBA
blocks on the storage device (i.e., no two pages could share
one LBA block). When B+ -tree applies page compression,
the 4KB-alignment constraint could incur noticeable storage
space waste. This can be illustrated in Fig. 1: Assume one
16KB B+ -tree page is compressed to 5KB; the compressed
page must occupy two LBA blocks (i.e., 8KB) on the stor-
age device, wasting 3KB storage space. Therefore, due to the
CPU overhead and storage space waste caused by the 4KB-

alignment constraint, B+ -tree page compression is not widely
used in production environment. Moreover, it is well-known
that, under workloads with random writes, B+ -tree pages tend
to be only 50%∼ 80% full [12]. Hence, B+ -tree typically has
a low storage space usage efficiency. In contrast, LSM-tree
has a much more compact data structure and is free from
the 4KB-alignment constraint in case of compression, which
leads to a higher storage space usage efficiency than B+ -tree.

5KB

16KB Page5KB
Compression

4kB block 4kB block

Write to storage 3KB space wasted

Figure 1: An example to show the storage space waste caused
by 4KB-alignment constraint for B+ -tree page compression.

2.2 In-Storage Transparent Compression
Fig. 2 illustrates a computational storage drive (CSD) with
built-in transparent compression: Inside the CSD controller
chip, compression and decompression are carried out directly
on the I/O path by the hardware engine, and the FTL (flash
translation layer) manages the mapping of all the variable-
length compressed data blocks. Since the compression is
carried out inside the storage drive, it is not subject to 4KB-
alignment constraint (i.e., all the compressed blocks are
packed tightly in flash memory without any space waste).

Flash
Control

NAND 
Flash

Controller

Compression & 
decompression

HW → ←SW

User Apps 
& OS

Computational Storage Drive (CSD)

Figure 2: Illustration of a CSD with transparent compression.

As illustrated in Fig. 3, storage hardware with built-in trans-
parent compression has the following two properties: (a) The
storage hardware can expose an LBA space that is much larger
than its internal physical storage capacity. This is conceptually
similar to the thin provisioning. (b) Since certain data patterns
(e.g., all-zero or all-one) can be highly compressed, we can
leave one 4KB LBA partially filled with valid data without
wasting the physical storage space. These two properties de-
couple the logical storage space utilization efficiency from
the physical storage space utilization efficiency. This allows
data management software to employ sparse data structure in
the logical storage space without sacrificing the true physical
storage cost, which creates a new spectrum of design space
for data management systems [36].
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FTL with transparent compression

NAND Flash (e.g., 4TB)

Exposed LBA space (e.g., 32TB)

SSD

Valid user data 0’s

4KB

Transparent compression

Compressed data

(a)

(b)

Figure 3: Illustration of the decoupled logical and physical
storage space utilization efficiency enabled by storage hard-
ware with built-in transparent compression.

2.3 B+ -tree vs. LSM-tree
LSM-tree has recently received significant interest (e.g.,
see [3, 15,21,22,29,35]) because of its advantages in terms
of storage space usage and write amplification. If B+ tree has
a very large cache memory (e.g., enough to hold the entire
dataset) and uses very large redo log files, its write amplifica-
tion could be much smaller than that of LSM-tree. Moreover,
under large record size (e.g., 1KB and above), B+ tree tend
to have smaller write amplification than LSM-tree. Hence,
this work focuses on the scenarios where dataset is far bigger
than the cache memory capacity and meanwhile the record
size tends to be small (e.g., few hundred bytes or less), un-
der which B+ tree tends to suffer from much higher write
amplification than LSM-tree.
For the purpose of demonstration, we use RocksDB and

WiredTiger as representatives of LSM-tree and B+ -tree, and
carried out experiments on a 3.2TB storage drive with built-in
transparent compression from ScaleFlux [31]. We run ran-
dom write-only workloads with 128-byte record size over a
150GB dataset. For WiredTiger, we set its B+ -tree leaf page
size as 8KB. Table 1 lists both the logical storage usage on
the LBA space (i.e., before in-storage compression) and phys-
ical storage usage (i.e., after in-storage compression). Since
LSM-tree has a more compact data structure, RocksDB has
a smaller logical storage space usage than WiredTiger (i.e.,
218GB vs. 280GB). Nevertheless, after in-storage transpar-
ent compression, WiredTiger consumes even less physical
storage space than RocksDB, most likely due to the space am-
plification of LSM-tree. Fig. 4 shows the write amplification
under different number of client threads. We measured the
write amplification as the ratio between the volume of post-
compression data being physically written to NAND flash
memory inside the storage drive and the total amount of data
written into database. The results show that RocksDB consis-
tently has about 4× less write amplification than WiredTiger.

Table 1: Storage space usage comparison.
Storage space usage

Logical Physical
RocksDB 218GB 129GB
WiredTiger 280GB 104GB
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Figure 4: Measured write amplification.

The above results suggest that, with in-storage transparent
compression, we could close the physical storage cost gap be-
tween B+ -tree and LSM-tree, while LSM-tree still maintains
its significant advantage in terms of write amplification. The
goal of this work is to further close the write amplification
gap by appropriately modifying the B+ -tree implementation.

2.4 B+ -tree Write Amplification
Under current I/O interface protocols, storage devices only
guarantee write atomicity over each 4KB LBA block. As a
result, when the page size is larger than 4KB, B+ -tree must
on its own ensure page write atomicity, which can be real-
ized via two different strategies: (i) In-place page update:
Although the convenient in-place update strategy simplifies
the page storage management, B+ -tree must accordingly use
page journaling (e.g., double-write buffer in MySQL) to sur-
vive partial page write failures, leading to about 2× higher
write volume. (ii) Copy-on-write (or shadowing) page update:
Although copy-on-write obviates the use of page journaling
and readily supports snapshot, it complicates the page stor-
age management. Meanwhile B+ -tree must employ certain
mechanisms (e.g., page mapping table) to keep track of the
page location, which still incurs extra storage write traffic.

Accordingly, we could classify B+ -tree storage write traffic
into three categories: (1) logging writes that ensure transaction
atomicity and isolation, (2) page writes that persist in-memory
dirty B+ -tree pages to storage devices, and (3) extra writes
that are induced by ensuring page write atomicity (e.g., page
journaling in the case of in-place updates, or page mapping ta-
ble persist in the case of page shadowing). LetWlog,Wpg, and
We denote the total data write amount of these three categories,
andWusr denote the total amount of user data written into the
B+ -tree. We can express the B+ -tree write amplification as

WA=
Wlog

Wusr
+

Wpg

Wusr
+

We

Wusr
=WAlog + WApg + WAe. (1)

USENIX Association 20th USENIX Conference on File and Storage Technologies    71



When B+ -tree runs on storage hardware with built-in transpar-
ent compression, let αlog, αpg, and αe denote the average com-
pression ratio of the three categories of writes. Here we calcu-
late the compression ratio by dividing the post-compression
data volume with the before-compression data volume. Hence
the compression ratio always falls into (0,1], and a higher
data compressibility leads to a smaller compression ratio.
Therefore, the overall B+ -tree write amplification becomes

WA= αlog ·WAlog + αpg ·WApg + αe ·WAe. (2)

3 Proposed Design Techniques

According to Eq. (2), we can reduce the B+ -tree write am-
plification by either reducingWAlog,WApg, and/orWAe (i.e.,
reducing the B+ -tree write data volumes), or reducing αlog,
αpg, and/or αe (i.e., improving the write data compressibil-
ity). By applying sparse data structure enabled by in-storage
transparent compression, this section presents three design
techniques to reduce the B+ -tree write amplification: (1) de-
terministic page shadowing that eliminatesWAe, (2) localized
page modification logging that reduces bothWApg and αpg,
and (3) sparse redo logging that reduces αlog.

3.1 Deterministic Page Shadowing
In order to eliminateWAe, B+ -tree should employ the princi-
ple of page shadowing. Nevertheless, in conventional imple-
mentation of page shadowing, the new on-storage location of
each updated B+ -tree page is dynamically determined during
the runtime and must be recorded/persisted, leading to extra
write overhead and management complexity. To eliminate
the extra write overhead and meanwhile simplify the storage
management, we propose a technique called deterministic
page shadowing as illustrated in Fig. 5: Let lpg denote the

One page

Slot-0
Slot-1

Memory

Storage

Write @ t1 TRIM @ t2 Write @ t3 TRIM @ t4 t1<t2<t3<t4

Figure 5: Illustration of deterministic page shadowing: two
slots at the fixed location on the logical storage LBA space
alternatively serve the memory-to-storage flush of one page.

B+ -tree page size (e.g., 8KB or 16KB). For each page, B+ -
tree allocates 2lpg amount of logical storage area on the LBA
space and partitions it into two size-lpg slots (slot-0 and slot-
1). For each B+ -tree page, the two slots at the fixed location
on the logical storage space serve memory-to-storage page
flush alternatively in the ping-pong manner. Once a page has
been flushed from memory into one slot, B+ -tree will issue a

TRIM command over the other slot. This is conceptually the
same as the conventional page shadowing with the difference
that the location of the shadow page is now fixed. Although
B+ -tree occupies 2× larger logical storage space, only half
of the storage space store valid data and the other half are
trimmed (hence do not consume physical flash memory stor-
age space). As pointed out above in Section 2.2, storage hard-
ware with built-in transparent compression could expose a
logical LBA storage space that is much larger than its internal
physical storage capacity. Hence, such storage hardware can
readily support the deterministic page shadowing. We note
that deterministic page shadowing solely aims at ensuring
page write atomicity without extra write overhead. To support
multi-version concurrency control (MVCC), B+ -tree could
use conventional methods such as undo logging.

With the proposed deterministic page shadowing, B+ -tree
uses an in-memory bitmap to keep track of the valid slot for
each page. Compared with page table being used in conven-
tional page shadowing, bitmap consumes much less mem-
ory resource. Moreover, B+ -tree does not need to persist the
bitmap. In case of system re-start, B+ -tree can gradually re-
build the in-memory bitmap: When B+ -tree loads one page
for the first time, it reads both slots from the storage device.
For the trimmed slot, storage device simply returns an all-
zero block, based on which B+ -tree can easily identify the
valid slot. When B+ -tree reads both slots of a page, the stor-
age device internally only fetches the valid (i.e., untrimmed)
slot from the physical storage media. Hence, compared with
reading one slot, reading both slots will only incur more data
transfer through the PCIe interface, without any extra read
latency inside the storage device. This should not be an issue
as the upcoming PCIe Gen5 will support 16GB/s∼ 32GB/s,
which is significantly larger than the back-end flash memory
access bandwidth inside storage devices and hence can read-
ily accommodate the extra data transfer. In case of system
crash, B+ -tree needs to handle the following two possible
scenarios: (i) A slot is partially written before the system
crash: B+ -tree can easily identify the partially written slot by
verifying the page checksum. (ii) A slot has been successfully
written but the other slot has not been trimmed before the
system crash: B+ -tree can identify the valid slot by compar-
ing the page LSN (logical sequence number) of the pages on
both slots. Since it is not necessary to persist the in-memory
bitmap, deterministic page shadowing eliminates the αe ·WAe
component from the total B+ -tree write amplification.

3.2 Localized Page Modification Logging
The second technique aims at reducing both αpg andWApg
components in Eq. (2). It is motivated by a simple observa-
tion: For a B+ -tree page, let ∆ denote the difference between
its in-memory image and on-storage image. If the difference
is significantly smaller than the page size (i.e., |∆| << lpg),
we can largely reduce the write amplification by logging the
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page modification ∆, instead of writing the entire in-memory
page image, to the storage device. This is conceptually the
same as the similarity-based data deduplication [2] and delta
encoding [24]. Unfortunately, when B+ -tree runs on normal
storage devices without built-in transparent compression, this
approach is not practical due to significant operational over-
head: Given the 4KB block IO interface, we must coalesce
multiple ∆’s from different pages into one 4KB LBA block in
order to materialize the write amplification reduction. To en-
hance the gain, we should apply the page modification logging
multiple times for each page, before resetting this process to
construct the up-to-date on-storage page image. Accordingly,
multiple ∆’s associated with the same page will spread over
multiple 4KB blocks on the storage device, which however
will cause two problems: (1) For each page, B+ -tree must
keep track of all its associated ∆’s and also periodically carry
out garbage collection, leading to a high storage management
complexity. (2) To load a page from storage, B+ -tree has to
read the existing on-storage page image and multiple ∆’s from
multiple non-contiguous 4KB LBA blocks, which leads to
a long page load latency. Therefore, to our best knowledge,
this simple design concept has not been used by real-world
B+ -tree implementations ever reported in the open literature.

Storage hardware with built-in transparent compression for
the first time makes the above simple idea practically viable.
By applying sparse data structure enabled by such storage
hardware, we no longer have to coalesce multiple ∆’s from
different pages into the same 4KB LBA block. Leveraging the
abundant logical storage LBA space, for each B+ -tree page,
we can simply dedicate one 4KB LBA block as its modifi-
cation logging space to store the ∆, which is referred to as
localized page modification logging. Under the 4KB I/O in-
terface, to realize the proposed page modification logging for
each page, B+ -tree writes D= [∆,O] (where O represents an
all-zero vector, and |D| is 4KB) to the 4KB block associated
with the page. Inside the storage device, all the zeros in D
will be compressed away and only the compressed version
of ∆ will be physically stored. Therefore, when serving each
memory-to-storage page flush with page modification log-
ging, we reduceWApg by writing 4KB instead of lpg amount
of data to the logical storage LBA space, and reduce the com-
pression ratio αpg since the written data [∆,O] can be highly
compressed by the storage device. By dedicating one 4KB
modification logging space for each B+ -tree page, we do not
incur extra B+ -tree storage management complexity. The read
amplification is small for two main reasons: (1) B+ -tree al-
ways reads only one additional 4KB LBA block. Moreover,
each page and its associated 4KB logging block contiguously
reside on the LBA space. Hence, in order to read both the page
and its associated 4KB logging block, B+ -tree only issues
a single read request to the storage device. (2) The storage
device internally fetches very small amount of data from flash
memory in order to reconstruct the 4KB LBA block [∆,O].
To practically implement this simple idea, B+ -tree must

carry out two extra operations: (1) To load a page from storage
into memory, B+ -tree must construct the up-to-date page
image based on the on-storage page image and ∆. (2) To
flush a page from memory to storage, B+ -tree must obtain
∆ and accordingly decide whether it should invoke the page
modification logging. To minimize the B+ -tree operational
overhead, we propose the following implementation strategy:
Let Pm and Ps denote the in-memory and on-storage images
of one B+ -tree page. We logically partition Pm and Ps into k
segments, i.e., Pm = [Pm,1, · · · ,Pm,k] and Ps = [Ps,1, · · · ,Ps,k],
and |Pm,i|= |Ps,i| ∀i (i.e., the two segments Pm,i and Ps,i at the
same position have the same size). For each page, B+ -tree
keeps a k-bit vector f = [ f1, · · · , fk], where fi is set to 1 if
Pm,i ̸= Ps,i. Accordingly, we construct ∆ by concatenating all
the in-memory segments Pm,i with fi = 1. During the runtime,
whenever the i-th segment in one in-memory page is modified,
B+ -tree will set its corresponding fi as 1. When B+ -tree
flushes a page from memory to storage, it first calculates the
size of ∆ as

|∆|= ∑
∀i, fi=1

|Pm,i|. (3)

We define a fixed threshold T that is not larger than 4KB.
If |∆| ≤ T , then B+ -tree will invoke the page modification
logging, where ∆ can be obtained through simple memory-
copy operations. We note that the k-bit vector f should be
written together with ∆ into the dedicated 4KB page modifica-
tion logging block. When B+ -tree loads a page from storage
into memory, it fetches lpg + 4KB amount of data from the
storage device, where the size-lpg space contains the current
on-storage page image Ps and the additional 4KB block con-
tains the associated f and ∆. Accordingly, we could easily
construct the up-to-date page image through simple memory-
copy operations. For each B+ -tree page, the size of its ∆ will
monotonically increase as B+ -tree undergoes more write op-
erations. Once |∆| becomes larger than the threshold T , we
will reset the process by flushing the entire up-to-date page
to storage with ∆ = /0 and f being an all-zero vector. We note
that the threshold T configures the trade-off between write
amplification reduction and storage space amplification: As
we increase the value of T , we can less frequently reset the
page modification logging process, leading to a smaller write
amplification. Meanwhile, under a larger value of T , more
page modifications will accumulate in the logging space and
cause a larger storage cost overhead.
Fig. 6 further illustrates this implementation strategy.

Among the all the k segments, the first segment Pm,1 is the
page header and the last segment Pm,k is the page trailer, both
of which can be much smaller than the other segments. Sup-
pose a page update causes modification of the segment Pm,3
and page header/trailer. When B+ -tree evicts this page from
the memory, it constructs the ∆ as [Pm,1,Pm,3,Pm,k], and writes
∆ and the k-bit vector f to the dedicated 4KB block logging
block, which is further compressed inside the storage device.
We note that, if B+ -tree treats in-memory pages as im-
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Pm,1 Pm,2 Pm,3 Pm,k. . .Pm,4 f

f 0

In-memory page image Pm

Ps,1 Ps,2 Ps,3 Ps,k. . .Ps,4 Pm,1 Pm,3 Pm,k

On-storage page image Ps 4KB

Localized page modification logging

Figure 6: Illustration of the localized page modification log-
ging, where the to-be-flushed in-memory page Pm contains
three modified segments Pm,1, Pm,3, and Pm,k.

mutable and uses in-memory delta chaining to keep track of
the in-memory page modification (which is used in the Bw-
tree [19, 20] to achieve latch-free operations), we can most
likely further reduce |∆| and hence improve the effectiveness
of the localized page modification logging on reducing the
write amplification. However, such delta-chaining approach
can largely complicate the B+ -tree implementation [32] and
incur noticeable memory usage overhead. Hence, this work
chooses the above simple intra-page segment-based tracking
approach in our implementation and evaluation.

3.3 Sparse Redo Logging
The third design technique aims at reducing the component
αlog in Eq. (2) (i.e., improving the redo log data compress-
ibility). To maximize the reliability, B+ -tree flushes the redo
log with fsync or fdatasync at every transaction commit. In
order to reduce the log-induced storage overhead, conven-
tional practice always tightly packs log records into the redo
log. As a result, multiple consecutive redo log flushes may
write to the same LBA block on the storage device, especially
when transaction records are significantly smaller than 4KB
and/or the workload concurrency is not very high. This can
be illustrated in Fig. 7: Suppose three transactions TRX-1,

L1 0

TRX-1 commit @ t1

In-memory 
log buffer

LBA x0001

fsync @ t1

L1

TRX-2 commit @ t2

L2 L1

TRX-3 commit @ t3

L3

fsync @ t2 fsync @ t3

LBA x0001 LBA x0001

Transparent compression

NAND Flash memory

. . . . . .

L20

L1 0 L1 L2 0 L1 L3L2On-storage 
log

Figure 7: Conventional implementation of redo logging where
log records are tightly packed into redo log and consecutive
transactions commits could flush redo log to the same LBA
(e.g., LBA 0x0001 in this example) multiple times.

TRX-2, and TRX-3 (with log records L1, L2, and L3) commit
at the time t1, t2, and t3, respectively, where t1 < t2 < t3. As
illustrated in Fig. 7, at the time t1, 4KB data [L1,O] is flushed
from the in-memory redo log buffer to the LBA 0x0001 on
the storage device that further internally compresses the data.
Later on, the log record L2 is appended into the redo log
buffer, and at the time t2, the 4KB data [L1,L2,O] is flushed
to the same LBA 0x0001 on the storage device. Similarly,
at the time t3, the 4KB data [L1,L2,L3,O] is flushed to the
same LBA 0x0001 on the storage device. As illustrated in
Fig. 7, the same log record (e.g., L1 and L2) are written to
the storage device multiple times, leading to a higher write
amplification. Equivalently, as more log records are accumu-
lated inside each 4KB redo log buffer block, the redo log data
compression ratio αlog will become worse and worse over the
multiple consecutive redo log flushes.

By applying sparse data structure enabled by storage hard-
ware with built-in transparent compression, we propose a
design technique called sparse redo logging that can enable
the storage hardware most effectively compress the redo log
and hence reduce the logging-induced write amplification. Its
basic idea is very simple: At each transaction commit and
its corresponding redo log memory-to-storage flush, we al-
ways pad zeros into the in-memory redo log buffer to make
its content 4KB-aligned. As a result, the next log record will
be written into a new 4KB space in the redo log buffer. There-
fore, each log record will be written to the storage device only
once, leading to a lower write amplification compared with
the conventional practice. This can be further illustrated in
Fig. 8: Assuming the same scenario as shown above in Fig. 7,
after the transaction TRX-1 commits at the time t1, we pad
zeros into the redo log buffer and flush the 4KB data [L1,O]
to the LBA 0x0001 on the storage device. Subsequently, we
put the next log record L2 in a new 4KB space in the redo
log buffer. At the time t2, the 4KB data [L2,O] is flushed to
a new LBA 0x0002 on the storage device. Similarly, at the
time t3, the 4KB data [L3,O] is flushed to another new LBA
0x0003 on the storage device. Clearly, each redo log record

L1 0

TRX-1 commit @ t1

In-memory 
log buffer

LBA x0001

fsync @ t1

TRX-2 commit @ t2

L2

TRX-3 commit @ t3

L3

fsync @ t2 fsync @ t3

LBA x0002 LBA x0003

Transparent compression

NAND Flash memory

. . . . . .

0

L1 0 L2 0 L3On-storage 
log

0

0

Figure 8: Illustration of the proposed sparse logging where
each redo log flush always writes to a new LBA block.
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is written to the storage device only once, and redo log writes
can be (much) better compressed by the storage hardware,
leading to a (much) smaller αlog and hence lower write ampli-
fication. Since each transaction commit always invokes one
4KB write to the storage device in both conventional logging
and proposed sparse logging, the total redo log write volume
Wlog in Eq. (2) will remain the same. Therefore, by reducing
the log compression ratio αlog, the proposed sparse logging
reduces the component αlog ·Wlog in the total B+ -tree write
amplification.

4 Evaluation

For the purpose of demonstration, we implemented a B+ -
tree (referred to as B!-tree) that incorporates our proposed
three simple design techniques. To facilitate the compari-
son, we also implemented a baseline B+ -tree that uses the
conventional page shadowing, where we persist the page ta-
ble after each page flush. Since the proposed three design
techniques mainly confine within the I/O module and are
largely orthogonal to the other modules in B+ -tree imple-
mentation, we obtained the B!-tree by simply integrating the
proposed design techniques into the baseline B+ -tree with
1,200 LoC added/modified. Moreover, we also considered
RocksDB and WiredTiger as representatives of LSM-tree and
normal B+ -tree. For RocksDB, we set its maximum num-
ber of compaction and flush threads as 12 and 4, and set the
Bloomfilter as 10 bits per record. For WiredTiger and our
own baseline B+ -tree and B!-tree, we use 4 background write
threads that flush dirty in-memory pages to the storage device.

4.1 Experimental Setup
We ran all the experiments on a server with 24-core 2.6GHz
Intel CPU, 64GB DDR4 DRAM, and a 3.2TB ScaleFlux com-
putational storage drive with built-in transparent compression.
This 3.2TB drive carries out hardware-based zlib compression
on each 4KB block directly along the internal I/O path, being
transparent to the host. The per-4KB (de)compression la-
tency of the hardware zlib engine is around 5µ s, which is over
10× shorter than the TLC/QLC NAND flash memory read la-
tency (∼ 50µ s and above) and write latency (∼ 1ms and above).
Operating with PCIe Gen3× 4 interface, this computational
storage drive can achieve up to 3.2GB/s sequential through-
put and 650K (520K) random 4KB read (write) IOPS (I/O
per second) over 100% LBA span. In comparison, leading-
edge commodity NVMe SSDs (e.g., Intel P4610) achieve
similar sequential throughput and random 4KB read IOPS,
but have much worse random 4KB write IOPS (e.g., below
300K). This is because built-in transparent compression can
significantly reduce the garbage collection overhead inside
the storage drive. This computational storage drive is already
in volume production and has been deployed in data centers
worldwide.

This computational storage drive can report the amount of
post-compression data being physically written to the NAND
flash memory, which are used in the calculation of write am-
plification. Before measuring the write amplification for each
case, we populate the B+ -tree/LSM-tree data store by insert-
ing all the data records in a fully random order. Once after the
data store has been fully populated, we subsequently run ran-
dom write-only workloads over one hour in order to measure
the write amplification. In all our experiments, we generate
the content of each record by filling its half content as all-zero
and the other half content as random bytes in order to mimic
the runtime data content compressibility.

We note that the effectiveness of the proposed sparse redo
logging strongly depends on the redo log flush policy. As
discussed above Section 3.3, when redo log flushes at every
transaction commit to maximize the system reliability, sparse
redo logging is very effective. However, for applications that
can tolerate the loss of certain amount of most recent data,
one could relax the redo log flush policy (e.g., flush every
one minute) under which the proposed sparse redo logging
will be much less useful. Therefore, we considered two sce-
narios in our evaluation: (1) redo log flush per transaction
commit (denoted as log-flush-per-commit), and (2) redo log
flush per minute (denoted as log-flush-per-minute).

4.2 Experiments with Log-Flush-Per-Minute
We first carried out experiments without taking into account of
the benefit of sparse redo logging by setting the redo log flush
policy as per-minute. We considered two different dataset size:
(1) 150GB dataset with 1GB cache memory, and (2) 500GB
dataset with 15GB cache memory. We also considered three
different record size (including 8B key): 128B, 32B, and 16B.
For B+ -tree implementations, following the popular RDBMs
such as Oracle and MySQL, we considered two different page
size, including 8KB and 16KB. For our B!-tree, the implemen-
tation of the proposed page modification logging involves the
following two parameters: (1) the threshold T that determines
the maximum |∆| per page, and (2) the segment size (denoted
as Ds) when partitioning each page into multiple segments
for tracking page modification, as discussed in Section 3.2.
Fig. 9 and Fig. 10 show the measured write amplification

for 150GB and 500GB datasets, respectively. In each exper-
iment, we use either 1, 2, 4, 8, or 16 client threads to cover
a wide range of runtime workload concurrency. For B!-tree,
we set the threshold T as 2KB, and set the segment size Ds
as either 128B or 256B. Since both WiredTiger and our own
baseline B+ -tree use page shadowing, they have very similar
write amplification as shown in Fig. 9 and Fig. 10. Compared
with RocksDB, normal B+ -tree (i.e., WiredTiger and our own
baseline B+ -tree) has a much larger write amplification, while
our B!-tree can essentially close the B+ -tree vs. LSM-tree
write amplification gap. For example, in the case of 500GB
dataset and 32B record size and 4 client threads, the write am-
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Figure 9: Write amplification under the log-flush-per-minute policy, where the dataset size is 150GB and cache size is 1GB.

plification of RocksDB is 38, while the write amplification of
WiredTiger is 268 under 8KB page size and 530 under 16KB
page size, respectively, which are 7.1× and 13.9× larger than
that of RocksDB. In comparison, the write amplification of
B!-tree with Ds=128B is 28 under 8KB page size (which is
only 73.7% of RocksDB’s write amplification) and 36 under
16KB page size (which is almost the same as RocksDB).

As shown in both Fig. 9 and Fig. 10, the write amplifica-
tion of both normal B+ -tree and B!-tree will increase as we
reduce the record size (e.g., from 128B per record to 16B
per record) and/or increase the B+ -tree page size (i.e., from
8KB to 16KB). Since we use the log-flush-per-minute policy,
the overall write amplification of both normal B+ -tree and
B!-tree tends to be dominated by the αpg ·WApg, as shown in
Eq. (2). In the case of normal B+ -tree,WApg proportionally
increases as we reduce the record size and/or increase the
page size. Therefore, the write amplification of normal B+ -
tree almost linearly scale with the page size and the inverse of
the record size. In the case of B!-tree, its αpg ·WApg not only
depends on the record size and page size, but also depends
on the threshold T and segment size Ds. Hence, the write
amplification of B!-tree tends to sub-linearly scale with the
page size and the inverse of the record size, as shown in both
Fig. 9 and Fig. 10. In contrast, due to the nature of LSM-tree,
the write amplification of RocksDB is weakly dependent on
the record size.

As the number of client threads increases, the write am-
plification of normal B+ -tree noticeably reduces, because of
the larger probability of page flush coalescing under higher
workload concurrency. In comparison, the write amplifica-
tion of B!-tree is much more weakly dependent on the num-
ber of client threads, because the probability that different
client threads modify the same segment inside a page is much

smaller than the probability that different client threads mod-
ify the same page. Moreover, the write amplification of B!-
tree increases as we increase the segment size Ds, simply
because the page modification logging is done in the unit of
segments. The impact of segment size Ds on the write amplifi-
cation is more significant under smaller record size, as shown
in both Fig. 9 and Fig. 10.
The write amplification of LSM-tree may noticeably in-

crease as the dataset size increases, which can be observed by
comparing the results in Fig. 9 and Fig. 10. This is because a
larger dataset size results in more levels in LSM-tree, while
the write amplification of LSM-tree tends to be proportional
to the number of levels. In contrast, the write amplification
of B+ -tree is very weakly dependent on the dataset size. As a
result, the write amplification comparison of RocksDB vs. B!-
tree is noticeably different between the 150GB dataset and
500GB dataset. In the case of 150GB dataset as shown in
Fig. 9, the write amplification of RocksDB can be up to 2×
larger than that of B!-tree (under 128B per record and 8KB
page size), and can be up to 4× smaller than that of B!-tree
(under 16B per record and 16KB page size). In comparison,
in the case of 500GB dataset as shown in Fig. 10, the write
amplification of RocksDB can be up to 3× larger than that
of B!-tree (under 128B per record and 8KB page size), and
can be up to 2× smaller than that of B!-tree (under 16B per
record and 16KB page size). The results clearly show that,
even without taking into account of the effectiveness of sparse
redo logging, the proposed B!-tree can already close the write
amplification gap between B+ -tree and LSM-tree.

4.3 Experiments with Log-Flush-Per-Commit
We carried out further experiments by switching to the log-
flush-per-commit policy, under which the proposed sparse
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Figure 10: Write amplification under the log-flush-per-minute policy, where the dataset size is 500GB and cache size is 15GB.
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Figure 11: Log-induced write amplification when using the log-flush-per-commit policy.

redo logging can noticeably contribute to reducing the write
amplification. First, Fig. 11 shows the measured write amplifi-
cation caused by the log flush, i.e., the αlog ·WAlog component
in Eq. 2. Given the record size, except the case of B!-tree, the
log-induced write amplification significantly reduces as we
increase the number of client threads. This is because, under
higher workload concurrency, more transaction commits can
be coalesced in each log flush. In contrast, the log-induced
write amplification of B!-tree is much more weakly depen-
dent on the number of client threads, because of its use of
the sparse redo logging. As the record size reduces, the log-
induced write amplification almost proportionally increases
when the sparse redo logging is not being used. The results in
Fig. 11 clearly demonstrate the effectiveness of the proposed
sparse redo logging design technique when data management
systems use the log-flush-per-commit policy to improve the
data reliability.

Fig. 12 further shows the total write amplification under the
log-flush-per-commit policy, where the dataset size is 150GB
and cache size is 1GB. Compared with the experiments under
the log-flush-per-minute policy (as shown in Fig. 9), the write
amplification of B!-tree remains almost the same, while the
write amplification of the other three cases (i.e., RocksDB, our
own baseline B+ -tree, and WiredTiger) noticeably increases,
especially when the number of client threads is small, because

of the higher log-induced write amplification. As a result, B!-
tree can more effectively close the B+ -tree vs. LSM-tree write
amplification gap and be able to achieve better-than-RocksDB
write amplification under more scenarios.

4.4 Impact of Threshold T

As discussed earlier in Section 3.2, the proposed page modi-
fication logging design approach is subject to a write ampli-
fication vs. storage usage trade-off that is configured by the
threshold T ∈ (0,4KB]. As we increase the value of T , we
can pack more modification logs into each dedicated 4KB log
space in order to further reduce the total write amplification,
which nevertheless meanwhile induces higher storage usage
overhead. All the experiments above were carried out with T
as 2KB. We carried out further experiments under different
values of threshold T to study its impact on the write amplifi-
cation vs. storage usage trade-off. For each B+ -tree page Pi,
let |∆i| denote the size of its associated modification log. Let
N denote the total number of B+ -tree pages and recall that
lpg denotes the page size, we can express the average storage
usage overhead factor as

β =
∑N
i=1 |∆i|
N · lpg

. (4)
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Figure 12: Write amplification under the log-flush-per-commit policy, where the dataset size is 150GB and cache size is 1GB.

Under a sufficiently large N, the value of β mainly depends
on the page size lpg, the threshold T , and the workload char-
acteristics (in particular the write request distribution over all
the pages). It also weakly depends on the segment size Ds.
Assuming the fully random write request distribution across
all the pages, we carried out experiments to measure the av-
erage value of β, and the results are summarized below in
Table 2. The results clearly show that the storage usage over-
head will reduce as we reduce the threshold T and/or increase
the page size. In comparison, the impact of the segment size
Ds is much more insignificant.

Table 2: Storage usage overhead factor β of B!-tree.

Page size Ds
Threshold T

4KB 2KB 1KB

8KB 128B 27.0% 12.4% 5.6%
256B 26.3% 11.5% 4.8%

16KB 128B 12.7% 6.0% 2.8%
256B 12.3% 5.6% 2.3%

Fig. 13 further compares the total storage usage in terms
of both logical storage usage on the LBA space (i.e., before
in-storage compression) and physical usage of flash mem-
ory (i.e., after in-storage compression). Since LSM-tree has
a more compact data structure than B+ -tree, RocksDB has a
(much) smaller logical storage usage than the others as shown
in Fig. 13. Since B!-tree allocates one 4KB block for each
page in order to implement the localized modification log-
ging, its logical storage usage is much larger than that of nor-
mal B+ -tree. Nevertheless, after the in-storage compression,
WiredTiger and our baseline B+ -tree consume less physical
flash memory capacity than RocksDB (most likely because
of the space amplification of LSM-tree) and B!-tree (because

of the storage overhead caused by page modification logging).
Due to the storage space overhead caused by page modifica-
tion logging, B!-tree has slightly larger physical storage usage
than RocksDB. For example, in the case of 500GB dataset
size, the physical storage usage of RocksDB is 431GB, while
the physical storage usage of B!-tree with T=2KB is 452GB,
only about 5% larger than that of RocksDB.

Figure 13: Comparison of logical and physical storage space
usage where B+ -tree page size is 8KB.

Fig. 14 compares the write amplification of B!-tree under
different value of the threshold T , where we use the log-flush-
per-minute policy in order to better show the impact of T . The
segment size Ds is 128B. The results clearly show that we can
reduce the write amplification by increasing the threshold T .
Moreover, the reduction on the write amplification tends to
become less and less as we continue to increase the threshold
T . This is because, as the page modification log size |∆|
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becomes larger, the write amplification caused by flushing
the modification log will accordingly increase. Combining
the results shown in Fig. 13 and Fig. 14, we can observe
the impact of the threshold T on the trade-off between the
write amplification and storage usage overhead. The setting of
T=2KB appears to achieve a reasonable balance on the trade-
off and hence has been used in all the experiments presented
above in Sections 4.2 and 4.3.

Figure 14: B!-tree write amplification under different T .

4.5 Speed Performance Evaluation
Finally, we studied the speed performance of B!-tree. Com-
pared with normal B+ -tree, B!-tree tends to have lower read
speed performance because of the following two overheads
when fetching each page from the storage: (1) B!-tree has
to fetch an extra 4KB block from the storage, and (2) B!-
tree has to consolidate the modification log with the current
on-storage page image in order to construct the up-to-date
in-memory page image. Using the 150GB dataset with 128B
per record as the test vehicle, we run random read-only work-
loads with either point read or range scan queries. The B+ -tree
page size is 8KB in all the experiments. Fig. 15 shows the
measured TPS performance under random point read queries.
The results show that normal B+ -tree (WiredTiger and our
own baseline B+ -tree) have the best point read through-
put performance. RocksDB and B!-tree achieve almost the
same random point read throughput performance. By using
the Bloomfilter, RocksDB almost completely obviates the
read amplification problem of classical LSM-tree. Never-
theless, when serving read requests, RocksDB still has to
search the memtable and check the Bloomfilter. As shown
in Fig. 15, the point read throughput gap between normal
B+ -tree and RocksDB/B!-tree is not significant. For example,
under 16 client threads, WiredTiger can achieve 71K TPS,
while RocksDB/B!-tree can achieve 57K TPS, about 19.7%
less than that of WiredTiger.
Fig. 16 shows the measured TPS when running random

range scan queries, where each range scan covers 100 consec-
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Figure 15: Random point read speed performance measured
on 150GB dataset with 1GB cache and 128B per record.

utive records. Compared with the case of random point reads,
the normal B+ -tree and B!-tree have noticeably smaller dif-
ference in terms of range scan throughput performance. This
is because the two overheads of B!-tree (i.e., fetching an extra
4KB, and in-memory page reconstruction) can be amortized
among the records covered by each range scan. In comparison,
RocksDB has noticeably worse range scan throughput per-
formance than the others, because range scan invokes reads
over all the levels in LSM-tree, leading to very high read
amplification.

16 8 1
0

5k

10k

15k

20k

25k

TP
S

Thread Number

 RocksDB  WiredTiger 
 Baseline B-tree  B¯ -tree (T=2KB)

Figure 16: Random range scan speed performance measured
on 150GB dataset with 1GB cache and 128B per record,
where each range scan covers 100 consecutive records.

We also studied the speed performance under random write-
only workloads. The random write speed performance of
B+ -tree and LSM-tree is fundamentally limited by the write
amplification. Therefore, by significantly reducing the write
amplification, B!-tree should be able to achieve much higher
write speed performance. Fig. 17 shows the measured random
write TPS on 150GB dataset with 128B per record, where the
B+ -tree page size is 8KB. We set the log-flush-per-minute
policy in the experiments. Even without the help of the sparse
redo logging, B!-tree achieves 19% higher write throughput
than RocksDB, and about 2.1× higher write throughput than
WiredTiger and our baseline B+ -tree. Although the workload
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is write-only, the I/O traffic is heavily read/write-mixed be-
cause the cache memory capacity is much smaller than the
total dataset. Because the localized page modification log-
ging invokes read-modify-write operations, our B!-tree incurs
higher read I/O traffic than normal B+ -tree. As a result, the
TPS gain of our B+ -tree is less than the WA reduction of
B+ -tree as shown above in Fig. 9. Nevertheless, the random
write speed results still correlate with the write amplification
results, and our B+ -tree can achieve the highest random write
speed performance.
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Figure 17: Random write speed performance measured on
150GB dataset with 1GB cache and 128B per record.

5 Related Work

Graefe [11] surveyed a variety of design techniques (e.g., I/O
optimization, buffering, and relaxing transaction guarantee)
that can improve the B+ -tree write throughput, some of which
accomplish the goal by reducing the B+ -tree write amplifica-
tion. Nevertheless, I/O optimization techniques that mainly
aim at converting random page writes to sequential page
writes are only useful to HDDs, since modern SSDs achieve
almost the same random vs. sequential write speed perfor-
mance. Many techniques surveyed in [11] (e.g., buffering,
relaxing transaction guarantee) are orthogonal to the solutions
presented in this paper, and hence can be applied altogether
to further reduce the B+ -tree write amplification. Moreover,
copy-on-write or page shadowing [1, 18] is a well-known
technique to achieve B+ -tree data atomicity and durability.
Compared with B+ -tree using in-place update, it can reduce
the write amplification by about 2× .
Levandoski et al. [19, 20] proposed the Bw-tree that can

better adapt to modern multi-core CPU architecture and mean-
while reduce the write amplification. Bw-tree treats each
in-memory page as immutable and uses delta chaining to
keep track of the changes made to each page. This can enable
latch-free operations and hence better utilize multi-core CPUs.
Meanwhile, by only flushing the delta records, Bw-tree can
reduce the write amplification. Bw-tree uses a log-structured
store to persist all the pages and deltas, which however suffers

from read amplification and background garbage collection
overheads. When running Bw-tree on storage hardware with
build-in transparent compression, one could enhance Bw-tree
by replacing the log-structured store with the localized page
modification logging presented in this work.
Bε-tree [4] is another well-known variant of B+ -tree that

can significantly reduce the write amplification through data
buffering at non-leaf nodes. It has been used in the design
of filesystem [10, 16, 17, 34] and key-value store [8, 26]. In
essence, Bε-tree cleverly mixes the key design principles
of B+ -tree and LSM-tree. Similar to LSM-tree, Bε-tree has
worse range scan speed performance than B+ -tree. Percona
TokuDB [27] is one publicly known database product that is
built upon Bε-tree.
Little prior research has been done on studying how data

management systems could take advantage of modern stor-
age hardware with built-in transparent compression. Recently,
Zheng et al. [36] discussed some possible options on leverag-
ing such modern storage hardware to improve data manage-
ment software design. Chen et al. [6] presented a hash-based
key-value store that can leverage such modern storage hard-
ware to obviate the use of costly in-memory hash table.

6 Conclusions

This paper presents three simple yet effective design tech-
niques that enable B+ -tree take better advantages of modern
storage hardware with built-in transparent compression. By
decoupling logical vs. physical storage space utilization effi-
ciency, such modern storage hardware allows data manage-
ment systems employ sparse data structure without sacrific-
ing the true physical data storage cost. This opens a new but
largely unexplored spectrum of opportunities to innovate data
management software design. As one small step towards ex-
ploring this design spectrum, this paper presents three design
techniques that can appropriately embed sparsity into B+ -tree
data structure to largely reduce the B+ -tree write amplifi-
cation. Experimental results show that the proposed design
techniques can reduce the B+ -tree write amplification by over
10× , which essentially closes the B+ -tree vs. LSM-tree gap
in terms of write amplification. This work suggests that the
arrival of such new storage hardware warrants a revisit on the
role and comparison of B+ -tree and LSM-tree in future data
management systems.
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